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Abstract 

N-Methyl-D-aspartate receptors (NMDARs) have multiple prominent roles in CNS function but 

their excessive or insufficient activity contributes to neuropathological/psychiatric disorders.  

Consequently, a variety of positive and negative allosteric modulators (PAMs and NAMs, 

respectively) have recently been developed.  Although these modulators bind to extracellular 

domains, in the present report we find that the NMDAR’s intracellular C-terminal domains 

(CTDs) significantly influence PAM/NAM activity.  GluN2 CTD deletion robustly affected 

NAM and PAM activity with both enhancing and inhibiting effects that were compound-specific 

and NMDAR subunit-specific.  In three cases, individual PAMs became NAMs at specific 

GluN2-truncated receptors.  In contrast to GluN2, GluN1 CTD removal only reduced PAM 

activity of UBP684 and CIQ, and did not affect NAM activity. Consistent with these findings, 

agents altering phosphorylation state or intracellular calcium levels displayed receptor-specific 

and compound-specific effects on PAM activity.  It is possible that the GluN2’s M4 domain 

transmits intracellular modulatory signals from the CTD to the M1/M4 channel gating machinery 

and that this site is a point of convergence in the direct or indirect actions of several 

PAMs/NAMs thus rendering them sensitive to CTD status. Thus, allosteric modulators are likely 

to have a marked and varied sensitivity to post-translational modifications, protein-protein 

associations, and intracellular ions. The interaction between PAM activity and NMDAR CTDs 

appears reciprocal.  GluN1 CTD-deletion eliminated UBP684, but not pregnenolone sulfate (PS), 

PAM activity.  And, in the absence of agonists, UBP684, but not PS, was able to promote 

movement of fluorescently-tagged GluN1-CTDs.  Thus, it may be possible to pharmacologically 

target NMDAR metabotropic activity in the absence of channel activation. 
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1. Introduction 

N-methyl-D-aspartate receptors (NMDARs) are a family of ionotropic glutamate receptors 

activated by L-glutamate and glycine/D-serine [1-4].  NMDAR activation triggers multiple 

calcium-dependent intracellular responses that regulate various forms of synaptic plasticity and 

experience-dependent synaptogenesis.  Behavioral experiments show that they are key for 

cognition and different forms of memory.  However, excessive NMDAR activation causes 

neuronal cell death and may be a critical factor in stroke, traumatic brain injury and 

neurodegenerative diseases [5-7].  NMDAR hypofunction, on the other hand, is associated with 

CNS dysfunction and may underlie the symptoms of schizophrenia and cognitive impairment [8-

11]. These findings have led to the development of a large number of NMDAR pharmacological 

agents over the past 35 years to provide neuroprotection in stroke, seizures, and neurodegenerative 

disorders.  Unfortunately, clinical studies with these agents, for the most part, have been 

disappointing with limited therapeutic efficacy and unacceptable adverse effects [12]. 

Recently, several new classes of NMDAR allosteric modulators have been developed with 

new potential therapeutic applications.  Relative to previously available pharmacological agents, 

these new compounds offer multiple advantages for therapeutic use, for reviews see [13-16].  For 

example, a NMDAR PAM, unlike an agonist, could enhance weak NMDAR signals in 

pathological conditions of NMDAR hypofunction without causing activation of other NMDARs 

that should stay inactive.  However, there are incidental observations that the activity of some 

allosteric modulators can be lost or enhanced due to a change in the intracellular environment such 

as when whole cell recordings or outside-out patch recordings are generated [17-19].  Given the 

therapeutic potential of the allosteric modulators, it is important to understand the conditions in 

which these agents may gain or lose activity so that the appropriate receptor populations can be 
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targeted in disease.  Also, clarifying the role of the CTD should provide a greater understanding 

of PAM and NAM mechanisms of action. 

NMDAR complexes are composed of subunits from seven genes - GluN1, GluN2A-D, and 

GluN3A-B [20, 21]. These subunits assemble into hetero-tetrameric complexes in various 

combinations resulting in functionally-distinct NMDARs. The majority of NMDARs are thought 

to be composed of two glycine-binding GluN1 subunits and two glutamate-binding GluN2 

subunits.  Each subunit consists of an extracellular regulatory N-terminal domain (NTD), an 

extracellular ligand-binding domain (LBD) where glycine or L-glutamate bind (on GluN1 and 

GluN2, respectively), a transmembrane domain (TMD) consisting of 3 membrane-spanning 

segments (M1, M3, and M4) and one re-entrant loop (M2), and an intracellular C-terminal domain 

(CTD).  

Although the CTD is not necessary for NMDAR function, per se, the NMDAR CTD is 

thought to be the primary means by which intracellular factors can modulate NMDAR function 

through its interactions with intracellular ions, post-translational modifications, and interacting 

proteins. The observations of altered PAM/NAM activity in cells with disturbed intracellular 

environments, suggest that the intracellular CTD could be influencing the activity of NAMs and 

PAMs.  Thus, to determine the general effect of the CTD on allosteric modulator activity, we 

deleted the CTD from individual NMDAR subunits and evaluated NAM and PAM activity. GluN1 

CTD-deletion of NMDARs expressed in Xenopus laevis oocytes affected only the PAMs  UBP684 

and CIQ.   In contrast, GluN2 CTD-deletion had a marked effect on many allosteric modulators 

and these effects were highly specific to subunit subtype.  Consistent with these findings, depleting 

intracellular calcium or altering basal phosphorylation state also modulated allosteric modulator 

activity in a compound-specific and subunit-specific manner. The interaction between CTDs and 
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allosteric modulator binding/activity appears to be reciprocal.  Using fluorescently-tagged CTD 

NMDAR constructs expressed in hippocampal neurons, we find that UBP684, but not PS, can 

cause movement in the GluN1 CTD in the absence of agonists.    

 

2. Methods and Materials 

2.1 Compounds 

GNE-8324 was kindly provided by Genentech (South San Francisco, CA, USA); MPX-004 and 

MPX-007 by Cadent Therapeutics (Cambridge, MA, USA). PYD-106 was purchased from Glixx 

Laboratories (Hopkinton, MA, USA), and DQP-1105 were purchased from Tocris-Bio-Techne 

(Minneapolis, MN, USA). TCN-201 and CIQ were purchased from HelloBio, (Bristol, England). 

UBP684 and UBP792 were from our own laboratories [22].  5-Pregnen-3β-ol-20-onesulphate 

(pregnenolone sulfate, PS) and 5β-pregnan-3α-ol-20-onesulphate (pregnanolone sulphate, PAS) 

were purchased from Steraloids, Inc. (Newport, RI, USA). Stock solutions were prepared in 

DMSO and diluted to the desired concentration in recording buffer before each experiment.  All 

other chemicals were obtained from Sigma-Aldrich (St. Louis, MO, USA). 

 

2.2 GluN subunit RNA preparation 

cDNA encoding the GluN1a was a generous gift of Dr. Shigetada Nakanishi (Kyoto, Japan) 

and cDNA encoding GluNA, GluN2C and GluN2D were kindly provided by Dr. Peter Seeburg 

(Heidelburg, Germany) and the GluN2B cDNA was the generous gift of Drs. Dolan Pritchett and 

David Lynch (Philadelphia, PA, USA). Plasmids were linearized with Not I (GluN1a), EcoR I 

(GluN2A, GluN2C and GluN2D) or Sal I (GluN2B) and transcribed in vitro with T3 (GluN2A, 

GluN2C), SP6 (GluN2B) or T7 (GluN1a, GluN2D) RNA polymerase using the mMessage 
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mMachine transcription kits (Ambion, Austin, TX, USA). C-terminal deletion was achieved by 

introducing a stop codon at 838K, 844K, 845Q, 855K and 869R of genes encoding GluN1a, 

GluN2A, GluN2B, GluN2C and GluN2D respectively and, hereafter, referred as GluN1DCTD , 

GluN2ADCTD, GluN2BDCTD, GluN2CDCTD and GluN2DDCTD respectively (see Fig. 1A). GluN1DCTD 

was a kind gift from (Dr. Gary Westbrook, Portland, OR, USA). CTD-deleted constructs were 

verified by sequencing in the UNMC molecular core facility.  

 

2.3 Oocyte preparations and GluN expression 

Oocytes were removed and isolated from mature female Xenopus laevis (Xenopus One, Ann 

Arbor, MI, USA) as previously described [23] by procedures approved by the University of 

Nebraska Medical Center’s Animal Care and Use Committee in compliance with National 

Institutes of Health guidelines. NMDAR subunit RNAs were dissolved in sterile distilled H2O. 

GluN1a and GluN2 RNAs were mixed in a molar ratio of 1:3. 50 nl of the final RNA mixture was 

microinjected (15-30 ng total) into the cytoplasm of the oocyte. For expression of C-terminal 

deleted subunits, 10-20-fold more RNA, than wildtype, was injected to produce receptor responses 

of adequate size.  Oocytes were incubated in ND-96 solution at 17 °C prior to electrophysiological 

assay (1-5 days). 

 

2.4 Two-electrode voltage clamp (TEVC) electrophysiology  

Electrophysiological responses were measured using a standard two-microelectrode voltage 

clamp amplifier (Warner Instruments, model OC-725B, Hamden, CT, USA) designed to provide 

fast clamp of large cells.  The recording buffer contained 116 mM NaCl, 2 mM KCl, 0.3 mM 
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BaCl2, 0.005 mM EDTA (or 0.01 mM DTPA), and 5 mM HEPES, pH 7.4.  Response magnitude 

was determined by the steady plateau response elicited by bath application of 10 µM L-glutamate 

plus 10 µM glycine at a holding potential of –60 mV.  Response amplitudes for the four 

heteromeric complexes were generally between 0.2 to 1.5 µA. In all experiments, control responses 

were obtained in parallel with experimental responses on the same batch of oocytes on the same 

day.   The lack of significant activation of the endogenous Cl- current by Ba2+ in these cells was 

indicated by the presence of a plateau response. After obtaining a steady-state response to agonist 

application, test compounds were bath applied by a 8- or 16-channel perfusion system (Automate 

Scientific, Berkeley, CA, USA) and the responses were digitized for quantification (Digidata 

1440A and pClamp-10, Molecular Devices, San Jose, CA, USA).  Dose-response relationships 

were fit to a single-site (GraphPad Prism, ISI Software, San Diego, CA, USA), using a nonlinear 

regression to calculate IC50 or EC50 and % maximal efficacy. 

Especially for GluN2A-containing receptors, the magnitude of potentiation by different 

PAMs varied somewhat by oocyte batch (frog), days after RNA injection, and between different 

groups of frogs, but not as a function of agonist-response magnitude.  Indeed, this variation was 

the initial motivation for the present study; competitive antagonists and channel blockers do not 

show such sensitivity.  Thus, for all experiments, we used matched controls where full-length 

NMDAR responses were frequently alternated with experiments on CTD-deleted constructs on the 

same day and from the same batch of oocytes.  Results shown represent averaged responses from 

oocytes from multiple frogs.   

 

2.5 Oocyte cell-signaling treatments 
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For intracellular Ca2+ chelation, 5 mM EGTA was injected 1-2 h before recording. To study 

the effect of protein kinase C (PKC) mediated phosphorylation on PS and UBP684 activity, 

oocytes were bath superfused with 2 µM phorbol 12-myristate 13-acetate (PMA) for 10 minutes. 

Potentiation before and after PMA was calculated using the agonist response before and after PMA 

treatment. For de-phosphorylation of the receptors, oocytes were either microinjected with alkaline 

phosphatase (0.1 U/µL) and recorded 15-30 min post-injection or incubated in presence of the 

PKC inhibitor U73122 (20 µL) and recorded 30 min post treatment.  For control experiments, the 

same volume of H2O was microinjected. 

 

2.6 CTD-FRET Studies 

Rat primary hippocampal neurons were made according to previously described protocols with 

minor modifications [24].  Neurons were transfected at DIV 7-10 with ~2µg of total DNA (GluN1-GFP, 

GluN2A and GluN1-mCherry) and 4µL of Lipofectamine 2000 was used per well (18mm coverslips). 

Neurons expressing the desired constructs were imaged at 16-18DIV in a HBSS based solution containing: 

0.87x HBSS, 5mM HEPES, 1mM Glucose, 2.5mM MgCl2, 0.5mM CaCl2. 75uM of UBP684 or PS were 

added to neurons after a baseline image was recorded, 10min after application of the test compound a second 

image was taken. Each neuron was imaged only twice and compounds were interleaved. Results are pooled 

from two different animal preparations. Fluorescence lifetime imaging was performed on a SliceScope two-

photon microscope (Scientifica, UK) as previously described [24].  Briefly, a Chameleon Ultra II IR laser 

(Coherent, Santa Clara, CA, USA) tuned at 930 nm was used for the excitation (power was adjusted to 

3mW after the microscope objective (LUMPLFLN 60XW, NA = 1.0, Olympus)). Fluorescence emission 

was detected with a hybrid PMT detector (HPM-100-40, Becker and Hickl, Germany) and synchronized 

by a TCSPC module (SPC-150, Becker and Hickl, Germany). The following parameters were kept constant 
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for all acquired images: pixel size (80 nm; all 512 × 512 pixels), pixel dwell time (3.2 µs), FLIM 

acquisition time (~120 s/image), and number of time bins (256) in the fluorescence decay curves. 

Fluorescence lifetime images were analyzed with SPCImage (Becker and Hickl, Germany) using a binning 

factor between 6 and 10 pixels, minimum threshold of 10 photons at the peak time bin, a single exponential 

model and used the same calculated instrumental response function for each set of experiments. For further 

analysis, each FLIM image was exported as a matrix of lifetimes, photon counts, and goodness of fit values 

(chi-squared) and analyzed blind to condition with a custom MATLAB script, see [24] for details. 

 

2.7 Statistical analyses 

All values are expressed as mean ± s.e.m. Paired and unpaired t-test were used for comparisons of 

two values; comparison of 3 or move values used a one-way ANOVA followed by Tukey’s 

multiple comparisons test or a two-way ANOVA followed by Fisher’s LSD test; p ˂0.05 was 

considered as statistically significant. 

 

3. Results 

3.1 Both GluN1 and GluN2 NMDAR CTDs contribute to positive allosteric modulation by 

UBP684. 

We have recently characterized the mechanism of action of the general NMDAR PAM, 

UBP684 [22, 25].  As this PAM can potentiate the activity of all four GluN1/GluN2A-D receptors, 

we used this compound to compare the effect of CTD-deletion at the different NMDAR subunits. 

Fig. 1A shows the truncation sites used for this study.  UBP684 activity was significantly altered 

by deletion of the GluN2 subunit CTDs (Fig. 1C). Deletion of the GluN2A and GluN2D subunit 
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CTDs reduced the potentiation by UBP684 by approximately 50 % compared to wildtype. UBP684 

(50 µM) potentiated GluN2AWT receptors by 54 ± 7 % (n = 23 oocytes) and more weakly 

potentiated GluN2ADCTD – containing receptors by 27 ± 5 % (n = 28 oocytes; p˂0.001, two-way 

ANOVA). UBP684 potentiated GluN2DWT receptors 50 ± 8 % (n = 11 oocytes) while only 

potentiating 23 ± 4 % (n = 13 oocytes) at receptors containing GluN2DDCTD (p˂0.05, two-way 

ANOVA).  In contrast to the results with GluN2A and GluN2D subunits, UBP684 potentiation 

was enhanced when the GluN2B CTD was removed. UBP684 potentiation at GluN2BWT and 

GluN2BDCTD was 51 ± 6 % (n = 20 oocytes) and 74.4 ± 7.0 % (n = 15 oocytes), respectively 

(p˂0.01, two-way ANOVA). Unexpectedly, UBP684 behaved as a NAM at GluN2CDCTD subunit-

containing receptors (Fig. 1B,C). UBP684 inhibited GluN2CDCTD subunit-containing receptor 

responses by 20 ± 3 % (n = 12 oocytes) while potentiating GluN1/GluN2CWT receptors by 58 ± 6 

% (n = 15 oocytes; p˂0.0001, two way ANOVA).  Another distinct feature of the GluN2C-CTD-

deleted receptor was that it displayed a slow desensitization not seen in the GluN1/GluN2C WT 

receptor.   

To examine the role of the GluN1 CTD, GluN2A-D subunits were co-expressed with GluN1 

with intact (GluN1WT) or deleted (GluN1DCTD) CTDs.  Although, GluN1 CTD deletion 

significantly reduced the potentiation at all GluN1/GluN2 receptors, its impact on GluN2A and 

GluN2C was more dramatic, essentially eliminating potentiating activity.  UBP684 potentiation at 

GluN1DCTD/GluN2A, GluN1DCTD/GluN2B, GluN1DCTD/GluN2C and GluN1DCTD/GluN2D 

receptors was 3 ± 2 % (n = 17 oocytes), 44 ± 8 % (n = 6 oocytes), 5 ± 3 % (n = 6 oocytes) and 19 

± 7% (n = 14 oocytes), respectively while at experimentally-matched wildtype receptors, UBP684 

potentiated GluN1/GluN2A: 39 ± 4 % (n = 22 oocytes), GluN1/GluN2B: 77 ± 7 % (n = 6 oocytes), 
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GluN1/GluN2C: 81 ± 7 % (n = 6 oocytes) and GluN1/GluN2D: 58 ± 6 % (n = 15 oocytes) (Fig. 

1D).  

The effects of CTD-deletion on NMDAR single channel activity is due to deletion of amino 

acids in the proximal region of the CTD nearest to M4 [26].  To determine which portion of the 

CTD is responsible for the deletion effects on UBP684 activity, we examined three constructs 

wherein the GluN2C -CTD was deleted at different positions, residue numbers 855, 994, and 1120; 

WT length is 1250 residues.  Only the shortest construct, GluN2C-855KStop resulted in UBP684 

having NAM activity at GluN2C; UBP684 activity in the longer constructs was similar to WT 

(Fig. 1E).  

 

3.2 The CTDs of GluN2, but not GluN1 affect allosteric modulation by pregnenolone sulphate 

(PS). 

The neurosteroid PS, an endogenous modulator of NMDARs, potentiates GluN2A- and 

GluN2B- containing receptors and inhibits GluN2C- and GluN2D-containing NMDARs [27-29].  

As found for UBP684, deletion of the GluN2 CTD significantly altered PS PAM activity, but with 

qualitatively-distinct effects.  Deletion of the GluN2A CTD resulted in PS displaying NAM 

activity at GluN2A (Fig. 2A,B). 100 µM PS potentiated GluN2AWT receptors by 38 ± 4 % (n = 25 

oocytes), whereas it inhibited GluN2ADCTD - containing receptors by 23 ± 4 % (n = 25 oocytes; p 

˂ 0.0001, 2-way ANOVA).  Removal of the CTD from GluN2B caused a partial reduction in PS 

PAM activity. PS potentiated GluN2BWT receptors by 96 ± 6 %, n = 15 oocytes and GluN2BDCTD 

receptors by 74 ± 10 %, n = 8 oocytes (p ˂ 0.05, two-way ANOVA).  Thus, the effect of GluN2B 

CTD-deletion had opposite effects on the actions of UBP684 and PS - enhancing UBP684 PAM 

activity while reducing PS PAM activity. Removal of the GluN2C CTD significantly increased PS 
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mediated inhibition (WT: 64 ± 4 % inhibition, n = 10 oocytes; CTD-deleted: 89 ± 2 %, n = 14 

oocytes; p˂0.01, two-way ANOVA).  CTD deletion from GluN2D subunits did not change the 

inhibitory activity of PS (WT: 49 ± 1 %, n = 4 oocytes; CTD-deleted: 49 ± 8 %, n = 8 oocytes).  

In contrast to the effects on UBP684 PAM activity, GluN1 subunit CTD-deletion did not 

reduce or eliminate PS PAM activity.  GluN1 CTD deletion did not alter the PS activity at either 

GluN2A-, GluN2C- or GluN2D-containing receptors (GluN1/GluN2A: 33 ± 5 % potentiation, n = 

24 oocytes; GluN1DCTD/GluN2A: 32 ± 4 % potentiation, n = 20 oocytes; GluN1/GluN2C: 81 ± 4 

% inhibition, n = 6 oocytes; GluN1DCTD/GluN2C: 66 ± 5 % inhibition, n = 6 oocytes; 

GluN1/GluN2D: 43  ± 4 % inhibition (n = 12 oocytes) and GluN1DCTD/GluN2D: 45 ± 6 % 

inhibition (n = 14 oocytes).  At GluN2B-containing receptors, incorporation of GluN1DCTD 

subunits increased PS potentiation from 94 ± 4 (n = 6 oocytes) to 156 ± 25 % (n = 6 oocytes; 

p˂0.0001, two-way ANOVA) (Fig. 2C). As found for UBP684, the effect of CTD-deletion on PS 

inhibition of GluN1/GluN2C was only found with removal of most of the C-terminal, suggesting 

that the residues critical to the effect of CTD-deletion are located in the initial, membrane-proximal 

portion of the CTD (Fig. 2D). 

To better define the effect of GluN2 CTD-deletion on PS activity, we determined the dose-

response properties of PS potentiation/inhibition at the four GluN1/GluN2DCTD receptors (Fig. 3).  

GluN2A CTD-deletion converted PAM activity (GluN1/GluN2A WT potentiating EC50 = 42.1 ± 

9.4) into NAM activity at all doses with the lowest being 3 µM. For GluN2B-containing receptors, 

lower doses of PS did not distinguish WT and CTD-deleted receptors but at the highest dose tested 

there appeared a reduced potentiation in the GluN1/ GluN2BDCTD receptor, that was not 
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statistically-significant. The EC50 of PS for GluN2B was not affected by CTD-deletion (GluN2B 

WT, EC50 = 33.5 ± 13; GluN2BDCTD, EC50 = 29.6 ± 7.0). 

CTD deletion from GluN2C increased the inhibitory potency of PS at GluN2C-containing 

receptors ten-fold.  The IC50 for GluN2C-containing receptors with and without their CTD was 

82.4 ± 16.3 µM and 7.8 ± 1.2 µM respectively (Fig. 3C).  Similar, but weaker effects were seen by 

CTD-deletion at GluN2D receptors; PS two-fold more potently inhibited GluN2DDCTD receptors 

(IC50 = 76.7 ± 19.1 %) than WT GluN1/GluN2D receptors (IC50 = 149.8 ± 18.0 %). 

 

3.3 The GluN CTDs are critical for the activity of other PAMs  

The differing effects of NMDAR subunit CTD-deletion on UBP684 and PS activity, led us 

to evaluate the impact of the CTDs on the activity of other known NMDAR PAMs with varied 

mechanisms of action and different binding sites.  The effect of GluN2A CTD-deletion on the 

activity of the GluN2A-selective PAM GNE-8324, which binds in the inter-subunit LBD interface 

[30], was similar to that found for PS. The GluN2A CTD was necessary for the potentiating activity 

of GNE-8324 (Fig. 4A). 30 µM GNE-8324 potentiated wildtype GluN2A (GluN2AWT) receptors 

by 35 ± 4 % (n = 26 oocytes) and inhibited the GluN2A CTD-deleted receptors (GluN2ADCTD) by 

11 ± 2 % (n = 23 oocytes), p˂0.0001, unpaired t- test). Spermine, which is a GluN2B-selective 

PAM that binds in the N-terminal domain [31-34], displayed significantly greater potentiation at 

GluN2BDCTD receptors compared to GluN2BWT-containing receptors (20 ± 3 % potentiation at 

GluN2B vs 57 ± 5 % GluN2BDCTD; Fig. 4B). The activity of PYD-106, a GluN2C-selective PAM 

that is thought to bind in the N-terminal domain/LBD interface of GluN2C subunits [35], was 

significantly decreased by GluN2C CTD-deletion (Fig. 4C).  PYD-106 (30 µM) potentiated 

GluN2CWT and GluN2CDCTD receptors by 64 ± 4 % (n = 13 oocytes) and 21 ± 3 % (n = 9 oocytes) 
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respectively (p ˂ 0.0001, unpaired t-test).  Interestingly, however, deletion of the CTD’s on 

GluN2C and GluN2D subunits did not have a significant effect on the potentiating activity of CIQ 

(Fig. 4D), a GluN2C/2D allosteric potentiator [36] whose actions require residues on M1 [37].  

CIQ (10 µM) potentiated GluN2CWT receptors by 89 ± 8 % (n = 17 oocytes) and GluN2CDCTD by 

113 ± 13 % (n = 17 oocytes) and potentiated GluN2DWT receptors 72 ± 11 % (n = 7 oocytes) 

GluN2DDCTD by 48 ± 5 % (n = 10 oocytes).  

Given the robust effect of GluN1 CTD-deletion on UBP684, but not PS, we tested the 

GluN1DCTD construct on the activity of a PAM affected by GluN2 CTD-deletion (GNE-8324) and 

a PAM unaffected by GluN2 CTD-deletion (CIQ).  GNE-8324, like PS, was unaffected by GluN1 

CTD deletion (Fig. 4E), whereas CIQ PAM activity was significantly reduced by GluN1 CTD-

deletion (Fig. 4F).  Using the GluN2C-selective PAM, PYD-106, we confirmed that the effect of 

GluN2 CTD-deletion on PAM activity was dependent upon removal of the membrane-proximal, 

and not the more distal, region of the CTD (Fig. 4G). 

 

3.4 The GluN2 C-terminal modulates NMDAR inhibition by NAMs in a subunit-specific manner. 

The widespread effect of C-terminal deletion on the potentiating activity of distinct classes 

of NMDAR PAMs suggests that the C-terminal may generally affect allosteric modulator activity. 

So, we tested a set of mechanistically-distinct NAMs on intact and CTD-deleted NMDARs.  Since 

these agents have known binding sites, or known effects on single channel gating, their modulation 

by CTD-deletion may provide insights into how the CTD can interact with NAM mechanisms and 

channel gating. CTD-deletion increased the activity of the general NAM pregnanolone sulfate 

(PAS) on GluN2A-containing receptors (Fig. 5A).  PAS (100 µM) inhibited GluN2AWT receptors 
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by 61 ± 3 % (n = 8 oocytes) and GluN1/GluN2ADCTD receptors by 89 ± 2 % (n = 7 oocytes), 

p˂0.0001, 2-way ANOVA.  CTD deletion caused a smaller increase in PAS inhibition at GluN2B 

(GluN2BWT: 67 ± 1 % (n = 3 oocytes); GluN2BDCTD: 76 ± 3 % (n = 4 oocytes), *p˂0.05, two-way 

ANOVA. There was no significant effect of CTD removal from GluN2C and GluN2D receptors 

on PAS mediated inhibition. PAS inhibited 96 ± 1 % (n = 3 oocytes) at GluN2C and 93 ± 1 % (n 

= 3 oocytes) at GluN2CDCTD.  PAS inhibited GluN2D containing wildtype receptors by 87 ± 2 % 

(n = 4 oocytes) and GluN2DDCTD receptors by 85 ± 5 % (n = 3 oocytes).  

The activity of another NAM, UBP792 [22], was similarly affected by GluN2 CTD-deletion 

in that the largest effects were to enhance inhibition at GluN1/GluN2A receptors.  The 

GluN2ADCTD receptor was inhibited 64 ± 6 % (n = 3 oocytes) by 30 µM UBP792, while the WT 

GluN2A-containing receptor was only inhibited by 22 ± 8 % (n = 4 oocytes).  CTD-deletion of 

GluN2B and GluN2C subunits did not display a significant effect on UBP792 NAM activity. 

However, there was a slight reduction on UBP792 inhibitory activity at receptors with CTD-

deleted GluN2D subunits (Fig. 5B).  UBP792 inhibited wild-type GluN2D receptors by 86 ± 1 % 

(n = 3 oocytes) whereas it inhibited CTD-deleted GluN2D receptors by 68 ± 7 % (n = 4 oocytes; 

p˂0.05, 2-way ANOVA). As found for PAS and UBP792, the GluN2C/D preferring NAM, DQP-

1105 [19] displayed significantly greater activity at CTD-deleted GluN2A receptors (Fig. 5C).  

GluN2 CTD-deletion also appeared to increase DQP-1105 inhibition at GluN2C- and GluN2D-

containing receptors, but only the effect on GluN1/GluN2C was statistically-significant.  DQP-

1105 (50 µM) inhibited GluN1/GluN2A receptors by 39 ± 3 % (n = 5 oocytes) and 

GluN1/GluN2ADCTD receptors by 82 ± 4 % (n = 6 oocytes), p˂0.0001, 2-way ANOVA. DQP-1105 

(10 µM) inhibited GluN1/GluN2C receptors by 69 ± 2 % (n = 13 oocytes) and GluN1/GluN2CDCTD 

receptors by 79 ± 4 % (n = 10 oocytes), p˂0.01, 2-way ANOVA. The inhibition by DQP-1105 at 
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GluN2DWT and GluN2DDCTD -containing receptors was 87 ± 1 % (n = 3 oocytes) and 97 ± 2 % (n 

= 3 oocytes), respectively. 

Given the strong effect that CTD-deletion has of enhancing NAM activity, particularly at 

GluN2A receptors, we tested three GluN2A-selective NAMs.  These agents are known to bind 

within the LBD interface at the same location as the PAM GNE-8324, but with a differential effect 

on residues within the interface resulting in NAM rather than PAM activity [38].  In contrast to 

the other NAMs, we found that the inhibition by TCN-201, MPX-004 and MPX-007 [39, 40] were 

all significantly reduced, rather than increased, by GluN2A CTD-deletion. TCN-201 inhibited 

GluN2AWT and GluN2ADCTD receptors by 82 ± 2 % (n = 7 oocytes) and 53 ± 5 % (n = 8 oocytes; 

p˂0.05, unpaired t-test) respectively (Fig. 5D). MPX-004 inhibited GluN2AWT and GluN2ADCTD -

containing receptors by 75 ± 8 % (n = 3 oocytes) and 29 ± 13 % (n = 3 oocytes; p ˂ 0.05, unpaired 

t-test) respectively (Fig. 5E). Similarly,   MPX-007 inhibited GluN2AWT and GluN2ADCTD-

containing receptors by 77 ± 9 % (n = 3 oocytes) and 36 ± 6 % (n = 3 oocytes; p ˂ 0.05, unpaired 

t-test) respectively (Fig. 5F).  As found for PAMs, GluN2 CTD-deletion had a greater effect than 

deleting the GluN1 CTD on NAM activity.  We did not observe any effect of GluN1 CTD-deletion 

on the activity of PAS, DQP-1105 and TCN-201 on GluN2A receptors (Fig. 5G-I).   

 

3.5 Intracellular calcium levels can affect PAM activity at GluN1/GluN2A receptors. 

A prominent role of the NMDAR CTD in PAM activity, particularly at GluN2A-containing 

receptors, is consistent with observations that dialysis of cells during whole cell recording or upon 

forming outside-out patches eliminates the PAM activity of PS and UBP684 [17, 18, 25] at 

GluN1/GluN2A receptors. Thus, soluble intracellular ions, phosphorylating/dephosphorylating 
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enzymes, or disrupted protein-protein interactions may account for loss of PAM activity in 

dialyzed cells.  Since intracellular calcium can modulate NMDAR channel gating by CTD 

interactions with calcineurin and calmodulin [41-43], we evaluated the possible role of 

intracellular Ca++ on modulating PAM activity.  UBP684 (50 µM) potentiated GluN1/GluN2A-

GluN2D receptors in un-injected control oocytes and in control, H2O-injected oocytes (Fig. 6).  

However, UBP684-mediated potentiation of GluN1/GluN2A receptors was mostly eliminated in 

oocytes injected with 5 mM EGTA (Fig. 6A) and partially reduced at GluN1/GluN2B receptors 

(Fig. 6B).  UBP684 enhanced the agonist response at GluN1/GluN2A receptors by 54 ± 5 % (n = 

17 oocytes) in un-injected control cells, by 47 ± 13 % (n = 7 oocytes) in H2O-injected control cells 

and by only 9 ± 3 % (n = 19 oocytes) in EGTA-injected oocytes.  For GluN1/GluN2B receptors, 

EGTA injection partially reduced UBP684 potentiation: UBP684-induced potentiation was 48 ± 4 

% (n = 18 oocytes) for un-injected control, 45 ± 5 % (n = 15 oocytes) H2O-injected control, and 

28 ± 2 % (n = 22 oocytes) EGTA-injected oocytes. EGTA injection had no significant effect on 

UBP684 potentiation at GluN1/GluN2C or GluN1/GluN2D receptors (Fig. 6C, D) or PS 

potentiation at any of the NMDARs (Fig. 6E-H).  

Both intracellular calcium levels and, as shown below, PKC can alter PAM activity.  Since 

phospholipase C (PLC) leads to increases in intracellular cytoplasmic calcium and PKC activation, 

we tested if the PLC inhibitor U73122 (20 µM for 30 min.), would have an effect on PS/UBP684 

PAM activity.  We did not observe any significant change in UBP684 activity at receptors 

containing either GluN2A and GluN2B subunits (GluN2A: control, 24 ± 5 %, n = 15 oocytes; 

U73122-treated, 26 ± 4 %, n = 10 oocytes; GluN2B: control, 33 ± 4 %, n = 6 oocytes; U73122-

treated, 29 ± 9 %, n = 4 oocytes) (Fig. 6I).  However, PS potentiation was enhanced by 60 % at 

GluN2A receptors in U73122 treated oocytes whereas PS activity was not changed in U73122-
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treated cells expressing GluN1/GluN2B receptors (Fig. 6J). PS potentiated GluN2A response from 

control cells by 45 ± 3 % (n = 16 oocytes) and U73122-treated cells by 105 ± 16 % (n = 12 oocytes) 

(p˂0.0001, two-way ANOVA).  PS potentiated GluN2B response from control cells by 82 ± 10 % 

(n = 6 oocytes) and U73122-treated cells by 98 ± 8 % (n = 7 oocytes). 

 

3.6 Effect of phosphorylation state on potentiating activity of PS and UBP684  

Another factor by which the CTDs are thought to modulate NMDAR channel function is 

through phosphorylation of residues either on the NMDAR CTD or on accessory proteins that may 

bind to the CTD or elsewhere on the NMDAR complex. Many studies have found a role for protein 

kinase A (PKA) and Ca++-sensitive forms of PKC in modulating NMDAR activity (for reviews 

see [44-46].  Thus, we evaluated if increased PKA or PKC activity would alter PS or UBP684 

PAM activity.  PKA activation by forskolin (FSK) and prevention of dephosphorylation by 3-

isobutyl-1-methylxanthine (IBMX) increased GluN1/GluN2A and GluN1/GluN2B mediated 

currents, especially in GluN2B expressing cells (Fig. 7A). However, the % potentiation by either 

UBP684 or PS was unchanged in these PKA-potentiated cells (Fig. 7B, C).  As noted in the 

Methods and Materials section, the level of potentiation, especially at GluN1/GluN2A receptors 

sometimes varied between different groups of frogs.  Hence we frequently tested responses in 

matched WT/control and CTD-deleted/treated oocytes on the same day and from oocytes from 

each frog in an alternating manner.  The experiments in Fig. 7, using several different frogs from 

the same group, show a consistently reduced UBP684 PAM activity at GluN2A, but unchanged 

activity at GluN2B and unchanged PS activity (cf Fig. 1 and Fig. 7).  
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Activation of PKC by 2 µM PMA for 10 minutes increased agonist responses at 

GluN1/GluN2A and GluN1/GluN2B receptors as others have reported [47, 48] (Fig. 7D).  UBP684 

(50 µM) displayed a larger % potentiation after PMA exposure at both GluN2A- and GluN2B-

containing receptors, although the increase in activity was only statistically-significant for GluN2B 

(Fig. 7E).  Interestingly, deletion of the GluN2A or GluN2B CTDs did not eliminate the PMA-

induced increase in UBP684 PAM activity, and indeed increased UBP684 PAM activity at 

GluN1/GluN2A (Fig. 7G).  Since GluN2A CTD-deletion significantly reduces PAM activity, it is 

noteworthy that UBP684 PAM activity was restored by prior PMA exposure.  Thus, the 

enhancement of UBP684 PAM activity by PMA is independent of the GluN2 CTD.   As found for 

UBP684, PS PAM activity was significantly increased by PMA in the GluN2A CTD-deleted 

receptor, but not in the full-length receptor (Fig. 7F,H).  Unlike UBP684, PS PAM activity at 

GluN2B receptors was unaffected by PMA (Fig. 7F).  These results suggest that phosphorylation 

state, can affect PS/UPB684 PAM activity.  However, the role of the GluN2 CTD is not simply to 

serve as a PKC substrate, since deleting the CTD can increase the PMA potentiating effect on 

UBP684/PS PAM activity.  Since there was a statistically-significant effect of PMA on UBP684 

potentiation on GluN1/GluN2B, but not on PS potentiation, we evaluated if alkaline phosphatase 

injections into oocytes would alter PAM activity.  Phosphatase injection significantly reduced 

UBP684 potentiation, but not that of PS (Fig. 7I). 

 

3.7 UBP684, but not PS, can cause movement of the GluN1 CTD. 

The results of these studies indicate that removal of the NMDAR CTD, or changing the 

intracellular environment, can affect the activity of a mechanistically-diverse set of PAMs and 

NAMs in a highly compound-specific and subunit-specific manner.  If the binding or function of 
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PAMs and NAMs is sensitive to the state of the CTD, then in a reciprocal manner, the CTD may 

be sensitive to the binding or action of PAMs and NAMs.  Using methods previously described 

[24] we tested if PAMs can cause movement of the GluN1 CTD in rat hippocampal neurons 

expressing GluN1-GFP, GluN2A and GluN1-mCherry.  Using a concentration for UBP684 and 

PS that is near the top of their dose response curves (EC50 ~ 30 µM for each), we find that 75 µM 

UBP684 caused a significant increase in GluN1-GFP fluorescence lifetime, which indicates a 

movement in the GluN1 CTD (Fig. 8). This movement went in the same direction as the one 

produced by the specific agonist NMDA [24], suggesting that UBP684 might have similar effects 

on GluN1 CTD conformation.  In contrast to UBP684, application of 75 µM PS did not affect 

GluN1 CTD conformation (Fig. 8). These results are consistent with the finding that GluN1 CTD-

deletion reduced UBP684 PAM activity but not that of PS at the GluN1/GluN2A receptor (Fig. 1, 

2).   

 

4. Discussion 

4.1 CTD-deletion alters PAM/NAM activity and receptor subtype selectivity. 

The results of the present study indicate that the activities of many allosteric modulators are 

significantly affected by the presence of NMDAR subunit CTDs in a manner that is highly 

compound-specific and receptor subunit-specific.  As discussed below, these and other 

observations suggest that the effects of PAMs and NAMs may change markedly as a function of 

intracellular factors such as post-translational modifications (e.g. phosphorylation, palmitoylation, 

and ubiquitination), intracellular ion concentrations, and intracellular protein-protein interactions.  

Thus, it will be important to define the intracellular conditions that can affect CTD-modulation of 
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specific PAMs and NAMs so that the appropriate receptor population can be targeted if these 

agents are used therapeutically.   

The effect of CTD-deletion on PAM/NAM activity is remarkable for both the extent and the 

specificity.  CTD-deletion has little effect on NMDAR agonist potency and does not change 

channel blocker (memantine) activity or Zn++ modulation [49], but GluN2 CTD-deletion had many 

significant effects on allosteric modulator activity, especially on GluN1/GluN2A receptors.  Upon 

GluN2A CTD-deletion, the PAMs PS and GNE-8324 become NAMs while UBP684 became a 

less effective PAM. NAMs were differentially affected; the structurally-diverse NAMs UBP792, 

PAS and DQP-1105 became stronger NAMs while the LBD interface-binding NAMs (TCN-201, 

MPX-004, MPX-007) become weaker NAMs.  Compared to GluN2A, GluN2B CTD-deletion led 

to weaker changes in PAM/NAM activity and an increase of the PAM activity of UBP684 and 

spermine.  GluN2C CTD-deletion mostly reduced potentiation and increased inhibition: CTD-

deletion converted UBP684 PAM activity into inhibition, decreased PYD-106, but not CIQ 

potentiation, and increased PS and DQP-1105 inhibitory activity.  Relative to GluN2C, GluN2D 

CTD-deletion had less effect on PAM/NAM activity: a reduction in UBP684 PAM activity, a 

minor increase in PS NAM potency, a minor reduction in UBP792 NAM activity, and no effect 

on the NAM activity of PAS, DQP-1105, or CIQ. In contrast to these varied effects of GluN2 

CTD-deletion, the consequences of GluN1 CTD removal were more limited - an increase in PS 

potentiation specifically at GluN1DCTD/GluN2B receptors, a robust reduction in UBP684 PAM 

activity at all GluN1 CTD-deleted receptors, and a reduction in CIQ potentiation at 

GluN1DCTD/GluN2D receptors.  GluN1 CTD-deletion did not affect GNE-8324 PAM activity or 

NAM activity of PS, PAS, TCN-201 or DQP-1105.   
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4.2 Potential convergence of PAM/NAM actions and CTD-derived signals at the M1/M4 

peripheral ring. 

The CTD may be affecting modulator activity through M4 which immediately precedes the 

CTD.  Molecular dynamics simulations [50] and CTD-FRET [24] experiments suggest that the 

end of M4 nearest the CTD moves during activation.  Thus, deleting the CTD may be affecting 

M4 movement during activation by altering the mobility or anchoring of the cytoplasmic end of 

the M4 helix.  Consistent with this idea, mutating two palmitoylated GluN2A cysteine residues in 

the CTD located near M4 reduced the PAM activity of docoshexaenoic acid[51].   

The significant effect of CTD-deletion on allosteric modulator activity, but relatively little 

effect on agonist and channel blocker activity might reflect that both the CTD and allosteric 

modulators can influence channel gating through interactions with the peripheral ring formed by 

the pre-M1, M1, and M4 helices that surround the central channel pore formed by M2/M3.  The 

primary channel gating mechanism is thought be agonist-induced movement of M3 at the 

constriction formed by the four subunit’s M3 helices near the extracellular surface of the 

membrane [52].  The surrounding ring formed by pre-M1, M1, and M4 appears to modulate 

channel gating and desensitization [53-56].  Thus, M4 is well positioned for transmitting 

intracellular signals from the CTD to modulate channel properties.  As well-defined for some 

AMPA receptor NAMs [57], some NMDAR allosteric modulators are known to bind to, or require 

for their activity, residues in the pre-M1, M1 or M4 helices, for review see [13]. Other modulators 

such as spermine, PYD-106, PS, GNE-8324 may affect the M1/M4 peripheral ring via the S1/M1 

or S2/M4 linkers.  We cannot exclude, however, that the CTD could be interacting with M2 to 

affect channel gating properties, but in this case, one might expect a greater effect on the activity 

of open channel blockers. 
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4.3 The different effects of CTD-deletion of GluN1 and GluN2 subunits may reflect their different 

roles in channel gating and desensitization. 

The greater impact of GluN2 CTD-deletion on allosteric modulator activity may reflect the 

divergent roles of GluN1 and GluN2 CTDs in modulating channel gating and desensitization.  

GluN1 CTD-deletion causes an increased unitary conductance, but does not affect open probability 

(Po), mean open time (MOT) or mean closed time (MCT) [26] but see [42]. In contrast, GluN2A 

or GluN2B CTD-deletion decreases Po [26, 58, 59] by increasing MCT [26] and desensitization 

[26, 60].  Similarly, crosslinking GluN2A M4 to the pre-M1 of the same subunit [53], or making 

GluN2 M4 point mutations [54-56] increases MCT and desensitization while the same 

modifications to GluN1 have only a minor effect.   The biological relevance of GluN2 CTD 

modulation of desensitization is suggested by the decrease in desensitization upon GluN2 CTD 

association with PSD-95 [61] and the role of GluN2A/B-CTD phosphorylation in modulating 

NMDAR desensitization [60, 62, 63].   

Since the GluN2 CTD can affect NMDAR desensitization state as a function of intracellular 

signals and protein binding partners, then allosteric modulators that also regulate desensitization 

state might be expected to interact cooperatively or antagonistically with the CTD signal regulating 

desensitization.  Each of the NAMs PAS, UBP792, and DQP-1105 (or the simpler structural 

analogue 2-naphthoic acid in the case of UBP792) act to increase the long-lived closed states [19, 

64, 65], and for each of these NAMs, GluN2A CTD-deletion enhanced their NAM activity.  Thus, 

their inhibitory activity may further stabilize the long-lived closed states that are enhanced by 

CTD-deletion.  The enhancement of NAM activity by facilitating the desensitized state is also 

consistent with DQP-1105’s increased potency at GluN1/GluN2A receptors in a dialyzed whole 

cell recording mode [19], a condition which also promotes desensitization [66].  In contrast to the 



 24 

NAMs PAS, UBP792, and DQP-1105, the three GluN2A NAMs that inhibit by binding in the 

LBD interdimer interface (TCN-201, MPX-004, MPX-007) were all less effective at the GluN2A-

truncated receptor.  The LBD interface-binding NAMs act by allosterically reducing glycine 

potency/occupancy [38, 39].  Since GluN2A CTD-deletion has been reported to increase glycine 

potency ~ 2-fold [49], some of the apparent loss of LBD-NAM activity may be due to increased 

glycine potency.   

In the case of potentiators, enhancing the desensitized state (or long-lived closed states) by 

CTD-deletion may antagonize the activity of those PAMs, such as PS and UBP684, that act by 

reducing the long-lived closed states [17, 25].  This would account for the results found for PS and 

UBP684 which have reduced PAM activity at GluN1/GluN2ADCTD receptors.  Curiously, in three 

cases, GluN1/GluN2B receptors displayed enhanced PAM activity upon CTD-deletion; UBP684 

and spermine displayed greater PAM activity upon GluN2B CTD-deletion while PS PAM activity 

was increased in the GluN1DCTD/GluN2B receptor.  This suggests that the role of the CTD and/or 

M4 on desensitization mechanisms is quite different between receptors with GluN2A and GluN2B.  

In the case of Glu2C, we found that CTD-deletion promoted desensitization, enhanced NAM 

inhibitory activity and reduced PAM activity.  Thus, as proposed for GluN2A CTD-deletion, 

promoting a desensitized state may further stabilize long-lived closed states and thus enhance 

NAM activity and reduce PAM activity.  

Unlike PS and UBP684, the PAM activity of CIQ was mostly unaffected by GluN2 CTD-

deletion and, like UBP684 (and unlike PS), was affected by GluN1 CTD-deletion.  This may reflect 

that the binding site of CIQ appears to involve GluN2 M1/pre-M1 residues that are more closely 

associated with GluN1’s M4 than with GluN2’s M4 [37].  This is consistent with the identification 
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of residues at the extracellular end of GluN1’s M4 that affect CIQ activity [37] and UBP684 PAM 

activity [13]. 

 

4.4 Intracellular modulation of PAM/NAM activity 

Our brief evaluation of second messenger effects on PAM/NAM activity also suggests a role 

of the CTDs in affecting allosteric modulator activity.  As found for CTD-deletion, modulation of 

PKC, PLC, phosphatase activity and intracellular calcium levels markedly affected allosteric 

modulator activity often affecting UBP684 and PS differently and distinguishing between receptor 

subtypes. At GluN1/GluN2B receptors, PMA increased UBP684 PAM activity but not that of PS 

and conversely, phosphatase injections reduced UBP684 but not PS PAM activity. This 

enhancement was still present after deleting the GluN2B CTD.  In contrast, PKA activation did 

not change either UBP684 or PS potentiation even though PKA activation was able to increase 

agonist-induced WT NMDAR responses.  It has been reported that PKA mediated phosphorylation 

is necessary for PS PAM activity [18],  it could be that in the present studies, the basal level of 

PKA phosphorylation supports PS (and UBP684) PAM activity and it is only with a disrupted 

intracellular environment, as in outside-out patches, that there is dephosphorylation at PKA sites 

(and protein-protein disruption) which causes a reduction in PS PAM activity [18].   

PLC inhibition and chelation of intracellular calcium chelation also had differential effects 

on PAM activity.  EGTA injections significantly reduced UBP684 potentiation at GluN2A and 

GluN2B-containing receptors but not at those with GluN2C or GluN2D subunits; EGTA did not 

reduce PS potentiation at any receptor.  Perhaps the interaction of calcium binding proteins with 

the GluN1 C-terminal [42] can affect UBP684 potentiation which is dependent on the GluN1 CTD 
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whereas PS potentiation is not.  The calmodulin binding site on the GluN2A proximal CTD [43] 

may also contribute to calcium modulation of PAM activity.  In addition to phosphorylation, 

palmitoylation of membrane-proximal CTD cysteine residues on GluN2A and GluN2B [67] might 

alter PAM/NAM activity as mutating these residues reduced PAM activity of docosahexaenoic 

acid on GluN1/GluN2A [51].  However, since these palmitoylated cysteines are conserved 

between GluN2A and GluN2B and absent from GluN1, these sites cannot fully account for the 

varied effects of CTD-deletion of GluN1, GluN2A and GluN2B subunits.   

 

4.5 Reciprocal modulation of GluN1 CTD mobility by UBP684, but not by PS  

By definition, allosteric modulators do not activate NMDAR channels as do agonists.  

However, the observation that the status of the CTD can allosterically affect the activity of both 

PAMs and NAMs, suggests that in a reciprocal manner, allosteric modulators can potentially 

modulate the CTD independent of channel activation.  Recent studies have shown that agonists 

can alter the relative position of the GluN1 CTD in an NMDAR complex, providing a mechanism 

for a metabotropic-like action of NMDAR activation [24].  In this study, we found that UBP684, 

but not PS, was able to modify the relative position of the two GluN1 CTDs.  This is consistent 

with a reciprocal interaction between the CTD and the allosteric modulator since GluN1 CTD-

deletion reduced UBP684, but not PS, PAM activity.  Consequently, some allosteric modulators 

may have the ability to modulate NMDAR metabotropic activity independent of agonist-induced 

channel activation.  

 

4.6 Implications of the findings 
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There are several implications of these findings.  CTD-deleted receptors [26, 60] are similar 

to PSD-95-dissociated NMDARs [61] in having greater desensitization. Thus, extrasynaptic 

NMDARs, if not associated with a PDZ-binding scaffold protein, may have a markedly different 

allosteric modulator pharmacology than the synaptic NMDARs.  Since extrasynaptic receptors are 

thought to preferentially contribute to excitotoxicity and cell death [68], then it may be possible to 

target pathogenic NMDARs. As such, LBD-interface NAMs may potentially be relatively 

ineffective in providing neuroprotection while the desensitization-promoting NAMs may be 

especially-effective neuroprotective agents.  In a similar manner, neuronal systems that have 

experienced PKA/PKC signals, such as with mGluR signaling, may have a modified NMDAR 

PAM/NAM pharmacology.  These results also suggest that drug screening for allosteric 

modulators using recombinant receptors expressed in heterologous expression systems may yield 

biased results favoring receptors in specific post-translational states or unknown scaffold-bound 

states. 

Another implication of the current study is that CTD-deletion may well alter the specific 

relationships between M4 / pre-M1 / and M3 in the resting state and alter the structural response 

to allosteric modulator binding.  In three cases we found that CTD-deletion converted a PAM into 

a NAM.  Hence, structural studies (crystallography, cryo-EM, molecular dynamics simulations) 

of CTD-deleted structures with these PAMs might reflect a relatively inactive state when the PAM 

is bound rather than a potentiated state.  

The recent development of many new classes of NMDAR positive and negative allosteric 

modulators represents new potential opportunities for therapeutic treatment of many 

neurological/psychiatric disorders [13, 15, 16, 69].  The results from the present study suggest that 

the activity of these agents is likely to be quite sensitive to a variety of cellular factors – 



 28 

phosphorylation, palmitoylation, ubiquitination, intracellular ion concentrations, and intracellular 

protein-protein interactions.  Furthermore, since NMDAR activation can alter each of these factors 

[67, 70-72], repetitive receptor activation, as in epilepsy, could alter PAM/NAM activity.  Thus, 

allosteric modulators represent new possibilities, but with distinct challenges, for targeting specific 

subpopulations of NMDAR receptors such as those in different states of second messenger 

regulation or coupling to scaffold proteins.  These agents may also allow for independently 

targeting the ionotropic and metabotropic actions of NMDARs.  
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Figure legends: 

Figure 1. Effect of NMDAR C-terminals on positive allosteric modulation by UBP684    

(A) Left: Two-dimensional representation of a single NMDAR subunit showing four domains: 

extracellular N-terminal domain (NTD), ligand-binding domain (LBD), transmembrane domain 

(TMD) and intracellular C-terminal domain (CTD).  Upper-right: linear representation of a 

NMDAR subunit peptide sequence-domain structure.  Lower-right:  Aligned peptide sequences of 

rat NMDARs subunits representing membrane domain 4 (M4) and the C-terminal region adjacent 

to M4. Amino acids in bold (GluN1, green; GluN2A-D, red), as indicated by a black arrowhead, 

is the site after which the CTD is deleted. (B) Representative two-electrode voltage clamp 

recordings displaying UBP684 (50 µM) induced potentiation of L-glutamate / glycine (10 µM 

each) - evoked currents at GluN1/GluN2A and GluN1/GluN2C NMDARs with (GluNWT) or 

without (GluNDCTD) their CTD expressed in Xenopus laevis oocytes.  Horizontal bars above traces 

show drug application. Horizontal scale bars indicate time (s) and vertical bars indicate current 

(nA). (C) Histogram showing average potentiation by UBP684 at GluN1/GluN2 receptors 

(GluN2WT, black bars, n = 11 – 23 oocytes) and GluN1/CTD-deleted GluN2A-D receptors 

(GluN2DCTD, red bars, n = 13 – 28 oocytes).  Negative values of % potentiation indicate inhibition. 

Data represent mean ± s.e.m. *p ˂ 0.05, ***p ˂ 0.001, ****p ˂ 0.0001 (2-way ANOVA) (D) Mean 

potentiation of agonist-induced responses by UBP684 at receptors containing GluN2A-D subunits 

co-expressed with wild-type (GluN1WT, black bars, n = 6 – 22 oocytes) or CTD-deleted GluN1 

subunits (GluN1DCTD, green bars, n = 6 – 17 oocytes). Data represent mean ± s.e.m. ***p ˂ 0.001, 

****p ˂ 0.0001 (2-way ANOVA). (E) Mean potentiation of agonist-induced responses by 

UBP684 at receptors containing GluN1 with full-length GluN2C (GluN2CWT, black bars, n = 17 

oocytes) or with GluN2C subunits with their CTD-truncated at 3 different sites (GluN2C-
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855KSTOP, dark red bars, n = 9 oocytes, GluN2C-994LSTOP, red bars, n = 6 oocytes, GluN2C-

1120CSTOP, light red bars, n = 6 oocytes). Data represent mean ± s.e.m. **** p ˂  0.0001 (Compared 

to 855KSTOP; One-way ANOVA). 

 

Figure 2. Effect of NMDAR C-terminals on allosteric modulation by pregnenolone sulphate 

(PS)  

(A) Representative current traces from two-electrode voltage clamp recordings showing the 

potentiation of responses to 10 µM glutamate /10 µM glycine by PS (100 µM) at recombinant 

GluN1/GluN2A and GluN1/GluN2C NMDARs with (GluNWT) or without their CTDs (GluNDCTD).  

Horizontal bars above traces show the corresponding drug application protocol. Scale bars: 

horizontal, time in sec; vertical, current in nA. (B) Average potentiation of agonist-induced 

responses by PS at GluN1/GluN2 receptors (GluN2WT, black bars) and at receptors with GluN2 

CTD-deleted (GluN2DCTD, red bars) subunits (n = 4 - 25 oocytes). Negative values indicate % 

inhibition of agonist-evoked response. (C) Mean potentiation by PS of agonist-induced responses 

at receptors containing GluN2A-D subunits and GluN1WT (black bars) or GluN1DCTD subunits 

(green bars) (n = 6 – 24 oocytes). Negative values indicate % inhibition of agonist-evoked 

response. Data represent mean ± s.e.m. *p ˂ 0.05, ****p ˂ 0.0001 (2-way ANOVA). (D) Mean 

potentiation of agonist-induced responses by PS at GluN1/GluN2C (GluN2CWT, black bars, n = 

10 oocytes) or receptors with GluN2C truncated at 3 different CTD sites (GluN2C-855KSTOP, dark 

red bars, n = 5 oocytes, GluN2C-994LSTOP, red bars, n = 5 oocytes, GluN2C-1120CSTOP, light red 

bars, n = 5 oocytes).  Data represent mean ± s.e.m. *p ˂ 0.05, ** P ˂ 0.01 (Compared to 855KSTOP; 

One-way ANOVA). 
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Figure 3. Impact of GluN2A-D C-terminals on PS activity/potency 

Concentration-response for PS modulation of agonist responses (10 µM L-glutamate /10 µM 

glycine) at GluN1/GluN2(A-D)WT receptors (black) and GluN1/GluN2(A-D) DCTD receptors (red) 

expressed in Xenopus oocytes. Data represent mean ± s.e.m., n = 5 – 8 oocytes each. 

 

Figure 4. Effect of C-terminal deletion on potentiation by other PAMs    

(A – D) Left panel: Average % potentiation of L-glutamate / glycine (10 µM each) evoked currents 

by mechanistically-distinct NMDAR PAMs.  Right panel: Representative current traces showing 

the activity of the PAMs without (black trace) and with CTD deletions (red trace) from GluN2 

subunits as indicated. (A) GluN2A-selective PAM GNE-8324 (30 µM) at GluN1/GluN2A 

(GluN2AWT, black bar, n = 26 oocytes) and GluN1/GluN2ADCTD (GluN2ADCTD red bar, n = 23 

oocytes) receptors. Negative values indicate % inhibition. ****p ˂ 0.0001 (unpaired t- test). (B) 

Potentiation by the GluN2B-specific PAM spermine (100 µM) at GluN1/GluN2B (GluN2BWT, 

black bar, n = 5 oocytes) and GluN1/GluN2BDCTD (red bar, n = 7 oocytes) receptors. ***p ˂ 0.001 

(unpaired t- test). (C) Potentiation by GluN2C-specific PAM PYD-106 (30 µM) at GluN1/GluN2C 

(GluN2CWT, black bar, n = 13 oocytes) and GluN1/GluN2CDCTD (red bar, n = 9 oocytes) receptors. 

****p ˂ 0.0001 (unpaired t- test). (D) Potentiation by GluN2C/2D-specific PAM CIQ (10 µM) at 

GluN1/GluN2(C-D)WT (black, n = 7 - 17 oocytes) and GluN1/GluN2(C-D) DCTD receptors ( red, n 

= 10 – 17 oocytes). (E) Mean potentiation of agonist-induced responses by 30 µM GNE-8324 at 

receptors containing GluN2A subunits co-expressed with wild-type GluN1 (GluN1WT, black bars, 

n = 7 oocytes) or GluN1 CTD-deleted (GluN1DCTD, green bars, n = 5 oocytes) subunits. Data 
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represent mean ± s.e.m. (F) Mean potentiation of agonist-induced responses by CIQ (10 µM) at 

GluN1/GluN2DWT (black bars, n = 18 oocytes) or GluN1/GluN2DDCTD (green bars) receptors  (G) 

Mean potentiation of agonist-induced responses by PYD-106 (30 µM) at receptors containing 

GluN1 subunits co-expressed with GluN2CWT (black bars, n = 18 oocytes) or GluN2C subunits 

CTD-truncated at 3 different sites (GluN2C-855KSTOP, dark red bars, n = 9 oocytes, GluN2C-

994LSTOP, red bars, n = 6 oocytes, GluN2C-1120CSTOP, light red bars, n = 5 oocytes). Data 

represent mean ± s.e.m. **** p ˂ 0.0001 (one-way ANOVA). 

 

Figure 5. Effect of C-terminal deletion on inhibition by different classes of NAMs    

Inhibition of agonist-evoked (10 µM L-glutamate / 10 µM glycine) currents by different NAMs at 

GluN1/GluN2 receptors that have full-length CTDs (GluNWT, black bars) or receptors containing 

GluN1 with GluN2DCTD subunits (red bars), or GluN2 with GluN1DCTD subunits (green bars).  (A) 

100 µM Pregnanolone sulphate (PAS) inhibition at GluN1/GluN2 (n = 4 - 8 oocytes) and 

GluN1/GluN2DCTD (n = 4 oocytes) receptors. (B) Inhibition of agonist-evoked currents by 30 µM 

UBP792 at GluN1/GluN2 WT (n = 4 - 5 oocytes) and GluN1/GluN2DCTD (n = 4-7 oocytes) receptors. 

(C) Inhibition by DQP-1105 (50 µM at GluN2AWT/DCTD and 10 µM at GluN2C-DWT/DCTD) at 

GluN1/GluN2WT (n = 5-13 oocytes) and GluN1/GluN2DCTD (n = 5-10 oocytes) receptors. (D-F) 

Mean inhibition by GluN2A-specific NAMs (D) TCN-201 (10 µM) (E) MPX-004 (10 µM) and 

(F) MPX-007 (10 µM) at GluN1/GluN2AWT (black bars, n = 3 - 7 oocytes) and 

GluN1/GluN2ADCTD (n = 3 - 8 oocytes) receptors. (G-I) Average inhibition by (G) PAS (100 µM), 

(H) DQP-1105 (50 µM) and (I) TCN-201 (10 µM) at receptors containing GluN2A co-expressed 

with GluN1WT (n = 7 - 9 oocytes) or GluN1DCTD subunits (n = 4 – 5 oocytes). Values represent 
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mean ± s.e.m., *p ˂ 0.05, **p ˂ 0.01, ***p ˂ 0.001, ****p ˂ 0.0001, two-way ANOVA  (A-C) or 

unpaired t-test (D-I). 

 

Figure 6. Effect of intracellular calcium chelation and PLC inhibition on UBP684 and PS 

activity 

 (A-D) Average UBP684 potentiation of agonist-induced NMDAR responses from oocytes un-

injected (open bar), water-injected (50 nL, black bar) or EGTA-injected (5 mM, 50 nL, blue bar) 

and expressing (A) GluN1/GluN2A, (B) GluN1/GluN2B, (C) GluN1/GluN2C or (D) 

GluN1/GluN2D receptors. Data represent mean ± s.e.m., n = 6 -19 oocytes.  ***p<0.001, 

****p<0.0001 (one-way ANOVA). (E-H) PS potentiation of control (open bar), water-injected 

(black) or EGTA-injected (blue) oocytes expressing (E) GluN1/GluN2A, (F) GluN1/GluN2B, (G) 

GluN1/GluN2C or (H) GluN1/GluN2D receptors. (I, J) Potentiation of agonist-evoked NMDAR 

currents by UBP684 (50 µM) (I) or PS (100 µM) (J) after oocytes were incubated with PLC 

inhibitor U73122 (blue bars, 20 µM / 30 min) or control media (black bars). Data represent mean 

± s.e.m. (n = 4 - 15 oocytes). ****p˂0.0001 (2-way ANOVA). 

 

Figure 7. Effect of PKC and PKA activation on UBP684 and PS activity 

(A) GluN1/GluN2A and GluN1/GluN2B receptor responses to 10 µM L-glutamate / 10 µM 

glycine were enhanced by prior incubation with 10 µM FSK and 1 mM IBMX for 10 minutes to 

activate PKA, n = 4 - 5 oocytes. **p˂0.010 (unpaired t-test). (B, C) Potentiation by 50 µM 

UBP684 (B) and 100 µM PS (C) of GluN1/GluN2A and GluN1/GluN2B receptor responses before 

(black) or after (blue) PKA activation by FSK / IBMX, n = 4 - 6 oocytes. (D) PKC activation ( 2 
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µM PMA, 10 minutes) enhanced agonist-induced GluN1/GluN2A and GluN1/GluN2B receptor 

responses (n = 4 - 9 oocytes). (E, F) Potentiation of receptors containing GluN2A and GluN2B 

subunits by (E) 50 µM UBP684 (n = 9 - 11 oocytes) and (F) 100 µM PS (n = 3 - 9 oocytes) before 

(black) or after (blue) PMA incubation. **p˂0.01 (2-way ANOVA). (G, H) Effect of C-terminal 

deletion on potentiation by (G) 50 µM UBP684 (n = 3 - 5 oocytes) and (H) 100 µM PS (n = 3 - 5 

oocytes) after PMA incubation at GluN1/GluN2ADCTD and GluN1/GluN2BDCTD receptors. 

**p˂0.01 (2-way ANOVA). (I) Potentiation of agonist-induced responses by UBP684 (50 µM) or 

PS (100 µM) 30 minutes after alkaline phosphatase (blue) or water (black) injection at oocytes 

expressing GluN1/GluN2B receptors (n = 4 - 9 oocytes). *p˂0.05 (2-way ANOVA).  

 

Figure 8. UBP684, but not PS, modulates the FRET signal between GluN1 CTDs. 

A. Representative images of rat hippocampal neurons expressing GluN1-GFP, GluN2A and 

GluN1-mCherry before and 10-15min after application of UBP684 (75 µM) or PS (75 µM). 

Pseudocolor scale indicates GFP lifetime at each pixel; scale bar is 5µm. Arrows indicate spines 

with obvious lifetime increases.  B. UBP684 induced a significant increase of GluN1-GFP 

fluorescence lifetime, indicating a reduction in FRET between GluN1 CTDs. PS did not affect the 

NMDAR conformation as measured by this assay. N>17 neurons, >550 spines per condition, 

***p˂0.001 (unpaired t-test). 
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