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Influenza A virus (IAV) is a pathogen of great medical impact. To develop novel antiviral strategies, it is 22 

essential to understand molecular aspects of virus-host cell interactions in detail. During entry, the viral 23 

ribonucleoproteins (vRNPs) that carry the RNA genome must be released from the incoming particle before 24 

they can enter the nucleus for replication. The uncoating process is facilitated by histone deacetylase 6 25 

(HDAC6)1. However, the precise mechanism of shell opening and vRNP debundling is unknown. Here we 26 

show that transportin1 (TNPO1), a member of importin β family proteins, binds to a PY-NLS 2 sequence 27 

motif close to the N-terminus of matrix protein (M1) exposed during acid-priming of the viral core. It 28 

promotes the removal of M1 and induces disassembly of vRNP bundles. Next, the vRNPs interact with 29 

importin α/β (KPNA/KPNB1) and enter the nucleus. Thus, IAV uses dual importin βs for distinct steps in 30 

host cell entry. 31 

 32 

 33 

In the IAV particle, the eight single-stranded, negative-sense RNAs that make up the genome are 34 

individually packaged with a viral polymerase complex into helical vRNPs in which the major protein is 35 

the nucleoprotein, NP. Together with the matrix protein, M1, the vRNPs form a stable, supra-36 

macromolecular complex, the viral core, in which M1 provides a rigid shell around a bundle of vRNPs 3. 37 

The uncoating process is initiated in early and maturing endosomes or macropinosomes after endocytosis 38 

of incoming virus particles 4, 5. The M2 ion channel in the viral envelope allows exposure of the capsid to 39 

low pH and elevated K+, which results in loosening of interactions within the M1 core and between vRNPs 40 

in a process called priming 6. Penetration of the primed core into the cytosol occurs by low pH-triggered, 41 

hemagglutinin(HA)-mediated membrane fusion in late endosomes (LEs) 7-9. In the cytosol, the M1 shell 42 

dissociates, and vRNPs are imported into the nucleus 10-15. In the nucleus, the vRNPs are distributed as 43 

discrete complexes separated from each other 16. Thus, IAV uncoating involves three major steps; priming, 44 

M1 shell disassembly, and vRNP debundling. 45 

We have previously shown that histone deacetylase 6 (HDAC6) serves as a key cellular factor in the M1 46 
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shell disassembly step 1. It binds to unanchored ubiquitin chains and M1 exposed as viral cores emerge on 47 

the cytosolic surface of LEs. It connects the M1 shell to cytoskeleton motors dynein and myosin II, which 48 

promote disassembly of the shell by a cytoskeleton-dependent mechanism related to aggresome processing. 49 

The vRNPs are released into the cytosol where KPNA/KPNB1 mediate their nuclear uptake via nuclear 50 

pore complexes 1, 10, 17. 51 

To identify additional host proteins involved in the cytosolic uncoating and nuclear import steps, we 52 

performed an infection screen using an siRNA library against 70 nuclear pore proteins and genes known to 53 

regulate nucleocytoplasmic transport (Fig.1a and Supplementary Fig. 1) 18-20. We found that infection 54 

was reduced in cells depleted of the nuclear import/export factors CAS (cellular apoptosis susceptibility 55 

protein)/XPO2, KPNB1 (karyopherin-β1, importin β), and several nuclear pore proteins that have been 56 

previously identified as essential for infection (Supplementary Fig. 1)21. Among the novel hits, nuclear 57 

import factor transportin 1 (TNPO1, also known as karyopherin-β2 or Kapβ2) caught our interest because 58 

it is a well-characterised receptor for nuclear import of cellular ribonucleoprotein complexes and RNA-59 

binding proteins such as hnRNP A1 22, 23 many of which carry a recognition sequence termed PY-NLS 2, 24. 60 

Depletion of TNPO1 using siRNA (TNPO1#2) or shRNA reduced the number of infected cells by 66-79% 61 

in A549 and MDCK cells (Fig. 1b-d). Production of infectious virus was reduced by 81% in MDCK cells 62 

(Fig. 1e). Infection could be rescued by expression of TNPO1 using an siRNA-insensitive construct (GFP-63 

TNPO1, Fig. 1f). TNPO1 was needed across various IAV strains X31 (H3N2), WSN (H1N1), and Udorn 64 

(H3N2) of spherical and filamentous morphology (Fig. 1g). TNPO1 was, moreover, required for X31 65 

infection in HeLa cells (Supplementary Fig. 2).  66 

 67 

 68 

 69 
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To define the virus entry step(s) that require TNPO1, we first analysed the intracellular location of incoming 70 

M1 and vRNPs by indirect immunofluorescence (IIF) in control A549 cells at different times after virus 71 

internalisation. At 3hpi, uncoating of the M1 shell had already occurred judging by the broad distribution 72 

of M1 throughout the cytoplasm (Fig. 2a). At 4hpi, NP staining occurred almost exclusively in the nucleus 73 

(Fig. 2b). This indicated that at 3-4hpi the majority of cores had lost their M1 shell and vRNPs had been 74 

released, debundled, and nuclear imported.  75 

 76 

That debundling of vRNPs could, at least in part, occur in the cytoplasm prior to nuclear import was shown 77 

by structured illumination microscopy (SIM) (Fig. 2c). Images taken 1h after synchronised release of 78 

vRNPs from LEs in MEFs showed that in addition to large bright spots containing NP, smaller uniform 79 

NP-containing spots of low brightness were present in the cytoplasm. That these were similar in brightness 80 

and size to the spots in the nucleus known to represent individual vRNPs 16, 25, suggested that debundling 81 

of vRNPs can and does take place in the cytoplasm. 82 

 83 

In TNPO1-depleted cells, M1 was present in bright, cytoplasmic spots. The majority of NP also remained 84 

in cytoplasmic spots that had a distribution similar to viruses trapped by bafilomycin A1 (Baf A1)-treatment 85 

in endosomes (Fig. 2c). Thus, M1 uncoating, vRNP debundling, and vRNP nuclear import were all 86 

inhibited in cells depleted of TNPO1.  87 

 88 

Triple-staining of TNPO1-depleted and KPNB1-depleted cells 2.5hpi provided evidence for a previously 89 

undetected step in the uncoating process; the release of uncoated or partially coated cores from LEs into 90 

the cytosol (Fig. 2d-g). In TNPO1-depleted cells at this time point, NP staining was mainly cytoplasmic 91 

and present in spots of medium brightness that contained variable amounts of M1. Many of these spots did 92 

not colocalise with LAMP1; a marker for endolysosomes (Fig. 2d). In KPNB1-depleted cells, NP-positive 93 

spots of different brightness were also distributed throughout the cytosol, and they did not colocalise with 94 

LAMP1. When cores were synchronously released from LEs in TNPO1-depleted cells 1 and analysed after 95 
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30 min, many of the cytoplasmic NP spots contained M1 in contrast to control cells that displayed small 96 

NP spots in the nucleus or larger spots in the cytoplasm devoid of M1 (Supplementary Fig. 3). Taken 97 

together, these results indicated that TNPO1 is required for a step involving removal of M1 from cores that 98 

have been released into the cytosol.  99 

 100 

Judging by the brightness of the NP-positive spots in TNPO1-depleted cells compared to nuclear vRNPs in 101 

control cells, the vRNPs were still associated with each other. When KPNB1 was depleted, vRNPs failed 102 

to enter the nucleus 15, 16, 21 but uncoating of cytoplasmic cores proceeded further than in TNPO1-depleted 103 

cells; M1 was no longer associated with NP-containing spots (Fig. 2d). The smaller spot size indicated that 104 

vRNPs had been debundled (Fig. 2d, f). Taken together, these results indicated that TNPO1 removed M1 105 

from incoming cores and debundled the vRNPs in the cytosol. While KPNB1 is clearly essential for nuclear 106 

import 16, 21, it was dispensable for core uncoating and debundling. 107 

 108 

Next, we used synchronised penetration of cores into the cytosol of A549 cells by inducing fusion of pre-109 

primed, cell surface-bound viruses with the plasma membrane (acid-bypass) 6, 26 (Supplementary Fig. 4a). 110 

Fusion/hemifusion was confirmed by lipid mixing 25. Depletion of TNPO1 and KPNB1 inhibited vRNP 111 

import by 68% and 79%, respectively (Fig. 2h, Supplementary Fig. 4b). In half of TNPO1-depleted cells 112 

M1-uncoating failed to occur (Fig. 2h, Supplementary Fig. 4a). In TNPO1-depleted MDCK cells, M1-113 

uncoating was reduced by 75% compared to control cells but fusion/hemifusion was unaffected (Fig. 2i, j). 114 

M1-uncoating could be rescued by ectopic expression of shRNA-insensitive GFP-human TNPO1 (Fig. 2k). 115 

Taken together, these findings confirmed that TNPO1 was involved in the dissociation of M1 from 116 

incoming cores, whereas KPNB1 nuclear imported vRNPs 21. In further support of a role for TNPO1 in 117 

M1-uncoating, overexpression of TNPO1 increased M1-uncoating (Supplementary Fig. 4c), and that of a 118 

recombinant protein carrying the hnRNP A1 M9-NLS 22, 23 caused a reduction (Supplementary Fig. 4c). 119 

We concluded that TNPO1’s role in the dissociation of M1 from incoming cores was associated with the 120 

PY-NLS binding function.  121 
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   122 

IIF showed that TNPO1 in control cells is localised in the nucleus with a few spots in the cytoplasm (Fig. 123 

3a). Fifteen min after synchronous release of particles from LEs in MEFs 1, we could observe that some of 124 

the NP-containing spots in the cytoplasm contained TNPO1 (Fig. 3a, WT). Spots were also weakly stained 125 

for M1. This indicated that TNPO1 associates with incoming cores and with vRNP bundles that have 126 

residual M1. That TNPO1 also colocalised with M1/NP-positive spots in HDAC6 -/- MEFs (Fig. 3a, 127 

HDAC6 -/-) indicated that TNPO1 association with cores takes place in the absence of HDAC6 and 128 

aggresome processing. In these spots, the staining for M1 was stronger suggesting that TNPO1 can bind to 129 

more intact-looking cores but is unable to remove M1 efficiently without HDAC6 action. 130 

 131 

When virus was primed at pH 5.6 and 120 mM KCl, lysed, incubated with His-TNPO1 for pull-down, M1 132 

was found to co-precipitate (Fig. 3b). However, only trace amounts were precipitated from lysates prepared 133 

from unprimed virus. When cells were infected for 2.5h in the presence or absence of NH4Cl, M1 co-134 

precipitated less efficiently with TNPO1 in the NH4Cl-treated cells compared to non-treated cells 135 

(Supplementary Fig. 5a, b).  136 

 137 

When examining the amino acid sequence of M1, we observed short sequences close to the N-terminus that 138 

resemble known elements to the PY-NLSs recognised by TNPO1 in cellular substrates 27. These elements 139 

are referred to as epitopes 1, 2, and 3 (Fig. 3c), of which the glycine residue in epitope 1 is critical for 140 

TNPO1 recognition 2. Sequences similar to epitopes 1 and 2 are conserved among M1 of IAV strains. The 141 

crystal structure of M128 shows that they are on the surface of M1. We hypothesised that in primed cores, 142 

they may serve as a binding motif for TNPO1. The hypothesis was tested by generating a mutant IAV WSN 143 

(H1N1) strain in which Gly 18 in M1 was replaced with alanine by reverse genetics 29. When normalised 144 

for the same number of viruses, the G18A mutant virus reached 2% of the infectivity observed for the WT 145 

virus (Fig. 3d).  146 

 147 
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When His-TNPO1 was pulled-down after incubation with pre-primed virus lysates containing either the 148 

G18A virus or the WT control virus, the M1 of G18A precipitated less efficiently (Fig. 3e). This indicated 149 

that Gly 18 is essential not only for infection but also for efficient TNPO1 association. We also found that 150 

Gly 18 is an epitope of the HB-64 monoclonal antibody used to detect M1-uncoating (Supplementary Fig. 151 

6), indicating that acidification exposes the PY-NLS. 152 

 153 

We solved the crystal structure of the neutral pH form of M1 with the G18A mutation expressed in E. coli, 154 

and compared it to the structure of the WT protein. The main difference between the WT structure was seen 155 

around the PY-NLS sequence motif. A cavity formed by loops L1 (15-19) and L3 (49-53) in WT M1 was 156 

absent in G18A (Fig. 3f-h, Supplementary Fig. 7a, Supplementary Table 1). The 1. 9 Å resolution G18A 157 

M1 N-terminal domain structure, though monomeric in solution, forms the so called face-to-back dimer in 158 

the crystal lattice representing the neutral pH oligomeric state of M1 similar to PDB entries 1EA3 or 5V8A 159 

30, 31 (Supplementary Fig. 7b). Glycine 18 and surrounding amino acid residues are masked in this face-160 

to-back M1-M1 interface crystallised at neutral pH, but are exposed in acidified M1 crystals 28 161 

(Supplementary Fig.7c). This may explain why M1 in lysates of primed viruses engage TNPO1 better 162 

than unprimed ones (Fig. 3b). During virus entry, priming may thus allow subsequent TNPO1 binding to 163 

M1. It may explain why unprimed viruses are not uncoated 6 and why TNPO1 does not interfere with the 164 

functions of newly-synthesised M1 in infected cells. 165 

 166 

In summary, our results lead to a more detailed step-by-step model for IAV uncoating (Fig. 4). After viral 167 

uptake into endosomes, the M2 cation channels open resulting in influx of protons and K+ ions that loosens 168 

interactions stabilising the core 6 and triggers a conformational change in M1 that exposes the PY-NLS 169 

close to the N-terminus. Following viral fusion in LEs, the core is exposed to cytosolic factors. HDAC6 170 

binds to shell-associated, unanchored ubiquitin chains 1. Together with other components of the aggresome 171 

processing machinery, HDAC6 releases the shell from the endosome surface and ruptures it. This process 172 

depends on forces generated by microtubules and microfilaments and the corresponding motors, dynein 173 
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and myosin II. At the same time, TNPO1 associates with the PY-NLS exposed in the primed M1. TNPO1’s 174 

main role is to promote removal of vRNP-associated M1, which allows dissociation of vRNPs from each 175 

other. Some of the removed M1 may enter the nucleus with TNPO1. KPNA and KPNB1 bind to the 176 

classical NLS in NP resulting in nuclear import of fully or partially debundled vRNPs. Thus, the primary 177 

role of TNPO1 is M1 removal and debundling of vRNPs in the cytosol. 178 

 179 
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Materials and Methods 199 

 200 

Cells 201 

 202 

A549, Madin-Darby Canine Kidney (MDCK), HEK293T, and HeLa cells were obtained from the American 203 

Type Culture Collection (ATCC). Mouse embryonic fibroblasts (MEFs) were isolated from embryonic day 204 

13.5 from male embryos of wild type and HDAC6 -/- mice 32. For some acid-bypass experiments, the plate 205 

wells were coated with 0.01% poly-L-lysine prior to use. All cells were maintained in Dulbecco’s modified 206 

Eagle’s medium (DMEM)(Invitrogen), supplemented with 10% fetal calf serum (FCS) under 5% CO2 at 207 

37°C. MDCK cells capable of inducible expression of shRNA targeting the canine TNPO1 sequence 208 

GCAGTGCCTTTGCTACCTTAG was a kind gift from Ben L. Margolis 33. 209 

 210 

Viruses 211 

 212 

IAV X31 strain (an H3N2 reassorted strain derived from PR8 and A/Hong Kong/1/68 strains) was 213 

purchased from Virapur (CA, USA). To propagate X31 virus, 60 pathogen-free chicken eggs were 214 

inoculated with the virus and incubated at 33-37°C for 2 days. The allantoic fluid was harvested and 215 

clarified by low-speed centrifugation, which was then concentrated by high-speed centrifugation. To further 216 

concentrate the virus, two rounds of 10-40% sucrose gradient centrifugation were performed, viral bands 217 

harvested, pooled and re-suspended in formulation buffer (40% sucrose, 0.02% BSA, 20 mM HEPES pH 218 

7.4, 100 mM NaCl, 2 mM MgCl2). The viral titer was determined as 1.0 x1010 TCID50 infectious units/ml 219 

in MDCK cells. The virus was aliquoted and stored in formulation buffer at -80 ̊C until use. IAV WSN 220 
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(A/WSN/1933) (H1N1) strain was propagated in MDCK cells and purified by sucrose gradient 221 

ultracentrifugation as previously described 6. IAV Udorn (A/Udorn/72) (H3N2) strain was a kind gift from 222 

Jovan Pavlovic. TCID50 assays were performed as described elsewhere. 223 

 224 

 225 

Reagents 226 

 227 

Hybridoma cell lines producing monoclonal antibodies specific for IAV M1 anti-M1 (HB-64) and NP (HB-228 

65) were purchased from ATCC. Anti-IAV M1 (goat, #1311) was purchased from Virostat. Anti-TNPO1 229 

(mouse, ab10303), anti-TNPO1 (rabbit, ab191539), anti-LAMP1 (rabbit, ab24170) antibodies were 230 

purchased from abcam, anti-CAS (sc-1708) from Santa Cruz. Anti-importin β (clone 31H4) monoclonal 231 

antibody was purchased from Sigma-Aldrich, anti-His monoclonal antibody from Sigma-Aldrich, anti-GFP 232 

monoclonal antibody (JL-8) from Clontech. The mouse monoclonal anti-A/WSN/33 HA (clone H15-B9-233 

22 34, The Wistar Institute, Philadelphia, US) was a kind gift from Silke Stertz. The anti-IAV M1/M2 234 

monoclonal antibody (E10) was a kind gift from Jovan Pavlovic. Lipofectamine RNAiMax, lipofectamine 235 

2000 or 3000, OPTI-MEM was purchased form Invitrogen. Bafilomycin A1, cycloheximide, doxycycline, 236 

imidazole, TPCK-Trypsin, 0.1% poly-L-lysine, fibronectin were purchased from Sigma Aldrich. Ni-NTA 237 

agarose resin was purchased from Qiagen. µCLEAR 96-well optical microplates plates (#655090) were 238 

purchased from Greiner Bio-one. 239 

 240 

IAV reverse genetics 241 

 242 

Reverse genetics using the 8 plasmid rescue system 29 (a kind of gift of Robert Webster) was performed as 243 

follows: per 60mm dish of HEK 293T cells, 1 µg each of purified plasmid DNA (i.e. pHW-2000-M, -NP, 244 

-HA, -NA, -PB1, -PB2, -PA,- NS1 (WSN)) were co-transfected using lipofectamine 2000. Eighteen h later 245 

the medium was exchanged to DMEM containing 0.2% BSA, 0.1% FCS, 2mM L-glutamine, 1µg/ml 246 
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TPCK-Trypsin. Virion-containing supernatants were harvested at 48 h post-transfection. The mutant virus 247 

and the corresponding WT virus was recovered in the medium of the transfected cells, and quantitated using 248 

an IIF-based cell binding assay.  249 

 250 

siRNA transfections 251 

 252 

siRNAs (AllStars Negative control, TNPO1#1 (Hs_TNPO1_7:CAGCATGTTAAGCCTTGTATA), 253 

TNPO1#2 (Hs_TNPO1_2:CAGAATTGGCCTGACCTCTTA), TNPO1#3 254 

(Hs_TNPO1_6:CTGGAACAACTTAATCAGTAT), Hs_ATP6V1B2_3 255 

(CACGGTTAATGAAGTCTGCTA), Hs_KPNB1_1 (TCGGTTATATTTGCCAAGATA) were purchased 256 

from Qiagen. Reverse transfection was done using Lipofectamine RNAiMax and OPTI-MEM at a final 10 257 

nM siRNA concentration. The cells were maintained in a 5% CO2 incubator at 37°C for 3 days before 258 

experiments were performed.  259 

 260 

RNAi screening 261 

 262 

Seventy host genes regulating nucleocytoplasmic transport (3 siRNAs per gene) were distributed across 263 

four plates in a 96-well plate format. siRNAs (10 µl of a 100 nM stock in OPTI-MEM; Invitrogen) were 264 

added to the transfection reagent (0.1 µl RNAiMax in 20 µl OPTI-MEM) in wells of 96-well plates and 265 

incubated at room temperature for 45 min. Then, 1,500 A549 cells were added to each well in 70 µl of 266 

growth medium. 62 h after transfection, cells were infected with MOI≈0.2-0.5 of IAV X31 in infection 267 

medium for 10 h. Cells were fixed with 4% formaldehyde in PBS, stained for NP, and DNA was stained 268 

with DAPI. Cells were automatically imaged using a 20× objective on a BD pathway 855 microscope. The 269 

percentage of infected cells  was analysed by the Infection Counter, a MatLab-based program, as 270 

previously described 25. The Allstars Negative Control was included three times on each plate. All siRNAs 271 

used for screening were designed by and purchased from Qiagen. 272 
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 273 

IAV entry, infection and replication assays 274 

 275 

Virus assays were performed in infection medium (DMEM, 50 mM HEPES buffer, pH 6.8, 0.2% BSA). 276 

The virus entry assays were carried out as per the protocols previously described 1, 25. The detection time-277 

point for infection (NP expression) was 7 hpi. The assays were performed either in 24-well plates for 278 

confocal imaging (using 100× and 63× objectives) and FACS analysis, or 96-well optical bottom plates for 279 

automated imaging. For assays using MEFs the surface of plates/coverslips was coated with fibronectin (50 280 

μg/ml in PBS) for 30 min prior to the experiment. Coverslips were mounted on slides with Immu-Mount 281 

(Thermo Fisher Scientific). For rescue experiments using A549 cells, siRNA TNPO1#2 was transfected 282 

using RNAiMax. Two days later an siRNA-resistant construct pEGFP-TNPO1 was transfected using 283 

lipofectamine 2000. Eighteen h later, the infection assay was performed and cells were fixed at 6.5 hpi, 284 

stained for NP and analysed by FACS. The proportion of NP-positive cells in the low to mid GFP-285 

expressing population was analysed using the FlowJo software. High GFP-expressing cells were not 286 

analysed. For IAV replication assays, MDCK cells were induced of TNPO1 shRNA expression by the 287 

addition of 1 µg/ml doxycycline to the growth medium for 3 days. IAV X31 was then infected at MOI=0.01 288 

for 1h after which the medium was replaced with MEM supplemented with 0.1% FCS, 0.2% BSA, 100 289 

U/ml penicillin, 100 µg/ml streptomycin, 2 mM L-glutamine and 1 µg/ml TPCK-Trypsin. Supernatants 290 

were harvested at 24 hpi (and 48 hpi) and the infectious titer was analysed by TCID50 on MDCK cells. 291 

 292 

Synchronised penetration assay at LEs (NH4Cl washout) 293 

 294 

Cells grown on coverslips in 24-well or 4-well plates were bound with 1 µl of X31 (MOI≈100) per well in 295 

infection medium for 1 h on ice. The cells were washed and warmed to 37°C to allow endocytosis for 20 296 

min in the presence of 1 mM cycloheximide, after which the medium was replaced with STOP medium 297 

(DMEM, 50 mM HEPES, pH adjusted to 7.4, supplemented with 20 mM NH4Cl immediately before use) 298 
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and incubated further for 1 h to accumulate virus particles in the LEs. The medium was replaced with 299 

infection medium with cycloheximide to allow endosomal re-acidification and viral penetration and cells 300 

were fixed at indicated time points, and processed for IIF 1, 35. 301 

Synchronised fusion assay at the plasma membrane (acid bypass)  302 

Labeling of the virus with lipophilic fluorescent dyes (R18/SP-DiOC18(3)) was done as previously 303 

described 1, 25. In brief, 50 μl of X31 stock was diluted in 750 μl PBS, to which a premixture of R18 and 304 

SP-DiOC18(3) was added with vigorous mixing, at a final concentration of 0.4 μM and 0.2 μM, respectively. 305 

The mixture was rocked for 1 h at room temperature in the dark, and filtered through a syringe filter with a 306 

0.22 μm pore size (Millipore) to remove unbound dye and aggregates. Cells were trypsinised, counted and 307 

50,000 cells were taken into each eppendorf tube in a volume of 50 μl. Fifty μl of R18/SP-DiOC18(3) 308 

labelled virus was added and the mixture was incubated on ice for 30 min with tapping every 10 min to 309 

allow for virus binding to cells. Cells were washed with cold infection medium by low speed centrifugation 310 

to remove unbound virus particles. After removal of the supernatant, 300 μl of pre-warmed pH 7.4 medium 311 

or medium buffered to pH 5.0 with 50 mM citrate buffer were added to the cells, mixed and incubated at 312 

37°C in a water bath with circulation in a floating device. After 2 min, cells were fixed immediately by 313 

direct addition of 300 μl of 8% formaldehyde in PBS. After washing, the cells were resuspended in 250 μl 314 

of FACS buffer, and analysed by FACS.  315 

Acid bypass M1-uncoating, vRNP nuclear import assays 316 

To detect M1-uncoating and NP expression by inducing viral fusion at the plasma membrane, acid-bypass 317 

uncoating and infection assays were performed as previously described 1. X31 stock (5 μl, MOI≈500 for 318 

uncoating assay and 2 μl, MOI≈200 for nuclear import assay/well of a 96-well optical plate) was pre-bound 319 

to cells on ice for 1 h. Cells were washed with cold infection medium to remove unbound virus. After 320 

removal of infection medium, 500 μl of pre-warmed pH 6.8 medium or medium buffered to pH 5.0 with 321 
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citrate buffer was added. The plates were incubated in a 37°C water bath on top of a metal block touching 322 

the plate bottom directly. After 2 min, the cells were washed 2 times with cold infection medium and 323 

incubated with STOP medium. Cells were further incubated at 37°C for 3 min for the M1-uncoating assay, 324 

or for 45 min for the nuclear import assay, on a prewarmed metal plate in 5% CO2, 37°C, after which they 325 

were fixed and processed for confocal microscopy. M1-uncoating was detected by the characteristic 326 

increase in the immunostaining with anti-M1 monoclonal antibody (HB-64) after uncoating. For M1-327 

uncoating rescue assays in TNPO1 shRNA-expressing MDCK cells, pEGFP-TNPO1 or pEGFP-C3 328 

(control) constructs was transfected 2 days after shRNA induction by doxycycline. Twenty h after 329 

transfection, cells were trypsinised, counted and 30,000 cells were taken in each eppendorf tube in a volume 330 

of 50 μl. Three μl (MOI≈100) of X31 in 50 μl infection medium was added to the cells, mixed and incubated 331 

on ice for 30 min with occasional tapping. Cells were washed with cold infection medium by low speed 332 

centrifugation to remove unbound virus particles. After removal of the supernatant, 300 μl of pre-warmed 333 

pH 6.8 medium or medium buffered to pH 5.0 with 50 mM citrate buffer were added to the cells and 334 

incubated at 37°C for 2 min in a water bath with circulation on a floating device. Further, 300 µl of pre-335 

warmed pH 6.8 medium or pH 8 medium (to re-neutralise the pH 5.0 medium) was added, and incubated 336 

for 3 min at 37°C. Cells were fixed by directly adding 600 μl of 8% formaldehyde in PBS. After washing, 337 

the cells were resuspended in 250 μl of FACS buffer, stained with HB-64 (1:3000) and analysed by FACS.  338 

Recombinant protein purification 339 

 340 

His-tagged human TNPO1 was expressed at 21°C in SG13 bacterial cells. The cell pellet was lysed by 341 

French Press twice and incubated with Ni-NTA agarose for 2 h at 4°C 36. The purified protein was eluted 342 

with imidazole-containing buffer (50 mM Na2HPO4, 250 mM NaCl, 400 mM imidazole, 5 mM β-EtSH) 343 

followed by gel filtration in gel filtration buffer (10 mM HEPES pH 7.5, 150 mM NaCl, 1 mM DTT) with 344 

a Superdex 200 10/300 GL column (GE Healthcare). His-tagged MBP proteins were purified from 345 

pOPINM-HisMBP-mouse HDAC6 constructs. Mouse HDAC6 proteins were expressed in Sf9 insect cells 346 
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and purified with Ni-NTA agarose (Qiagen) and gel filtration with a Superdex 200 16/60 column. Purified 347 

protein was digested with 3C protease (Sigma Aldrich) overnight on ice, then purified with Amylose resin 348 

(NEB). After the 3C cleavage step, His-tagged MBP was eluted from the resin with 10 mM maltose-349 

containing buffer (20 mM Tris-HCl, pH 7.5, 200 mM NaCl, 10 mM maltose, 2 mM TCEP) and gel filtrated 350 

in gel filtration buffer (20 mM Tris, pH 7.5, 200 mM NaCl, 2 mM TCEP). 351 

 352 

Pull-down assay from purified IAV extracts 353 

 354 

Purified IAV X31 was treated with/without priming for 30 min at 37°C using either neutral buffer (30 mM 355 

HEPES, 30 mM MES, pH 7) or priming buffer (30 mM MES pH 5.6, 120 mM KCl) 6. After priming, IAV 356 

were lysed with Cytoskeleton (CSK) buffer (10 mM PIPES pH 6.8, 100 mM NaCl, 300 mM Sucrose, 3 357 

mM MgCl2, 1 mM EGTA, 0.1% Triton X-100) supplemented with a protease inhibitor cocktail (Roche). 358 

Lysis was performed by incubating for 30 min on ice with occasional pipetting. The lysed virus was used 359 

for Ni-NTA agarose pull-down analysis. Four µg of purified His-tagged human TNPO1 protein was mixed 360 

with the virus lysate. Purified His-tagged maltose binding protein (MBP) was used as negative control. The 361 

mixture was incubated for 3 h at 4°C on a rotary shaker after which 20 µl of a 50% slurry of Ni-NTA 362 

agarose beads (equilibrated with CSK buffer containing 20 mM imidazole and 1% BSA) was added and 363 

rotated for 30 min at 4°C. The samples were spun down at 3,000 rpm for 1 min at 4°C, beads were washed 364 

once with CSK buffer containing 20 mM imidazole, 1% BSA, followed by two washes in CSK buffer 365 

containing 20 mM imidazole. Finally, the precipitate was eluted with 15 µL of CSK buffer containing 200 366 

mM imidazole. The samples were lysed in Laemmli buffer and boiled for 5 min at 95°C, and loaded onto 367 

a BoltTM 4-12% Bis-Tris Plus Gel (Thermo Fisher Scientific), and run in MES running buffer for 35 min at 368 

200 V. The protein samples were transferred onto immobilon-P PVDF membranes (Merck) using a Trans-369 

Blot SD Semi-Dry Electrophoretic Transfer Cell (Bio-rad) according to instructions by the manufacturer. 370 

After transfer, the PVDF membrane was washed for 5 min in 1x TBST buffer, then blocked with 5% skim 371 

milk (Sigma) in 1xTBS buffer for 1 h at room temperature. Primary antibodies against M1 (HB-64) and/or 372 
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His-tag were used at 1:3000 and 1:1000 dilution, respectively. The primary antibody reaction was carried 373 

out at 4°C overnight, then the membrane was washed three times with 1x TBST buffer for 5 min each. 374 

Secondary antibodies (anti-mouse IgG-HRP conjugated or anti-goat IgG-HRP conjugated) were used at 375 

1:3000 dilution in 5% skim milk in 1x TBS buffer and incubated for 1 h at room temperature and washed 376 

with 1x TBST buffer three times for 15 min each. The signal was detected using SuperSignalTM West Pico 377 

PLUS Chemiluminescent Substrate (Thermo Fisher Scientific), exposed on an X-ray film (Fuji Film) and 378 

developed with a developer machine. 379 

 380 

Immunoprecipitation assay 381 

 382 

A549 cells growing in 60 mm dishes were washed with infection medium and bound with 10µl (MOI≈50) 383 

of X31 for 45 min on ice. The cells were washed and incubated in warm infection medium or STOP medium 384 

at 37°C for 2.5 h, after which the cells were washed in PBS, harvested with a cell scraper and centrifuged 385 

at 3,000 rpm for 5 min using a benchtop microcentrifuge. The supernatant was removed and the cell pellet 386 

was lysed in 100µl of CSK buffer, sonicated and incubated for 60 min on ice with occasional vortexing. 387 

The lysate was centrifuged at 3,000 rpm for 5 min after which the supernatant was reacted with anti-TNPO1 388 

antibody (mouse, 1 µg) or mouse IgG (1 µg) and rotated for 2 h at 4°C. Then, 20 µl of a 1:1 slurry of Protein 389 

A/G Agarose (Pierce) in CSK buffer was added and rotated for 1 h at 4°C. The beads were washed three 390 

times in CSK buffer by pelleting at 3,000 rpm for 5 min at 4°C, and processed for SDS-PAGE and Western 391 

blotting as described for the pull-down assay. 392 

 393 

Molecular cloning 394 

 395 

Plasmid constructs used were pEGFP-M9NLS, -M9NLS mutant and pQE-Trn136. pEGFP-TNPO1 was a 396 

kind gift of Woan-Yuh Tarn. To generate the TNPO1#2-resistant construct pEGFP-TNPO1-Res1, a primer 397 

(GCAACAAAAACTGGAACAACTGAATCAGTATCCAGAC) was used to introduce a silent point 398 
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mutation into the pEGFP-TNPO1 sequence by mutagenesis PCR. GFP-M1 was constructed by inserting 399 

IAV (A/WSN/1933(H1N1) M1 WT sequence amplified by PCR using the primer pair (fwd: 400 

CGCCTCGAGATGAGTCTTCTAACCGAGGTCGAA, rev: 401 

GGAATTCTCACTTGAATCGTTGCATCTGC), into the pEGFP-C3 vector via XhoI/EcoRI restriction 402 

sites. The point mutations G18A, P19A, L20A, K21A were further introduced using the GFP-M1 as 403 

template: The primers used for each point mutant were G18A (fwd: GTCCCGTCAGcCCCCCT, 404 

rev:GATAGAGAGAACGTACGTTTCGACCTC), P19A (fwd: CCCGTCAGGCgCCCTCAAAGC, rev: 405 

ACGATAGAGAGAACGTACGTTTCGACCTC), L20A (fwd: GTCAGGCCCCgcCAAAGCCGAG, rev: 406 

GGGACGATAGAGAGAACGTACGTTTCGACC), K21A (fwd: GGCCCCCTCgcAGCCGAGATCG, 407 

rev: TGACGGGACGATAGAGAGAACGTACGTTTC). All constructs were verified by sequencing. 408 

 409 

Cloning, expression and purification of G18A M1-N 410 

 411 

A DNA template encoding matrix protein M1 from IAV A/WSN/1933(H1N1) (GenBank accession number 412 

CY034133.1) was gene synthesised by GeneArt. The G18A M1 1-158 (G18A M1-N) sequence was 413 

generated by PCR and cloned into pOPINF using In-Fusion cloning 37. This construct, pOPINF G18A M1-414 

N, yields an N-terminal His x6 tag with a 3C protease site followed by the M1-N sequence that corresponds 415 

to Uniprot P05777 except for the single point mutation G18A. Protein expression was performed in E.coli 416 

BL21 DE3 cells via auto-induction at 20°C. Cell extracts were obtained using an EmulsiFlex-C3 (Avestin) 417 

cell disruptor and clarified via centrifugation and filtration. The target protein was first purified over nickel 418 

Superflow (Qiagen) resin followed by gel filtration on a S75 HiLoad 16/60 column (GE Healthcare). His-419 

tagged G18A M1-N protein was concentrated to 9.1 mg/ml in 20 mM Tris, pH 7.5, 200 mM NaCl, 2 mM 420 

TCEP and 0.02% NaN3. 421 

 422 

Crystallisation, data collection and structure determination 423 

 424 
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N-terminally His-tagged IAV M1 protein consisting of residues 1-158 (M1-N) was crystallised using the 425 

sitting-drop vapor diffusion method at 20°C with a Phoenix nano-liter dispensing robot (Art Robbins). 426 

One hundred nl of M1-N protein at 9.1 mg/ml in protein buffer (0.02 M Tris, pH 7.5, 0.2 M NaCl, 2 mM 427 

TCEP, 0.02% NaN3) was mixed with 100 nl of crystallisation buffer (30 % (w/v) EDO_P8K, 0.1 M MB2 428 

pH 7.5, 10% NPS; Molecular Dimensions Morpheus HT-96 C6). Long rod-like crystals were obtained 429 

after 5-10 days, which were harvested and cryo-cooled in liquid nitrogen. X-ray data collection was 430 

carried out at the SLS PX-II beamline in Villigen, Switzerland, at 100 K. IAV M1-N protein crystals 431 

diffracted to 1.9 Å and belonged to space group P1 at pH 7.5 with two molecules per unit cell. Diffraction 432 

data was integrated and scaled using the XDS program package 38 and the M1-N structure was solved by 433 

the molecular replacement method with PHASER 39 using available wild-type M1 structures as search 434 

models. The structure was then manually completed and further improved by the crystallographic 435 

simulated annealing routine followed by individual B-factor refinement in PHENIX 40. The structure was 436 

finalized by several rounds of manual rebuilding in COOT and refinement in BUSTER 41. Structure 437 

validation was carried out using tools implemented in COOT. Structural images for figures were prepared 438 

with PyMOL (https://pymol.org). Atomic coordinates and structure factors have been deposited in the 439 

Protein Data Bank under accession code 6I3H. 440 

 441 

 442 

Image acquisition 443 

 444 

For the initial RNAi screening, automated image acquisition was performed using 96-well optical bottom 445 

plates with a BD Pathway microscope using a 10x objective. Subsequent automated image acquisition was 446 

performed with a 10x objective using Molecular Devices ImageXpress Micro imaging system or Yokogawa 447 

CV7000. Four (2x2) to 9 (3x3) images were acquired from each well for each fluorescence channel 448 

depending on the instrument, typically resulting in the counting of more than 3,000 cells in the control 449 

sample. High-resolution images were acquired on inverted microscopes Zeiss LSM 510 Meta, LSM 780, 450 

https://pymol.org/
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Leica SP8 for confocal imaging, or Deltavision OMX for structured illumination super-resolution 451 

microscopy (SIM).  452 

 453 

Image analysis 454 

 455 

Images were processed in Cell Profiler 3.0.0 to identify areas of M1, NP and LAMP1 signal and to measure 456 

the intensity and shape parameters of these objects for colocalisation analysis. Briefly, images were median 457 

filtered to remove noise and objects were identified in the M1, NP and LAMP1 channels using an adaptive 458 

Otsu thresholding method. The M1 and NP objects were masked by the identified LAMP1 objects to create 459 

images showing M1 or NP signals from within or outside of LAMP1-positive regions. The intensity, shape 460 

and location of these objects were then measured. To identify individual cells, the signals from the M1, NP 461 

and LAMP1 channels were added together and smoothed with a Gaussian filter creating a smoothed 462 

integrated intensity image of all the three signals. The Hoechst stained cell nuclei were then identified as 463 

objects and used as the seed points to distinguish cell boundaries using the previously created smoothed 464 

integrated intensity image. Measurement of M1 and NP object intensities were then made inside and outside 465 

of the nuclei area. The individual identified M1 and NP objects were then combined for each image to 466 

create a mask of all M1 and/or NP signal areas inside or outside of LAMP1 signal areas, and then these 467 

were dilated by 2 pixels. Colocalisation analysis (rank-weighted) was then performed using the raw M1 468 

and NP images masked by either of these masks.  469 

 470 

Phenotypic analysis of the M1 uncoating dataset was performed by supervised machine learning software, 471 

the Advanced Cell Classifier 25. Confocal images for analysis were acquired using a 63× oil (NA 1.40) 472 

objective at 1024×1024 pixels per image with a Leica SP8 microscope.  473 

Statistical analysis  474 
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Data are represented as mean ± SD. For all analyses, multiple independent experiments (N≥3) were carried 475 

out. Statistical analysis was performed using Prism 7 (GraphPAD Software Inc.) software.  476 

Data availability 477 

The data that support the findings of this study are available from the corresponding author upon request. 478 

Atomic coordinates and structure factors of G18A M1-N have been deposited in the Protein Data Bank 479 

under accession code 6I3H.  480 

 481 

 482 
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 582 

Figure Legends 583 

 584 

Fig.1 TNPO1 is required for IAV infection. 585 

(a) Heatmap showing the top 19 hit genes (out of 70) from the nucleocytoplasmic transport factor siRNA 586 

screen. The screen was repeated independently three times using IAV X31 strain in A549 cells. The read-587 

out for infection was done by IIF against NP (HB-65). The average infection inhibition of individual 588 

siRNAs, and that of the three independent siRNAs are shown.  589 

(b) IAV infection is reduced in TNPO1-depleted cells. A549 cells treated with AllStars Neg control siRNA 590 

or with siTNPO1 or siATP6V1B2 (a vacuolar-ATPase subunit, used as a positive control) were infected 591 

with IAV and stained for NP (HB-65) at 10 h.p.i. Scale bars; 200 µm. Nuclei were stained with DAPI. The 592 

experiments were repeated independently multiple times (n>3) with similar results. 593 

(c) Reduced IAV infection in A549 cells transfected with siTNPO1#2 or siATP6V1B2. TNPO1-depletion 594 

was confirmed by Western blotting. n=3 biologically independent experiments. P value was determined 595 

using two-sided, unpaired t-test. 596 

(d) Reduced IAV infection in MDCK cells expressing TNPO1 shRNA. TNPO1-depletion was confirmed 597 

by Western blotting. n=4 biologically independent experiments. P value was determined using two-sided, 598 

unpaired t-test. 599 

(e) Reduced IAV replication in TNPO1-depleted MDCK cells. Three days after TNPO1 shRNA induction 600 

by doxycycline, the cells were infected with X31 (MOI=0.01) after which the supernatant was harvested at 601 

24 hpi and the IAV titre was determined by TCID50 assay. n=3 biologically independent experiments. 602 

(f) IAV infection is rescued in TNPO1-depleted A549 cells by an siTNPO1-insensitive construct expressing 603 

GFP-TNPO1. n=3 biologically independent experiments.  604 
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(g) TNPO1 is required for infection of multiple IAV strains. siRNA-treated cells were infected with X31 605 

(H3N2), WSN (H1N1), and Udorn (H3N2) strains. siATP6V1B2 was used as a positive control. n=3 606 

biologically independent experiments. All bar graphs show the mean and SD. 607 

 608 

Fig.2 TNPO1 promotes M1-uncoating from incoming cytoplasmic vRNPs. 609 

(a) TNPO1-depletion inhibits M1-uncoating. M1 (HB-64) staining of IAV-infected A549 cells at 3 hpi. 610 

Scale bars; 10 µm. n=3 independent experiments gave similar results. 611 

(b) IAV vRNP debundling can occur in the cytoplasm prior to vRNPs reaching the nuclear pore. NP (HB-612 

65) staining of MEFs 1 h after synchronous penetration from LEs were imaged by SIM. Blow-up of the 613 

nucleus and of two areas (i, ii) are shown. Scale bars; 10 µm. n=3 independent experiments gave similar 614 

results.  615 

(c) TNPO1-depletion inhibits vRNP nuclear import. NP (HB-65) staining of IAV-infected A549 cells at 4 616 

hpi. Scale bars; 10 µm. n=3 independent experiments gave similar results.  617 

(d) TNPO1 promotes M1-removal from cytoplasmic NP. Confocal images of IAV-infected A549 cells at 3 618 

hpi. stained with Hoechst (grey), NP (HB-65, green), M1 (polyclonal, red) and LAMP1 (blue). The insets 619 

(i, ii) show blow-ups of areas selected by broken-line square(s). Scale bars; 10 µm. n=3 independent 620 

experiments gave similar results.  621 

(e) Incoming M1 and NP colocalise in the cytoplasm of TNPO1-depleted cells. IAV-infected A549 cells 622 

(n=15) at 2.5 hpi were stained as in (d), imaged, and analysed automatically. The rank-weighted 623 

colocalisation index of M1 and NP spots excluding LAMP1 and nucleus is shown. n=2 independent 624 

experiments. 625 

(f) Cytoplasmic NP area is increased in TNPO1-depleted cells. IAV-infected A549 cells (n=15) at 2 and 626 

2.5 hpi were processed as in (e). n=2 independent experiments gave similar results. The mean and SD are 627 

shown. 628 
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(g) Cytoplasmic M1 intensity is increased in TNPO1-depleted cells. IAV-infected A549 cells (n=15) at 2 629 

and 2.5 hpi were processed as in (e). The experiments were repeated independently twice with similar 630 

results. The mean with 95% CI is shown. P value was determined using two-sided, unpaired t-test. 631 

(h) TNPO1 promotes M1-bypass uncoating. A549 cells were subjected to acid bypass fusion/hemifusion, 632 

M1-uncoating and vRNP import assays. The percentage of cells positive for DiOC18(3), dispersed M1 633 

(HB-64) staining, and nuclear NP was quantified for the fusion assay, M1 uncoating assay, and vRNP 634 

import assay, respectively. The mean and SD are shown (n=3). 635 

(i) Acid bypass IAV fusion/hemifusion is unaffected in TNPO1-depleted MDCK cells. Bypass (-)/(+) 636 

indicates pH 6.8- or pH 5.0-treated samples, respectively. Performed 3 days after shRNA induction. The 637 

mean is shown (n=2). 638 

(j) Acid bypass M1-uncoating is blocked in TNPO1-depleted MDCK cells. The mean and SD are shown 639 

(n=5). 640 

(k) Ectopic expression of GFP-human TNPO1 rescues acid bypass M1-uncoating in TNPO1-depleted 641 

MDCK cells. After 2 days of shRNA-induction cells were transfected with GFP or GFP-TNPO1, and 642 

subjected to acid bypass M1-uncoating assay 20 h later. The mean and SD are shown (n=3). P value was 643 

determined using two-sided, unpaired t-test. 644 

 645 

Fig. 3 TNPO1 binds to incoming IAV cores via a M1 N-terminal PY-NLS. 646 

(a) TNPO1 colocalises with incoming M1 and NP. Fifteen min after synchronous LE penetration in MEFs 647 

or HDAC6 -/- MEFs, cells were stained for TNPO1 (magenta), NP (HB-65, green), and M1 (polyclonal, 648 

cyan). Locations indicated by arrowheads are blown-up in the inset. Scale bars; 10 µm. n=3 independent 649 

experiments gave similar results.  650 

(b) TNPO1 co-precipitates with M1 from primed IAV. Purified X31 virions were non-primed (pH 7.0) or 651 

primed (pH 5.6, 120 mM[K+]) and subjected to a His-TNPO1 pull-down assay, analysed by SDS-PAGE 652 

and Western blotting. His-MBP was used as a negative control. n=3 independent experiments gave similar 653 

results.  654 
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(c) Sequence alignment of known PY-NLSs with the conserved IAV M1 N-terminal sequence. Epitope 1 655 

(a hydrophobic patch, containing the glycine), 2 (a basic patch) and 3 (PY) was adapted from 2, 27. 656 

(d) Glycine 18 is critical for IAV infection. IAV WSN strains (WT or G18A) were reverse genetically 657 

produced to infect A549 cells. Their infectivity was analysed by IIF against NP (HB-65). The mean and SD 658 

are shown (n=3). P value was determined using two-sided, unpaired t-test. 659 

(e) TNPO1 co-precipitates less efficiently with M1 from G18A virus compared to WT virus. Viruses were 660 

primed and precipitated with His-TNPO1 as in (b), and detected by SDS-PAGE and Western blotting. n=2 661 

independent experiments gave similar results.  662 

(f) Structure of G18A compared to WT M1-N (L1/L3 loops). Superposition of M1-N structures present in 663 

the Protein Data Bank that crystallised in the neutral pH face-to-back arrangement. G18A M1-N is shown 664 

as grey cartoon with selected residues as sticks in atom colours. PDB entries 1EA3 30 and 5V8A 31 are 665 

shown as cartoon models in blue and gold, respectively, with selected residues displayed as lines.  666 

(g) Detailed view of the G18A mutation with its electron density. L1/L3 loops of G18A M1-N are shown 667 

as sticks in grey and atom colours. A 2mFo-DFc simulated annealing omit electron density map is displayed 668 

in blue (1).  669 

(h) Surface representation of the L1-L3 region of M1-N highlighting the closing of a surface cavity in M1-670 

N G18A (grey, left) if compared with 1EA3 (blue, right). 671 

  672 

Fig. 4 673 

Model of step-wise IAV uncoating by HDAC6 and TNPO1 during cell entry. After viral uptake into 674 

endosomes, the M2 cation channels open resulting in influx of protons and K+ ions that loosens interactions 675 

stabilising the core. This triggers a conformational change in M1 that exposes the PY-NLS close to the N-676 

terminus. Following viral fusion in LEs, the core is exposed to cytosolic factors and HDAC6 binds to shell-677 

associated, unanchored ubiquitin chains via its zinc finger ubiquitin-binding domain (ZnF-UBP). HDAC6 678 

N-terminus binds to M1. Together with other components of the aggresome processing machinery such as 679 

motors dynein, myosin II, microtubules and actin filaments, HDAC6 releases the M1 shell from the 680 



 

26 

 

endosome surface and ruptures it. The eight bundled vRNPs are released into the cytosol. At the same time, 681 

TNPO1 associates with the PY-NLS exposed in the primed M1. TNPO1 removes residual M1 from the 682 

vRNP surface, which allows the dissociation of vRNPs from each other. KPNA and KPNB1 bind to the 683 

classical NLS in NP resulting in nuclear import of fully or partially debundled vRNPs. MTOC; microtubule 684 

organising centre. The figure was adapted from1. 685 

 686 
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Supplementary Figure 1 

Nucleocytoplasmic transport factor siRNA screen against IAV X31 in A549 cells. (a) The workflow 

of the nucleocytoplasmic transport factor siRNA screen performed in A549 cells using IAV X31 (an 

H3N2 reassorted strain derived from PR8 and A/Hong Kong/1/68 strains). Scale bar; 200 µm. (b) The 

import/export factor genes and (c) nuclear pore component genes that decreased IAV infection. Genes 

that were toxic upon depletion were removed. The mean and SD of the results of infection compared to 

control cells after depletion with three different siRNA oligos are shown. n=3 independent experiments. 

(d) The full list of genes targeted in the siRNA screen and the results of IAV infection upon their depletion. 

The average z-score value (log2 infection compared to the control) of the three different siRNA oligos 

are shown per gene.  
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Supplementary Figure 2 

TNPO1 is required for IAV X31 infection in HeLa cells. Cells were treated with AllStars Negative control, 

TNPO1, ATP6V1B2 siRNAs and infected with X31, fixed at 10 hpi. IAV infection was analysed by IIF 

against NP (HB-65).  n=3 independent experiments. The mean and SD are shown. 

 

 

 

 

 



 

 

Supplementary Figure 3 

TNPO1 promotes removal of residual M1 from penetrated cytoplasmic vRNPs. IAV (MOI=50) was 

allowed to enter A549 cells transfected with AllStars Negative control or TNPO1#3 siRNAs, subjected to 

synchronous LE penetration and fixed after 30 min. The cells were processed for IIF and stained for NP (HB-

65, green), M1 (polyclonal, red) and LAMP1 (blue). The open-lined circles indicate cytoplasmic NP spots 

devoid of significant LAMP1 staining, and their respective locations in the other two (red, blue) channels. 

The nuclei were stained with Hoechst (grey). Scale bars; 10 µm. The experiments were repeated 

independently three times with similar results. 
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Supplementary Figure 4 

M9-NLS competes with TNPO1 for M1-uncoating. (a) Schematic showing the steps of acid bypass IAV 

entry assays i.e. fusion/hemifusion, M1-uncoating, vRNP import, and the representative data derived. (b) 

Depletion of TNPO1 and KPNB1 in A549 cells transfected with siRNAs. A549 cells were transfected with 

siRNAs for 3 days after which they were harvested and analysed by SDS-PAGE and Western blotting. The 

membrane used for TNPO1 detection was reblotted to detect CAS (which served as a loading control). For 

the KPNB1 blot, a non-specific band served as a loading control. The experiments were repeated three times 

with similar results. (c) TNPO1 overexpression increases M1-uncoating, whereas hnRNP A1 M9-NLS 

overexpression reduces M1-uncoating. The acid bypass M1-uncoating assay was performed in A549 cells 

transiently expressing GFP, GFP-TNPO1, GFP-M9-NLS, or GFP-M9-NLS mutant. The cells were fixed 3 

min after the pH 5.0 acid pulse, processed for IIF against M1 (HB-64) and the percentage of M1-positive 

cells were analysed by FACS. The P values were determined by two-sided, unpaired t-test. The mean and SD 

are shown. 



 

Supplementary Figure 5 

TNPO1 co-precipitates with incoming IAV M1. (a) A549 cells were lysed and immunoprecipitated with 

anti-TNPO1 monoclonal antibody or mouse IgG as a negative control, subjected to SDS-PAGE, Western 

blotting and detected with anti-TNPO1. The IgG heavy chain (HC) is shown as a loading control. (b) IAV 

X31 was bound to A549 cells for 45 min on ice, washed, and incubated at 37°C in the absence or presence 

of 20mM NH4Cl for 2.5 h and lysed in CSK buffer. The lysates were immunoprecipitated with anti-TNPO1 

monoclonal antibody, subjected to SDS-PAGE, Western blotting, and detected with M1 (HB-64) and anti-

TNPO1 antibodies. The experiments were repeated independently twice with similar results. 
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Supplementary Figure 6  

IAV M1 N-terminus PY-NLS is the epitope of M1 monoclonal antibody HB-64 used for the M1-

uncoating assay. (a) The IAV M1 N-terminal sequence showing epitope 1 and 2 of the PY-NLS. (b) Gly18 

(and Pro19, Leu20 to a lesser degree) is the critical residue for M1 recognition by HB-64. Plasmids with 

single amino acid mutations in the hydrophobic patch (18-GPL-20) of epitope 1 were generated. HEK293T 

cells were transfected with plasmids expressing GFP-M1 WT, GFP-M1 G18A, GFP-M1 P19A, GFP-M1 

L20A or GFP-M1 K21A and harvested 24 h later. The cell lysates were subjected to SDS-PAGE and Western 

blotting, and detected with anti-GFP and anti-M1 (HB-64) antibodies. (c) HEK293T cells were transfected 

with the same plasmids as in (b) for 24 h, after which they were trypsinised, fixed, processed for FACS after 

staining with HB-64 and anti-mouse Alexa Fluor 647 secondary antibody. The scatter plots depict GFP (x-

axis) and HB-64 (y-axis) signal intensity. The experiments were repeated independently three times with 

similar results. 
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Supplementary Figure 7 

Structure of G18A M1-N. (a) Overall structure of the G18A M1 N-terminal domain. The structure is 

displayed in cartoon mode in two orientations rotated by 90° around the indicated axis and colored in rainbow 

colors from blue (N-terminus) to red (C-terminus) to highlight the topology. N-, C-termini, and helices are 

labeled. The position of the G18A mutation is labeled with an asterisk. (b) Neutral pH, crystallographic face-

to-back dimer of the G18A M1 N-terminal domain. The homodimer is presented as cartoon in two 

orientations rotated by 90° around the indicated axis. Monomers are colored in orange and blue. N-, C-

termini, and the position of the G18A mutation are labeled. Parts of the structured N-terminal affinity tag are 

omitted for clarity reasons. (c) Acidic pH, face-to-face dimer of the M1 N-terminal domain as present in PDB 

entry 1AA71. The homodimer is presented as cartoon in two orientations rotated by 90° around the indicated 

axis. Monomers are colored in orange and blue. N-, C-termini, and the position of the G18A mutation are 

labeled. 
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Table 1 

Crystallographic Data Collection and Refinement Statistics 

 

  
 
 

 

 

 



Supplementary Figure 8 
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