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Summary In this paper, we introduce quantile coherency to measure general de-
pendence structures emerging in the joint distribution in the frequency domain and
argue that this type of dependence is natural for economic time series but remains
invisible when only the traditional analysis is employed. We define estimators which
capture the general dependence structure, provide a detailed analysis of their asymp-
totic properties and discuss how to conduct inference for a general class of possibly
nonlinear processes. In an empirical illustration we examine the dependence of bivari-
ate stock market returns and shed new light on measurement of tail risk in financial
markets. We also provide a modelling exercise to illustrate how applied researchers can
benefit from using quantile coherency when assessing time series models.

Keywords: Cross-spectral analysis, Ranks, Copula, Stock market, Risk.

1. DEPENDENCE STRUCTURES BEYOND SECOND-ORDER MOMENTS

One of the fundamental problems faced by a researcher in economics is how to quantify
the dependence between economic variables. Although correlated variables are rather
commonly observed phenomena in economics, it is often the case that strongly correla-
ted variables under study are truly independent, and what we measure is mere spurious
correlation; see Granger and Newbold (1974). Conversely, but equally deluding, uncorre-
lated variables may possess dependence in different parts of the joint distribution, and/or
at different frequencies. This dependence stays hidden when classical measures based on
linear correlation and traditional cross-spectral analysis are used; see Croux et al. (2001),
Ning and Chollete (2009) and Fan and Patton (2014). Hence, conventional models de-
rived from averaged quantities as for example covariance-based measures may deliver
rather misleading results.

In this paper, we introduce a new class of cross-spectral densities that characterise the
dependence in quantiles of the joint distribution across frequencies (i. e., with respect to
cycles). Subsequently, standardisation of the before-mentioned quantile spectra yields a
related quantity to which we will refer to as quantile coherency. We define and motivate
the quantile-based cross-spectral quantities in analogy to their traditional counterparts.
Yet, instead of quantifying dependence in terms of joint moments (i. e., by averaging
with respect to the joint distribution), the new measures are defined in terms of the
probabilities to exceed quantiles. Hence, they are designed to detect any general type of
dependence structure that may arise between variables under study.

Such complex dynamics may arise naturally in many macroeconomic, or financial time
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2 J. Baruńık and T. Kley

series such as growth rates, inflation, housing markets, or stock market returns. In fi-
nancial markets, extremely scarce and negative events in one asset can cause irratio-
nal outcomes and panics leading investors to ignore economic fundamentals and cause
similarly extreme negative outcomes in other assets. In such situations, markets may
be connected more strongly than in calm periods of small, or positive returns; cf. Bae
et al. (2003). Hence, the co-occurrences of large negative values may be more common
across stock markets than co-occurrences of large positive values reflecting asymmetric
behaviour of economic agents. Moreover, long-term fluctuations in quantiles of the joint
distribution may differ from the ones in the short-term due to differing risk perception
of economic agents over distinct investment horizons. This behaviour produces various
degrees of persistence at different parts of the joint distribution, while on average the
stock market returns remain impersistent. In univariate macroeconomic variables, resear-
chers document asymmetric adjustment paths (cf. Neftci (1984) and Enders and Granger
(1998)) as firms are more prone to an increase than to a decrease in prices. Asymmetric
business cycle dynamics at different quantiles can be caused by positive shocks to out-
put being more persistent than negative shocks. While output fluctuations are known to
be persistent, Beaudry and Koop (1993) document less persistence at longer horizons.
Such asymmetric dependence at different horizons can be shared by multiple variables.
Because classical, covariance-based approaches only take averaged information into ac-
count, these types of dependence fail to be identified by traditional means. Revealing
such dependence structures, quantile cross-spectral analysis introduced in this paper can
fundamentally change the way how we view the dependence between economic time se-
ries, and opens new possibilities for the modelling of interactions between economic and
financial variables.

Quantile cross-spectral analysis provides a general, unifying framework for estimating
dependence between economic time series. As noted in the early work of Granger (1966),
the spectral distribution of an economic variable has a typical shape which distinguis-
hes long-term fluctuations from short-term ones. These fluctuations point to economic
activity at different frequencies (after removal of trend in mean, as well as seasonal
components). After Granger (1966) studied the behaviour of single time series, impor-
tant literature using cross-spectral analysis to identify the dependence between variables
quickly emerged (from Granger (1969) to more recent Croux et al. (2001)). Instead of con-
sidering only cross-sectional correlations, researchers started to use coherency (frequency
dependent correlation) to investigate short-run and long-run dynamic properties of mul-
tiple time series, and identify business cycle synchronisation; see Croux et al. (2001). In
one of his very last papers, Granger (2010) hypothesised about possible cointegrating
relationships in quantiles, leading to the first notion of general types of dependence that
quantile cross-spectral analysis is addressing. The quantile cointegration developed by
Xiao (2009) partially addresses the problem, but does not allow to fully explore the fre-
quency dependent structure of correlations in different quantiles of the joint distribution.

Three toy examples illustrating the potential offered by quantile cross-spectral analysis
are depicted in Figure 1. In each example one distinct type of dependence is considered:
cross-sectional dependence (left), serial dependence (centre), and independence (right).
We consider bivariate processes (xt, yt) that possess the desired dependence structure,
but are indistinguishable in terms of traditional coherency. In the examples, (εt) is an
independent sequence of standard normally distributed random variables. In the left co-
lumn of Figure 1 the dependence emerging between εt and ε2t is depicted. It is important
to observe that εt and ε2s are uncorrelated. Therefore, traditional coherency for (εt, ε

2
t )
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Figure 1. Illustration of dependence between processes xt and yt.

would read zero across all frequencies, even though it is obvious that εt and ε2t are de-
pendent. From the newly introduced quantile coherency, this dependence can easily be
observed. More precisely, we can distinguish various degrees of dependence for each part
of the distribution. For example, there is no dependence in the centre of the distribution
(i. e., 0.5|0.5), but when the quantile levels are different from 0.5 the dependence becomes
visible.1 In this example the quantile coherency is constant across frequencies, which cor-
responds to the fact that there is no serial dependence. In the centre column of Figure 1
the process (εt, ε

2
t−1) is studied, where we have introduced a time lag. Intuitively, the

dependence in quantiles of this bivariate process will be the same as in the previous ex-
ample (left column) in the long run, referring to frequencies close to zero. With increasing
frequency, dependence will decline or incline gradually to values with opposite signs, as
high frequency movements are in opposition due to the lag shift. This is clearly captured
by quantile coherency, while the dependence structure would stay hidden away from tra-
ditional coherency, again, as it averages the dependence across quantiles. We can think
about these processes as being “spuriously independent”. To demonstrate the behaviour
of the quantile coherency when the processes under consideration are truly independent,
we observe in the right column of Figure 1 the quantities for independent bivariate Gaus-
sian white noise, where quantile coherency displays zero dependence at all quantiles and
frequencies, as expected. These illustrations strongly support our claim that there is need
for more general measures that can provide a better understanding of the dependence
between variables. These very simple, yet illuminating motivating examples focus on un-
covering dependence in uncorrelated variables. Later in the text (Section 6), we further
discuss a data generating process based on quantile vector autoregression (QVAR), which
is able to generate even richer dependence structures, revealing once more the limitations
of the traditional approach. In Figure 2, the real part of the quantile coherencies of the
QVAR(1), QVAR(2) and QVAR(3) example processes are shown. Further, in Section S3,
we discuss how to interpret quantile coherency in the special cases of bivariate Gaussian
VAR(1).

This paper is organised as follows. In Section 2 we introduce notation, define quantile
coherency and an estimator for it. In Section 3 we discuss the proposed methodology
and related literature. In Section 4 we provide a rigorous asymptotic analysis of the

1All plots show real parts of the complex-valued quantities for illustratory purposes. Further discussion
on how to interpret the real part and the imaginary part of quantile coherency are deferred to Section 3.
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Figure 2. Illustration of dependence between vector quantile autoregressive processes.

estimator’s statistical properties. In Section 5, to support our theoretical discussions
empirically, we employ the new methodology to inspect bivariate stock market returns,
one of the most prominent time series in economics, and reveal dependencies in cy-
cles of quantile-based features. We continue our empirical study in Section 6 by using
quantile coherency to compare time series models with respect to their capabilities to
capture the revealed dependencies. In the supplementary material to this paper (availa-
ble from the publisher’s homepage), we discuss additional quantile-based cross-spectral
quantities (Section S1), discuss quantile vector autoregressive processes as examples with
rich dynamics (Section S2), discuss how the new, quantile-based spectral quantities and
their traditional counterparts are related (Section S3), state additional theoretical results
(Section S4), comment on the construction of the interval estimators (Section S5), and
provide rigorous proofs for all theoretical results (Section S6).

2. QUANTILE CROSS-SPECTRAL QUANTITIES AND THEIR ESTIMATORS

Throughout the paper (Xt)t∈Z denotes a d-variate, strictly stationary process, with com-
ponents Xt,j , j = 1, . . . , d; i. e. Xt = (Xt,1, . . . , Xt,d)

′. The marginal distribution function
of Xt,j will be denoted by Fj , and by qj(τ) := F−1j (τ) := inf{q ∈ R : τ ≤ Fj(q)},
where τ ∈ [0, 1], we denote the corresponding quantile function. We use the convention
inf ∅ = +∞, such that, if τ = 0 or τ = 1, then −∞ and +∞ are possible values for qj(τ),
respectively. We will write z for the complex conjugate, <z for the real part and =z for
the imaginary part of z ∈ C, respectively. The transpose of a matrix A will be denoted
by A′, the inverse of a regular matrix B will be denoted by B−1.

As a measure for the serial and cross-dependency structure of (Xt)t∈Z, we define the
matrix of quantile cross-covariance kernels, Γk(τ1, τ2) := (γj1,j2k (τ1, τ2))j1,j2=1,...,d, where

γj1,j2k (τ1, τ2) := Cov
(
I{Xt+k,j1 ≤ qj1(τ1)}, I{Xt,j2 ≤ qj2(τ2)}

)
, (2.1)

j1, j2 ∈ {1, . . . , d}, k ∈ Z, τ1, τ2 ∈ [0, 1], and I{A} denotes the indicator function of the
event A. In the frequency domain this yields (under appropriate mixing conditions) the
matrix of quantile cross-spectral density kernels f(ω; τ1, τ2) := (fj1,j2(ω; τ1, τ2))j1,j2=1,...,d,
where

fj1,j2(ω; τ1, τ2) := (2π)−1
∞∑

k=−∞

γj1,j2k (τ1, τ2)e−ikω, (2.2)

c© Royal Economic Society 2018
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j1, j2 ∈ {1, . . . , d}, ω ∈ R, τ1, τ2 ∈ [0, 1]. A closely related quantity that can be used as
a measure for the dynamic dependence of the two processes (Xt,j1)t∈Z and (Xt,j2)t∈Z is
the quantile coherency kernel of (Xt,j1)t∈Z and (Xt,j2)t∈Z, which we define as

Rj1,j2(ω; τ1, τ2) :=
fj1,j2(ω; τ1, τ2)(

fj1,j1(ω; τ1, τ1)fj2,j2(ω; τ2, τ2)
)1/2 , (2.3)

(τ1, τ2) ∈ (0, 1)2. We define the estimator for the quantile cross-spectral density as the
collection

Ij1,j2n,R (ω; τ1, τ2) :=
1

2πn
dj1n,R(ω; τ1)dj2n,R(−ω; τ2), (2.4)

j1, j2 = 1, . . . , d, ω ∈ R, (τ1, τ2) ∈ [0, 1]2, and call it the rank-based copula cross-
periodograms, shortly, the CCR-periodograms, where

djn,R(ω; τ) :=

n−1∑
t=0

I{F̂n,j(Xt,j) ≤ τ}e−iωt =

n−1∑
t=0

I{Rn;t,j ≤ nτ}e−iωt,

j = 1, . . . , d, ω ∈ R, τ ∈ [0, 1], and F̂n,j(x) := n−1
∑n−1
t=0 I{Xt,j ≤ x} denotes the

empirical distribution function of Xt,j and Rn;t,j denotes the (maximum) rank of Xt,j

among X0,j , . . . , Xn−1,j . We will denote the matrix of CCR-periodograms by

In,R(ω; τ1, τ2) := (Ij1,j2n,R (ω; τ1, τ2))j1,j2=1,...,d. (2.5)

From the univariate case it is already known (cf. Proposition 3.4 in Kley et al. (2016))
that the CCR-periodograms fail to estimate fj1,j2(ω; τ1, τ2) consistently. Consistency can
be achieved by smoothing Ij1,j2n,R (ω; τ1, τ2) across frequencies. More precisely, we consider

Ĝj1,j2n,R (ω; τ1, τ2) :=
2π

n

n−1∑
s=1

Wn

(
ω − 2πs/n

)
Ij1,j2n,R (2πs/n, τ1, τ2), (2.6)

where Wn denotes a sequence of weight functions, precisely to be defined in Section 4.
We will denote the matrix of smoothed CCR-periodograms by

Ĝn,R(ω; τ1, τ2) := (Ĝj1,j2n,R (ω; τ1, τ2))j1,j2=1,...,d. (2.7)

The estimators for the quantile coherency is then given by

R̂j1,j2
n,R (ω; τ1, τ2) :=

Ĝj1,j2n,R (ω; τ1, τ2)(
Ĝj1,j1n,R (ω; τ1, τ1)Ĝj2,j2n,R (ω; τ2, τ2)

)1/2 . (2.8)

In Section 4 we will prove that

R̂n,R(ω; τ1, τ2) :=
(
R̂j1,j2
n,R (ω; τ1, τ2)

)
j1,j2=1,...,d

is a legitimate estimator for R(ω; τ1, τ2) :=
(
Rj1,j2(ω; τ1, τ2)

)
j1,j2=1,...,d

, the matrix of

quantile coherencies.

3. DISCUSSION OF THE INTRODUCED QUANTITIES AND ESTIMATORS

The quantile-based quantities defined in Section 2 are functions of the two variables τ1
and τ2. They are thus richer in information than the traditional counterparts. We have
added the term kernel to the name for the quantities to stress this fact, but will frequently

c© Royal Economic Society 2018



6 J. Baruńık and T. Kley

omit it in the rest of the paper, for the sake of brevity. For continuous Fj1 and Fj2 , the
quantile cross-covariances defined in (2.1) coincide with the difference of the copula of
(Xt+k,j1 , Xt,j2) and the independence copula. Thus, they provide important information
about both the serial dependence (by letting k vary) and the cross-section-dependence
(by choosing j1 6= j2). For the quantile cross-spectral density we have∫ π

−π
fj1,j2(ω; τ1, τ2)eikωdω + τ1τ2 = P

(
Xt+k,j1 ≤ qj1(τ1), Xt,j2 ≤ qj2(τ2)

)
, (3.9)

where the quantity on the right hand side, as a function of (τ1, τ2), is again the copula
of the pair (Xt+k,j1 , Xt,j2). The equality (3.9) thus shows how any of the pair copulas
can be derived from the quantile cross-spectral density kernel defined in (2.2). Thus, the
quantile cross-spectral density kernel provides a full description of all copulas of pairs in
the process. Comparing these new quantities with their traditional counterparts, it can
be observed that covariances and means are essentially replaced by copulas and quantiles.
Similar to the regression setting, where this approach provides valuable extra information
(cf. Koenker (2005)), the quantile-based approach to spectral analysis supplements the
traditional L2-spectral analysis.

Observe that R takes values in Cd×d (the set of all complex-valued d × d matrices).
Further, note that, as a function of ω, but for fixed τ1, τ2, it coincides with the traditional
coherency of the bivariate, binary process(

I{Xt,j1 ≤ qj1(τ1)}, I{Xt,j2 ≤ qj2(τ2)}
)
t∈Z

. (3.10)

The time series in (3.10) has the bivariate time series (Xt,j1 , Xt,j2)t∈Z as a “latent driver”
and indicates whether the values of the components j1 and j2 are below the respective
marginal distribution’s τ1- and τ2-quantile.

Note the important fact that Rj1,j2(ω; τ1, τ2) is undefined when (τ1, τ2) is on the boun-
dary of [0, 1]2. By Cauchy-Schwarz inequality, we further observe that the range of pos-
sible values is limited to Rj1,j2(ω; τ1, τ2) ∈ {z ∈ C : |z| ≤ 1}. Note that, as (τ1, τ2)
approaches the border of the unit square, the quantile cross-spectral density vanishes.
Therefore, quantile coherency is better suited to measure dependence of extremes than
the quantile cross-spectral density (which is not standardised). Implicitly, we take advan-
tage of the fact that the quantile cross-spectral density and quantile spectral densities
vanish at the same rate and therefore the quotient yields a meaningful quantity when
the quantile levels (τ1, τ2) approaches the border of the unit square.

The quantile coherency kernel contains very valuable information about the joint dy-
namics of the time series (Xt,j1)t∈Z and (Xt,j2)t∈Z. In contrast to the traditional case,
where coherency will always equal one if j1 = j2 =: j, the quantile-based versions of
these quantities are capable of delivering valuable information about one single com-
ponent of (Xt)t∈Z as well. Quantile coherency then quantifies the joint dynamics of
(I{Xt,j ≤ qj(τ1)})t∈Z and (I{Xt,j ≤ qj(τ2)})t∈Z.

Note that quantile coherency is a complex-valued, 2π-periodic function of the variable
ω, and Hermitian in the sense that we have

Rj1,j2(ω; τ1, τ2) = Rj1,j2(−ω; τ1, τ2) = Rj2,j1(ω; τ2, τ1) = Rj2,j1(2π + ω; τ2, τ1).

Following similar arguments as in Section 2.1 of Birr et al. (2018), it can be shown
that <Rj1,j2(ω; τ1, τ2) describes the dynamics of the process switching between the j1st
component being below the τ1-quantile and the j2nd component being above the τ2-

c© Royal Economic Society 2018
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quantile. Consequently, for τ1 close to 0 and for τ2 close to 1 it describes the dynamics
of changing from an extreme in one component to an extreme in another component.
Further, it can be shown that =Rj1,j2(ω; τ1, τ2) contains information about asymmetry.

A discussion of related quantities, how to interpret, how not to interpret them and
how they are related to their traditional counterparts in the Gaussian case can be found
in Sections S1, S2, and S3 of the supplementary material.

Recently, important contributions that aim at accounting for more general dynamics
emerged in the literature. Measures as, for example, distance correlation Székely et al.
(2007) and martingale difference correlation Shao and Zhang (2014) go beyond tradi-
tional correlation and instead can indicate whether random quantities are independent
or martingale differences, respectively. For time series, in the time domain, Zhou (2012)
introduced auto distance correlations that are zero if and only if the measured time se-
ries components are independent. Linton and Whang (2007), and Davis et al. (2009)
introduced the (univariate) concepts of quantilograms and extremograms, respectively.
More recently, quantile correlation Schmitt et al. (2015), and quantile autocorrelation
functions Li et al. (2015) together with cross-quantilograms Han et al. (2016) have been
proposed as a fundamental tool for analysing dependence in quantiles of the distribution.

In the frequency domain, Hong (1999) introduced a generalised spectral density. In the
generalised spectral density covariances are replaced by quantities that are closely related
to empirical characteristic functions. In Hong (2000) the Fourier transform of empirical
copulas at different lags is considered for testing the hypothesis of pairwise independence.
Recently, under the names of Laplace-, quantile and copula spectral density and spectral
density kernels, various quantile-related spectral concepts have been proposed, for the
frequency domain. The approaches by Hagemann (2013) and Li (2008, 2012) are designed
to consider cyclical dependence in the distribution at user-specified quantiles. Mikosch
and Zhao (2014, 2015) define and analyse a periodogram (and its integrated version)
of extreme events. As noted by Hagemann (2013) other approaches aim at discovering
“the presence of any type of dependence structure in time series data”, referring to
work of Dette et al. (2015) and Lee and Rao (2012). This comment also applies to Kley
et al. (2016). In the present paper our aim is to generalise the existing approaches to
multivariate time series. The extensions to the terminology that we provide, in particular
the introduction of the standardised quantile coherency, is very important for economic
applications, because it enables the analyst to perform a more detailed joint analysis of
the serial and cross sectional dependence in multiple time series.

For the univariate case different approaches to consistent estimation were considered.
Li (2008) proposed an estimator for a weighted version of the quantile spectra, based on
least absolute deviation regression, for the special case where τ1 = τ2 = 0.5. Li (2012)
generalised the estimator, using quantile regression, to the case where τ1 = τ2 ∈ (0, 1).
The general case, in which the quantities can be related to the copulas of pairs, was
first considered by Dette et al. (2015). These authors also were the first to consider a
rank-based version of the quantile regression-type estimator which eliminates the need to
estimates the weights in Li (2008, 2012). For the case where τ1 = τ2 ∈ (0, 1), Hagemann
(2013) proposed a version of the traditional L2-periodogram where the observations are
replaced with I{F̂n,j(Xt,j) ≤ τ} = I{Rn;t,j ≤ nτ}. Kley et al. (2016) generalised this
estimator, in the spirit of Dette et al. (2015), by considering cross-periodograms for
arbitrary couples (τ1, τ2) ∈ [0, 1]2, and proved that it converges, as a stochastic process,
to a complex-valued Gaussian limit. An estimator defined in analogy to the traditional

c© Royal Economic Society 2018



8 J. Baruńık and T. Kley

lag-window estimator was analysed by Birr et al. (2017) in the context of non-stationary
time series.

4. ASYMPTOTIC PROPERTIES OF THE PROPOSED ESTIMATORS

To derive the asymptotic properties of the estimators defined in Section 3 some assumpti-
ons need to be made. Recall (cf. Brillinger (1975), p. 19) that the rth order joint cumulant
cum(Z1, . . . , Zr) of the random vector (Z1, . . . , Zr) is defined as

cum(Z1, . . . , Zr) :=
∑

{ν1,...,νp}

(−1)p−1(p− 1)!E
[ ∏
j∈ν1

Zj

]
· · ·E

[ ∏
j∈νp

Zj

]
,

with summation extending over all partitions {ν1, . . . , νp}, p = 1, . . . , r, of {1, . . . , r}.
Regarding the range of dependence of (Xt)t∈Z we make the following assumption,

Assumption 4.1. The process (Xt)t∈Z is strictly stationary and exponentially α-mixing,
that is, there exists constants K <∞ and ρ ∈ (0, 1), such that

α(n) := sup
A∈σ(X0,X−1,...)
B∈σ(Xn,Xn+1,...)

∣∣P(A ∩B)− P(A)P(B)
∣∣ ≤ Kρn, n ∈ N. (4.11)

Further, to establish consistency of the estimates we consider sequences of weights that
asymptotically concentrate around multiples of 2π,

Assumption 4.2. The weights are defined as Wn(u) :=
∑∞
j=−∞ b−1n W (b−1n [u + 2πj]),

where bn > 0, n = 1, 2, . . ., is a sequence of scaling parameters satisfying bn → 0 and
nbn → ∞, as n → ∞. The weight function W is real-valued, even, has support [−π, π],
bounded variation, and satisfies

∫ π
−πW (u)du = 1.

Comments on the assumptions will follow in the end of this section. The main result of
this section (Theorem 4.1) will legitimise R̂n,R(ω; τ1, τ2) as an estimator of the quan-

tile coherency R(ω; τ1, τ2). Results that legitimise In,R(ω; τ1, τ2) and Ĝn,R(ω; τ1, τ2) as
estimators of the quantile cross-spectral density f(ω; τ1, τ2) are deferred to the supplemen-
tary material to not impair the flow of the paper. The legitimacy of the estimates follows
from the fact that the estimators converge weakly in the sense of Hoffman-Jørgensen (cf.
Chapter 1 of van der Vaart and Wellner (1996)). We denote this mode of convergence
by ⇒ . The estimators under consideration take values in the space of (element-wise)
bounded functions [0, 1]2 → Cd×d, which we denote by `∞Cd×d([0, 1]2). While results in em-
pirical process theory are typically stated for spaces of real-valued, bounded functions,
these results transfer immediately by identifying `∞Cd×d([0, 1]2) with the product space

`∞([0, 1]2)2d
2

. Note that the space `∞Cd×d([0, 1]2) is constructed along the same lines as
the space `∞C ([0, 1]2) in Kley et al. (2016).
We are now ready to state the main result of this section.

Theorem 4.1. Let Assumptions 4.1 and 4.2 hold. Assume that the marginal distribution
functions Fj, j = 1, . . . , d are continuous and that constants κ > 0 and k ∈ N exist, such
that bn = o(n−1/(2k+1)) and bnn

1−κ → ∞. Assume that for some ε ∈ (0, 1/2) we have
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infτ∈[ε,1−ε] f
j,j(ω; τ, τ) > 0, for all j = 1, . . . , d. Then, for any fixed ω ∈ R,√

nbn

(
R̂n,R(ω; τ1, τ2)−R(ω; τ1, τ2)−B(k)

n (ω; τ1, τ2)
)
(τ1,τ2)∈[ε,1−ε]2

⇒ L(ω; ·, ·), (4.12)

in `∞Cd×d([ε, 1− ε]2), where{
L(ω; τ1, τ2)

}
j1,j2

:=
1√

f1,1f2,2

(
H1,2 −

1

2

f1,2
f1,1

H1,1 −
1

2

f1,2
f2,2

H2,2

)
, (4.13)

{
B(k)
n (ω; τ1, τ2)

}
j1,j2

:=
1√

f1,1f2,2

(
B1,2 −

1

2

f1,2
f1,1

B1,1 −
1

2

f1,2
f2,2

B2,2

)
(4.14)

and we have written fa,b for the quantile cross-spectral density fja,jb(ω; τa, τb) as defined

in (2.2), Ba,b :=
∑k
`=2

b`n
`!

∫ π
−π v

`W (v)dv d`

dω` f
ja,jb(ω; τa, τb), and Ha,b for Hja,jb(ω; τa, τb

)
;

a component of H(ω; ·, ·) := (Hj1,j2(ω; ·, ·))j1,j2=1,...,d defined as a centred, Cd×d-valued
Gaussian process characterised by

Cov
(
Hj1,j2(ω;u1, v1

)
,Hk1,k2(λ;u2, v2)

)
= 2π

(∫ π

−π
W 2(α)dα

)(
fj1,k1(ω;u1, u2)fj2,k2(−ω; v1, v2)η(ω − λ)

+ fj1,k2(ω;u1, v2)fj2,k1(−ω; v1, u2)η(ω + λ)
)
, (4.15)

where η(x) := I{x = 0( mod 2π)} [cf. (Brillinger, 1975, p. 148)] is the 2π-periodic
extension of Kronecker’s delta function. The family {H(ω; ·, ·), ω ∈ [0, π]} is a collection
of independent processes and H(ω; τ1, τ2) = H(−ω; τ1, τ2) = H(ω + 2π; τ1, τ2).

The proof of Theorem 4.1 is lengthy and technical and therefore delegated to the on-
line supplement (Section S6). Comparing Theorem 4.1 with results for the traditional
coherency (see, for example, Theorem 7.6.2 in Brillinger (1975)) we observe that the

distribution of R̂n,R(ω; τ1, τ2) is asymptotically equivalent to that of the traditional es-
timator [cf. (7.6.14) in Brillinger (1975)] computed from the unobserved time series(

I{Fj1(Xt,j1) ≤ τ1}, I{Fj1(Xt,j2) ≤ τ2}
)
, t = 0, . . . , n− 1. (4.16)

The convergence to a Gaussian process in (4.12) can be employed to obtain asymp-
totically valid pointwise confidence bands. To this end, the covariance kernel of L can
easily be determined from (4.13) and (4.15), yielding an expression similar to (7.6.16)
in Brillinger (1975). A more detailed account on how to conduct inference is given in
Section S5 of the supplementary material. Note that the bound to the order of the bias
given in (7.6.15) in Brillinger (1975) applies to the expansion given in (4.14).

If W is a kernel of order p ≥ 1 we have that the bias is of order bpn. Thus, if we choose
the mean square error minimising bandwidth bn � n−1/(2p+1) the bias will be of order
n−p/(2p+1). Regarding the restriction ε > 0, note that the convergence (4.12) can not
hold if (τ1, τ2) is on the border of the unit square, as the quantile coherency R(ω; τ1, τ2)
is not defined if τj ∈ {0, 1}, as this implies that Var(I{Fj(Xt,j) ≤ τj}) = 0.

We now comment on the assumptions: Assumption 4.1 holds for a wide range of popu-
lar, linear and nonlinear processes. Examples (possibly, under mild additional assump-
tions) include the traditional VARMA or vector-ARCH models as well as many others.
It is important to observe that Assumption 4.1 does not require the existence of any
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moments, which is in sharp contrast to the classical assumptions, where moments up to
the order of the respective cumulants have to exist. Assumption 4.2 is quite standard in
classical time series analysis [cf., for example, Brillinger (1975), p. 147].

5. QUANTILE CROSS-SPECTRAL ANALYSIS OF STOCK MARKET RETURNS:
A ROUTE TO MORE ACCURATE RISK MEASURES?

Stock market returns belong to one of the prominent datasets in economics and finance.
Although many important stylised facts about their behaviour have been established
in the past decades, it remains a very active area of research. Despite the efforts, an
important direction, which has not been fully addressed is stylised facts about the joint
distribution of returns. Especially during the last turbulent decade, understanding the
behaviour of joint quantiles in return distributions became particularly important, as it
is essential for understanding systemic risk; “the risk that the intermediation capacity of
the entire system can be impaired”; cf. Adrian and Brunnermeier (2016). Several authors
focus on explaining tails of the bivariate market distributions in different ways. Adrian
and Brunnermeier (2016) proposed to classify institutions according to the sensitivity of
their quantiles to shocks to the market. Most closely related to the notion of how we
view the dependence structures is the multivariate regression quantile model of White
et al. (2015), which studies the degree of tail interdependence among different random
variables directly.

Quantile cross-spectral analysis, as designed in this paper, allows to analyse the fun-
damental dependence quantities in the tails (but also in any other part) of the joint
distribution and across frequencies. An application to stock market returns may the-
refore provide deeper insight about dependence in stock markets, and lead to a more
powerful analysis securing us against financial collapses.

One of the important features of stock market returns is time variation in its volatility.
Time-varying volatility processes can cross almost every quantile of their distribution
(cf. Hagemann (2013)), and create peaks in quantile spectral densities as shown by Li
(2014). These notions have recently been documented by Engle and Manganelli (2004)
and Žikeš and Baruńık (2016) who propose models for the conditional quantiles of the
return distribution based on the past volatility. In the multivariate setting, strong com-
mon factors in volatility are found by Barigozzi et al. (2014) who conclude that common
volatility is an important risk factor. Hence, common volatility should be viewed as a
possible source of dependence. Because we aim to find the common structures in the joint
distribution of returns, we study returns standardised by its volatility that we estimate
by a GARCH(1,1) model; cf. Bollerslev (1986). This first step is commonly taken in the
literature of modelling the joint market distribution using copulas; cf. Granger et al.
(2006) and Patton (2012). In these approaches the volatility in the marginal distributi-
ons is modelled first, and the common factors are then considered in the second step.
Consequently, this will allow us to discover other possible common factors in the joint
distribution of market returns across frequencies, that result in spurious dependence, but
which will not be overshadowed by the strong volatility process.

We choose to study the joint distribution of portfolio returns and excess returns on the
broad market, hence looking at one of the most commonly studied factor structures in
the literature as dictated by asset pricing theories; cf. Sharpe (1964) and Lintner (1965).
As an excess return on the market, we use value-weighted returns of all firms listed on
the NYSE, AMEX, or NASDAQ from the Center for Research in Security Price (CRSP)
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Figure 3. Quantile coherency estimates for the portfolio.

database. For the benchmark portfolio, we use an industry portfolio formed from con-
sumer non-durables.2 We used n = 23385 daily observations (from 1 July 1926 through
to 30 June 2015). The data includes several crisis periods and therefore might not be
suitable to be viewed as a strictly stationary time series. Nevertheless, we choose to study
this long period of data as we believe that longer than yearly cycles might constitute an
important possible source of dependence, and we believe the empirical results are practi-
cally interesting. Moreover, by standardising the returns by their volatility we removed
what we believe is the most important source of time-variation in data.3

In the left panel of Figure 3, quantile coherency estimates for the 0.05|0.05, 0.5|0.5, and
0.95|0.95 combinations of quantile levels of the joint distribution are shown for the indu-
stry portfolio and excess market returns over frequencies. The centre panel in Figure 3,
on which we comment later, shows the 0.05|0.95 combination. We have used the Epanech-
nikov kernel and a bandwidth of bn = 0.5n1/4 for the computation of the estimates (cf.
(2.8)). The confidence intervals, shown as dotted regions, are at the 95% level and were
constructed according to the procedure described in Section S5 of the supplementary
material. For clarity, we plot the x-axis in daily cycles and also indicate the frequen-
cies that correspond to yearly, monthly, and weekly periods. While we use daily data
the highest possible frequency of 0.5 indicates 0.5 cycles per day (i. e., a 2-day period).
While precise frequencies do not have an economic meaning, one needs to understand
the interpretation with respect to the time domain. For example, a sampling frequency
of 0.2 corresponds to 0.2 cycles per day translating to a 5 days period (equivalent to one
week), but the frequency of 0.3 translates to a hardly interpretable 3.3 period. Hence, the
upper label of the x-axis is of particular interest to an economist, as one can study how
weekly, monthly, or yearly cycles are connected across quantiles of the joint distribution.
For the clarity of presentation, we focus on the real part of the quantities, which relates

2Note to choice of the data: we use the publicly available data available and maintained by Fama and
French at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. This data
set is popular among researchers, and while many types of portfolios can be chosen, we chose consumer
non-durables randomly for this application. Although very interesting and attractive, it is far beyond
the scope of this work to present and discuss results for wider portfolios formed on distinct criteria.
3As a robustness check, we have sliced the time series into decades and found that our results on
non-overlapping windows do not materially change.
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to the dynamics of the process switching between the j1st component being below the
τ1-quantile and the j2nd component being above the τ2-quantile (cf. Section 2).

The real parts of the quantile coherency estimates reveal frequency dynamics in quan-
tiles of the joint distribution of the returns under study. Generally, cycles at the lower
quantiles appear to be more strongly dependent than at the upper quantiles, which is
a well documented stylised fact about stock market returns. It points us to the fact
that returns are more dependent during business cycle downturns, than upturn; cf. Erb
et al. (1994), Longin and Solnik (2001), Ang and Chen (2002) and Patton (2012). More
importantly, lower quantiles are more strongly related in periods longer than one week
on average in comparison to shorter than weekly periods, and are even more connected
at longer than monthly cycles. This suggests that infrequent clusters of large negative
portfolio returns are better explained by excess market returns than small daily fluctua-
tions. Returns in upper quantiles of the joint distribution seem to be connected similarly
across all frequencies. The same result holds also for the median. For a better expo-
sure, we also present quantile coherency estimates for three fixed weekly, monthly, and
yearly periods (corresponding to ω ∈ 2π{1/5, 1/22, 1/250}, respectively) at all quantile
levels τ1 = τ2 ∈ {0.05, 0.1, . . . , 0.95} in the right panel of Figure 3. This alternative plot
highlights the previous discussion.

We now compare our findings to a corresponding analysis with the cross-quantilogram,
a related quantile-based measure for serial dependence in the time domain. Considering a
strictly stationary, R×R×Rd1×Rd2 -valued time series (y1t, y2t, x1t, x2t), with t ∈ Z and
d1, d2 ∈ N, denoting the conditional distribution of the series yit given xit by Fyi|xi

(·|xit),
and the quantile function as qi,t(τi) = inf{v : Fyi|xi

(·|xit) ≥ τi}, τi ∈ (0, 1), i = 1, 2; Han
et al. (2016) define the cross-quantilogram as

ρ(τ1,τ2)(k) :=
E
[
(I{y1t < q1,t(τ1)} − τ1)(I{y2,t−k < q2,t−k(τ2)} − τ2)

](
E
[
(I{y1t < q1,t(τ1)} − τ1)2

]
E
[
(I{y2,t−k < q2,t−k(τ2)} − τ2)2

])1/2 .
With no covariate information in our data example, this reduces to x1t = x2t = 1 and
qi,t being the quantile of the marginal distribution of yit. It is important to note that the
cross-quantilogram is defined as a standardised measures of serial dependencies between
the events {y1t ≤ q1,t(τ1)} and {y2t ≤ q2,t(τ2)} in the time domain, while quantile
coherency is defined similarly, but in the frequency domain.

In Figure 4 we present the cross-quantilograms that we estimated from our data exam-
ple. For the computation we have used the estimator and stationary bootstrap procedure
defined in Han et al. (2016). More precisely, we used the implementation that is available
in the R package quantilogram; cf. Han et al. (2014). Inspecting the plots, it can be seen
that there are lags k, typically short, where significant dependence is present. Further, it
is possible to guess that there is periodic variation of positive and negative dependence
at the 0.05 quantile level, while at the 0.95 quantile level the dependence seems to be
largely positive. Yet, taking into account the confidence intervals, it is uncertain if this is
a significant pattern. Further, comparing the discussion of these periodic patterns shown
by cross-quantilogram with what we were able to read from quantile coherency in Fi-
gure 3, it is difficult to read specific weekly, monthly and yearly periodic components and
whether or not they are significant. Thus, at least in the specific case where a researcher
is interested in the dependence of cycles, we believe that quantile coherency can provide
a perspective that is unavailable in the time domain analysis.

To summarise the result of our empirical analysis: while asymmetry is commonly found
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Figure 4. Cross-quantilogram estimates for the portfolio.

by researchers, we document frequency dependent asymmetry of stock market returns
(i. e., asymmetry with respect to cycles in the joint distribution). In case this behaviour
would be common across larger classes of assets, our results may have large implications
for one of the cornerstones of asset pricing theory assuming normal distribution of returns.
It leads us to the call for more general models, and more importantly to the need of
restating the asset pricing theory in a way that allows to distinguish between short run
and long run behaviour of investors.

Our results are also crucial for systemic risk measurement, as an investor wishing to
optimise a portfolio should focus on stocks which will not be connected at lower quantiles,
in a situation of distress, but will be connected at upper quantiles, in a situation of market
upturns in a given investment period. We document behaviour which is not favourable to
such an investor using traditional pricing theories, as we show that broad stock market
returns contain a common factor more frequently during downturns than during upturns.
This suggests that the portfolio at hand might be much riskier than it were implied by
common measures. Further, our results suggest that this effect becomes even worse for
long-run investors.

An important feature of our quantile cross-spectral measures is that they enable us to
measure dependence also between τ1 6= τ2 quantiles of the joint distribution. In the central
panel of Figure 3 we document that the dependence between the 0.05|0.95 quantiles of
the return distribution is not very strong. Generally speaking, no intense dependence can
be seen between large negative returns of the stock market, and large positive returns of
the portfolio under study. This kind of analysis may be even more interesting in the case
where dependence between individual assets is studied. There, negative news may have
strong opposite impact on the assets under study.

Finally, some words of caution to the reader, about the interpretation of the quantities
which we have estimated, are in order. In Section S3 of the supplementary material
we provide a link between quantile coherency and traditional measures of dependence
under the assumption of normally distributed data. The quantile-based measures are
designed to capture general dependence types without restrictive assumptions on the
underlying distribution of the process. Hence, here we have intentionally not relate it
to traditional correlation which, ideally, should only be interpreted when the process
is known to be Gaussian. The financial returns under study in this section are known
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to depart from normality. Therefore, quantile coherency is not directly comparable to
traditional correlation measures. What we can see is generally strong dependence between
the portfolio returns and excess market returns at all quantiles confirming the fact that
excess returns are a strong common factor for the studied portfolio returns. The details
that the quantile-based analysis in this section revealed would have remained hidden in
an analysis based on the traditional coherency.

6. QUANTILE COHERENCY IN A MODEL ASSESSING EXERCISE

In the previous section we demonstrated how quantile coherency can be used by applied
researchers to reveal cyclical features of the data that might remain invisible if the data is
analysed solely with covariance-based dependency measures. In this section we illustrate
how quantile coherency can be used to assess the capability of time series models to
capture such cycles documented in the data.

More precisely, we fit several bivariate time series models and then compare the quantile
coherencies implied by estimated parameters with those obtained from a non-parametric
estimation (cf. Figure 3). The graphical approach of assessing the models is similar to
the one proposed in Birr et al. (2018). For the sake of clarity, we focus on two clas-
ses of models: (a) vector autoregressive (VAR) models, and (b) vector versions of the
quantile autoregressive (QVAR) model introduced by Koenker and Xiao (2006). Classi-
cal VAR used by many applied researchers assumes the same autoregressive structure
at all quantiles. To model asymmetry, one can employ more flexible copulas allowing for
asymmetric dependence. In addition, QVAR allows different autoregressive structure at
different quantiles. Hence different quantiles can be driven by processes with different
cyclical properties.

We discuss the models in order, from simple to more complex, and evaluate if the more
complex models are better suited to capture the weekly, monthly and yearly cycles of
quantile-related features which were discovered in the stock market returns analysis of
Section 5.

We begin by fitting a VAR(1) to the stock market returns. The fitted model is

Yt,1 = 0.0987 + 0.056Yt−1,1 + 0.186Yt−1,2 + εt,1,

Yt,2 = 0.0369− 0.056Yt−1,1 + 0.175Yt−1,2 + εt,2,
(6.17)

where (εt,1, εt,2) is white noise with an estimated Corr(εt,1, εt,2) ≈ 0.822. Adding the
common assumption that the (εt,1, εt,2) are independent and jointly Gaussian, the cor-
responding quantile coherencies can be determined. Quantile coherencies implied by the
model (6.17) are depicted in the top row of Figure 5. For easier comparison, we con-
sider the same combinations of frequencies and quantile levels as in Figure 3. In the
picture it is clearly visible that dependencies of cycles implied by this Gaussian models
are symmetric. For example, the dependence at the 0.05|0.05 and at the 0.95|0.95 level
are equally strong for all frequencies. In contrast, the nonparametric estimate obtained
from the data (cf. Figure 3) shows strong asymmetry. Further, we can see that for the
weekly, monthly and yearly frequencies, which might be of particular interest for applied
researchers, the dependencies at the τ |τ and at the 1− τ |1− τ level coincide as well. If
an applied researcher seeks to model dependencies as the ones revealed in Section 5, the
Gaussian VAR model might therefore be too restrictive.

Next, we consider non-Gaussian versions of the fitted VAR. To obtain these models,
note that the innovations in (6.17) are assumed to be white noise, but are not required
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Figure 5. Quantile coherency simulated from the VAR models.

to be i. i. d. Gaussian. Another plausible model is therefore obtained by specifying any
joint distribution for (εt,1, εt,2) that has first and second moment as implied by the fitted
VAR model. For illustration we now consider the following two cases. In both cases we
assume the marginal distributions to be standard normal. In the first case we assume that
the dependence is according to a Clayton copula with parameter θ = 4. In the second
case we assume that it is according to a Gumbel copula with parameter θ = 2.7. As
one might expect, the dependence in the tails of the VAR(1) process is now remarkably
different. As it can be seen from the middle-left plot in Figure 5, for the case of the
Clayton copula there is stronger dependence in the lower tail (0.05|0.05) and weaker
dependence in the upper tail (0.95|0.95). The dependence is slightly stronger for low
frequencies, which is expected from the temporal dependence in the VAR model. In the
bottom-left plot of Figure 5, on the other hand, we see stronger dependence in the upper
and weaker dependence in the lower tail. Interestingly, as can be seen from the centre
plots, the dependence of cycles in changing from being below the 0.05-quantile in the first
component to being below the 0.95-quantile in the second component does not depend
much on the choice of the copula. Finally, in the right plots of Figure 5, we see how the
dependence changes according to the quantile level when cycles at the weekly, monthly
and yearly frequencies, which we think might be most relevant to some practitioners, are
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considered. As expected, we see that for the case of the Clayton copula the dependence
decreases as the quantile level τ increases, where for the case of the Gumbel copula the
dependence increases if τ increases. Although the models with the Gumbel and Clayton
copula capture asymmetric dependence better than the one with the Gaussian copula,
we can still see that they depart from the data in terms of quantile coherency.

In the discussion before, we have seen three versions of a VAR(1) model, neither of
which was particularly well suited to capture the type of dependence of cycles at quantile
level which we observed in Section 5. In the second part of our modelling exercise we
now turn our attention to a more flexible class of time series models. Motivated by
the quantile autoregression model that was introduced by Koenker and Xiao (2006), we
consider quantile vector autoregression, QVAR, a VAR model with random coefficients:

Yt,j = θj0(Ut,j) + θj1(Ut,j)Yt−1,1 + θj2(Ut,j)Yt−1,2, j = 1, 2, (6.18)

where the θji are coefficient functions and the Ut,j are assumed to be independent and
uniformly distributed on [0, 1]. Zhu et al. (2018) discuss a model similar to (6.18). Our
aim here is to assess whether the time series model (6.18) is flexible enough to capture
cyclical features in quantiles that were identified in Section 5. To this end, we choose the
parameter functions in a data-driven way and then simulate the corresponding quantile
coherency to compare with the the nonparameteric estimate. Motivated by the estimation
method in Zhu et al. (2018), we compute

θ̂(τ) = arg min
θ(τ)

2∑
j=1

n∑
t=2

ρτ
(
Yt,j − θj0(τ)− θj1(τ)Yt−1,1 − θj2(τ)Yt−1,2

)
, (6.19)

τ ∈ T := {1/50, 2/50, . . . , 48/50, 49/50}, where ρτ (u) := u(τ − I{u < τ}) is the check

function (cf. Koenker (2005)). For τ /∈ T we define θ̂(τ) := θ̂(η), η := arg minη∈T |τ − η|
(choose the smaller η if there are two). The functions θ̂(τ) = (θ̂ji(τ)), obtained from the
stock market returns, are shown in Figure 7. It is interesting to observe that the functions
θ̂j1 and θ̂j2, are not constant across quantile levels. This possibly indicates that a VAR
model is too simple to capture the complicated dynamics present in the stock markets
returns. The “shock” at time t to the jth equation is delivered by θ̂j0(Utj).

Koenker and Xiao (2006) and Zhu et al. (2018) establish conditions that ensure that
quantile regressions, similar to (6.19), can be used to consistently estimate the parameter
functions of the models in their papers. In particular, their model-defining equations (cor-
responding to (6.18) in our model) are assumed to be monotonically increasing in Ut,j .
The monotonicity condition further implies a particularly convenient form for the con-
ditional quantile function of Yt,j given Yt−1,1, Yt−1,2. Fan and Fan (2006) argue that the
quantile regression estimate considered by Koenker and Xiao (2006) will be a consistent
estimate for the argument of the minimum of a population version of the loss function,
under some mild conditions. For θ̂(τ), defined in (6.19), this corresponds to being a
consistent estimator for

θ∗(τ) = arg min
θ(τ)

2∑
j=1

Eρτ
(
Yt,j − θj0(τ)− θj1(τ)Yt−1,1 − θj2(τ)Yt−1,2

)
.

Fan and Fan (2006) point out that additional conditions, such as the monotonicity con-
dition, are necessary for θ∗(τ) and θ(τ) to coincide. These important arguments have to

be taken into account when interpreting θ̂(τ) as an estimator for θ(τ). Of course, data
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Figure 6. Quantile coherency simulated from several QVAR models.

can always be generated according to equation (6.18) where we substitute θ̂(τ) for θ(τ).
To assess whether the class of QVAR models is rich enough to reflect cyclical features in
the quantiles as we have seen in the data in Section 5 it is sufficient to consider indivi-
dual models from the class. For the purpose of this section, we select a QVAR model of
the kind defined in (6.18), in a data-driven way, to then compare the implied quantile
coherency with the one estimated non-parametrically in Section 5.

In the top row of Figure 6 the quantile coherencies associated with model (6.18) where

θ̂(τ) was substituted for θ(τ) are shown. The plots are of the same format as the ones
we had considered before. Strikingly, we observe that the quantile coherency of the fitted
model is substantially lower than what we see via the nonparametric estimate in Figure 3.
Besides this, in the top row of Figure 6, we see that the general shape, decreasing lines
with frequency, and ordering (0.95|0.95 shows less dependence than 0.05|0.05) resembles
the nonparametric estimate more closely.

Finally, we propose to extend the QVAR(1) stated in (6.18), by adding spatial depen-
dence. More precisely, the model we now consider is

Yt,1 = θ10(Ut,1) + θ111(Ut,1)Yt−1,1 + θ121(Ut,1)Yt−1,2,

Yt,2 = θ20(Ut,2) + θ211(Ut,2)Yt−1,1 + θ221(Ut,2)Yt−1,2 + θ210(Ut,2)Yt,1.
(6.20)

For this model, we compute quantile regression estimates

θ̂(τ) = arg min
θ(τ)

( n∑
t=2

ρτ
(
Yt,1 − θ10(τ)− θ111(τ)Yt−1,1 − θ121(τ)Yt−1,2

)
+

n∑
t=2

ρτ
(
Yt,2 − θ20(τ)− θ210(τ)Yt,1 − θ211(τ)Yt−1,1 − θ221(τ)Yt−1,2

))
.

The estimates obtained from the stock returns data, that also should be cautiously
interpreted, are depicted in Figure 8. Note that, if we substitute Y1,t in the second
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Figure 7. Estimated parameter functions for model (6.18).

equation of (6.20) by the expression given in the first equation, then we see that the

“shocks” in this model are now dependent, as they are of the form (θ̂10(Ut,1), θ̂20(Ut,2) +

θ̂210(Ut,2)θ̂10(Ut,1)). The parameter function θ̂210 moderates the strength of dependence.
We now again look at the quantile coherency, depicted in the bottom row of Figure 6 and
see that the quantile coherencies resemble the nonparameter estimates more closely (in
shape, order and magnitude). This is true in particular for the right plot, where the fre-
quency corresponding to the weekly, monthly, and yearly cycles are shown, which could
be especially interesting for applied researchers.

In this section we illustrated how quantile coherency can be used by applied researchers
to assess time series models regarding their capabilities to capture dependence between
general cycles of stock market returns. We have seen that Gaussian VAR models are com-
pletely incapable of capturing asymmetries in the dependence of cycles. Our modelling
exercise showed how non-Gaussian VAR models can possibly remedy this by allowing
more general copulas for the errors in the model. Going further, we have also inspected
bivariate quantile autoregression models and seen that their flexibility does better in
capturing the general dependence between cycles that we have discovered using quantile
coherency in Section 5.

7. CONCLUSION

In this paper we introduced quantile cross-spectral analysis of economic time series pro-
viding an entirely model-free, nonparametric theory for the estimation of general cross-
dependence structures emerging from quantiles of the joint distribution in the frequency
domain. We argue that complex dynamics in time series often arise naturally in many
macroeconomic and financial time series, as infrequent periods of large negative values
(lower quantiles of the joint distribution) may be more dependent than infrequent pe-
riods of large positive values (upper quantiles of the joint distribution). Moreover, the
dependence may differ in the long-, medium, or short-run. Quantile cross-spectral ana-
lysis hence may fundamentally change the way how we view the dependence between
economic time series, and may be viewed as a precursor to the subsequent developments
in economic research underlying many new modelling strategies.

While connecting two branches of the literature which focus on the dependence bet-
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Figure 8. Parameter functions for model (6.20).

ween variables in quantiles of their joint distribution and across frequencies separately,
the proposed methods may be viewed as an important step in robustifying the traditional
cross-spectral analysis as well. Quantile-based spectral quantities are very attractive as
they do not require the existence of moments, an important relaxation to the classical
assumptions, where moments up to the order of the cumulants involved are typically
assumed to exist. The proposed quantities are robust to many common violations of tra-
ditional assumptions found in data, including outliers, heavy tails, and changes in higher
moments of the distribution. By considering quantiles instead of moments the proposed
methods are able to reveal the dependence that remained invisible to the traditional tool-
sets. As an essential ingredient for a successful applications we have provided a rigorous
analysis of the asymptotic properties of the introduced estimators and showed that for
a general class of nonlinear processes, properly centred and smoothed versions of the
quantile-based estimators converge to centred Gaussian processes.

In an empirical application, we have shown that classical asset pricing theories may
not suit the data well, as commonly documented by researchers, because rich dependence
structures exists varying across quantiles and frequencies in the joint distribution of
returns. We document strong dependence of the bivariate returns series in periods of large
negative returns, while positive returns display less dependence over all frequencies. This
result is not favourable for an investor, as exactly the opposite would be desired: choosing
to invest to stocks with independent negative returns, but dependent positive returns.
Our tool reveals that systematic risk originates more strongly from lower quantiles of the
joint distribution in the long-, and medium-run investment horizons in comparison to
the upper quantiles. In a modelling exercise, we have illustrated how quantile coherency
can be employed in the inspection of time series models and might help to find a model
that is capable of capturing the dependencies of cycles of quantile-related features which
we had previously revealed in our empirical application.

We believe that our work might open up many exciting new routes for future theo-
retical as well as empirical research. From the perspective of applications, exploratory
analysis based on the quantile cross-spectral estimators can reveal new implications for
improvement or even restating of many economic problems. Dependence in many econo-
mic time series is of a non-Gaussian nature, calling for an escape from covariance-based

c© Royal Economic Society 2018
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methods and allowing for a detailed analysis of the dependence in the quantiles of the
joint distribution.
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