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ABSTRACT: Acoustically trapped periodic arrays of horse-
r a d i s h p e r o x i d a s e ( H R P ) - l o a d e d p o l y -
(diallydimethylammonium chloride) / adenosine 5′-triphos-
phate coacervate microdroplet-based protocells exhibit a
spatiotemporal biochemical response when exposed to a
codiffusing mixture of substrate molecules (o-phenylenedi-
amine (o-PD) and hydrogen peroxide (H2O2)) under
nonequilibrium conditions. Unidirectional propagation of
the chemical concentration gradients gives rise to time- and position-dependent fluorescence signal outputs from individual
coacervate microdroplets, indicating that the organized protocell assembly can dynamically sense encoded information in the
advancing reaction-diffusion front. The methodology is extended to arrays comprising spatially separated binary populations of
HRP- or glucose oxidase-containing coacervate microdroplets to internally generate a H2O2 signal that chemically connects the
two protocell communities via a concerted biochemical cascade reaction. Our results provide a step toward establishing a
systematic approach to study dynamic interactions between organized protocell consortia and propagating reaction-diffusion
gradients, and offer a new methodology for exploring the complexity of protocellular communication networks operating under
nonequilibrium conditions.

■ INTRODUCTION

The remarkable adaptivity of individual cells and cell
communities relies fundamentally on their ability to dynam-
ically sense and respond to spatial and temporal changes in
molecular concentration fields present in the local environ-
ment.1,2 Processes such as cell differentiation and spatial
organization,3 chemotaxis,4 cell division,5 and site-specific
DNA targeting by proteins5 are regulated in part by signaling
cues associated with chemical diffusion gradients produced
under nonequilibrium conditions. A range of innovative
biomimetic approaches have been developed to study these
complicated reaction-diffusion systems.6−9 Mimicking such
adaptivity in rudimentary artificial cell-like constructs (proto-
cells)10−14 could lead to a better understanding of the
emergence of biological complexity and also provide an initial
step toward developing future microscale technologies
exhibiting key features of living systems.15−18 Recent develop-
ments have shown that different types of model protocells
exhibit a certain level of capability to dynamically respond to
their environment,19−23 each other,24−27 or biological cells,28,29

and in so doing convert external stimuli to specific
protocellular responses.
Coacervate microdroplets produced by electrostatic com-

plexation between oppositely charged macromolecular or
molecular components have been exploited as molecularly
crowded membrane-free synthetic protocells30−34 capable of

enhanced enzymatic activity,35 in vitro gene expression,36 and
nonequilibrium electric field-induced energization.37 Recently,
coacervate microdroplets prepared from charge-balanced
mixtures of poly(diallydimethylammonium chloride)
(PDDA) and adenosine 5′-triphosphate (ATP) were sponta-
neous assembled and spatially trapped into periodic arrays
using an acoustic (ultrasonic) standing wave pressure field.38

Primary microdroplets of the PDDA/ATP coacervate phase
along with sequestered molecules and nanoparticles were
trapped at the pressure nodes and slowly sedimented under
gravity onto the glass substrate where they locally coalesced to
produce a defect-free square array of single droplets typically
50−100 μm in diameter and spaced at a uniform distance of
110 μm. Compared with a dispersion of randomly mixed
droplets, each synthetic protocell in the patterned community
can be indexed with respect to their spatial positions and
attendant chemical activity over a wide range of time scales. As
a consequence, it should be possible to expose the arrays to
unidirectional reaction-diffusion gradients under nonequili-
brium conditions to establish a transient spatiotemporal
response across the organized protocell community to produce
signal outputs for example for enzymatically catalyzed
biochemical reactions.39

Received: August 11, 2018
Published: November 14, 2018

Research Article

http://pubs.acs.org/journal/acsciiCite This: ACS Cent. Sci. 2018, 4, 1551−1558

© 2018 American Chemical Society 1551 DOI: 10.1021/acscentsci.8b00555
ACS Cent. Sci. 2018, 4, 1551−1558

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
B

R
IS

T
O

L
 o

n 
Ja

nu
ar

y 
25

, 2
01

9 
at

 1
1:

34
:4

3 
(U

T
C

).
 

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.
 

http://pubs.acs.org/journal/acscii
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acscentsci.8b00555
http://dx.doi.org/10.1021/acscentsci.8b00555
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


We demonstrate this principle by preparing acoustically
trapped, two-dimensional (2D) square grids of horseradish
peroxidase (HRP)-loaded PDDA/ATP microdroplets, and
exposing the arrays to an advancing codiffusing flux of enzyme
substrates (o-phenylenediamine (o-PD) and hydrogen per-
oxide (H2O2)) to produce concentration gradients and
chemical diffusion fronts that propagate unidirectionally across
the microdroplet assembly (Figure 1A). We follow the spatial
and temporal signal outputs of individual protocells in the
array by measuring the green fluorescence associated with the
production and sequestration of 2,3-diaminophenazine (2,3-
DAP; coacervate partition constant = 37) by HRP/H2O2-
mediated oxidation of o-PD in each droplet.40 Our results
indicate that the 2D array can dynamically sense the encoded
information in the advancing concentration gradients to
generate a spatiotemporal biochemical response under non-
equilibrium conditions. Finally, we extend our methodology to
elicit a spatiotemporal biochemical response via internally
derived molecule-based signaling within the droplet array. For
this, we prepare patterned PDDA/ATP droplet 2D arrays
comprising two spatially separated protocell populations
containing either HRP or glucose oxidase (GOx) and expose
the system to a unidirectional flux of glucose and o-PD. A
cascade reaction is established between the two protocell
communities via the in situ generation and propagation of a
H2O2 reaction-diffusion front, which in turn produces a time-
and space-dependent response in the production of 2,3-DAP
specifically in the HRP-functionalized population.
Taken together, our results provide a step toward establish-

ing a systematic approach to studying dynamic interactions
between organized protocell communities and propagating
reaction-diffusion gradients, and offer a new methodology for
exploring the complexity of protocellular communication
networks operating under nonequilibrium conditions.

■ RESULTS

A square, grid-like array of HRP-containing PDDA/ATP
coacervate microdroplets was prepared by injecting a premixed
solution of PDDA and HRP into the chamber of a custom-
built acoustic trapping device containing an aqueous ATP

solution and operating under a periodic 2D standing pressure
field generated at 6.76/6.78 MHz (see Methods and Figure
S1). Three-dimensional (3D) confocal fluorescence micros-
copy images of the acoustically trapped coacervate phase
labeled with rhodamine isothiocyanate (RITC)-tagged HRP
indicated that the coacervate microdroplets were assembled in
situ at the nodal regions of the acoustic pressure field and
strongly bound to the underlying PEGylated glass substrate in
the presence or absence of the acoustic field, and that HRP was
strongly sequestered within the protocells (Figure S2). Profiles
across individual rows of the microdroplets showed similar
mean fluorescence intensities, indicating that the droplets had
comparable enzyme concentrations (Figure S3).
To induce dynamical responses in the periodically ordered

HRP-active droplets under nonequilibrium conditions, we
switched off the acoustic pressure field and injected an aqueous
solution containing H2O2 and o-PD (H2O2/o-PD; 20 μL, 50/
25 mM) into the device specifically from one edge of the
chamber to produce an advancing reaction-diffusion gradient
in both substrates across the microdroplet array. Fluorescence
microscopy images recorded in the viewing window indicated a
spatiotemporal peroxidase response to the codiffusion of
substrates across the droplet array (Figure 1B). In general,
the green fluorescence intensity associated with formation and
sequestration of the reaction product (2,3-DAP) within the
individual microdroplets progressively decreased along indi-
vidual rows of droplets lying parallel to the direction of
diffusion (x axis) (Figure 1C). In contrast, droplets aligned
perpendicular to the diffusion front (y axis) showed minimal
differences in fluorescence intensity along the individual rows
(Figure S4).
Co-diffusion of H2O2 and o-PD (H2O2/o-PD; 20 μL, 50/25

mM) into a 2D periodic array of HRP-containing PDDA/ATP
coacervate microdroplets was monitored by analysis of time-
dependent fluorescence microscopy images (Figure 2A−D).
The corresponding average intensity profiles (Figure 2E)
recorded across a single row of protocells aligned along the
direction of diffusion (x axis) revealed that the HRP activity
was switched on sequentially according to the proximity of the
microdroplets to the diffusion front. The relative spatiotem-
poral responses of each microdroplet in the array were

Figure 1. Nonequilibrium biochemical sensing in 2D protocell arrays. (A) Schematic representation of a 1D substrate concentration gradient
established by unidirectional diffusion into a 2D array of enzymatically active PDDA/ATP coacervate microdroplets (top), and spatiotemporal
response of droplets (bottom); the reaction-diffusion gradient is established along the x direction (distance, relative position) of the 2D
microdroplet array. (B) Fluorescence microscopy image recorded 5.5 min after onset of unidirectional codiffusion (arrows) of H2O2/o-PD (20 μL,
50/25 mM) into a square array of acoustically trapped HRP-containing PDDA/ATP coacervate microdroplets showing a gradient in 2,3-DAP
fluorescence intensity along the x axis. The onset of 2,3-DAP production is associated with propagation of the substrate diffusion front. The image
is recorded from the central region of the acoustically patterned array (see Figure S1); scale bar, 100 μm. (C) Corresponding 3D surface plot of
2,3-DAP fluorescence intensity for the middle row of the HRP-containing droplets shown in (B).
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investigated by plotting changes in the mean fluorescence
intensity associated with 2,3-DAP production and sequestra-
tion as a function of time and position along the x or y axis
(Figure 2F,G). All the plots revealed an induction time of ca. 3
min that was associated with the time required for the
substrate molecules to codiffuse into the central viewing
window after injection at one side of the device. Moreover, the
relative initial rate of change in mean 2,3-DAP fluorescence
intensity was constant (6.278 × 10−2 ± 4.49 × 10−3 arbitrary
units/s) for each droplet after substrate-induced activation,
suggesting that the peroxidase reaction in each of the
protocells followed a similar diffusion-controlled kinetic
pathway. In general, the fluorescence associated with each
microdroplet increased to a steady state value over a period of
ca. 15 min, after which there was a slow decrease in intensity at
each lattice point in the array due to the cessation of substrate

turnover and slow release of the sequestered 2,3-DAP into the
external environment (Figure S5) .
The activation time (tact) for each microdroplet in the 2D

array was then determined by linearly fitting the initial rate of
change in fluorescence and measuring tact as the intercept with
the baseline. Plots of tact along a line of periodically spaced
microdroplets lying parallel to the direction of codiffusion
(H2O2: o-PD molar ratio = 2:1) revealed a distinct lag time
(Δtact) of ca. 12 s between adjacent protocells (Figure 2H). In
contrast, values for tact remained unchanged along a row of
microdroplets lying perpendicular to the direction of diffusion
(Δtact = 0) indicating no spatiotemporal response along the y
axis. Increasing the H2O2: o-PD molar ratio above 2.0 had
minimal effect on Δtact measured along the x axis, while
increasing the relative amounts of o-PD in the codiffusion front
(molar ratios <2) decreased the average lag times from 12 to 6
s (Figure 2I).

Figure 2. Spatiotemporal responses in periodic 2D arrays of enzyme-containing coacervate protocells. (A−D) Time-dependent fluorescence
microscopy images recorded at 3, 4, 5, and 6 min after onset of unidirectional codiffusion of H2O2 and o-PD (arrows) (H2O2/o-PD; 20 μL, 50/25
mM) parallel to the x axis of a 2D array of HRP-containing PDDA/ATP coacervate microdroplets. Droplet positions are labeled as (xn, ym); scale
bar, 100 μm. (E) Corresponding plots of the average fluorescence line intensity profiles recorded along the x axis for seven droplets (xn, n = 1−7)
located in row y2 as shown in A−D. Profiles were recorded 3, 4, 5, and 6 min after onset of H2O2/o-PD codiffusion. (F) Plots of time-dependent
changes in 2,3-DAP fluorescence mean intensity (a.u., arbitrary units) for three different microdroplets positioned along the x axis in row y2 of the
array shown in A−D. The three droplets are located in positions x1 (black), x4 (red), and x7 (blue). Propagation of the diffusion front along the x
axis results in a series of increasing activation times for the onset of 2,3-DAP production. (G) As for (F), but for three droplets (y1 (black), y2 (red),
and y3 (blue), positioned in row x1 lying perpendicular to the diffusion direction showing simultaneous 2,3-DAP production. (H) Plots showing the
distance-dependent (relative position) time periods required for the onset of enzyme-mediated activation (tact) along a single row of seven HRP-
containing coacervate microdroplets aligned parallel (blue, x axis; xn, n = 1−7) or perpendicular (red, y axis; ym, m = 1−7) to the H2O2/o-PD
codiffusion front. A constant lag time (Δtact) of ca. 12 s is observed for adjacent droplets aligned along the x axis and exposed to a codiffusing
substrate mixture prepared with a H2O2: o-PD molar ratio of 2:1 (final concentrations; 1 and 0.5 mM, respectively. (I) Plot of the average lag time
(Δtact) measured between adjacent droplets in a single row aligned parallel to a codiffusing substrate mixture prepared at different H2O2: o-PD
molar ratios at a constant o-PD final concentration of 0.5 mM. The average lag times decrease as the substrate molar ratios are reduced below 2.0
due to the effect of increasing relative amounts of o-PD on the enzyme-reaction kinetics.
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Figure 3. Influence of substrate diffusion fronts on biochemical sensing. (A, B) Plots of time-dependent changes in 2,3-DAP fluorescence mean
intensity (a.u., arbitrary units) for three different HRP-containing PDDA/ATP coacervate microdroplets periodically interspaced in a row of seven
protocells aligned parallel to the direction of substrate diffusion under different experimental conditions: o-PD diffusion into a 2D droplet array
preloaded with H2O2 (A); H2O2 diffusion into a droplet array preloaded with o-PD (B). The three droplets are the first (x1, black line), fourth (x4,
red line), and seventh (x7, blue line) protocells in the row with x1 being the first to interact with the substrate diffusion front. The variation in
activation time observed for A and B is due to experimental changes in the relative distances between the injection points and edge of the chamber.
The intermediate delay shown in (B) between 6 and 8 min was reproducible over several experiments. One possibility is that this period represents
an initial decrease in the concentration of o-PD at the diffusion front to a level insufficient for enzyme turnover. The peroxidase reaction restarts
once the local concentration of o-PD is restored by further diffusion of o-PD into the array already loaded with H2O2. (C) As for A and B but in the
absence of a diffusion gradient (homogeneous mixing of H2O2/o-PD in the sample chamber containing the droplet array). (D−F) Corresponding
stack bar plots determined respectively for experiments described in A−C showing the production of 2,3-DAP in a row of seven consecutive
protocells aligned along the x axis. The different shades of blue bars represent the increase in fluorescence intensity over the same time interval with
the lightest and darkest shades representing the first and last time periods, respectively. Time durations; 2, 3, and 1 min for D−F, respectively.
Starting periods (lightest shade bar); 6−8, 0−3, and 0−1 min for D−F, respectively.

Figure 4. Simulated spatial/temporal distributions of H2O2 concentrations in the acoustic trapping chamber. (A) Schematic representation of the
simulated area consisting of a 15 × 15 droplet array. The substrate concentration gradient and diffusion direction are aligned along the x axis.
Diameter of droplets (white circles) at each lattice point = 55 μm; lattice center-to-center spacing = 110 μm. Filled circles delineated by dashed
rectangles refer to simulations shown in B−E. (B) Simulated 2D plot of the spatial and temporal distributions of H2O2 concentration in a row of
protocells aligned parallel to the H2O2 diffusion direction (y8; red dashed rectangle in A). (C) Corresponding time-dependent changes in H2O2
concentration at three different positions (x5, x8, and x11) along row y8. (D) Simulated 2D plot of the spatial and temporal distributions of H2O2
concentration in a line of protocells aligned perpendicular to the diffusion of H2O2 (x8, blue dashed rectangle in A). (E) Corresponding time-
dependent changes in H2O2 concentration at three different positions (y5, y8, and y11) along column x8. Simulations are for an injection of 10 μL of
H2O2 (50 mM) solution along the x axis. The unit for the color bar in B and D is μM. The simulations did not consider HRP-mediated substrate
consumption during the diffusion process.
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Changes in the nature of the advancing reaction-diffusion
front were used to determine the kinetic factors responsible for
the activation and lag times recorded for microdroplets
periodically ordered within the central viewing area of the
acoustic trapping device. Single-component unidirectional
diffusion of o-PD into a 2D droplet array preloaded with a
homogeneous concentration of H2O2 resulted in minimal
changes in induction time (typically 6 min), nonlinear
production of 2,3-DAP, and a well-defined spatiotemporal
response (Figure 3A). Moreover, the initial rate of 2,3-DAP
production diminished along the o-PD concentration gradient
(Figure 3A and Figure S6), suggesting that the substrate was
progressively depleted as the reaction-diffusion front advanced
through the array. Given that codiffusion of H2O2/o-PD
produced a constant reaction rate parallel to the diffusion
direction (Figure 2F and Figure S6), we attributed the
decrease in initial reaction rate to the large excess of H2O2
preloaded into the acoustic trapping chamber. In contrast, a
very short induction period (ca. 0.5 min) along with a
nonpatterned response was observed when H2O2 was
unidirectionally diffused into a droplet array preloaded with
a homogeneous concentration of o-PD (Figure 3B) or in the
absence of a H2O2 and o-PD diffusion gradient (Figure 3C).
The different spatial and kinetic responses were therefore
attributed to the increased rate of diffusion into the array of
H2O2 compared with o-PD, such that the advancing o-PD
diffusion front was effectively rate-determining and therefore a
key factor determining the lag time (Δtact) in the
spatiotemporal response. Corresponding stack bar plots of
the mean fluorescence intensity in a row of seven consecutive
protocells aligned parallel to the diffusion direction recorded
over a constant time period revealed a nonlinear increase of the

production of 2,3-DAP over time (Figure 3D−E), while a
linear increase of the mean fluorescence intensity was observed
in a homogeneous medium (Figure 3F), confirming that a
marked concentration gradient in the o-PD diffusion front
influenced the values of Δtact.
The above results were consistent with 2D simulations

(Figure 4A, and Figure S7 and S8) of the spatial and temporal
distributions of H2O2 and o-PD concentrations at periodic
positions in the central region of the acoustically trapped array.
2D distributions of the H2O2 and o-PD concentrations in the
viewing region of the acoustic trapping chamber were initially
simulated without considering HRP-mediated substrate
consumption during the diffusion process. The H2O2
concentration in the central observation window positioned
ca. 10 mm from the point of substrate injection was calculated
as ca. 20 μM after 0.5 h compared with 1 mM for an array
containing preloaded H2O2. Moreover, although a circular
diffusion front was generated initially at the point of injection,
the simulations confirmed that a planar chemical front
advanced across the microdroplet array (Figures 4B and
Figure S7). Significantly, the simulations showed an induction
time along the direction of the reaction-diffusion field (x axis)
(Figure 4C and Figure S7), consistent with the experimental
results displayed in Figure 2E−F. In contrast, minimal
differences in the H2O2 and o-PD concentrations were
observed along the direction perpendicular to the direction
of diffusion (Figure 4D,E and Figure S8), in agreement with
the data shown in Figure 2G. We used a finite explicit
approach involving an iterative procedure to consider the mass
transfer balance between the rates of diffusion and HRP-
mediated consumption of H2O2 and o-PD at each consecutive
lattice point. Conversion of the substrates to produce 2,3-DAP

Figure 5. Substrate gradient signaling between protocell populations. (A) Representative fluorescence microscopy image showing two spatially
positioned domains of acoustically patterned enzyme-containing PDDA/ATP droplet 2D arrays with sequestered FITC-tagged GOx (green;
population 1) or RITC-HRP (red; population 2) (green and red arrows, respectively). The white arrows on the left side of the image indicate the
direction of substrate diffusion; scale bar 500 μm. (B) Scheme showing bienzyme-mediated tandem reaction between two spatially separated
populations of protocells. GOx-mediated oxidation of glucose (Glc) to gluconic acid (GlcA) and H2O2 in population 1 initiates diffusive transfer of
H2O2 to population 2 and subsequent HRP-mediated oxidation of o-PD to fluorescent 2,3-DAP. Glucose and o-PD can be considered as inputs
into populations 1 and 2, respectively, and H2O2 as a signaling molecule between the two protocell communities. (C−F) Plots of representative
time-dependent changes in 2,3-DAP mean fluorescence intensity (a.u., arbitrary units) for three different HRP-containing PDDA/ATP droplets
(population 2) periodically interspaced in a row of seven protocells in the red domain shown in (A) and aligned parallel to the direction of
substrate diffusion under different experimental conditions: codiffusion of glucose and o-PD initially into the GOx-containing droplets (population
1) (C); unidirectional diffusion of o-PD initially into the GOx-containing community with populations 1 and 2 preloaded with H2O2 (D);
unidirectional diffusion of glucose into population 1 with populations 1 and 2 preloaded with o-PD (E); in the absence of a reaction-diffusion
gradient (homogeneous mixing of glucose/o-PD in the sample chamber containing the two spatially separated protocell populations (F). The
variations in activation time observed for C−E are due to experimental changes in the relative distances between the injection points and edge of
the chamber, and between the two populations. The three droplets are the first (x1, black line), fourth (x4, red line), and seventh (x7, blue line)
along the same row.
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was modeled using the established reaction mechanism
(Figures S9−10).41,42 By simulating the interplay between
the peroxidase reaction occurring between neighboring
microdroplets and the advancing substrate concentration
gradient, we determined the dependency of Δtact on changes
in the initial H2O2/o-PD molar ratio (Figure S11) or values of
the H2O2 diffusion coefficient (Figure S12). The simulations
showed that Δtact increased nonlinearly with increasing H2O2/
o-PD molar ratio. This was consistent with experimental data
(Figures 2I and 3A,B), and indicated that relatively low levels
of o-PD were required to establish an effective reaction-
diffusion gradient across the protocell community.
To elicit a spatiotemporal biochemical response via the

onset of molecule-based signaling within the droplet arrays, we
prepared acoustically patterned PDDA/ATP droplet 2D arrays
comprising two spatially separated protocell populations. Two
square grid networks of microdroplets comprising either
sequestered fluorescein-isothiocyanate (FITC)-tagged GOx
(green; population 1) or RITC-HRP (red; population 2)
were acoustically patterned in different regions of the
observation window, and a mixture of glucose and o-PD
codiffused into the device from a region near to population 1
(Figure 5A). Interactions between the two separated protocell
populations and the substrate concentration gradients
established within the viewing region were examined by
analyzing the spatiotemporal response associated with the
onset of the GOx/HRP tandem reaction, in which glucose and
o-PD provided chemical inputs into populations 1 and 2,
respectively, and H2O2 acted as an internally generated
signaling molecule between the two protocell communities
(Figure 5B). Unidirectional codiffusion of the substrates
(glucose/o-PD) into population 1 produced a distinct
spatiotemporal response in population 2 (Figure 5C). This
was consistent with the in situ generation and propagation of a
H2O2 reaction-diffusion front from the GOx-containing
droplets to the spatially separated HRP-containing array to
produce a time- and space-dependent response in the
production of 2,3-DAP specifically within population 2. Values
of Δtact between adjacent droplets were typically 6 s for the
codiffusion system compared with 17 s for the same spatially
separated binary population subjected to unidirectional
diffusion of o-PD alone into the observation window when
preloaded with glucose (Figure 5D). Moreover, we observed
different responses in terms of the initial rates of 2,3-DAP
production; while the rates were constant for droplets aligned
in rows along the direction of codiffusion of glucose/o-PD, the
reaction rates decreased when o-PD alone was diffused into the
viewing region after preloading with glucose (Figure S13). We
attributed this to an increase in the H2O2/o-PD molar ratio
(Figure 2I) associated with preloading of glucose and the
almost instantaneous generation of H2O2 in population 1 in
the absence of an advancing glucose gradient. In contrast,
protocells in population 2 were simultaneously activated when
glucose was diffused into population 1 after preloading both
populations with a homogeneous concentration of o-PD
(Figure 5E) or in the absence of a H2O2 and o-PD diffusion
gradient (Figure 5F).

■ DISCUSSION
Acoustically patterned periodic arrays of uniform enzyme-
containing coacervate-based protocells exhibit a spatiotemporal
biochemical response when exposed to an advancing unidirec-
tional flux of diffusing substrate molecules under non-

equilibrium conditions. In essence, the protocell community
is able to translate the encoded information in the o-PD and
H2O2 reaction-diffusion gradient profiles (direction of the
diffusion front, initial substrate molar ratios, differences in
diffusion coefficients) into specific signal outputs based on
different activation and lag times, and nonlinear or linear
responses in fluorescence intensity. The sensing behavior can
be extended to binary populations of enzyme-containing
coacervate microdroplets that are spatially separated within
the array but chemically coupled via an internally produced
signaling molecule (H2O2) that connects the two communities
via a concerted biochemical cascade reaction. It should be
possible to advance this strategy to more complex arrays by
increasing the diversity of distinct protocell populations or
integrating more functionalities into each population with the
long-term objective of generating synthetic protocell consortia
with nonequilibrium cell-like communication networks.43,44 To
this end, the incorporation of microfluidic technologies into
the acoustic trapping device to precisely control the
concentration gradients across the sample chamber could be
highly significant.
Overall, our studies provide a path toward establishing a

systematic approach to studying the spatial and temporal
interactions of organized communities of synthetic protocells
in the presence of propagating reaction-diffusion gradients, and
offer a new methodology for exploring the complexity of
protocellular communication networks operating under non-
equilibrium conditions. More generally, the spatiotemporal
response of acoustically trapped microdroplet arrays to coded
reaction-diffusion gradients could provide new opportunities
for developing organized platforms for chemical and
biochemical screening, enzymatic kinetic assays, and clinical
diagnostics.

■ METHODS
Preparation of Enzyme-Containing Coacervate Mi-

crodroplet Arrays. One microliter of a premixed solution of
PDDA (25 mM monomer) and HRP (0.2 mg mL−1) was
gently added to the center of the acoustic trapping chamber
containing aqueous ATP (1 mL, 2.5 mM) in the presence of
two orthogonal acoustic standing waves (6.76/6.78 MHz, 10
V). After continuous coalescence of primary coacervate
droplets over 30 min, a periodic 2D array (ca. 20 × 20) of
HRP-containing PDDA/ATP microdroplets was formed
specifically at the nodal regions within a localized area close
to the point of injection of the PDDA/HRP mixture. Similar
procedures were used to prepare two different regions of
enzyme-containing coacervate microdroplet arrays within the
same observation window. The multicomponent array was
prepared in sequence. An organized population of HRP-
containing PDDA/ATP droplets was prepared as above, and
then an aqueous mixture (4 μL) of PDDA (25 mM monomer)
and GOx (0.2 mg mL−1) was injected under the same acoustic
standing wave field but at a different location in the ATP-filled
chamber so that two spatially separated periodic arrays of
PDDA/ATP droplets containing either GOx or HRP could be
viewed in the central observation window. Fluorescent
enzyme-containing PDDA/ATP coacervate microdroplets
were prepared by using RITC-tagged HRP and FITC
tagged-GOx.

Coacervate Droplet Array-Based Enzyme Reactions
in Chemical Field Gradients. A 2D periodic array of HRP-
containing PDDA/ATP coacervate microdroplets was pre-
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pared as described above. The supernatant was carefully
removed and exchanged with Milli-Q water three times under
the same acoustic pressure field. The acoustic field was then
switched off, and the enzyme substrates were diffused into the
sample chamber (total volume = 1 mL) containing the
microdroplet array specifically from one side of the device (the
left side as viewed in the Figures). Microscopy images were
recorded in the central observation window positioned ca. 10
mm from the point of substrate injection. Several droplet array-
based enzyme reaction experiments were undertaken for the
single population of HRP-containing microdroplets: (i)
codiffusion of H2O2 (10 μL; 25, 50, 100, or 200 mM;
corresponding final equilibrated concentrations in the acoustic
trapping chamber: 0.25, 0.5, 1, and 2 mM) and o-PD (10 μL;
50 mM; final concentration, 0.5 mM) into a 2D array; (ii)
single-component diffusion of H2O2 (10 μL; 100 mM; final
concentration, 1 mM) or o-PD (10 μL; 50 mM; final
concentration, 0.5 mM) into a HRP-containing droplet array
premixed with a solution of o-PD (10 μL; 50 mM; final
concentration, 0.5 mM) or H2O2 (10 μL; 100 mM; final
concentration, 1 mM), respectively; and (iii) reactions
involving no imposed concentration gradients by homoge-
neous mixing of o-PD (10 μL; 50 mM; final concentration, 0.5
mM) and H2O2 (10 μL; 100 mM; final concentration, 1 mM)
with a final dilution factor of ×50 in the presence of a
microdroplet array. Similarly, enzyme reaction experiments
were performed for two spatially separated 2D arrays of HRP-
or GOx-containing microdroplets: (i) codiffusion of glucose
(10 μL; 100 mM; final concentration, 1 mM) and o-PD (10
μL; 50 mM; final concentration, 0.5 mM) into two spatially
separated 2D arrays; (ii) single-component diffusion of glucose
(10 μL; 100 mM; final concentration, 1 mM) or o-PD (10 μL;
50 mM; final concentration, 0.5 mM) into two spatially
separated arrays premixed with o-PD (10 μL; 50 mM; final
concentration, 0.5 mM) or glucose (10 μL; 100 mM; final
concentration, 1 mM); and (iii) reactions involving no
imposed concentration gradients by homogeneous mixing of
o-PD (10 μL; 50 mM; final concentration, 0.5 mM) and
glucose (10 μL; 100 mM; final concentration, 1 mM) with a
final dilution factor of ×50 in the presence of two spatially
separated microdroplet arrays.
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