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29 Abstract

30

31 Glucocorticoids are a class of systematically secreted hormones, vital for 

32 mammalian life, which are intensively investigated for more than 80 years. They 

33 regulate multiple body processes like metabolism, fluid homeostasis, immune and 

34 stress system responsivity, as well as brain function. Glucocorticoids have a 

35 complex rhythm by which they are released to circulation from the adrenal 

36 cortex. The hormone exhibits a circadian variation, with high hormonal levels 

37 being secreted just prior and during the active part of the day, and progressively 

38 lower and lower amounts being released during the inactive part of it. Underlying 

39 this diurnal variation there is a more dynamic, ultradian rhythm composed of 

40 frequent episodes of glucocorticoid secretion (hormonal pulses). Accumulating 

41 evidence from observational, in silico, in vitro and in vivo, preclinical and clinical 

42 studies suggest that both aspects of glucocorticoid rhythmicity are preserved 

43 among mammalian species and are important for brain function. The central 

44 nervous system is exposed to both aspects of the hormonal rhythm, and has 

Page 2 of 51

eje@bioscientfica.com

Manuscript submitted for review to European Journal of Endocrinology



For Review Only

3

45 developed mechanisms able to perceive them, and translate them to differential 

46 cellular events, genomic and non-genomic. Thus, glucocorticoid rhythmicity 

47 regulates various physiological neural and glial processes, under baseline and 

48 stressful conditions, and hormonal dysrhythmicity has been associated with 

49 cognitive and behavioural defects. This raises a number of clinical implications 

50 concerning (i) glucocorticoid involvement in neuropsychiatric disease, and (ii) 

51 improving the therapeutic efficacy or expanding the role of glucocorticoid-

52 based treatments in such conditions.

53

54

55

56

57 Introduction 

58

59 Glucocorticoids (GCs, corticosterone in rodents and predominantly cortisol in human) 

60 are a class of steroid hormones, vital for mammalian life, which are synthesized by the 

61 adrenal glands, secreted into the systematic circulation and travel throughout the body 

62 to exert their pleiotropic effects on cellular function, primarily affecting metabolism, the 

63 immune system and cognitive and emotional function. The complexity of their biology is 

64 illustrated by the fact that after almost 80 years of intensively investigating these 

65 molecules, we still have only superficial understanding of their molecular effects and the 

66 system level homeostatic functions they control.
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67 Despite these caveats, almost all clinical specialties use natural or synthetic GCs 

68 to treat multiple conditions, primarily exploiting their immunomodulatory actions on high 

69 doses; from gastroenterologists (inflammatory bowel disease), dermatologists (serious 

70 allergies, psoriasis), rheumatologists (rheumatoid arthritis, systemic lupus erythematosus 

71 and other autoimmune disorders) and pulmonologists (asthma) to surgeons (serious 

72 bacterial infections and shock), oncologists (in combination with first line anti-neoplastic 

73 drugs under multi-drug schemes), nephrologists (some forms of glomerulonephritis), 

74 anesthesiologists (in combination with first line pain killers under multi-drug schemes), 

75 neurologists (multiple sclerosis, other inflammatory or traumatic encephalopathies, 

76 myelopathies and neuropathies) and endocrinologists (mainly for replacement therapy 

77 in adrenal insufficiency) (1, 2, 3).  

78 The need to fully elucidate GCs’ biological relevance is crucial since GCs are a 

79 fundamental aspect of the non-specific neuroendocrine response of the mammalian 

80 body to multiple internal and external stressors. One of the major systems affected in 

81 these states is the central nervous and it is well recognized that long term or high dose 

82 GC therapy is associated with neuropsychiatric disorders. 

83 Two of the most characteristic features of GC physiology, well explained in 

84 relevant medical textbooks, are their circadian variation and their central role in stress 

85 responses. Indeed, GCs are a paradigm for the role of internal biological clocks, 

86 regulating the variations in biological needs across the 24-hour day. A few hours before 

87 awakening (morning in human, night in rodents), the hypothalamic suprachiasmatic 

88 nucleus (SCN) reduces its inhibitory input to the paraventricular nucleus (PVN) and 

89 median eminence (4), which in turn allows an increase in the secretion of corticotropin-

90 releasing hormone (CRH) into the hypophyseal portal circulation. Consequently, CRH 
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91 upregulates corticotrophin (ACTH) secretion by corticotropic cells of the anterior 

92 pituitary, which travel via the systemic circulation to adrenal glands and stimulate GC 

93 biosynthesis/ release. This results to the natural circadian peak of GCs, followed by a 

94 gradual fall to reach nadir levels during the inactive part of the day. The circadian 

95 characteristics of GC secretion may vary both within and between individuals. They 

96 depend on genetic, epigenetic, age- and gender-related variables (5, 6, 7), intrinsic 

97 environmental factors and long-term neurocognitive adaptations to perceived stress, as 

98 well as the integrity of the corresponding anatomical structures involved in the 

99 feedforward-feedback circuits (8), and the mode of function of peripheral clocks, 

100 regulating for instance the circadian variation of the adrenal sensitivity to ACTH 

101 stimulation (9).

102 Responses to external as well as internal stressful stimuli also elicit a dramatic 

103 increase in GC secretion. Both brainstem and limbic structures are important in these 

104 responses. The hippocampus for example exerts an inhibitory effect over HPA activity at 

105 the onset and termination of the stress response (10), while the amygdala enhances the 

106 stress-related GC secretion in a region-specific manner; with central and medial 

107 amygdaloidal nuclei being responsive to different stressful stimuli (intrinsic-inflammatory 

108 and extrinsic-environmental respectively) and subsequently contributing to the acute 

109 stress responses. On the other hand, the basolateral amygdala has a role in the chronic 

110 stress integration. Parts of the prefrontal cortex also regulate HPA activity, and 

111 consequently GC secretion. All these brain structures project via the bed nucleus of stria 

112 terminalis to subcortical, hypothalamic and brainstem regions that in turn innervate the 

113 medial parvocellular part of PVN (11). This implies that, in the context of stress responses, 

114 multiple steps are involved in the chain of regulatory control initiated by central stimuli, 
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115 with the final message though eventually translated into changes in hypothalamic CRH 

116 secretion (consequently leading to changes in ACTH secretion and thus changes to GC 

117 secretion). 

118 What has been much less clear in textbooks on medical physiology, is the fact that 

119 under baseline conditions the GC circadian variation is actually made up from an 

120 underlying, more dynamic rhythm; oscillatory pulses of ACTH and GCs. This is the ultradian 

121 rhythm of the hormone. Where does this ultradian rhythm derive from? And is it 

122 biologically significant, especially for brain function? And if yes, are there any clinical 

123 implications concerning GC involvement in neuropsychiatric disease or improving the 

124 therapeutic efficacy of GC-based treatments or even expanding their role in 

125 neuropsychiatric conditions? This review will try to answer some of these question by 

126 providing a summary of the relevant scientific evidence.       

127

128 Is there an ultradian rhythm? Observational and in silico studies on GC pulsatility 

129

130 GC pulsatility is a conserved mechanism in mammalian species

131 Surprisingly, despite the fact that GC pulsatility had been observed as early as the 1970’s, 

132 there has been little or no investigation of its biological importance until the last decade. 

133 There are no mammalian species studied which lack GC pulsatility and this includes 

134 rodents, sheep, deer and cows (12, 13) as well as horses and monkeys. The baseline 

135 frequency of this ultradian rhythm may alter with the size and the developmental stage 

136 of the animal, being less than 60 minutes for rodents and late-gestation fetal horses (14), 

137 more than 60 for rhesus macaques (15, 16) and deer (17), and 90 minutes in sheep (18). 

138 All these studies have also demonstrated the existence of a strong correlation between 
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139 ACTH and GC ultradian rhythms (14, 16, 19). In this context, a more recent study on 

140 rodents provided strong evidence that ACTH pulsatility is necessary for GC pulsatile 

141 biosynthesis and secretion, and indeed the exposure of adrenal glands to non-pulsatile 

142 ACTH abolished their capacity to produce a pulsatile transcriptional activity of genes 

143 involved in steroidogenesis, leading to a loss of adrenal corticosterone secretion (20). 

144 Moreover, the experimental disruption of circadian inputs to the HPA activity (for instance 

145 lesioning hypothalamic nuclei or exposing animals to constant light conditions) did not 

146 interfere with the ultradian component of GC rhythmicity (21).

147 Multiple clinical observational studies have also confirmed the presence of the 

148 ultradian GC rhythm in man, under healthy conditions (19, 22, 23, 24, 25), as well as under 

149 pathological conditions related to chronic stress system activation, including 

150 neurodegenerative disorders (26), depression (27), fibromyalgia and chronic fatigue 

151 syndrome (28) or obstructive sleep apnea (29). The GC pulses vary in amplitude and 

152 duration throughout the day due to variable input from hypothalamic nuclei, and a 

153 typical human 24-hour profile, under healthy and non-stressful conditions, contains 

154 approximately 8-16 glucocorticoid pulses (occurring every 60-180 min) (23, 30). The 

155 ultradian rhythm of GC secretion is also preserved across gender (31) and, despite 

156 changes in pulse amplitude and duration, even during acute stress responses (32, 33). 

157 But where does this ultradian rhythm come from?

158

159 Origin of GC pulsatility

160 Since the ultradian rhythm of GC secretion is not abolished by the removal of 

161 hypothalamic CRH circadian cues, we focused on the characteristics of the interplay 

162 between the anterior pituitary and adrenal glands. As mentioned earlier, ACTH plays a 
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163 key role on this: after reaching the steroidogenic cells of the zona fasciculata, it binds to 

164 its specific receptor melanocortin type-2 (MC2R), causing an increase to the intracellular 

165 levels of cAMP, which in turn activate the protein kinase A pathway, leading to post-

166 translational modifications (mainly phosphorylation/ activation) of proteins involved in 

167 cholesterol metabolism like the hormone-sensitive lipase (HSL) and the steroidogenic 

168 acute regulatory protein (StAR), which regulate the levels of intracellular cholesterol and 

169 its transport within the mitochondrial matrix to initiate the steroidogenic process (34). 

170 Therefore, ACTH exerts a positive feedforward regulation on GC biosynthesis. 

171 After release into the systemic circulation, GCs feedback on corticotropic cells of 

172 the anterior pituitary to inhibit the release of ACTH. This results in a negative 

173 (self)regulation on GC biosynthesis. This positive feedforward – negative feedback loop 

174 is characterized by built-in delays (i.e. there is an inherent temporal distance between 

175 each positive feedforward activation of MC2Rs by ACTH and the subsequent release of 

176 GCs due to the need for de novo GC biosynthesis). By using mathematical biomodelling 

177 approaches, accommodating the previously mentioned dynamics between ACTH and 

178 GC secretion with the inherent delays, as well as other parameters related to GC 

179 clearance through liver (bile acids) and kidneys (urine) (35), we were able to 

180 demonstrate that the interplay between pituitary and adrenals creates a system that 

181 leads its components (ACTH, GCs) to a self-sustaining oscillatory activity (21, 36, 37), 

182 independent of any other cues. What we have described is in effect a sub-hypothalamic 

183 pulse generator (Figure 1).

184 This leads us to the key question: as the brain is naturally exposed to these GC 

185 pulses, how are brain cells able to perceive GC pulsatility and translate for appropriate 
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186 signaling events? Furthermore, what are the implication of this for therapeutics- both 

187 replacement therapy and synthetic corticosteroid treatment?

188

189 The neurobiological significance of the GC circadian rhythm 

190

191 Before focusing on the ultradian rhythm of GCs, we should not underestimate the 

192 significance of their diurnal variation for brain function. GC circadian rhythmicity is an 

193 integral feature of the regulation of glucose homeostasis, impacting directly on neuronal 

194 and glial homeostasis (38). The GC circadian rhythm is synchronized with the rhythm of 

195 other major, brain-specific stimuli such as   brain-derived neurotrophic factor, which has 

196 a direct interaction with GCs regulating fundamental neural and circuital processes like 

197 neurogenesis, dendritic remodeling and synaptic plasticity (39). The GC surge of the 

198 diurnal peak also modulates the rhythmic expression of various GC-sensitive genes in a 

199 brain-region specific manner, like tryptophan hydroxylase-2 in the raphe neurons (40) or 

200 period-2 in the central nucleus of the amygdala (41), and promotes stimulus-driven, non-

201 genomic events, like the postsynaptic dendritic spine formation in the cortex after motor 

202 skill learning. At the same time, GC circadian troughs are required for stabilizing newly 

203 formed spines crucial for long-term memory retention. Conversely, chronic and excessive 

204 exposure to GCs eliminates learning-associated new spines and disrupts previously 

205 acquired memories (42). 

206 In addition, the circadian rhythm of GCs has enormous, multi-level effects on 

207 behaviour, psychophysiology and -pathology: (i) changes in the characteristics of the 

208 diurnal variation (steeper peaks or flatter slopes) have been linked to an increased self-

209 reported negative affect (43), and an inverse relationship has been reported between 
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210 the diurnal rhythms of cortisol and positive affect (44). (ii) The diurnal cortisol profile has 

211 been also associated with the neural activity in parts of the medial prefrontal cortex 

212 (ventromedial and orbitofrontal), an association that is lost in anhedonic subjects (45). 

213 (iii) Enhancement of the diurnal peak of GCs (without changing the overall amount of 

214 daily GC exposure or any other aspects of the HPA activity) may exert anxiolytic effects 

215 (46). (iv) Elimination of the GC circadian peak leads to a significant reduction in 

216 locomotor activity during the active periods of the day, comparable to the inactive parts 

217 of it (47). (v) Circadian misalignment due to GC circadian rhythm phase shifts has been 

218 linked to acute episodes (mania or depression) in the context of bipolar disorder (48). (vi) 

219 The diurnal variation in circulating GCs modulates the analgesic effect of morphine by 

220 regulating the expression of the μ-opioid receptors in brainstem (49).

221 It is clear that the GC circadian rhythm provides a strong chronobiological signal 

222 controlling the daily homeostasis of energy balance in brain cells, as well as fundamental 

223 aspects of neural survivability, plasticity and multi-neuronal network characteristics. These 

224 effects are linked to both genomic and non-genomic cellular events, and eventually 

225 contribute to the circadian variability of mood and behaviour, whose disruption is linked 

226 to psychiatric symptomatology (Figure 2). Thus, over a period of 24 hours, the alternation 

227 of the circulating GC levels between a state a high abundance and a state of low 

228 bioavailability seems to be crucial for brain physiology. The next question is whether the 

229 ultradian pattern of GC rhythm could be of similar neurobiological significance. Is it 

230 possible that the circadian variation of the hormone can only be optimally translated into 

231 its neurobiological effects if delivered in a pulsatile manner?         

232

233 Preclinical studies on the neurobiological significance of GC pulsatility 
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234

235 Does the brain perceive GC circadian and ultradian rhythms? 

236 The debate around the significance of GC rhythmicity on brain function would be 

237 pointless if the nervous system was not exposed to oscillating signals of extracellular GCs. 

238 In the systematic circulation GCs are bound to GC-carrier proteins and albumin and it is 

239 only the free fraction of cortisol that is active and available to diffuse into the central 

240 nervous system. And even then, this active fraction of GCs can get excreted at the site 

241 of the blood-brain barrier (due to the activity of the P-glycoprotein) and locally, in the 

242 microenvironment of neurons and glia, be converted to inactive forms (50). In vivo micro-

243 dialysis studies in rodents have demonstrated, though, that both the circadian and 

244 ultradian rhythms of free GCs are maintained in the systemic circulation, the nervous 

245 system and the subcutaneous tissue (51). These observations are gender-independent 

246 (52). It is worth noting though, that this synchronicity between plasma and brain free GC 

247 oscillations might be modified under conditions of acute changes in the mode of the GC 

248 rhythm, as in the context of an acute stress response (53). These results have partially also 

249 been confirmed in man (54).

250  

251 Is the brain able to translate GC pulsatility into cellular events? 

252 The debate around the significance of GC pulsatility on brain function would also be 

253 pointless if the brain cells didn’t possess the means to translate dynamic hormonal 

254 oscillations into differential signaling events. Neurons and glial cells have developed ways 

255 to sense GC pulsatility. The basis of this sensation lies into the properties of the two classes 

256 of GC-sensitive receptors, the mineralocorticoid receptors (MRs) and the glucocorticoid 

257 receptors (GRs), found in the central nervous system. Since many areas of the brain lack 
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258 the enzyme 11β-hydroxysteroid dehydrogenase isoform II, cortisol and corticosterone 

259 can activate both GRs and MRs in these areas. The most prominent sites of MR expression 

260 in the central nervous system include hippocampus, lateral septum, amygdala, and to a 

261 lesser extent cerebral cortex, cerebellum, caudate-putamen complex, and 

262 hypothalamus, while areas of GR expression include cingulate cortex, hippocampus, 

263 PVN and supraoptic nucleus, lateral geniculate, lateral and medial amygdala, thalamus, 

264 cerebellum and cerebral cortex (55, 56, 57, 58).

265 MRs have a much higher affinity for binding with GCs compared to GRs; 

266 consequently, MRs remain occupied even during low GC levels, while GR binding 

267 requires higher GC concentrations, like those during the peak of individual pulses or 

268 following acute stress (59). Moreover, over the last two decades, it has been gradually 

269 realised that these classes of receptors, although considered as transcription factors (i.e. 

270 regulators of gene expression) with delayed effects, also possess rapid, non-genomic 

271 effects in brain cells; these effects have been attributed to non-nuclear variants of these 

272 receptors, and for those effects higher GC levels are required as well. Thus, depending 

273 on the GC levels, a different combination of MRs and GRs get activated, resulting in a 

274 different set of rapid and delayed effects (60). 

275 The ultradian GC rhythm determines the cyclical shift in the location of GRs and to 

276 a lesser extent MRs. At the peak of an endogenous pulse GRs translocate to the nucleus 

277 and bind to glucocorticoid response elements (GREs) on the DNA, initiating chromatin 

278 modifications including histone acetylation and docking of RNA polymerase 2 to initiate 

279 gene transcription. At the trough of each pulse, GRs will come off the DNA and either 

280 remain in the nucleus bound to chaperone proteins or be ubiquitinated and enter the 

281 nuclear proteasome for degradation (61, 62, 63). Duration of GC exposure also 
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282 differentially regulates GR and MR expression, as well as determining the binding 

283 properties of MR- and GR-related coactivators and corepressors, and the formation of 

284 MR-GR heterodimeric complexes (64, 65, 66, 67, 68, 69, 70). 

285 The overall result of this is that corticolimbic regions of the brain -in particular- are 

286 equipped with the molecular machinery to sense GC pulsatility; the next question arising 

287 therefore is where do all these events lead to? What aspects of neural and brain function 

288 are regulated by GC pulsatility?  

289

290 Which aspects of neural and brain physiology are modulated by GC pulsatility?

291 Over the last decade, research efforts exploring the neurobiological significance of GC 

292 ultradian rhythmicity have intensified. A variety of neural processes seem to be sensitive 

293 to GC pulsatility ranging from genomic events to rapid modifications in synaptic plasticity, 

294 hippocampal neurogenesis (71) and, eventually, behavioural phenotypes. 

295   GC-dependent genomic events are sensitive to the dynamic pattern of the 

296 hormonal oscillations and form transcriptional patterns that respond differentially to 

297 specific aspects of GC rhythmicity in a brain region-specific manner. The latter has been 

298 shown by both, in vivo and in vitro experimentation. For instance, hourly corticosterone 

299 pulses in rodents induced episodic bursts of transcription of the gene period-1 in the 

300 hippocampus. This lead to a plateau in the accumulative mature transcript throughout 

301 the time course of the pulsatile exposure, indicating that GC pulsatility works optimally for 

302 steady state period-1 expression. The plateau dropped to baseline within 2 hours of the 

303 final pulse, indicating that any perturbation to the pulse frequency or duration would 

304 have rapid quantitative effects on the levels of the gene products (72). A similar pulsatile 

305 motif, following in vitro exposure to a pulsatile GC treatment, on the transcription of GR-

Page 13 of 51

eje@bioscientfica.com

Manuscript submitted for review to European Journal of Endocrinology



For Review Only

14

306 regulated genes has been reported for sulfite oxidase, a mitochondrial enzyme involved 

307 in cellular energy production, GC-induced leucine zipper, a transcription factor, tissue 

308 transglutaminase, a protein regulating cytoskeletal properties and involved in 

309 neurodegenerative processes, and melatonin receptor 1B. That pulsatile motif of gene 

310 expression is lost if the GC rhythm switches from pulsatile to non-pulsatile, or if natural GCs 

311 are replaced with synthetic ones with a huge potency for GRs, like dexamethasone (73). 

312 Increased sensitivity to GC pulsatility has been also observed for serum/GC regulated 

313 kinase 1, implicated in the regulation of ion channels, cell survivability and long-term 

314 memory formation, and pro-opiomelanocortin, the ACTH precursor, in pituitary but not in 

315 prefrontal cortex of rodents (74). Finally, gene ontology analysis of the transcriptome of 

316 HeLa cells contrasting in vitro pulsatile versus continuous cortisol exposure revealed 

317 expression differences in genes involved in cytoskeletal homeostasis and cell adhesion 

318 (75). 

319 Aside the delayed, genomic events synchronized with the dynamic hormonal 

320 oscillations, rapid, non-nuclear events have been also described, indicating that spikes 

321 in GC concentrations can very quickly regulate neural processes, like neurotransmission 

322 and synaptic plasticity in a brain region-specific manner. For instance, GCs enhance 

323 transiently the frequency of miniature excitatory postsynaptic potentials in CA1 

324 (hippocampal) pyramidal neurons, pointing to a hormone-dependent enhancement of 

325 glutamate release probability via a pathway involving membrane-located MRs (76). A 

326 similar phenomenon has been observed in the basolateral amygdala; contrary to the 

327 hippocampus, though, the upregulation in glutamatergic neurotransmission is long-

328 lasting and greatly affects the responsiveness to subsequent surges of GCs in a GR-

329 dependent manner (77). More recent studies additionally showed that the frequency of 
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330 the hormonal pulses differentially regulate the frequency of miniature excitatory 

331 postsynaptic currents, AMPA receptor trafficking and the induction of long-term 

332 potentiation in cultures of hippocampal neurons and dorsal hippocampal slices from 

333 rodent brains (78, 79). Related to this, GC-activated membrane-associated GRs promote 

334 the interaction between phospho-CREB and CREB-binding proteins, leading to 

335 epigenomic events (histone acetylation) in both the hippocampus and insular cortex, 

336 following training on object recognition, associated with memory consolidation (80). 

337 Finally, it has been illustrated that acute psychological stress resulted in the upregulation 

338 of the neuroplasticity-associated immediate-early genes c-Fos and Egr-1 in granule 

339 neurons of the dentate gyrus (hippocampus), following the serine-10 phosphorylation 

340 and lysine-14 acetylation in histone H3, which were induced by the activation of the 

341 nuclear kinases MSK1 and Elk-1. The latter required a rapid protein-protein interaction 

342 between the phosphorylated ERK1/2 and GC-activated GRs, linked to long-lasting 

343 behavioral responses to stress (81).

344 Eventually, GC pulsatility affects behavioural responses (82) and the readiness of 

345 the stress system for an effective mobilization. Emotional and motor responses to external 

346 stressors or aggressive challenges are more prominent when the cue coincides with the 

347 rising phase of the ultradian GC pulse compared to the falling phase (83). Moreover, 

348 disruption of the normal ultradian GC rhythm has been associated with changes in the 

349 stress responsiveness and a dissociation between hormonal and behavioural responses 

350 to stress (84). Furthermore, in silico approaches also strongly suggest that the presence of 

351 pulsatility in homeostatic HPA function confers the potential for increased acute stress 

352 responsiveness (85).      

353
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354 How does brain physiology incorporate the different aspects of GC rhythmicity?

355 In parallel to findings in peripheral tissues (9, 38, 86), which possess local circadian clocks 

356 regulating the diurnal variation in GC sensitivity, similar mechanisms occur in different 

357 brain regions, that could modulate fundamental circadian processes, like metabolism, 

358 oxidative stress response, DNA repair and autophagy (at a cellular level), or memory, 

359 sleep-awake cycles, mood, and eventually behaviour (at a systems level) (87). Subject 

360 to brain region-specific and (in some cases possibly) temporally-varying hormonal 

361 sensitivity, GC pulsatility optimizes the circadian sustainability of GC stimulation, applies a 

362 temporal filter on GC effects (especially those mediated by GRs and non-nuclear MRs), 

363 as well as keeps the nervous system competent for properly integrating external stimuli or 

364 changes in internal states.          

365 A typical example on the sustainability of GC stimulation is the fact that GC 

366 pulsatility preserves the stock of available mature transcript of the period-1 gene in 

367 hippocampal cells (72), as we mentioned earlier. Perhaps though, the most crucial 

368 aspect of GC pulsatility is that it offers the brain an extended temporal window (on a 

369 daily basis) for effective, immediate responses to internal or external challenges (83), as 

370 well as successful, long-term adaptation. Pulsatility enables the maintenance of a 

371 reactive and responsive signaling system which is not downregulated by constant 

372 receptor activation. Moreover, in the context of confronting a challenging situation, the 

373 subsequent activation of such a range of different types of GC-sensitive receptors 

374 contributes to an ability to have temporally specific responses to a stressor: non-nuclear 

375 MRs seem to be necessary for coordinating the initial brain response to stress (in 

376 accordance with their fast, nongenomic actions), while at a later stage, GRs initiate the 

377 processes responsible for reestablishing homeostasis and mediating the successful 
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378 neurobehavioral adaptations to increase effectiveness towards confronting future 

379 incidences (60). Furthermore, outside the context of stress induction, the frequent GC 

380 surges increase the probability of GC stimulation coinciding with (or dissociating from) 

381 activation by other, interacting biomolecules, with which GCs have additive or nullifying 

382 effects. A prominent example is brain-derived neurotrophic factor (88). 

383 Finally, it is worth mentioning that body states accompanied by disruptions of GC 

384 pulsatility, leading to a prolonged exposure to high GC levels, have been linked to a 

385 weakened GR activation. For instance, rapid GR-dependent negative feedback 

386 regulation of ACTH release under basal conditions or acute stress (24) is reduced in major 

387 depression, a condition accompanied with an overactive HPA axis (89). Other examples 

388 involve the reduction of immune system’s sensitivity to GCs’ immunosuppressive effects 

389 during chronic psychological stress (90), or the selective down-regulation of 

390 hippocampal GRs under sustained stress in rodents and non-human primates (91) or after 

391 the experimental induction of viral encephalitis in rats (92).

392 The GC ultradian rhythm appears to provide a very important neurobiological 

393 signal which differentially regulates the gene expression profile and various second 

394 messenger systems of intracellular signal transduction of brain cells and, eventually, 

395 impacts cognition, behaviour and stress responsiveness (Figure 2). Similar to the 

396 hormone’s circadian rhythm, disruption of the normal characteristics of the ultradian 

397 rhythm have, very recently, been linked to animal models of neuropsychiatric disease 

398 (93). But what are the clinical implications of all these? Does GC rhythmicity have a similar 

399 significance for human brain function? 

400

401 Clinical studies: is GC rhythmicity important for the human brain?
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402

403 Effects of oral GC administration on the human brain

404 Before focusing on the relevance of GC rhythmicity for the human brain function, we 

405 need to establish which domains of human cognition are influenced by GC input. A 

406 number of clinical trials in healthy subjects, using functional neuroimaging (fMRI) 

407 techniques and psychological experiments, have added valuable insights. In these 

408 studies, participants were receiving one dose of hydrocortisone or placebo, usually orally, 

409 and subsequently underwent some form of a cognitive or psychological task, measuring 

410 an aspect of human brain function, with or without the concurrent application of an fMRI 

411 protocol. The timepoints for applying the outcome measures after hydrocortisone 

412 administration were either 60-120 minutes, reflecting the rapid effects of the hormone, 

413 and/ or 180-240 minutes, reflecting the delayed effects of the hormone.

414 Under such experimental settings, it has been shown that GCs interfere with various 

415 systems of memory processing. For instance, it has been shown that (i) intravenous 100mg 

416 hydrocortisone infusion acutely increases the involvement of the prefrontal and parietal 

417 cortex, while reducing the involvement of the hippocampus, in a working memory task 

418 (n-back) (94), (ii) 10mg of hydrocortisone improves working memory performance in the 

419 same kind of task (n-back) 240 minutes after their per os administration, an effect related 

420 to increased neuronal activity in the dorsolateral prefrontal cortex (95), (iii) 20mg of 

421 hydrocortisone reduce prefrontal and hippocampal responses during memory encoding 

422 sessions 180 minutes after their per os administration (96), (iv) 10 mg of oral hydrocortisone 

423 uptake increase the neural processing of the anteromedial prefrontal cortex during 

424 sessions of autobiographical memory retrieval 60 minutes post-administration (97). 
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425     Under such experimental settings, it has been also illustrated that GCs facilitate 

426 the neurocognitive transitions between the unstressed brain, its stressed and its post-stress 

427 state. In particular, data suggest that (i) cortisol levels are positively correlated with a 

428 functional coupling between amygdala and medial prefrontal cortex under relatively 

429 non-stressful conditions (98), but negatively correlated with a sustained functional 

430 connectivity between amygdala and hippocampus during the post-stress period (99), (ii) 

431 10 mg of hydrocortisone reduce the interaction of amygdala with areas responsible for 

432 initiating and preserving a stress response (locus coeruleus, hypothalamus, and 

433 hippocampus), while they increase the interaction of amygdala with areas associated 

434 with executive functions (middle frontal and temporal gyrus) 105 minutes after their per 

435 os administration (100), (iii) a stress-induced increase in GC levels augments the 

436 functional coupling between amygdala and dorsal striatum (101), but reduces the 

437 learning-related hippocampal processing in an MR-dependent manner, during a 

438 combined trace and delay fear conditioning paradigm (102, 103). 

439 Finally, under such experimental settings, it has been shown that GCs interfere with 

440 emotional processing. Thus (i) 10 mg of hydrocortisone reduces amygdala responsivity to 

441 emotional faces 75 and 285 minutes after their per os administration, while   slowly 

442 strengthening the functional coupling between amygdala and medial prefrontal cortex, 

443 leading to a normalised response to the negative emotional stimuli (104), and (ii) 10 mg 

444 of hydrocortisone modulates the impact of emotional distraction of attentive processing 

445 in a time-specific manner; 60 minutes after   per os administration, there is increased 

446 emotional interference (associated with reduced amygdala inhibition to aversive words 

447 and enhanced amygdala connectivity with fronto-parietal brain regions), but later on 

448 (270 minutes after their per os administration) decreased overall activity in the cuneus, 
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449 possibly indicating reduced bottom-up attentional processing, and disrupted amygdala 

450 connectivity to the insula, potentially reducing emotional interference (105).         

451 Given these findings on GC involvement in memory, emotional processing and 

452 stress-related neural processing, it is of no surprise that one of the most well-described 

453 effects of GCs on the human brain (supported by integrative research, combining 

454 preclinical experimentation and clinical studies) involves the modulation of the 

455 mnemonic processing of emotionally arousing experiences (106). In the context of a stress 

456 response, GCs enhance memory consolidation and impair memory retrieval. This 

457 phenomenon is associated with a shift from a hippocampus- controlled to a dorsal 

458 striatum-controlled cognitive processing. This shift requires the involvement of the 

459 amygdala, and GCs enhance in a rapid, GR-dependent manner the noradrenaline-

460 induced rise in intraneuronal cAMP levels in the basolateral amygdala, which upregulate 

461 the protein kinase A-dependent downstream pathways, involving among others the 

462 endocannabinoid system (107).

463 GCs clearly exert important effects over the human brain function, as anticipated 

464 by the strong preclinical evidence presented before. But is their rhythmicity so important 

465 from a clinical point of view as well?

466

467 Observational studies on the relationship between GC dysrhythmicity and brain 

468 pathology

469 The most obvious sources of GC dysrhythmicity are conditions directly impacting GC 

470 biosynthesis; either adrenal insufficiency (for instance Addison’s disease, AD, or 

471 congenital adrenal hyperplasia, CAH), leading to hypocortisolism, or Cushing’s 

472 syndrome, leading to hypercortisolism. In the former cases, GCs are replaced orally, in a 
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473 manner that doesn’t replicate neither the circadian nor the ultradian rhythm of the 

474 hormone (3). Cushing’s disease has been correlated with brain atrophy, memory 

475 impairment, and depression, while correction of hypercortisolism (but not the optimal 

476 daily GC rhythm), though attenuating brain atrophy, does not successfully reverse 

477 cognitive deficits (108, 109). In relation to these results, a recent study highlighted the 

478 presence of functional alterations in emotional processing of amygdala and 

479 hippocampus in adolescents with chronic endogenous hypercortisolemia due to 

480 Cushing’s disease, that are not associated with affective or memory symptoms (110). On 

481 the other hand, hypocortisolism also exerts damaging effects centered on the 

482 corticolimbic areas of the brain, and age seems to be reversely associated with the 

483 degree of brains’ susceptibility to absence of GCs; there is some evidence that CAH is 

484 correlated with decreased growth, development and dysregulated function of the 

485 amygdala (111, 112), disrupted white matter integrity (113), bilateral periventricular white 

486 matter hyperintensities and cortico-subcortical atrophy (114, 115), as well as cognitive 

487 deficits (116, 117).   

488 Brain pathology however that is totally separate from the circuits regulating HPA 

489 activity, can also lead to GC dysrhythmicity. In a study of stroke patients with right-sided 

490 infarction (118), researchers observed an altered tonic and phasic cortisol secretion and 

491 a damaged stress response compared to stroke patients with left-sided infarction or 

492 healthy age-matched controls. 

493 Where things become more complicated are in various neuropsychiatric 

494 disorders, where it is difficult to establish whether GC dysrhythmicity has a causal 

495 relationship with the neuropathological sequel or whether it is the result of the 

496 neuropathological process. In such cases, a vicious cycle develops between these two 
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497 variables. Such conditions include patients with Alzheimer’s disease, Parkinson’s disease 

498 and post-traumatic stress disorder, which show disruptions in the circadian and ultradian 

499 GC rhythmicity (26, 119, 120), subgroups of patients with major depression, fibromyalgia 

500 and chronic fatigue syndrome, with the HPA being overactive in the former (121) and 

501 malfunctioning in the two latter cases (122, 123, 124). Very recently, Vargas et al. (125) 

502 proposed that a disrupted ultradian cortisol rhythm could be a potential neurobiological 

503 substrate for chronic insomnia.

504 In addition to these endogenous perturbations the most frequent clinical causes 

505 of GC dysrhythmicity is the exogenous, systemic administration of synthetic GCs. These 

506 interfere with GC signaling cascades, as well as disrupt both the physiological 

507 feedforward-feedback interplay between adrenal glands and pituitary, which gives rise 

508 to the ultradian rhythm, and the negative feedback effect of natural GCs on the 

509 hypothalamus, which modulates the circadian properties of the hormonal rhythm. Are 

510 GC-based therapies then linked to neuropsychiatric symptomatology?          

511

512 Is there a relationship between GC-based therapeutics and neuropsychiatric 

513 symptomatology? 

514 The prolonged use of GC-based regimes and/or their administration in high doses is 

515 accompanied by numerous adverse effects, including neuropsychiatric (126). The list of 

516 symptoms spans almost every kind of cognitive or emotional disturbance: memory 

517 impairments (declarative memory, working memory and explicit memory), agitation, 

518 anxiety, fear, hypomania, irritability, lethargy, mood lability, psychosis. Individuals who 

519 develop psychiatric manifestations on short courses of GCs most commonly report 
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520 euphoria, while those on long-term therapy tend to develop depressive symptoms. The 

521 timing of GC administration has been strongly linked to sleep disturbances as well. 

522 The most striking finding , however, is the poor clinical outcome in the simplest therapeutic 

523 situation when GCs are prescribed as replacement therapy in primary adrenocortical 

524 insufficiency (127), even when the daily amount of GCs administered does not differ from 

525 that produced by the human body under physiological conditions. In 2002, Løvås K et al. 

526 (128) reported that Addisonian patients receiving substitution therapy (cortisone acetate 

527 and fludrocortisone) had reduced general health perception and vitality, and increased 

528 fatigue, as assessed by psychological self-evaluation scales (Short Form 36 and the 

529 Fatigue questionnaires). Recent studies, over a decade later, confirmed these 

530 observations, that health-related quality of life is significantly impaired in Addisonian 

531 patients compared with the age-matched, and gender-matched general population, 

532 despite the proper use of the recommended oral hydrocortisone doses (129, 130). The 

533 mental fatigue, accounting for a significant portion of these patient’s poorer quality of 

534 life, is characterized by higher prevalence of mood disorders (mainly depression), 

535 memory impairment and sleep disorders (131). Therefore, the fact that restoration of the 

536 physiological GC levels might not be sufficient for them to exert their normal 

537 neurobiological effects, provides support for the idea that the pattern of GC rhythmicity 

538 may be crucial even for basic mood regulation.   

539

540 What do GC replacement therapies tell us about the significance of GC rhythmicity for 

541 the human brain?

542 Current protocols on GC replacement in states of adrenal insufficiency recommend the 

543 oral administration of hydrocortisone 2-3 times daily (or longer acting synthetic 
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544 prednisolone once daily in the morning), with the morning dose being at least 50% of the 

545 total daily GC dose. Such a pattern of GC administration cannot replicate neither the 

546 circadian nor the ultradian rhythm of the hormone. For example, the natural circadian 

547 peak of GCs in human anticipates the need for morning activities by commencing 

548 secretion several hours prior the morning awaking whereas the morning dose of oral 

549 replacement therapy (which is responsible of creating the diurnal peak in patients with 

550 adrenal insufficiency) is taken post-awaking resulting in a hormonal peak about one hour 

551 later. Furthermore, 3 doses of oral GC replacement create a form of hormonal ultradian 

552 rhythm characterised by a much smaller number of daily pulses, with a much longer 

553 duration and inter-pulse intervals than normally present. This raises the question whether 

554 an improvement in the pharmacological replication of the circadian and ultradian 

555 rhythm of GC substitution could be also followed by an improvement in clinical markers 

556 of brain function in patients with adrenal insufficiency, which would be also a strong 

557 indication of the neurobiological significance of GC rhythmicity for the human brain 

558 physiology.        

559     Five clinical studies and three case reports have been published over the last 

560 decade, comparing the administration of hydrocortisone by continuous smooth 

561 subcutaneous infusion mimicking the diurnal but not the ultradian pattern of plasma 

562 cortisol (SCHI), with currently considered optimal oral therapy (OT) (132) in patients with 

563 AD or CAH. The main focus of these studies was markers on the endocrine and metabolic 

564 state of the patients (133) together with other questions related to personalised medicine 

565 (134, 135, 136). Compared to OT, the SCHI was found to improve the self-perceived 

566 mood, feelings of fatigue, vitality and physical function in Addisonian patients, while not 

567 affecting subjective or objective measures of sleep behaviour at 12 weeks (137). These 
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568 favorable effects developed over a period of many weeks both in this and a similar 

569 concurrent clinical trial (138). A similar, favorable effect in markers of fatigue, mood and 

570 vitality has been observed in SCHI over OT in CAH patients at 6 months (139), which were 

571 maintained at 18 months (140). 

572 More direct evidence on the neurobiological importance of GC rhythmicity for 

573 the human brain has been published recently. We created a human model of adrenal 

574 insufficiency by pharmacologically blocking GC biosynthesis (oral administration of 

575 metyrapone 3 times daily) and replacing the hormone in three different modes; using 

576 either (i) oral treatment (OT), (ii) constant subcutaneous infusion (SCHI), or (iii) a novel, 

577 subcutaneous, pump-based method, delivering different size pulses of hydrocortisone 

578 every 3 hours, that reproduced both the natural circadian and ultradian patterns of 

579 cortisol. We then examined the neurocognitive effects of these different GC rhythms 

580 using functional neuroimaging techniques and a set of cognitive and behavioural tests, 

581 markers of sleep behaviour, working memory and emotional processing, in a randomised, 

582 double-blind, placebo-controlled, crossover study (141). We were able to demonstrate 

583 that non-pulsatile GC exposure (i.e. SCHI) correlates with poorer quality of sleep and that 

584 both SCHI and OT were associated with poorer working memory performance under 

585 increased cognitive demands. Moreover, we were able to illustrate that different 

586 patterns of plasma GC oscillations have a differential impact on the participation and 

587 functional connectivity of brain regions underlying emotional processing (amygdala, 

588 dorsal striatum, insula, orbitofrontal cortex) affecting attentional bias to and recognition 

589 accuracy of emotional cues (142). These data support the notion that changes in GC 

590 rhythmicity can modulate the neural dynamics regulating mood and anxiety in man 

591 (Figure 3).
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592 Future studies should systematically explore the clinical utility of manipulating 

593 features of GC rhythmicity both to improve personalized treatment strategies and 

594 neuropsychiatric disease subclassification. We believe a better chronobiological 

595 approach to GC therapeutics is urgently needed.
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1065 Legend to Figure 1 

1066 Regulation of glucocorticoid (GC) circadian and ultradian oscillations. In hypothalamus, 

1067 the suprachiasmatic nucleus regulates the circadian changes in secretion of the 

1068 corticotropin-releasing hormone (CRH) from the neighboring paraventricular nucleus. 

1069 This in turn provides the diurnal pattern of activation of the pituitary corticotropes (green 

1070 arrow) which secrete corticotropin (ACTH) into the circulation and thence the adrenal 

1071 cortex where it initiates a feedforward activation of GC biosynthesis (green arrow).This 
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1072 necessity for de novo GC biosynthesis (which cannot be stored in vesicles due to its 

1073 lipophilic nature) results in a built-in delay before the metabolic product can be released, 

1074 and feedback at the level of the pituitary to suppress ACTH (red arrow). Mathematical 

1075 biomodelling suggests that such a positive feedforward – negative feedback system with 

1076 built-in delays leads to a self-sustaining oscillatory activity and is the basis for ultradian GC 

1077 pulsatility. Changes in hypothalamic drive can superimpose on this rhythm, by modifying 

1078 the amplitude and magnitude of each ACTH pulse, and thus establishing the well 

1079 recognised diurnal rhythm. This is itself modified by feedback inhibition from the 

1080 circulating levels of GCs (red arrow). The adrenal cortex itself has a local clock 

1081 mechanism that also contributes to circadian variation by altering adrenal sensitivity to 

1082 ACTH stimulation across the circadian cycle.  The activity of corticolimbic brain regions 

1083 (in response to external cues or internal states), brainstem (responding to inflammatory 

1084 stimuli or pain) as well as other peripheral stimuli (for instance inflammatory cues or 

1085 stressors) may affect the downstream pathways either controlling the secretion of CRH or 

1086 the tissues’ sensitivity to the ACTH or GC stimulation.

1087

1088 Legend to Figure 2

1089 The complex rhythm of glucocorticoid (GC) synthesis has major neurobiological 

1090 significance. The GC diurnal peak promotes stimuli-driven, postsynaptic dendritic spine 

1091 formation in the cerebral cortex, facilitating the learning process. At the same time, GC 

1092 circadian troughs are required for stabilizing these newly formed spines, and thus 

1093 achieving long-term memory retention. Loss of the diurnal variation in GC levels 

1094 eliminates learning-associated new spines and disrupts previously acquired memories. 

1095 Other examples on the significance of the circadian GC rhythm include the time-of-day-
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1096 dependent analgesic effect of morphine (due to the GC-dependent circadian 

1097 variability in the expression of μ-opioid receptors in the brainstem) and the association of 

1098 changes in GC diurnal variation in humans with self-perceived positive and negative 

1099 affect. Ultradian GC pulsatility also has neurobiological consequences. Each pulse is 

1100 translated into a GC receptor – DNA binding event (left bottom yellow frame, dark blue 

1101 oscillations), subsequently translated into a pulsatile biosynthesis of hnRNA (left bottom 

1102 yellow frame, blue oscillations), which regulates mature transcript of GC-sensitive genes 

1103 (left bottom yellow frame, light blue curve). Furthermore, the frequency of GC pulses 

1104 differentially regulates processes crucial for synaptic plasticity, including release of 

1105 glutamate from presynaptic terminals and glutamate receptor trafficking of postsynaptic 

1106 neurons. Finally, GC pulsatility enables the rapid alternation between periods with 

1107 reduced and periods with increased responsivity to stressful insults across the day.

1108

1109 Legend to Figure 3

1110 The importance of glucocorticoid (GC) pulsatility for the human brain. Comparing 

1111 circadian patterns of cortisol infused in physiological pulses (PT) with the same dose of 

1112 circadian cortisol infused as a smooth infusion (non-pulsatile infusion, NPT), brain function 

1113 was investigated by neuroimaging and psychological measures, focusing on three 

1114 domains: sleep behaviour, working memory and, primarily, emotional processing. 

1115 Subjects on the NPT experienced poorer quality of sleep and working memory 

1116 performance compared to the PT arm of the study. Moreover, subjects on PT 

1117 preferentially engaged with positively valenced facial expressions and showed a 

1118 reduced accuracy in correctly discriminating between negatively valenced human 

1119 faces (i.e. increased ambiguity in perceiving negative emotional stimuli), a response 
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1120 similar to that seen in healthy subjects and depressed patients receiving antidepressants. 

1121 The between-treatment group changes in emotional ambiguity were linked to changes 

1122 in the underlying role and functional connectivity among corticolimbic regions, 

1123 mediating emotional processing. While in PT the functional connectivity between 

1124 amygdala and insula, and striatum and insula, during encoding of emotional cues is 

1125 strong, and the intensity of the neural processing in all these structures (especially for the 

1126 amygdala) is associated with the degree of uncertainty in discriminating between 

1127 emotional valences, this association is lost in NPT, combined with a reduction in the 

1128 functional connectivity between amygdala and insula. Collectively, these data support 

1129 the notion that GC pulsatility may facilitate the optimal functioning of neural mechanisms 

1130 underlying emotional processing, and perhaps a protective mechanism against 

1131 susceptibility to depression. 
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