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Abstract: Flash flood, one of the most devastating weather-related hazards in the world, has become
more and more frequent in past decades. For the purpose of flood mitigation, it is necessary to
understand the distribution of flash flood risk. In this study, artificial intelligence (Least squares
support vector machine: LSSVM) and classical canonical method (Logistic regression: LR) are used
to assess the flash flood risk in the Yunnan Province based on historical flash flood records and 13
meteorological, topographical, hydrological and anthropological factors. Results indicate that: (1)
the LSSVM with Radial basis function (RBF) Kernel works the best (Accuracy = 0.79) and the LR
is the worst (Accuracy = 0.75) in testing; (2) flash flood risk distribution identified by the LSSVM
in Yunnan province is near normal distribution; (3) the high-risk areas are mainly concentrated in
the central and southeastern regions, where with a large curve number; and (4) the impact factors
contributing the flash flood risk map from higher to low are: Curve number > Digital elevation >
Slope > River density > Flash Flood preventions > Topographic Wetness Index > annual maximum
24 h precipitation > annual maximum 3 h precipitation.

Keywords: flash flood; risk; LSSVM; China

1. Introduction

Flash flood is one of the most devastating natural disasters with characteristics of high-velocity
runoff, short lead-time and fast-rising water [1]. Economic losses caused by flash flood increase year
by year with the increase of population and infrastructure in flood-prone areas [2]. For instance, a
total of 28,826 flash flood events happened in the United States between 2007 and 2015 and 10% of
flash flood resulted in damages exceeding $100,000 [3]. According to the China Floods and Droughts
Disasters Bulletin of 2015, an average of 935 people dies each year by flash flood disasters from 2000
to 2015. Owing to the impact of climate change, the flash flood risk is predicted to increase with the
frequent extreme precipitation and sea level rise [4]. Therefore, an accurate risk assessment is critical
for flash flood prevention.

Flash floods risk is a combination of flood hazard and vulnerability of an area [5,6]. Flood risk is
widely assessed by hydrological models or data-driven model based on historical flood inventories.
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The hydrological model has a clear physical mechanism that reflects the process of flood generation and
transportation. One of the most widely used models is 1–2-dimension routing model such as MIKE 21,
which can truly reflect the flooding scope and water depth during flooding. The flood risk is assessed
by combining water depth and local vulnerability [7,8]. However, since the simulation of the actual
hydrological process is affected by many factors (e.g., model’s parameter, structure, input data), the
model accuracy and uncertainty need to be further explored [9]. Meanwhile, different regions require
different types of hydrological models, resulting in high data requirements and time-consuming on
model development [10,11].

In terms of this, data-driven models were proposed for flood risk assessment. Data-driven models
adopt black-box models and uses various intelligent algorithms to establish optimal mathematical
relationships between disaster and explanatory factors, such as analytic hierarchy process (AHP), set
pair analysis method (SPAM) and so forth. AHP is a simple and effective multi-criteria decision-making
method, which effectively solves the lack of quantitative data in flood risk assessment and the complex
relationship involving multiple risk factors [12]. SPAM is a method for systematic analysis of uncertain
problems, effectively dealing with the incompleteness of information for flood risk prediction [13].
However, AHP and SPAM are all based on expert opinions in choosing the indicator weighting
that introducing uncertainty and subjectivity in assessment [14]. With the development of artificial
intelligence, machine learning (ML) models, including support vector machine (SVM), Random Forest
(RF) and Decision Tree (DT), has been proposed and applied in flood risk assessment. Machine learning
models avoid the subjective determination of weights by learning the relationship between flood
risk and explanatory factors. Among them, SVM is a popular ML model that can solve linear and
nonlinear regression problems and has gained extensive applications in pattern recognition, data
mining and speech recognition [15]. Least Squares Support Vector Machine (LSSVM) is a simple SVM
that uses least squares and linear equations to improve model efficiency [16]. Flash flood data is often
complex and incomplete and the relationships between variables can be strongly nonlinear and involve
high-order interactions. Therefore, it is of great value to explore the flash flood risk assessment by
LSSVM method.

Nowadays, with the in-depth application of 3S technologies (Remote Sensing, Geography
Information Systems and Global Positioning Systems) in hydrology, the acquisition of spatial
information on the underlying surface of the basin have been significantly improved [17]. Meanwhile,
a series of intelligent algorithms based on big data have been proposed that are valuable to use in
hydrology. In this study, we developed a flash flood assessment framework based on machine learning
models. We utilize the LSSVM method with three kernel functions (linear: LN; radial basis function:
RBF; polynomial: PL) and classical logistic regression (LR) method to assess flash flood risk based on
the official statistics of flash flood events. The performances of our proposed method are evaluated
with five indices and ROC curve in Section 3.1. The distribution of flash flood risk in the study area
and the relationship between flood risk and flood trigger factors are discussed in Section 3.2.

2. Materials and Methods

2.1. Study Area

Yunnan Province (20◦8’–29◦16’N, 97◦31’–106◦12’E) is located in southwestern China with an
area of 383,210 km2. It is one of the most flooded provinces in China and the economy relies mainly
on natural resources. In 2016, Yunnan province had a population of 47.7 million, a gross domestic
product (GDP) of 1.49 billion yuan. Yunnan province is located in the low latitude plateau and the
terrain is dominated by mountains, with a canyon in the west, a plateau in the east and a major river
running through the deep valley. From the southeastern mountainous area to the northwest Hengduan
Mountains, the altitude ranges from less than 100 m to more than 6000 m, with an average elevation
of 1980 m. The mountainous area, plateau area and watershed area account for 80%, 12.5% and 7.5%
of the total area respectively. About 39% of slopes exceed 25◦ in mountainous areas and the slopes



Remote Sens. 2019, 11, 170 3 of 16

of the northeast and northwest mountainous areas even reach 60–90%. The soil texture is loose, of
which more than 50% is krasnozem. The climate is mainly affected by atmospheric circulation, which
is a low mountain monsoon climate. The annual average precipitation is 1102 mm, with significant
spatial-temporal differences [18]. Meanwhile, extreme weather events occur frequently, especially
during the summer flood season (June to September), with rainfall accounting for 85–95% between
May and October.

China has implemented the construction of non-structural measures for flash flood prevention
since 2011. In Yunnan Province, there are 206 flash floods events from 2011 to 2015, causing 237
deaths. Especially in 2014 and 2015, the number of deaths accounted for 22.2% and 8.1% of the national
total, respectively, which were the most affected by the flash floods. In order to defend against flash
flood, Yunnan has launched the construction of non-structural flood prevention measures covering
129 counties since 2010. The average construction fund is $0.87 million for each county. The preventive
measures implemented include: encrypting automatic rainfall stations to improve the quality of
monitoring data, installing simple rainfall equipment with alarms, building an alarm system consisting
of radio broadcasts and simple alarm devices. Obviously, although Yunnan Province already has a
certain defense base, it still suffers from severe flash flood disasters. Therefore, it is of great significance
to study the flash flood risk in Yunnan Province. Figure 1 shows the historical flash floods in Yunnan
Province from 2011 to 2015. Obviously, flash floods mainly occur on lower slopes, mainly because the
air rises on the windward slope and the water vapor condenses easily to form precipitation, which
causes runoff to accumulate in the valley and triggers flash floods. The leeward slope is not easy to
form precipitation due to the air sinking and the temperature moving downward [19].
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Figure 1. Location of the study area and the distribution of flash flood inventories (red for training and
green for testing) from 2011 to 2015 in Yunnan Province, China.

2.2. Data

The flash flood records are mainly from official authoritative departments, such as the Ministry of
Water Resources (MWR), the Ministry of Land and Resources and some local government agencies in
Yunnan province. These data are divided into training and testing datasets, 70% of which are randomly
selected for training and the remaining 30% data for testing. The principle of the distribution ratio is
that the samples are evenly distributed and have certain representativeness (Figure 1). It is important
to emphasize that all the flash floods studied in this paper involve death or missing; regardless of
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incidents that do not cause casualties. The remote sensing data and other data covered in this paper
are shown in Table 1.

Table 1. Factors, flood inventories and data sources.

Name
Source Time

Abbreviation Meaning

3-H-P Annual maximum 3 h precipitation China Meteorological Forcing Dataset 2011–2015
24-H-P Annual maximum 24 h precipitation China Meteorological Forcing Dataset 2011–2015

AP Annual precipitation China Meteorological Forcing Dataset 2011–2015
DEM Digital elevation model Shuttle Radar Topography Mission (SRTM) 2000

SL Slope Shuttle Radar Topography Mission (SRTM) 2000
RD River density Basic vector format dataset of China -
VC Vegetation coverage MODIS products 2011–2015
CN Curve number NRCS CN global dataset 2011–2015
TWI Topographic wetness index Shuttle Radar Topography Mission (SRTM) 2000
SM Soil moisture ESA’s SMOS dataset 2011–2015

Pop Population Data Center for Resources and Environmental Sciences
Chinese Academy of Sciences (RESDC) 2010

GDP Gross domestic product Data Center for Resources and Environmental Sciences
Chinese Academy of Sciences (RESDC) 2010

FFP Flash flood preventions Statistic bulletin from the Ministry of Water Resources
and local governments 2012–2015

2.3. Flash Flood Triggering Factors

Flash flood disasters are mainly affected by meteorological, topographical hydrological,
anthropological factors. The related factors affecting flash flood risk are shown in Figure 2 and
are described as followed:
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(1) Meteorological factors

Three meteorological factors including 3-H-P, 24-H-P and AP are the main factors leading to
flash floods, with 3-H-P and 24-H-P reflecting the frequency and characteristics of short-term rainfall
and AP reflecting the characteristics of long-term rainfall. The precipitation data comes from the
China Meteorological Forcing Dataset (CMFD), produced by the Institute of Tibetan Plateau Research,
Chinese Academy of Sciences (hereafter ITPCAS). The dataset is based primarily on the existing
Princeton reanalysis data, Global Land Data Assimilation System (GLDAS) data, Global Energy and
Water cycle Experiment—Surface Radiation Budget (GEWEX-SRB) radiation data and Tropical Rainfall
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Measuring Mission (TRMM) precipitation data in the world, combined conventional CMA weather
observations were produced with temporal and spatial resolutions of 3 h and 0.1◦ × 0.1◦, respectively.

(2) Topographical factors

Digital elevation model (DEM) retrieved from NASA SRTM, a 90-m raster in 2000. DEM resolution
mainly affects the watershed topography, which in turn affects the accuracy of runoff generation and
convergence. The higher the DEM resolution, the higher the accuracy of the extracted watershed
features. However, high-resolution DEM over-emphasizes the computational burden of the model,
greatly restricting the runtime of the model [20]. Slope (SL) refers to the ratio of the vertical height of
the slope to the horizontal direction, which is suitable for the sensitivity analysis of floods. Generally,
the SL is calculated from the DEM data using the ArcGIS tool [17]. River density (RD) utilizes China’s
basic vector format dataset, which is related to the area of the grid and the length of the river in the
grid [21]. Vegetation coverage (VC) is calculated by an average multi-year normalized difference
vegetation index (NDVI) based on MODIS images. It represents vegetation distribution and biomass
levels from 2011 to 2015 [22].

(3) Hydrological factors

The Curve Number (CN) derived from the soil conservation service curve number (SCS-CN)
model is a comprehensive indicator calculated according to the National Engineering Handbook
of US, which primarily reflects the potential capacity of runoff generation in different grids. It is a
non-dimensional index with a theoretical value between 0 (no runoff) and 100 (no infiltration). For
details of CN, please refer to Zeng et al. (2017) [23]. The topographic wetness index (TWI), combined
with the local uphill contribution area and the entire slope, is widely used to quantify the topographical
control of flood concentration processes and can be calculated from DEM [24]. Soil moisture (SM) data
is from the European Space Agency (ESA) with a spatial accuracy of 50 km. It can estimate moisture
in the soil surface (down to 5 cm) which is important for hydrological modeling. SM indicates the
non-linear partitioning of the precipitation into infiltration and runoff, affecting runoff by affecting
infiltration [25].

(4) Anthropological factors

The effects of flood risks are often related to anthropology, manifested as loss of economic
property and casualties. The losses generally increase with the population growth in flood-prone
areas, especially in economically developed and densely populated areas. Therefore, Gross Domestic
Product (GDP) and population (Pop) are selected as anthropological factors for flash flood assessment.
DDP is defined as “an aggregate measure of production equal to the sum of the gross values
added of all resident and institutional units engaged in production (plus any taxes and minus any
subsidies, on products not included in the value of their outputs), mainly reflecting the economic
situation of the study area. Moreover, GDP is a total indicator, which basically organizes indicators
describing various aspects of the national economy through a series of scientific principles and
methods. Therefore, GDP contained contributing indicators such as over-exploitation [26]. The 1-km
gridded GDP and population of Yunnan Province are collected from the Data Center for Resources
and Environmental Sciences Chinese Academy of Sciences (RESDC). In 2010, the Chinese government
initiated the construction of national-level non-structural measures for flash flood prevention. This
investment is the largest non-structural project in China, involving a total area of 3.86 million km2 in
29 provinces (autonomous regions and municipalities). The preventive measures include the national
flash flood investigation and evaluation, the establishment of construction monitoring and early
warning platforms, automatic rainfall stations and water level stations, mass observations and mass
prevention and so forth. The FFP data is mainly from the MWR and local governments and utilizing
the investment funds to comprehensively reflect the flash flood prevention situation [27,28]. The
related factors affecting flash flood risk in the LSSVM method are shown in Figure 3.
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2.4. Methodology

(1) LSSVM

LSSVM utilizes a set of linear equations to minimize the complexity of the optimization process.
The constraint optimization problems can be solved using Lagrange multipliers. Consider a given
training set xi, yi, i = 1, 2, . . . , f with input data xi and output data yi, the LSSVM equation can be
indicated as follows:

minW(m, n) =
1
2

MH M +
1
2

β
f

∑
i=1

ni
2 (1)

Subject to
yi = mTΦ(xi) + b + ni, i = 1, 2, . . . , f (2)

where m is the weight vector, β is the penalty parameter, ni is the approximation error, f is the number
of autoregressive terms in the LR model, Φ(xi) is the nonlinear mapping function and b is the bias
term. The corresponding Lagrange function can be obtained by Equation (3):

W(m, n, α, b) = J(m, n)−
f

∑
i=1

αimTφ(xi) + b + ni − yi (3)

where αi is the Lagrange multiplier. Using the Karush-Kuhn-Tucker (KKT) conditions, the solutions
can be obtained by partially differentiating with respect to m, b, ni and αi:

∂W
∂m = 0→ m =

f
∑

i=1
αiΦ(xi)

∂W
∂b = 0→

f
∑

i=1
αi = 0

∂W
∂ni

= 0→ αi = βni
∂W
∂αi

= 0→ wTφ(xi) + b + ni − yi = 0

(1)
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By elimination w and ni, the equations can be changed into[
b
α

]
=

[
0 Iv

T

Iv ψ + β−1 I

]−1[
0
y

]
(2)

where y =
[
y1, y2, . . . , y f

]T
, Iv = [1, 1, . . . 1]T , α= [α1, α2, . . . , α f ] and the Mercer condition has been

applied to the matrix Ωkm = φ(xk)
TΦ(xo), k, m = 1, 2, . . . , f . Therefore, the LSSVM for regression can

be obtained from Equation (6):

y(x) =
f

∑
i=1

αiK(xi, x) + b (3)

where K (x, xi) is the kernel function. For LSSVM, there are many kernel functions including linear
(Equation (7)), polynomial (ploy) (Equation (8)), radial basis function (RBF) (Equation (9)), sigmoid
and so forth. However, most widely used kernel functions are RBF and polynomial Kernel.

Linear (LN) Kernel: K (xi, x) = 〈xi, x〉 (4)

Polynomial (PL) Kernel: K (xi, x) = (γ 〈xi, x〉 + τ)d γ > 0 (5)

Radial basis function (RBF) Kernel: K (xi, x) = exp (−γ ‖xi − x‖2), γ > 0 (6)

where γ, τ and d are Kernel parameters.
The Matlab toolbox named LSSVMLab is used to implement LSSVM in this study. The parameters

of LSSVM are automatically calibrated during training with 10-fold cross-validation method. More
details regarding the principles and application of LSSVM can be found in the LSSVMLab Toolbox
User’s Guide [29,30].

(2) LR

LR is a probabilistic statistical classification procedure used to predict the dependent variable
based on one or more independent variables. The advantage is that the dependent variable has only
two cases, that is, occurrence and non-occurrence. In contrast, the stochastic gradient ascent algorithm
is generally used to reduce the periodic fluctuations and the computational complexity of the iterative
algorithm to further optimize the LR model, which can be calculated by the following equation [31]:

log it(y) = β0 + β1x1 + · · ·+ βixi + e (7)

where y is the dependent variable, xi is the i-th explanatory variable, β0 is a constant, βi is the i-th
regression coefficient and e is the error. The probability (p) of the occurrence of y is

p =
eβ0+β1x1+···βixi

1 + eβ0+β1x1+···βixi
(8)

If the estimated probability is greater than 0.5 (or other user-defined thresholds), the object is
classified as a successful group; otherwise, the object belongs to the failed group. In addition, we
train 1 for flash flood, 0 for no flash flood, the values scale from 0 to 1 corresponding to the flash
flood sensitivity of the basin from minimum to maximum. The result is the probability that each
point is assigned as 0 to 1 training set. Similarly, equal interval classification is used to categorize
the probability index of the flash flood into five risk zones of lowest (0–0.2), low (0.2–0.4), moderate
(0.4–0.6), high (0.6–0.8) and the highest (0.8–1).
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(3) Evaluation index

In the study, five indices including Precision(P), Recall(R), Accuracy (ACC), Kappa(K) and
F-score(F) are used to evaluate the results from four models. ACC is the proportion of correctly
classified cases to all cases in the set but there is no way to better deviate from the test data to evaluate
the model. P is the fraction of recognized instances that are relevant, while R is the fraction of relevant
instances retrieved. A better choice is the F-score, which can be interpreted as a weighted average of
recalls and precision. Equations (12)–(15) shows how each index calculated, to measure the accuracy
of model prediction.

Precision : P =
TP

TP + FP
(9)

Recall : R =
TP

TP + FN
(13)

Accuracy : A =
TP + TN

TP + FP + TN + FN
(14)

F− score : F =
(2 ∗ P ∗ R)
(P + R)

(15)

where TP, FN, TN and FP denote the number of true positive, false negative, true negative and false
positive, respectively.

Cohen’s kappa measures the observer’s consistency. It is used to assess the consistency between
two or more raters when categorizing a measurement scale. The values are between 1 and 0,
corresponding to a perfect agreement and no agreement, respectively. Equation (18) is calculated the
Kappa score:

Kappa : K =
pp − pexp

1− pexp
(16)

where Pp is the relatively observed consistency among evaluators and Pexp is a hypothetical probability
of coincidence, using the observed data to calculate the probability that each observer randomly sees
each category. If the raters are in complete agreement, then k = 1. If, except by chance, no agreement is
reached among the raters (as given by Pexp), k ≤ 0.

3. Results and Discussion

3.1. Comparison of Results Obtained by Four Models

Table 2 shows model performances in the testing period. The accuracy, precision, recall, F-score
and kappa range are 0.75 to 0.79, 0.76 to 0.82, 0.74 to 0.77, 0.75 to 0.79 and 0.5 to 0.59, respectively.
Obviously, all models have relatively high precision. Although there is no significant difference
between the three different kernel functions of the LSSVM model. They are all better than the LR
method and the model 2 (LSSVM with RBF kernel) simulates the best.

Table 2. Result of models in testing period.

Index Model 1 Model 2 Model 3 Model 4

Accuracy 0.78 0.79 0.76 0.75
Precision 0.81 0.82 0.79 0.76

Recall 0.74 0.77 0.74 0.74
F-score 0.78 0.79 0.76 0.75
Kappa 0.56 0.59 0.53 0.50

Model 1: LSSVM + LN, model 2: LSSVM + RBF, model 3: LSSVM + PL, model 4: LR.

Receiver Operating Characteristics (ROC) curves, created by plotting the TP Rate against the FP
Rate, are graphical tools applied to the analysis of classification effects over the entire class distribution.
Area Under Curve (AUC) is the area under the ROC curve and usually in the range of 0.5 and 1. The
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AUC equal 0.5 and 1 are accidental classification and perfect classification, respectively. Figure 4 shows
the good AUC results obtained by four models but the LSSVM with the RBF kernel has the highest
AUC (0.81), followed by LSSVM + LN (0.80) and LSSVM + PL (0.80), the classic LR model (0.78) is
relatively poor.

Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 16 

 

Table 2. Result of models in testing period. 

Index Model 1 Model 2 Model 3 Model 4 
Accuracy 0.78 0.79 0.76 0.75 
Precision 0.81 0.82 0.79 0.76 

Recall 0.74 0.77 0.74 0.74 
F-score 0.78 0.79 0.76 0.75 
Kappa 0.56 0.59 0.53 0.50 

Model 1: LSSVM + LN, model 2: LSSVM + RBF, model 3: LSSVM + PL, model 4: LR. 

Receiver Operating Characteristics (ROC) curves, created by plotting the TP Rate against the FP 
Rate, are graphical tools applied to the analysis of classification effects over the entire class 
distribution. Area Under Curve (AUC) is the area under the ROC curve and usually in the range of 
0.5 and 1. The AUC equal 0.5 and 1 are accidental classification and perfect classification, respectively. 
Figure 4 shows the good AUC results obtained by four models but the LSSVM with the RBF kernel 
has the highest AUC (0.81), followed by LSSVM + LN (0.80) and LSSVM + PL (0.80), the classic LR 
model (0.78) is relatively poor. 

(a) (b) 

Figure 4. ROC of four models in training (left) and testing (right). (Model 1: LSSVM + LN, model 2: 
LSSVM + RBF, model 3: LSSVM + PL, model 4: LR). (a) training (b) testing. 

3.2. Flash Flood Risk Map Comparison 

Based on the LR model and the LSSVM model with three kernels of LN, RBF and PL, the flood 
risk maps of Yunnan Province are generated in the GIS environment. As shown in Figure 5, the high-
risk areas are mainly concentrated in the south-central region, accounting for 32% of the total area. 
Although LSSVM is not significantly better than LR in the training and testing, the risk distribution 
is significantly different. Figure. 6 shows that the flash flood risk obtained by LSSVM is 
approximately a normal distribution, which is consistent with the previous study in Yunnan Province, 
China [32,33]. While the risk obtained by LR is a uniform distribution. Therefore, the flood risk maps 
obtained by LSSVM are more reliable than LR. 

Figure 4. ROC of four models in training (left) and testing (right). (Model 1: LSSVM + LN, model 2:
LSSVM + RBF, model 3: LSSVM + PL, model 4: LR). (a) training (b) testing.

3.2. Flash Flood Risk Map Comparison

Based on the LR model and the LSSVM model with three kernels of LN, RBF and PL, the flood
risk maps of Yunnan Province are generated in the GIS environment. As shown in Figure 5, the
high-risk areas are mainly concentrated in the south-central region, accounting for 32% of the total area.
Although LSSVM is not significantly better than LR in the training and testing, the risk distribution is
significantly different. Figure 6 shows that the flash flood risk obtained by LSSVM is approximately a
normal distribution, which is consistent with the previous study in Yunnan Province, China [32,33].
While the risk obtained by LR is a uniform distribution. Therefore, the flood risk maps obtained by
LSSVM are more reliable than LR.
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Many studies have utilized some statistical methods to conduct flash flood risk assessments
in other areas. For example, Smith (2010) proposed the Flash Flood Potential Index (FFPI) model,
considering slope, land use, soil texture and so forth. FFPI values from 1 to 10 correspond to the risk
probability from the minimum to the maximum and has been tested in central Iowa, Colorado and
upstate New York and Pennsylvania [34,35]. Based on the AHP and information entropy theory, Zeng
et al. (2016) selected some relevant indicators (e.g., soil, slope, rainfall and flood control measures),
utilized expert scoring method to explore their different weights and finally obtained the risk map of
Yunnan Province [18]. In this study, the LSSVM method is firstly used for flash flood risk assessment.
LSSVM can directly assess flood risk without setting factor weights. The contribution of each factor
to flood risk is assessed by the correlation coefficient between factors and the flood risk, with a more
significant advantage.

Figure 7 showed the correlation coefficient of each factor with the flash flood risk from LSSVM-RBF.
The greater the correlation coefficient, the greater impact of this indicator on flash floods risk. Obviously,
the correlation coefficient of CN is the largest, exceeding 0.5, followed by 7 indicators (DEM, SL, RD,
FFP, TWI, 24-H-P, 3-H-P) between 0.1 and 0.5 and the remaining 5 indicators (AP, POP, SM, GDP, VC)
are less than 0.1. Combined with the previous analysis, CN identifies the runoff generation capacity.
DEM mainly responds to the topography of the study area and SL, RD and TWI all derived from
DEM. Therefore, the flash flood risk of Yunnan Province is mainly affected by local runoff capacity,
topography. Meanwhile, the correlation coefficient of FFP is 0.3, reflecting that positive man-made
measures can largely prevent the occurrence of flash floods. However, compared with topographical
factors, we found that the precipitation factor shows a relatively low correlation with the flash floods
risk. This mainly because flash floods are caused by intensive rainfall but casualties are usually
occurred and reported in low-lying areas. In addition, the effects of short-term precipitation (e.g.,
24-H-P, 3-H-P) are greater than the annual precipitation. Our proposed model can concern all flash
flood explanatory factors and give an accurate assessment for flash flood risk. In the future, we will
further combine water depth and flow as a more reasonable indicator for flood assessment.
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Figure 7. The correlation coefficient between the flash flood risk and 13 indicators.

4. Conclusions

Flash floods have brought huge economic losses and casualties to China. An accurate flash flood
risk assessment can identify flood-prone areas and give people enough time to prevent flood disasters
in advance. In this study, LSSVM was selected to assess flash flood risk based on 13 explanatory factors.
The main conclusions are as follows:

(1) LSSVM can provide a more accurate risk assessment than LR and LSSVM with RBF kernel
evaluates best.
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(2) The risk of flash flood in Yunnan Province is shown as a normal distribution. The highest risk
areas are mainly concentrated in the central and western regions and the lowest risk areas are
distributed in the northwest regions.

(3) Flash floods are caused by the combination of various factors and the rank of various factors
affecting flash floods is as follows: CN > DEM > SL > RD > FFP > TWI > 24-H-P > 3-H-P > AP >
POP > SM > GDP > VC.

In conclusion, the paper utilized the LSSVM method to assess the flash flood risk for the first
time and verifies that LSSVM with RBF kernel is suitable for assessing flash floods risk at large or
medium scales. Since this method primarily collects explanatory factors and local flood records,
where the explanatory factors are mainly derived from public datasets (remote sensing images and
statistic bulletin) that can easily get for other areas. Thus, this method is feasible to apply in other
regions by collecting local historical flood inventories. This method is highly dependent on data and
lacks obvious physical mechanisms. Some problems, such as the shortage and uncertainty of flood
inventories, limited the accuracy of model results. In particular, the historical flood record in this
study was obtained through investigations by the authority of Yunnan Province, which limited the
application of the research results to other regions. With the development of data mining technology,
historical flood records from websites or media are desired to use for model development especially
for data sparse areas in future works.
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