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Summary 15 

Different mechanisms have been proposed as explanations for seismic anisotropy 16 

at the base of the mantle, including crystallographic preferred orientation of various 17 

minerals (bridgmanite, post-perovskite, and ferropericlase) and shape preferred orientation 18 

of elastically distinct materials such as partial melt. Investigations of the mechanism for 19 

D" anisotropy usually yield ambiguous results, as seismic observations rarely (if ever) 20 

uniquely constrain a mechanism or orientation and usually rely on significant assumptions 21 

to infer flow patterns in the deep mantle. Observations of shear wave splitting and polarities 22 

of SdS and PdP reflections off the D" discontinuity are among our best tools for probing 23 

D" anisotropy; however, currently available datasets cannot constrain one unique scenario 24 

among those suggested by the mineral physics literature. In this work, we determine via a 25 

forward modeling approach what combinations of body wave phases (e.g. SKS, SKKS, 26 

and ScS) are required to uniquely constrain a mechanism for D" anisotropy. We test nine 27 

models based on single-crystal and polycrystalline elastic tensors provided by mineral 28 

physics studies. Our modeling predicts fast shear wave splitting directions for SKS, SKKS, 29 

and ScS phases, as well as polarities of P and S wave reflections off the D" interface, for a 30 

range of propagation directions, via solution of the Christoffel equation. We run tests using 31 

randomly selected synthetic datasets based on a given starting model, controlling the total 32 

number of measurements, the azimuthal distribution, and the type of seismic phases. For 33 

each synthetic dataset, we search over all possible elastic tensors and orientations to 34 

determine which are consistent with the synthetic data. Overall, we find it difficult to 35 

uniquely constrain the mechanism for anisotropy with a typical number of seismic 36 

anisotropy measurements (based on currently available studies) with only one 37 

measurement technique (SKS, SKKS, ScS, or reflection polarities). However, datasets that 38 



 3 

include SKS, SKKS, and ScS measurements, or a combination of shear wave splitting and 39 

reflection polarity measurements, increase the probability of uniquely constraining the 40 

starting model and its orientation. Based on these findings, we identify specific regions 41 

(i.e., North America, northwestern Pacific, and Australia) of the lowermost mantle with 42 

sufficient raypath coverage for a combination of measurement techniques.   43 
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1. Introduction 51 

Mantle convection finds its surface expression in plate tectonics and represents a 52 

crucial dynamic process in the deep Earth. Despite its importance, the pattern of mantle 53 

convection and the forces that drive mantle flow remain imperfectly understood. This is 54 

particularly true for the deepest mantle: flow at the base of the mantle likely influences 55 

(and/or is influenced by) structures such as large low shear velocity provinces (LLSVPs). 56 

Subducting slabs likely penetrate into the lower mantle and hot mantle plumes  generate 57 

from or near the LLSVPs, indicating a strong connection between the surface and deep 58 

mantle processes (e.g., Garnero et al., 2016).  59 

Observations of seismic anisotropy have the potential to illuminate mantle flow, 60 

due to the relationship between strain due to mantle convection and seismic anisotropy via 61 

lattice preferred orientation (LPO) or shape preferred orientation (SPO) mechanisms. The 62 

presence of anisotropy in the D" layer at the base of the mantle has been known for several 63 

decades (e.g., Lay and Helmberger, 1983) from the analysis of body wave phases (as 64 

summarized in Nowacki et al., 2011). At this point a relatively small fraction (Figure 1) of 65 

the core mantle boundary region has been explored for D" anisotropy using body waves. 66 

Figure 1 shows a map, updated from Nowacki et al. (2011) illustrating the geographical 67 

coverage of previous studies (including recent work by Creasy et al., 2017, Deng et al., 68 

2017, Simmons et al., 2015, Ford et al., 2015, Long and Lynner, 2015, Lynner and Long, 69 

2014, Cottaar and Romanowicz, 2013, and Thomas et al., 2011). Despite these 70 

observations, however, we still do not fully understand the anisotropy in these regions. 71 

Several different models for D” anisotropy have been proposed, including those that invoke 72 

LPO of bridgmanite (Br), post-perovskite (Ppv), or ferropericlase (Fp), and those that 73 

invoke SPO of partial melt (see Nowacki et al., 2011 for a review). The mechanisms 74 
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responsible for D" anisotropy, the dominant slip systems involved, the orientation of the 75 

anisotropic fabric, and the implications for mantle flow geometries thus remain poorly 76 

understood.   77 

A variety of body waves has been used to study anisotropy in the deepest mantle. 78 

Specifically, direct S, ScS, and Sdiff have been used to observe lowermost mantle 79 

anisotropy by measuring shear wave splitting (e.g., Wookey et al., 2005a, Cottaar and 80 

Romanowicz, 2013, Thomas et al., 2007, Ford et al., 2006). Combinations of phases, such 81 

as SKS-SKKS (e.g., Wang and Wen, 2007; Long, 2009) or S-ScS (e.g., Wookey et al., 82 

2005a; Nowacki et al., 2010), are often useful to isolate the lowermost mantle contribution 83 

to splitting. Thomas et al. (2011) used an array analysis technique to observe reflected P 84 

and S waves off the D" discontinuity; the azimuthal dependence of the polarity of D" 85 

reflections SdS and PdP contains information about lowermost mantle anisotropy. While 86 

body wave observations have been extensively used to study anisotropy at the base of the 87 

mantle, such studies suffer from the fundamental limitation of small azimuthal coverage; 88 

most studies are essentially restricted to a single raypath, which means that the geometry 89 

of anisotropy cannot be tightly constrained. 90 

Several recent studies of deep mantle anisotropy have ameliorated this limitation 91 

by targeting regions of D" that are sampled by body waves over multiple azimuths (pink 92 

regions in Figure 1). These include studies of the lowermost mantle beneath Siberia 93 

(Wookey and Kendall, 2008; Thomas et al., 2011), North America (Nowacki et al., 2010), 94 

the Afar region of Africa (Ford et al., 2015), and Australia and New Zealand (Creasy et al., 95 

2017). In some cases, one can test whether the observations could clearly distinguish 96 

among different mechanisms for anisotropy. For example, Ford et al. (2015) and Creasy et 97 

al. (2017) carried out forward modeling of ScS, SKS, and SKKS splitting datasets over 98 
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multiple azimuths to test whether a unique mechanism for anisotropy and/or a unique 99 

orientation of an assumed mechanism could be identified. In each of these studies it was 100 

found that LPO of Ppv matches the observations, but other mechanisms (such as LPO of 101 

Br or Fp) were also consistent with the data. None of the studies summarized in Figure 1 102 

has successfully identified a uniquely constrained mechanism or orientation for anisotropy. 103 

Motivated by this, we attempt here to understand what observations are needed to 104 

distinguish the various possible models for D” anisotropy. 105 

The goal of this study is to understand what combination of body wave datasets 106 

(SKS, SKKS, ScS, and reflection polarities) are necessary to uniquely constrain the 107 

mechanism and geometry of anisotropy in the lowermost mantle using observations of 108 

shear wave splitting and D" reflection polarities. Such an understanding will aid in the 109 

design of future observational studies to maximize the chances of uniquely constraining a 110 

mechanism. We are interested in understanding the characteristics of datasets that are best 111 

suited to constrain the details of D" anisotropy, including the number of measurements 112 

needed, the optimal azimuthal coverage, and the optimal combinations of body wave 113 

phases. We address two specific questions: 1) What types of datasets (potentially including 114 

SKS, SKKS, and/or ScS splitting, and/or reflection polarities) are needed to uniquely 115 

identify the causative mechanism for anisotropy (e.g., LPO of Ppv, Br, Fp, or SPO of partial 116 

melt)? and 2) if we assume that the mechanism for anisotropy is known to be LPO of Ppv, 117 

what type of datasets are needed to uniquely constrain the orientation of the anisotropy?     118 

We carry out forward modeling tests for a suite of synthetic body wave data. Our 119 

approach to forward modeling of synthetic datasets follows our previous work on 120 

observations of shear wave splitting in D” (Ford et al., 2015; Creasy et al., 2017) and also 121 

incorporates measurements of D" polarities of P and S wave reflections (Thomas et al., 122 
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2011a). Our approach is to test a variety of candidate elastic tensors that describe various 123 

mechanisms for lowermost mantle anisotropy. For each model, we randomly generate more 124 

than 5,000 unique synthetic datasets (for SKS, SKKS, and ScS shear wave splitting, plus 125 

PdP and SdS polarities) with a certain set of characteristics (e.g., number and type of 126 

measurements, as described below) and a random azimuthal distribution. For each set of 127 

random raypaths, we compute a set of predicted “observations” of shear wave splitting 128 

and/or reflection polarities using a ray theoretical approach. We then attempt to determine 129 

what characteristics of body wave datasets are optimal for uniquely constraining anisotropy 130 

in the lowermost mantle.   131 

 132 

2. Methods 133 

2.1 Candidate models for D” anisotropy  134 

We first consider which plausible models for D” anisotropy should be tested. The 135 

lower mantle is likely composed of pyrolite (e.g., Lee et al., 2004), a model composition 136 

that consists of ~76 mol% of bridgmanite (Br: MgSiO3), ~17 mol% of periclase (Fp: 137 

(Mg,Fe)O), and ~7 mol% of calcium perovskite (Capv: CaSiO3). In the D" layer at the base 138 

of the mantle, we expect a phase change of Br to post-perovskite (Ppv: MgSiO3) (e.g., 139 

Murakami et al., 2004). Based on ab initio calculations and laboratory experiments, Br, Fp, 140 

and Ppv all have strong single-crystal anisotropy, with Fp being the weakest mineral and 141 

the most anisotropic (as summarized in Nowacki et al., 2011), although it is less abundant 142 

than Br/Ppv. This suggests that LPO development in any of the dominant lowermost mantle 143 

minerals may contribute to the observed anisotropy, as long as deformation is taking place 144 

in the dislocation creep regime (e.g., McNamara et al., 2001). Another possible mechanism 145 

is aligned pockets of an elastically distinct material such as partial melt in configurations 146 
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such as disks, tubes, or sheets, creating shape preferred orientation (SPO) (e.g., Kendall 147 

and Silver, 1998) (Tables 1 and 2). 148 

We test a suite of models that describe single-crystal elasticity of lowermost mantle 149 

materials derived from ab initio calculations, following our previous modeling work (Ford 150 

et al., 2015; Creasy et al., 2017). This approach assumes that an aggregate will have the 151 

same anisotropic geometry (although not strength) as a single crystal. In addition to the 152 

single-crystal models, we test one model (for Fp LPO) based on deformation experiments 153 

(Long et al., 2006) and models that invoke the SPO (shape-preferred orientation) of partial 154 

melt (Table 1), with elastic constants calculated using an implementation of effective 155 

medium theory within the MSAT toolbox (Walker and Wookey, 2012).  156 

Finally, our last candidate model approximates a textured Ppv aggregate and is 157 

derived from a 3D, global mantle flow field calculation in combination with a visco-plastic 158 

self-consistent model LPO development in Ppv (Walker et al., 2011). We determined a 159 

representative elastic tensor for Ppv texture development in high-strain simple shear by 160 

querying the TX2008.V1.P010 model of Walker et al. (2011), which combined a lower 161 

mantle viscosity model from Mitrovica and Forte (2004) with a mantle density model from 162 

Simmons et al. (2009). We only considered the case in which slip on the (010) plane 163 

dominates; this is the most likely slip plane for Ppv based on experiments (Walte et al., 164 

2009; Yamazaki et al., 2006), modeling (Goryaeva et al., 2017), and observations of D" 165 

anisotropy (Creasy et al., 2017; Ford et al., 2015; Thomas et al., 2011). To obtain a 166 

representative average tensor for simple shear, we identified a 15° by 15° geographical 167 

region of the global flow (beneath the northern Atlantic Ocean) that is dominated by strong 168 

horizontal shear. We then extracted the 16 elastic tensors (the model calculated tensors 169 
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every 5°) from the resulting TX2008.V1.P010 elasticity predictions in this region averaged 170 

them.  171 

 172 

2.2 Computation of reflection polarities and fast splitting directions 173 

Given the full suite of candidate models for elasticity in D” to be used in our study 174 

(Table 1), we implement methods for predicting various types of body wave observations 175 

for these scenarios. We calculated predicted shear wave splitting fast directions for SKS, 176 

SKKS, and ScS phases (Figure 2) over a range of azimuths (every 5°) and inclinations for 177 

each of these models (Tables 1) by solving the Christoffel equation using the MSAT toolkit 178 

of Walker and Wookey (2012). The three different phases propagate at different inclination 179 

angles: ~55°, 35°, 0° from the horizontal, respectively.  180 

We then calculated the reflection polarities of SdS and PdP and the corresponding 181 

predicted shear wave splitting fast directions (Figure 3) over a range of azimuths (every 182 

5°) and inclinations for each of these models (Tables 1 and 2). Table 2 summarizes the 183 

models used to generate predictions of D" reflection polarities (SdS and PdP), including 184 

the assumed slip system, based on the methodology of Thomas et al. (2011). These models 185 

were constructed by assuming horizontal simple shear at the base of the mantle, where the 186 

dominant slip direction aligns parallel to the CMB, the slip plane is assumed to be 187 

horizontal, and 12% of the aligned single crystals are mixed linearly with its isotropic 188 

equivalent. This choice of 12% alignment was based on the previous work of Thomas et 189 

al. (2011), and yields reasonable anisotropic strengths; since we focus on reflection 190 

polarities and not amplitudes, however, this choice of value is not critical. We assume that 191 

the aligned grains are sub-parallel with the slip direction and the slip plane is sub-parallel 192 

to the CMB and the remaining grains are randomly oriented for Models A, B, and C (Figure 193 
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3). We tested three models (Models A [Ppv], C [Br], and D [Fp] in Table 2) in which the 194 

D" discontinuity represents a change in alignment of the mineral grains from an isotropic 195 

(above the discontinuity) to an anisotropic (below the discontinuity) regime. In Model B, 196 

the D” discontinuity is an isotropic phase transformation from Br to anisotropic Ppv. The 197 

predicted values for reflection polarities for each model are shown in Figure 3 and were 198 

calculated using Guest and Kendall (1993) from the velocity perturbation and reflection 199 

coefficients at the interface between an isotropic and anisotropic layer with respect to 200 

azimuth from the dominant slip direction and epicentral distance (Thomas et al., 2011).  201 

Our approach to calculating predicted shear wave splitting parameters and 202 

reflection polarities for our synthetic models makes several simplifying assumptions. First, 203 

we only directly model shear wave splitting due to lowermost mantle anisotropy, and 204 

ignore any potential contributions from the upper mantle. Our approach therefore assumes 205 

that any upper mantle contribution (in real data) has been correctly accounted for; we 206 

further assume that the bulk of the lower mantle is isotropic (Meade et al., 1995). We do 207 

not explicitly consider how incorrect upper mantle corrections could bias the resulting D” 208 

observations, which is beyond the scope of our study.  Second, we rely on ray theory and 209 

do not consider finite frequency wave effects in our modeling. Ray theoretical predictions 210 

are generally adequate for homogenous regions of D” (e.g., Nowacki and Wookey, 2016), 211 

although they may break down for laterally heterogeneous anisotropic models 212 

(heterogeneities varying over hundreds of km). Third, in our modeling we approximate the 213 

propagation directions for SKS and SKKS with average inclination angles for these phases, 214 

and for ScS we assume that propagation is horizontal through the D” layer. This assumption 215 

follows previous work (Nowacki et al., 2010; Ford et al., 2015; Creasy et al., 2017). In the 216 

Earth and at the relevant epicentral distances, ScS can be inclined from the horizontal up 217 
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to ~15°, but this assumption has only a modest effect on the predicted splitting parameters. 218 

We assume the three different phases (SKS, SKKS, and ScS) propagate at different 219 

inclination angles: ~55°, 35°, 0° from the horizontal, respectively. Inclination angles are 220 

based on a straight-line approximation, calculated using TauP (Crotwell et al., 1999) based 221 

on the PREM Earth model (Dziewonski and Anderson, 1980) for distances of 90° - 120° 222 

for SKS/SKKS and 60° - 80° for ScS with an event at a depth 10 km. We use these average 223 

propagation angles for SKS and SKKS in our modeling for simplicity, although for real 224 

data they can vary by up to 10° - 20° from these average values.  225 

 226 

2.3 Modeling approach and strategy 227 

Our goal is to conduct a series of stochastic forward modeling simulations to test 228 

whether we can uniquely constrain a given starting model (an elastic tensor) and its 229 

orientation using a dataset with a given set of characteristics (e.g., number and type of 230 

measurements, azimuthal distribution). Our forward modeling framework follows Ford et 231 

al. (2015), who modeled a shear wave splitting dataset that samples the lowermost mantle 232 

beneath the Afar peninsula along the edge of the African LLSVP.  We did not consider 233 

delay times in our modeling. Individual delay time measurements contain larger error bars, 234 

which limit the utility of using the relative travel times in a dataset as a discriminant. The 235 

complete tradeoff between fabric strength and layer thickness also limits the utility of using 236 

absolute travel times as a constraint.  237 

For each of our modeling experiments, we first choose a starting model and 238 

orientation from the possibilities listed in Table 1. As an example, we first consider a 239 

horizontally aligned elastic tensor of Ppv with [100] and [010] axes parallel to the CMB, 240 

which we will use to illustrate our approach in several of the following figures. Second, we 241 
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randomly identify a set of raypaths of SKS, SKKS, and/or ScS sometimes in combination 242 

with SdS and PdP reflection polarities. Third, we calculate the predicted fast-axis directions 243 

and/or reflection polarities of SdS and PdP for each raypath, as described in Section 2.2.  244 

In the fourth step, we model the synthetic dataset by applying the same forward 245 

modeling technique that we typically use for real data (Ford et al., 2015). Specifically, we 246 

treat the synthetic observations as though the actual model used to generate them was not 247 

known, and test all possible models listed in Tables 1 and 2) in all possible orientations 248 

(every 5°) to identify models/orientations that are consistent with the synthetic dataset. A 249 

candidate model/orientation is discarded if the predicted and “observed” fast splitting 250 

directions differ by more than 20° or if the predicted reflection polarities are opposite those 251 

of the “observations”. We apply this 20° cutoff for the splitting observations, based on 252 

methods and reasonable estimates of errors in previous shear wave splitting studies (see 253 

Ford et al., 2015). While this misfit criterion is appropriate for measurement errors, it does 254 

not take into account effects such as inaccurate upper mantle corrections for actual D” 255 

anisotropy observations, or the possible finite-frequency effects of complex structure. 256 

Explicit consideration of these effects in D” anisotropy studies is a subject of ongoing 257 

research. For each candidate model/orientation that was considered an acceptable fit to the 258 

synthetic data, we calculated a total misfit value (for the fast polarization directions only) 259 

based on a residual sum of squares approach, following Ford et al. (2015). Each fast 260 

direction misfit is normalized by the maximum residual of 90° and summed by using the 261 

residual sum of squares, in which we calculate the square of the difference between the 262 

observation and data prediction.  263 

The fifth and final step in our modeling strategy is to repeat the entire process a 264 

large number (M) of times for random raypath configurations. All of these steps are 265 
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illustrated in Figure 4. In each iteration, we randomly choose a new azimuthal distribution 266 

of raypaths for a new synthetic dataset with varying characteristics (such as the number 267 

and type of observations, described in more detail below). We report our results by 268 

considering what percentage of the M iterations could uniquely identify the starting model. 269 

Each individual iteration was designated as “uniquely constrained” if it successfully 270 

identified the correct starting model, and could completely rule out any other candidate 271 

model. However, if there was at least one other anisotropy configuration (any candidate 272 

elastic tensor model, in any orientation) was found to be consistent with the synthetic 273 

observations, that iteration was designated “not uniquely constrained.” Therefore, all our 274 

model results are characterized through a %-uniquely constrained value, which identifies 275 

how what percentage of the M simulations could uniquely constrain the starting model. 276 

The actual values of these “%-uniquely constrained” estimates are strongly dependent on 277 

our modeling choices, and the estimates could change with different modeling 278 

assumptions. However, these percentages can be compared across our suite of numerical 279 

simulations, since our assumptions are consistent across the various tests.  280 

Within this modeling framework, we tested a series of synthetic dataset 281 

characteristics described the following three distinct variables: the number of 282 

measurements (N), ratio of the number of SK(K)S (that is, SKS plus SKKS) measurements 283 

to the total number of shear wave splitting measurements (we term this ratio the “SKS 284 

number”), and the azimuthal distribution of measurements, as quantified by the angular 285 

dispersion (R). Angular dispersion is defined as:  286 

�" = ∑ cos(�*),
*-. , �" = ∑ sin(�*),

*-. ,    (1) 287 

� = 	5�"6 + �"6,      (2)  288 
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where �* is a vector of directions and R is angular dispersion, which varies from 0 289 

(uniform dispersion) to 1 (concentration in one direction) (Mardia and Jupp, 2000). A 290 

graphical definition of R is shown in Supplementary Figure S1.  291 

We tested different combinations of N and SKS number to gain insight into how 292 

many measurements, and in what combination, are typically needed to uniquely constrain 293 

the anisotropy. For angular dispersion, we calculated the value of R for each of the M 294 

iterations carried out in each test; then, we queried the large number of simulations to 295 

understand how the azimuthal distribution of the synthetic data affected its ability to 296 

constrain anisotropy. 297 

 298 

2.4 Distinguishing the mechanism and orientation of anisotropy 299 

For the first round of tests, we sought to understand how many shear wave splitting 300 

measurements, and in what combination (as described by the SKS number), are generally 301 

needed to uniquely constrain the mechanism for anisotropy. That is, we tested whether 302 

synthetic datasets could be shown to be consistent only with the correct starting model (e.g., 303 

Ppv, as opposed to other models listed in Table 1), and with no other candidate mechanism. 304 

For this round of tests, we used the single crystal models in Table 1 as starting models, 305 

each in several different orientations. The LPO model of Ppv was only used for the second 306 

round of tests. We defined the starting model orientation via the rotation angle about the 307 

[100] axis from the horizontal (note that Figure 2 only shows an example with a horizontal 308 

[100] and [010] direction). We arbitrarily tested each single crystal model at three different 309 

orientations based on the rotation angle about the [100] axis from the horizontal:  0°, 45°, 310 

and 90°. For the LPO model of Ppv, we only test the original orientation for the starting 311 

model and do not test a rotated version of the elastic tensor since this model is based on a 312 
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region in the Walker et al. (2011) with horizontal shear. In our initial round of tests, we 313 

focused only on cases in which shear wave splitting observations of SKS, SKKS, and ScS 314 

(for varying N, SKS number, and R values) were used to constrain the models; in later 315 

tests, we explored scenarios in which reflection measurements were combined with shear 316 

wave splitting data, in order to estimate the improvement obtained by combining different 317 

data types.   318 

We also carried out a series of tests whose goal was to constrain the orientation of 319 

the elastic tensor for the case in which the mechanism for anisotropy is known (or 320 

assumed). For this line of inquiry, we focused on Ppv as a test case; we did not test other 321 

mechanisms in this part of the study. The choice to focus on Ppv was made for simplicity 322 

and because Ppv is often invoked as the preferred mechanisms for anisotropy in D" (Creasy 323 

et al., 2017; Ford et al., 2015; Ford and Long, 2015; Nowacki et al., 2010; Thomas et al., 324 

2011a; Wookey et al., 2005b). We consider both single-crystal Ppv tensors and elastic 325 

tensors derived from texture modeling, as discussed above. As in our first series of tests, 326 

we initially focus on synthetic datasets that only contain shear wave splitting observations, 327 

and then examine cases that also include reflection measurements.  328 

Lastly, in addition to the two major lines of inquiry we address in our modeling 329 

(what kind of datasets are needed to constrain the mechanism and orientation) of lowermost 330 

mantle anisotropy, we performed two practical tests using horizontal Ppv as a starting 331 

model. First, we carried out a test of how many iterations (that is, values of M) are needed 332 

for our forward algorithm to converge on an estimate of the probability of identifying 333 

unique models. Second, we tested the addition of Gaussian noise to the shear wave splitting 334 

predictions, in order to understand how well real, noisy datasets might perform. The results 335 

of these practical tests are described below. While seismic data can deviate from a Gaussian 336 
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distribution (Groos and Ritter, 2009), we only consider Gaussian distributed noise here 337 

since in an ideal case, seismic noise is Gaussian distributed (Bendat and Piersol, 2011). 338 

 339 

3. Results 340 

3.1 Illustrative examples: Model runs for a ppv starting model  341 

To illustrate the process and results of our modeling, we discuss here the results 342 

from a test that attempts to constrain the starting model, as well as one iteration of a test 343 

that attempts to constrain the orientation. In both cases, we use synthetic shear wave 344 

splitting data only. For these examples, as in all of our tests, we follow the five steps of our 345 

method outlined above (Figure 4): (1) choose a starting model and orientation, (2) choose 346 

the number of observations and the SKS number to randomly generate a distribution of 347 

raypaths, (3) calculate the predicted fast polarization directions (of SKS, SKKS, and ScS) 348 

and reflection polarities (for SdS and PdP) for the synthetic dataset for the chosen starting 349 

model, (4) conduct a forward modeling search over all possible orientations for all possible 350 

candidate models to eliminate all models/orientations that do not fit the “observations” 351 

using a misfit cutoff. Then, if all other models and orientations can be eliminated by 352 

applying the misfit cutoff, this set of synthetic raypaths are able to uniquely constrain the 353 

starting model and designated as “uniquely constrained.” The fifth step would be repeating 354 

this process M number of times but for this illustrative example, M = 1.  355 

Our illustrative example is shown in Figure 5. For this example, we chose a starting 356 

model of non-rotated Ppv (in this case, the [100] and [010] crystallographic axes are 357 

parallel to the CMB) (Figure 5a). In all of our single-crystal elasticity tests, we do not 358 

assume a dominant slip system; rather, we invoke a starting orientation in the geographic 359 

reference frame identified by the angle of the mineralogical axes. This particular example 360 
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involves 9 splitting observations, 6 of which are SK(K)S (that is, an SKS number of 2/3). 361 

The randomly generated azimuthal distribution of these chosen phases is shown in Figure 362 

5b. The predicted fast polarization directions for our chosen model and ray configuration, 363 

plotted in a ray-centered reference frame, are shown in Figure 5c. A search over all possible 364 

candidate models and orientations (rotating every 5°) shows that there is no other model, 365 

other than the correct starting model (Ppv), that can match each of the synthetic fast 366 

splitting directions to within 20° (our pre-defined misfit cutoff). Put another way, for every 367 

possible combination of starting model and orientation (other than the correct, known 368 

starting model), at least one predicted fast splitting orientation differed from that in the 369 

dataset by more than the 20° misfit cutoff. Since this particular configuration of 370 

observations could uniquely identify the starting model and no other models, it is 371 

designated “uniquely constrained.”  372 

This particular example illustrates a single iteration (M = 1) of our testing, but the 373 

power of our approach lies in repeating this a large number of times to understand what 374 

percentage of randomly generated synthetic datasets have the ability to uniquely constrain 375 

the starting model. In order to understand how many iterations are needed to converge on 376 

an estimate of this probability, we conducted an “iteration test” for our horizontal Ppv 377 

starting model, as shown in Figure 6. For this test, we used 9 shear wave splitting 378 

measurements (N = 9) and an SKS number of 2/3, as in the example shown in Figure 5, 379 

and ran a large number of iterations (M = 50,000), each involving a new, random 380 

distribution of propagation azimuths. After each successive iteration, we calculated the 381 

percentage (of M iterations) for which the synthetic dataset was able to uniquely constrain 382 

the starting model, as shown in Figure 6. For this starting model, after a large number of 383 

iterations, we found that 41% of all iterations could uniquely constrain the starting model, 384 
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while for the other 59% of the raypath configurations, there was another model/orientation 385 

that could simulate the synthetic data. Our running estimate of how likely a dataset with 9 386 

splitting observations (6 SK(K)S, 3 ScS) converges on an average value of 41% after 387 

approximately 1,000 iterations (Figure 5). Based on this iteration test, we have chosen to 388 

run each of our numerical experiments for M = 5,000 iterations, balancing computational 389 

cost and the need for our estimates to converge. 390 

Next, to illustrate our process for testing whether synthetic data can identify a 391 

unique starting orientation, we show in Figure 6 two examples of searching for the correct 392 

starting orientation for the same horizontal Ppv starting model as in Figure 4. For this 393 

example, we chose two different raypath configurations, one with N = 8 observations (5 394 

SKS+SKKS and 3 ScS; Figure 7a) and one with N = 4 (3 SKS+SKKS and 1 ScS; Figure 395 

7b). We assume that the mechanism for anisotropy is known to be Ppv and that the elastic 396 

constants are known, and search over all possible orientations to test whether there are 397 

additional configurations (other than the known starting orientation) that can reproduce the 398 

synthetic observations.  399 

Figures 7a and 7b show all possible orientations that satisfy this suitability criterion 400 

for each of our two examples (N = 8 and N = 4, respectively), with each orientation color-401 

coded by its calculated misfit value (Equation 1). Following Ford et al. (2015), we search 402 

for local minima of misfit within the 3-D rotation space. For our N = 8 case (Figure 7a), 403 

the set of 8 measurements could uniquely identify the starting orientation, and would be 404 

designated as “uniquely constrained.” However, for our N = 4 case (Figure 7b), we 405 

identified two other possible orientations (that is, the known correct starting orientation, 406 

plus two others). Therefore, for this particular raypath configuration, the solution is 407 
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designated “not uniquely constrained.” We note, however, that the orientation with the 408 

lowest misfit value (magenta dot in Figure 7b) is, in fact, the correct starting orientation.  409 

Finally, we illustrate an example calculation that includes Gaussian noise in the 410 

synthetic observations (Figure 7c). This test relies on the same horizontal Ppv starting 411 

model, and uses the same raypath configuration (N = 4) as the test shown in Figure 7b. The 412 

only difference is that when the predicted shear wave splitting fast directions are calculated 413 

based on the starting model and raypath distribution, we add Gaussian noise to the fast 414 

splitting direction “observations,” with a maximum error excursion of 20° and a standard 415 

deviation of 9°. Figure 7c reveals that the case with Gaussian noise produced the same two 416 

possible sets orientations as fitting the data, but now the solution with the minimum misfit 417 

is not associated with the correct solution.  418 

 419 

3.2 Results: Constraining the anisotropy mechanism 420 

Building on the illustrative examples discussed in section 3.1, we now explore the 421 

results of a large number of simulations with different starting models and raypath 422 

configurations. We first address the question of what kind of datasets are needed to 423 

distinguish among the various models listed in Figures 2 and 3. For this suite of numerical 424 

experiments, we examined a variety of starting models and orientations, as well as a variety 425 

of raypath configurations (as defined by the number of splitting measurements, the SKS 426 

number, and the angular dispersion of the raypath azimuths). The results of these 427 

experiments are shown in Figure 8. We first examine those model runs that only included 428 

shear wave splitting data, shown in the nine panels of Figure 8a. 429 

We initially focus on the mechanism and orientation of the starting model (Figure 430 

8a, left panels), and explore how the probability of uniquely constraining the mechanism 431 
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varies as a function of the number of measurements. For each of the models considered, 432 

the probability of identifying the unique starting model increases with the number of 433 

measurements, as expected, typically with a sharp increase in the probability for N values 434 

between ~6-9. In all cases, approximately 9 measurements are needed in order to have a 435 

~50% chance of constraining the starting model, while a high number of splitting 436 

measurements (N ≈ 15) is needed for the probability to reach ~90%. (For comparison, the 437 

datasets of Ford et al. (2015) and Creasy et al. (2017) contained between 4-8 splitting 438 

measurements.) The starting model with the highest success rate at constraining the 439 

mechanism is Br, as opposed to Fp and Ppv.  440 

The probability of constraining the starting mechanism depends on the orientation 441 

of the starting model; as shown in Figure 8a, we tested orientations with a horizontal [100] 442 

crystallographic axis, 45° rotated about the [100], and 90° rotated about the [100] axis. 443 

Interestingly, for Ppv it is easier to uniquely constrain the starting model in the 90° case; 444 

in contrast, for Br the chances are highest for the horizontal case, and for Fp the chances 445 

are substantially higher for the tilted case. The reason for this result for Ppv can be 446 

discerned by examining the predicted splitting patterns in Figure 2. For the horizontal case, 447 

predicted fast splitting directions for ScS do not vary with azimuth; however, if the Ppv 448 

tensor is rotated by 90° about the [100] axis, there is significant variation in fast directions 449 

with azimuth. With greater variability in the predicted fast polarization directions (lower 450 

angular dispersion), there is a higher probability of constraining that model for a given 451 

number of ScS observations. A similar principle is at work for Fp: ScS fast directions do 452 

not vary with azimuth for either horizontally or vertically aligned Fp, but in the tilted case, 453 

variability is present. Generally, the anisotropy scenarios that yield higher chances of 454 

uniquely constraining the starting model have lower mean angular dispersion values of the 455 
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predicted fast-axis directions (Supplementary Figure S2). Models that have little variation 456 

in fast-axis directions with azimuth, such as non-rotated Fp, are more difficult to uniquely 457 

constrain (Figure S2c and Figure 8a). 458 

We also examined how the balance between SKS+SKKS vs. ScS phases in the 459 

synthetic dataset affected the ability of the synthetic “observations” to uniquely constrain 460 

the starting model (Figure 8a, middle panels). For these experiments, we varied the SKS 461 

number from 0 (all ScS measurements) to 1 (all SKS+SKKS measurements) for a fixed 462 

value of N = 9. For very high or low values of SKS number we find a low probability of 463 

uniquely constraining the starting model with substantially higher probabilities for 464 

intermediate SKS numbers. The optimal ratio of SK(K)S phases to total measurements 465 

differs slightly for different starting models, but in general an SKS number between 0.5 466 

and 0.8 maximizes the chances of constraining the anisotropic mechanism. In all cases, a 467 

combination of ScS and SK(K)S shear wave splitting observations, instead of splitting 468 

measurements for just one phase type, will drastically improve the probability of 469 

constraining the starting model.  470 

Additionally, we explored the importance of how the angular distribution of the 471 

synthetic raypaths affected the ability to constrain the starting model, finding only a weak 472 

effect (Figure 8a, right panels). As expected, datasets with a wide angular distribution (R 473 

< 0.2) have the largest probability of uniquely constraining the starting model in all cases. 474 

At very large values of angular dispersion (R > 0.8), for which the raypaths are clustered 475 

over a narrow range of azimuths, the splitting “observations” are sampling similar parts of 476 

the elastic tensor. Because of this, datasets that are tightly clustered in azimuth cannot 477 

capture the symmetry of the tensor and cannot distinguish among different candidate 478 
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mechanisms for anisotropy. For intermediate values of R, the dependence on R is not 479 

strong. 480 

Finally, we explored the value of combining shear wave splitting and reflection 481 

polarity measurements when trying to uniquely constrain an anisotropic model. Figure 8b 482 

shows the results of adding a single reflection polarity measurement (that is, a measurement 483 

of PdP and SdS polarities for a single raypath) to a dataset of shear wave splitting 484 

measurements. For this test, we considered a smaller number (four) of potential candidate 485 

models (as shown in Figure 3), so the probabilities of uniquely constraining the anisotropy 486 

mechanism are generally higher than in our other tests. For this test, we chose a raypath 487 

configuration involving an SKS number of 0.67 and varied the number of shear wave 488 

splitting measurements from 0 to 15. We used a starting model A in Figure 3 (anisotropy 489 

due to Ppv), and tested configurations that involved both shear wave splitting 490 

measurements and one additional set of reflection polarity measurements (both PdP and 491 

SdS) at a single azimuth. This test (Figure 8b) demonstrates that despite the fact that 492 

reflectivity measurements provide only binary information (positive or negative polarities), 493 

the incorporation of a different data type into the test increases the probability of uniquely 494 

constraining the starting model. In some cases, this increase is substantial; specifically, for 495 

datasets containing between 4 and 8 shear wave splitting measurements. The addition of 496 

reflection polarity data can increase the probability of constraining the starting model by 497 

~10-18% (right panel of Figure 8b).  498 

 499 

3.3 Results: Constraining the anisotropy orientation 500 

 The tests shown in Figure 8 illustrate the ability of shear wave splitting and 501 

reflection polarity data to constrain the anisotropic mechanism if the algorithm is allowed 502 
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to consider a range of possible models. We now turn our attention to tests in which we 503 

assume that the mechanism that creates the anisotropy, as well as the elastic constants 504 

associated with that mechanism, are known, but the orientation of the elastic tensor is not 505 

known. In general, this is an easier problem than uniquely constraining the starting model, 506 

as the observations need not distinguish among different candidate elastic tensors, only 507 

among different possible orientations. In practical terms, this type of modeling exercise 508 

would be suitable for datasets that sample a region of the lowermost mantle whose 509 

mineralogy and temperature conditions can be constrained using independent observations 510 

or models (for example, seismic velocities in combination with mineral physics 511 

constraints).   512 

For this set of tests, we first consider single-crystal Ppv in three different 513 

configurations: 1) [100] and [010] axes oriented in the horizontal plane, 2) a 90° rotation 514 

about the [100] axis, and 3) randomly chosen orientations. For the third configuration, we 515 

randomly identified nine different, unique starting orientations. These randomly generated 516 

orientations were used for each of the ~5,000 iterations in this scenario. As with the tests 517 

discussed in section 3.2, we tested a variety of raypath configurations with a range of N 518 

(number of measurements), SKS number, and examined how our results varied with the 519 

angular dispersion characteristics of the synthetic raypaths. The results of our single-crystal 520 

Ppv tests are shown in the top row of Figure 9. The results for our collection of nine random 521 

starting orientations are shown in detail in Supplementary Figure S3.  522 

As expected, our tests demonstrate that uniquely constraining the orientation of the 523 

starting model is much easier and requires fewer measurements than uniquely constraining 524 

the starting model/mechanism (Figure 7). In general, a ~50% probability of correctly 525 

retrieving the anisotropy is achieved with ~6-9 splitting measurements (top left panel of 526 
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Figure 9a). The orientation of the starting model does affect the likelihood of uniquely 527 

identifying the anisotropy orientation. With our randomly generated starting orientations, 528 

the probability of constraining the starting orientation varies (Figure S3), but on average 529 

randomly oriented starting models do slightly worse compared to the results shown in 530 

Figure 9. For six measurements, the randomly orientated models on average find the correct 531 

orientation in 65% of all simulations, compared to Figure 9, where a non-rotated and Ppv 532 

rotated by 90° can constrain on average 75% of the simulations. As with our previous tests, 533 

it is clear that a mixture of SK(K)S and ScS shear wave splitting measurements provide 534 

the highest likelihood of constraining the starting orientation, although the optimal mix of 535 

ScS and SK(K)S depends on the starting model orientation. Our tests confirm that datasets 536 

that contain only ScS measurements (that is, SKS number of zero) cannot constrain the 537 

azimuth of the Ppv elastic tensor if its [100] axis is horizontal, due to the lack of variability 538 

in predicted fast polarization direction (Figure 2). The dependence of our results on angular 539 

dispersion of the propagation azimuths (right panels of Figure 9a) are similar to those for 540 

the case in which we attempted to retrieve the starting model; in general, a wide distribution 541 

of azimuths will increase the probability of uniquely constraining the orientation of Ppv, 542 

while datasets whose propagation azimuths are tightly clustered are less ideal. The same is 543 

generally true for the random starting models, despite some small excursions from the 544 

overall trend (Figure S3). These small excursions or “bumps” in the curves are artifacts, 545 

and are related to stochastic variations in the distribution of the predicted fast splitting 546 

directions for different models.  547 

Next, we considered elasticity models that explicitly take into account texture 548 

development in a polycrystalline aggregate, in addition to the single-crystal elastic tensors 549 

that are the main focus of our study. While there are many uncertainties in texture models 550 
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for Ppv at lowermost mantle conditions, these models may be more representative of a 551 

realistic texture of aligned Ppv mineral grains. We only considered one case, invoking 552 

dominant slip on the (010) plane. Somewhat surprisingly, we found that for modeled Ppv 553 

LPO, there is a much lower probability of constraining the orientation of the elastic tensor 554 

than for test cases that used a single crystal elastic tensor (Figure 8a). We investigated 555 

possible reasons for this, and found that in contrast to the single-crystal models, for the 556 

textured Ppv model it is fairly common for the algorithm to identify what we term as 557 

“unstable” solutions, which are illustrated in Figure S4. In this situation, a certain 558 

orientation might fit the observations, but adjacent orientations (in which the elastic tensor 559 

is rotated by 5°) do not. This is in contrast to the behavior of single-crystal elastic models 560 

(Figure 2), in which the best-fitting orientations are adjacent to other solutions that also fit 561 

the data (in other words, the misfit values vary smoothly as a function of rotation angles of 562 

the candidate tensors). In addition, the presence of unstable solutions is highly dependent 563 

on our use of the misfit criterion of 20°. Figure S4 shows results for a range of misfit cutoff 564 

values, and demonstrates that these unstable solutions disappear with the application of 565 

more conservative misfit criteria.  566 

We define a “stable” solution as one in which, if the elastic tensor is rotated slightly 567 

(~5° in any direction), the rotated elastic tensor would still yield an acceptable fit to the 568 

synthetic data. In contrast, an “unstable” solution is one that has no adjacent orientations 569 

that yield an acceptable fit to the data. For the case of the textured Ppv model, the algorithm 570 

generally identifies many “unstable” orientations (Figure 9); again, this is in contrast to the 571 

generally “stable” orientations identified for single-crystal Ppv (Figure 7). In order to 572 

illustrate the effects of these unstable solutions, we applied a sensitivity cutoff to our 573 

textured Ppv simulations (Figure 8a, second row) to illustrate the effects of removing all 574 
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unstable solutions. If we consider only stable solutions, the probability of uniquely 575 

constraining the starting orientation increases by 20% on average (Figure 9a). 576 

In order to identify the starting orientation of the Ppv LPO, we found that a mixture 577 

of SK(K)S and ScS shear wave splitting measurements again provide the highest likelihood 578 

of constraining the orientation (Figure 8a: bottom, middle panel). There is a clear 579 

dependence on angular dispersion (Figure 9a: bottom, right panel). Specifically, with low 580 

values of R (0-0.1) and middle values of R (0.5-0.7), there is a higher probability of 581 

constraining the orientation, while there is a decrease in probability between R = 0.1 and 582 

R = 0.4. In all other cases and starting models, we have not observed this pattern of 583 

dependence with R. While there is no explanation for this pattern, large values of R (0.8-584 

1.0) resulting in low probabilities of finding the starting orientation is consistent with all 585 

other tests.  586 

Returning to our consideration of single-crystal Ppv models, and as in section 3.2, 587 

we considered the effect of adding a reflection measurement to shear wave splitting 588 

observations to constrain the orientation of the single-crystal Ppv starting model (Figure 589 

9b). For this test, we used a starting model that invokes an isotropic ppv layer over an 590 

anisotropic ppv layer with dominant [100](010) slip (Model A in Figure 3). As in the 591 

previous test, we find that just adding one observation of reflection polarity measurements 592 

improves the probability of constraining the starting orientation (Figure 9b), although the 593 

improvement was somewhat less dramatic. Again as with the previous tests, the relative 594 

improvement is greatest for datasets with number of measurements N roughly between 5 595 

and 9.  596 

Finally, in a test analogous to the Gaussian noise test discussed in section 3.1 and 597 

illustrated in Figure 7c, we considered a single-crystal Ppv test in which we tried to retrieve 598 
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the correct starting orientation using synthetic observations that included random, Gaussian 599 

distributed errors on the fast polarization predictions (Figure 10). We found that adding 600 

Gaussian noise to the fast polarization directions, normally distributed between -20° and 601 

20° with a mean of 0° and standard deviation of 9°, does not significantly hinder the 602 

probability of constraining the starting model’s orientation (Figure 10a). However, this test 603 

allowed us to explore the distinction between uniquely constraining the starting model’s 604 

orientation and identifying a model with a minimum misfit value that corresponds to the 605 

correct starting orientation. For the error-free synthetic datasets, the minimum misfit value 606 

always corresponds to the correct orientation, even for cases in which other orientations 607 

are allowed by the data. For cases in which Gaussian error is incorporated to the synthetic 608 

dataset; however, it is possible for the orientation with the minimum misfit value to be 609 

different from the correct solution. This observation led us to carry out a test (Figure 10b) 610 

in which rather than attempting to uniquely constrain the correct starting orientation, we 611 

tested whether the best-fitting orientation (that is, the candidate orientation with the 612 

minimum misfit value) actually corresponded to the correct starting orientation. We further 613 

tested whether the best-fitting solution in terms of misfit was oriented within 10°-20° of 614 

the known, correct starting orientation. Encouragingly, we found that the probability that 615 

the minimum misfit solution was within 20° of the correct orientation exceeded 50% for 616 

datasets with a relatively small number of shear wave splitting measurements (N ≈ 4).  617 

 618 

4. Discussion 619 

4.1 Implications for the interpretation of real-world data sets 620 

Understanding the scope of information about lowermost mantle anisotropy 621 

contained in shear wave splitting and reflection polarity observations is crucial for our 622 
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ability to relate anisotropy observations to flow at the base of the mantle. While the 623 

mechanisms of lowermost mantle anisotropy remain imperfectly known, the results 624 

presented in this paper reveal observational strategies that can maximize the probability of 625 

constraining the mechanism and/or orientation, regardless of the actual anisotropic 626 

geometries present. This work shows that a diversity of shear wave splitting measurements 627 

and reflection polarity data is essential, and the modeling of single phases (e.g., ScS, SKS, 628 

SdS) is typically insufficient to constrain anisotropic geometry.    629 

Specifically, this work demonstrates that because different seismic phases (ScS, 630 

SKS, SKKS, PdP, SdS) propagate through or reflect off the D" region at different angles 631 

from the horizontal, a combination of these phases is more useful for constraining 632 

anisotropy than datasets with wide azimuthal coverage. Consider, for example, a 633 

hypothetical case in which 9 unique splitting measurements for ScS phases are used to 634 

probe an anisotropic structure consisting of horizontal, single crystal post-perovskite. In 635 

this case, post-perovskite can only be distinguished from other plausible anisotropic 636 

models less than 10% of the time (Figure 8a and 9a). However, if SK(K)S phases and/or 637 

reflection polarities are incorporated into the analysis, then we can distinguish between the 638 

two possible mechanisms nearly 40% of the time (Figure 8a). In all cases of varying starting 639 

models and orientations, a combination of different types of data increases the probability 640 

of constraining the starting model by 10% to 60%. This pattern also generally holds true 641 

for finding the orientation of the Ppv elastic tensor. A diversity of data increases the 642 

likelihood of constraining the orientation of Ppv anisotropy anywhere from 10% to 50% 643 

for 6 unique measurements. Interestingly, we observed an exception to this (Figure 9a) for 644 

Ppv oriented at an azimuth of 90°, where only ScS splitting data (SKS number of 0) had 645 

the best chance to constrain the starting orientation.  646 
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Body wave datasets that probe seismic anisotropy in the lowermost mantle should 647 

combine both multiple data types and wide azimuthal coverage to maximize the probability 648 

that the anisotropic geometry can be tightly constrained. Figure 11 illustrates regions in the 649 

mantle in which all of the body wave measurement methods could potentially be applied 650 

simultaneously. This map was generated by considering the actual distribution of high-651 

magnitude (M > 6.5) seismicity on Earth, in combination with a database of long-running 652 

broadband seismic stations beneath which the upper mantle anisotropy pattern has been 653 

shown to be simple enough to correct for (Lynner and Long, 2013, 2014b). While there are 654 

many regions of D” with limited raypath coverage for the types of data considered in this 655 

study, we find that North America, the Arctic, northwestern Pacific, and Australia are 656 

regions that represent ideal targets to collect a diverse set of observations to further 657 

constrain D” anisotropy.  658 

Our results inform our view of why previous studies that included crossing raypaths 659 

(e.g., Ford et al., 2015; Creasy et al., 2017) were unable to uniquely constrain a model for 660 

D” anisotropy. Our study indicates that a relatively large number of shear wave splitting 661 

measurements (approximately 9 or more for most cases in Figure 8a) are needed to have at 662 

least a 40% to 60% chance of uniquely identifying the starting model. The observational 663 

datasets of Ford et al. (2015) and Creasy et al. (2017) included approximately four to eight 664 

shear wave splitting measurements over unique azimuths in the lowermost mantle (Table 665 

3). The synthetic models presented in this paper help to provide context for why these 666 

studies have not been able to uniquely constrain a particular mechanism or orientation for 667 

anisotropy (e.g. Ford et al., 2015, Creasy et al., 2017). For example, each of these studies 668 

(Table 3) had relatively high angular dispersion values for their range of predicted fast 669 

splitting directions (greater than 0.4 in all cases). As discussed in section 3.2, datasets with 670 
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lower angular dispersion values are generally more successful at constraining a unique 671 

elastic tensor. Therefore, even though many of the studies listed in Table 3 used diverse 672 

data types with combinations of SKS, SKKS, and ScS, they could not uniquely constrain 673 

an anisotropy mechanism or orientation when testing the elastic tensors considered in this 674 

study. The studies that used one type of observation (Nowacki et al., 2010; Thomas et al., 675 

2011) did not consider all possible elastic tensors and orientations that we tested here, so 676 

we cannot directly compare them with the results of our synthetic tests. If the mechanisms 677 

for anisotropy and the associated elastic tensors can be reliably assumed, there is generally 678 

a higher chance of identifying the correct orientation and inferring the correct mantle flow 679 

geometry. With only 9 measurements, there is a 40% to 80% chance of uniquely 680 

constraining the orientation of post-perovskite (Figure 9a), an improvement from the 681 

chance of uniquely identifying the elastic tensor itself (a 40%-60% chance). Consideration 682 

of these results in future studies of D” anisotropy, as well as a more detailed consideration 683 

of how errors and uncertainties propagate in forward models, should enhance our ability to 684 

characterize anisotropy at the base of the mantle. A more detailed statistical analysis may 685 

be required similar to this study here to fully explore the error and model space.  686 

 687 

4.2 Practical considerations  688 

Our tests that assumed Gaussian error on the predicted fast splitting directions 689 

(Figure 10b) demonstrate that it does not significantly affect the probability of constraining 690 

the model, as compared to noise-free synthetic data. When including Gaussian error, we 691 

found that as few as four shear wave splitting measurements can identify the correct 692 

orientation within 20° more than 50% of the time. Datasets of this size (roughly four unique 693 

measurements in the same region of D”) can likely be reasonably achieved in many regions 694 
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of the lowermost mantle, based on the distribution of available raypaths (Figure 11). This 695 

finding may help with the interpretation of modeling results for real splitting datasets, such 696 

as those considered by Ford et al. (2015) and Creasy et al. (2017), for which multiple 697 

possible anisotropic orientations were identified, but particular orientations had 698 

significantly lower misfit values than others.  699 

Our synthetic modeling results also shed light on potential complications in 700 

interpretation caused by the different symmetry classes of some of the candidate elasticity 701 

scenarios that have been proposed to explain lowermost mantle anisotropy. To effectively 702 

differentiate these scenarios using shear wave splitting data alone, it is crucial for splitting 703 

datasets to probe the symmetry of the mineral such that no other elastic tensor simulates 704 

that pattern for a similar range of propagation directions. Of the candidate scenarios we 705 

tested in this study, Fp has the highest (cubic) symmetry with only 3 unique constants in 706 

the elastic tensor. SPO models have the next highest symmetry, since tubule and oblate 707 

SPO models are hexagonal (transversely isotropic) with 5 unique elastic constants. Ppv and 708 

Br are both orthorhombic, with the same order of symmetry and only 9 unique elastic 709 

constants. In more complicated models, like LPO calculations of single crystals, the 710 

symmetry is much lower than its single crystal counterpart with 21 unique elastic constants.  711 

 712 

4.3 Limitations of our modeling approach 713 

We caution that our synthetic tests must be interpreted in light of the still-714 

considerable limitations in our understanding of the elasticity of anisotropic materials at 715 

lowermost mantle conditions. We have focused mainly on single-crystal elastic tensors, 716 

derived mainly from ab initio simulations, as a reasonable starting point in this study; 717 

however, predictions of single-crystal elasticity are likely imperfect and do not take into 718 
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account effects such as variation in composition. Furthermore, single-crystal elasticity is 719 

an imperfect proxy for the likely anisotropic geometry of polycrystalline aggregates, 720 

particularly for minerals with high symmetry such as Fp (e.g., Yamazaki and Karato, 721 

2002). The further consideration of elasticity models that explicitly take into account 722 

texture development will be an important step, although texture models include a number 723 

of poorly known parameters (such as activation energies for different slip systems) and 724 

consensus on the dominant slip systems in different lowermost mantle minerals remains 725 

elusive (e.g., Nowacki et al., 2011).      726 

Another limitation of the work proposed here is that it is carried out in the context 727 

of ray theoretical predictions, assuming infinite frequency, rather than considering the full 728 

characteristics of the waveform at finite frequencies. With improvements on both 729 

observational and modeling techniques that model the full waveform (e.g., Kawai and 730 

Geller, 2010, Nowacki and Wookey, 2016, Parisi et al., 2018), the interpretation of seismic 731 

anisotropy observations can very likely be improved. In particular, future work must 732 

investigate how the measurement techniques used influence the interpretation of finite 733 

frequency waveform effects and to what extent ray theoretical predictions are a useful 734 

approximation. Despite these limitations, we expect that future work that predicts body 735 

wave observations in the presence of lowermost mantle anisotropy in a finite-frequency 736 

framework will likely find similar results: a diversity of seismic phases and measurement 737 

yields the best probability of capturing the symmetry, orientation, and properties of an 738 

elastic tensor. While this study is limited to a specific set of currently-available elastic 739 

tensors from the mineral physics literature, our overall findings should be generally 740 

applicable and adaptable to future improvements of our knowledge of lowermost mantle 741 

elasticity.  742 
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 743 

5. Summary 744 

To summarize, the complete characterization and interpretation of seismic 745 

anisotropy at the base of the mantle would have profound effects on our understanding of 746 

lower mantle dynamics, potentially yielding insights into the pattern of mantle flow. Many 747 

recent studies have pointed to the difficulty of distinguishing different models of lowermost 748 

mantle anisotropy with body wave observations, given challenges with data coverage and 749 

uncertainties in the mechanism for anisotropy and the relationships between deformation 750 

and the resulting anisotropy at lower mantle conditions. In this study, we conducted a series 751 

of Monte Carlo simulations to determine what combination of body wave datasets (shear 752 

wave splitting and reflection polarities) are required to constrain D" anisotropy. We tested 753 

various starting models, orientations, and methods for the detection and identification of 754 

D” anisotropy. The modeling approach in this study is applicable to a wide range of 755 

elasticity models, and can be extended as our knowledge of the physical properties of the 756 

lowermost mantle increases. This approach can be used in future work on D” anisotropy to 757 

further explore how well a dataset can discriminate among possible elastic tensors. 758 

Our results show that a diversity of observational techniques, including different 759 

types of seismic phases propagating over a range of raypath directions, are necessary in 760 

order to maximize the chances of constraining anisotropy at the base of the mantle. A 761 

combination of shear wave splitting measurements and observations of PdP and SdS 762 

reflection polarities in the same regions may be particularly powerful. We have further 763 

shown that if the mineralogy and/or mechanism for anisotropy can be constrained from 764 

independent data, then the orientation of the elastic tensor (and thus information about 765 
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patterns of mantle flow) can likely be retrieved from observational datasets that include a 766 

relatively modest number of measurements.   767 
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Tables 768 

Table 1 769 

Summary of all elastic tensors used in the forward modeling. Columns show the type of 770 

tensor (single-crystal, LPO based on experimental data, SPO based on effective medium 771 

averaging, or LPO based on global flow and texture models), the phases and/or 772 

constituents, and the reference. For the single-crystal tensors, the pressure and temperature 773 

conditions used in the modeling are also indicated. 1Elastic tensors used for tests to 774 

uniquely constrain the starting model. 2Elastic tensors used for tests to uniquely constrain 775 

the orientation.  776 

Single Crystal Tensors 

Geometry Phase 
Pressure 
(GPa) 

Temperature 
(K) 

References 

Single 
Crystal 

Br1 

125 2500 
Wentzcovitch et al. [2006], 
Wookey et al. [2005a, 2005b] 

126 2800 

136 4000 

Ppv1,2 135 4000 Stackhouse et al. [2005] 

MgO1 135 3000 Karki et al. [1999] 

Other Tensors 

Geometry Phase Notes References 

Experimental 
LPO 

MgO1 P = 0.3 GPa; T = 1473K Long et al. [2006] 

SPO1 

0.003 vol. 
fraction 
melt 

Oblate shape Walker and Wookey [2012] 

0.003 vol. 
fraction 
melt 

Tubule shape Walker and Wookey [2012] 

Calculated 
LPO2 Ppv 

TX2008-V1 model; dominant 
slip plane: (010), P = 125-136; 
T = 3000-4000 K 

Walker et al. [2011]; Tensors 
based on Stackhouse et al., 
[2005] and Stackhouse and 
Brodholt [2007] 

 777 

 778 

 779 

Table 2 780 
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Models for the top (isotropic) and bottom (anisotropic) layers of each model described in 781 

Figure 3 for reflection polarity models. The dominant slip system assumed in each bottom 782 

layer is listed.  783 

Model 
Top Layer 

(isotropic) 

Bottom Layer 

(anisotropic) 

Slip 

System 
References 

A Ppv Ppv [100](010) 
Walte et al. [2009] 
Wentzcovitch et al. [2006] 

B Br Ppv [100](010) 
Walte et al. [2009] 
Wentzcovitch et al. [2006] 

C Br Br    [010](100) 
Stackhouse et al. [2005] 
Mainprice et al. [2008] 

D Fp Fp [100](001) Karki et al. [1999] 

 784 

 785 

Table 3 786 

Summary of previous studies that have used crossing raypaths to study D” anisotropy, as 787 

identified in Figure 1. The number of unique azimuths is given; each azimuth typically 788 

contains multiple observations (in practice, these observations are typically averaged for 789 

each set of raypaths). SKS number is calculated as defined in the text; for example, 790 

Nowacki et al. (2010) used only ScS phases, therefore the SKS number is 0. Angular 791 

dispersion (R) of the raypath azimuths is also calculated as described in the text. 792 

References Region 
Number of 

Unique Azimuths 
SKS Number R 

Creasy et al., 2017 New Zealand 8 0.75 0.7866 

Creasy et al., 2017 SW Australia 4 0.5 0.4297 

Ford et al., 2015 Afar Peninsula 5 0.6 0.8305 

Thomas et al., 2011 
Siberia + 

Caribbean 
4 

reflection 

polarities 
0.5801 

Nowacki et al., 2010 Caribbean 6 0 0.5734 

  793 
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Figure Captions 794 

Figure 1. Summary map of previously published studies (which include shear wave 795 

splitting measurements and reflection polarity observations) to constrain D" anisotropy, 796 

updated and adapted from Nowacki et al. (2011). Highlighted areas (pink/gray) indicate 797 

regions that have been probed for D" anisotropy with these methods. Regions in pink 798 

indicate studies that used multiple techniques and/or intersecting ray paths, for which at 799 

least two observations intersect in the same region with different propagation azimuths. 800 

Two such studies are highlighted on the right. Panel (a) shows the raypaths (black lines) 801 

beneath Siberia studied in the reflection polarity study of Thomas et al. (2011). CMB 802 

bounce points are indicated with diamonds and circles, and the dotted arrow indicates paleo 803 

subduction direction 100 Ma ago of the Kula plate. Background colors indicate P wave 804 

velocity deviations at the base of the mantle from the model of Kárason and Hilst (2001). 805 

Panel (b) shows a schematic diagram of shear wave splitting measurements of SKS (green), 806 

SKKS (red) , and ScS (blue) phases beneath the Afar region of Africa (Ford et al., 2015). 807 

Background colors show S wave velocity deviations at a depth of 250 km above core 808 

mantle boundary from the GyPSuM tomography model (Simmons et al., 2010).  809 

 810 

Figure 2. Elastic properties of models from Table 1 for D" anisotropy tested in this 811 

study, as expressed in the predicted shear wave splitting behavior. Predicted shear wave 812 

splitting behavior is shown as a 3D spherical representation relative to geographic space, 813 

with the [100], [010], and [001] axes indicated in order to view the variation of splitting of 814 

SKS, SKKS, and ScS with azimuth. The anisotropy 3-D spheres show the directional 815 

dependence of seismic anisotropy (strength [gray color bar] and fast-axis directions [black 816 

bars]). For each model, the [100] and [010] axes are parallel to the CMB and oriented north 817 
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and west, respectively. Black bars show predicted splitting over a range inclinations and 818 

azimuths, as computed using the MSAT toolkit (Walker and Wookey, 2012). Magenta bars 819 

illustrate the predicted fast polarization directions for the given starting models for a 820 

particular set of SKS, SKKS, and ScS raypaths every 20° (we actually use steps of 5° in 821 

the synthetic modeling, but the plotting is too dense to show) that are evenly distributed. 822 

Inclination angles used in the modeling are based on the average inclination angles for each 823 

phase through the D" layer; we assume that ScS propagates nearly horizontally through the 824 

lowermost mantle, as described in the text. From left to right, we show elastic tensor models 825 

for single-crystal Ppv (Stackhouse et al., 2005), single-crystal Br (Wentzcovitch et al., 826 

2006), single-crystal Fp (Karki et al., 1999: Labeled as "Fp (Karki)"), experimentally-827 

derived LPO of Fp (Long et al., 2006: Labeled as “Fp (Long)”), Oblate SPO (Walker and 828 

Wookey, 2012), Tubule SPO (Walker and Wookey, 2012), and the averaged, textured Ppv 829 

(Walker et al., 2011). Background colors are %S-wave anisotropy.  830 

 831 

Figure 3. Predictions of reflection polarities for PdP and SdS waves for different 832 

D" anisotropy models shown as an upper hemispherical projection since polarities depend 833 

on azimuth, not inclination as in Figure 2. Predictions are made as a function of azimuth 834 

and epicentral distance (from 60° to 80°). Azimuth is relative to the slip direction (indicated 835 

by the black arrow), which also corresponds to direction of lowermost mantle flow for a 836 

simple horizontal shear geometry. The first two columns show the reflection coefficients 837 

of P-P and SH-SH upon reflection off the D" discontinuity, located 300 km above the core 838 

mantle boundary in the model. Blue and red regions indicate positive and negative 839 

polarities, respectively. Models A, C, and D illustrate situations where there is an onset of 840 

anisotropy at the D" discontinuity while Model B invokes both a phase change (from Br to 841 
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Ppv) and the onset of anisotropy. The last column illustrates the predicted S wave 842 

anisotropy (color bar) and predicted shear wave splitting fast directions (black bars) for the 843 

same models, plotted as a function of azimuth and inclination from the horizontal. Elastic 844 

tensors corresponding to these models are shown in Table 2. 845 

 846 

Figure 4. Flow chart of steps in our modeling framework. The first step is to identify 847 

the starting model and its orientation from Tables 1 or 2. Secondly, randomly choose an 848 

azimuthal distribution of raypaths through the starting model and fix the SKS number. 849 

Thirdly, use the raypaths from step 2 and calculate the fast polarization directions and/or 850 

reflection polarities (splitting parameters) based on the identified starting model and SKS 851 

number. Fourth, use this synthetic dataset to use the forward modeling approach to identify 852 

which models and orientations fit the synthetic dataset. We apply the misfit cutoff as 853 

described in Methods to eliminate certain models and orientations in order to see if the 854 

synthetic dataset can uniquely constrain the starting model. Lastly, in step 5, we repeat this 855 

same process M times (number of iterations), identifying a new random distribution of 856 

raypaths each time.  857 

 858 

Figure 5. An illustrative example of how shear wave splitting predictions for an 859 

individual iteration in our stochastic modeling scheme are calculated. (a) Plane view 860 

(looking down from above on CMB) of starting model for Ppv (Stackhouse et al., 2005) 861 

showing S wave % anisotropy (colors), with fast polarization directions plotted as black 862 

bars. (b) Raypath distribution for this example for SKS (red), SKKS (orange), and ScS 863 

(blue), plotted as azimuth from north. (c) The predicted fast polarization directions based 864 

on the starting model in (a) and the raypath distribution in (b). Colors indicate phase type.  865 
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 866 

Figure 6. Results of a test of how many iterations are needed for the model results 867 

to converge. The x-axis defines the number of iterations (M) (that is, number of unique 868 

raypath configurations with similar characteristics) that were successively carried out. The 869 

y-axis indicates what percentage of the iterations run could be uniquely constrained. This 870 

particular test used 9 shear wave splitting measurements and a starting model of horizontal 871 

Ppv, and we found that after a large number of iterations, the starting model could be 872 

constrained for 41% of all iterations carried out. In contrast, for the other 59%, a unique 873 

solution of Ppv could not be constrained for that particular synthetic dataset.  Based on the 874 

results of this test, at least 5,000 iterations were carried out for each test described in this 875 

study.   876 

 877 

Figure 7. An example of how the forward modeling method identifies all possible 878 

orientations of the Ppv single crystal elastic tensor that fit a particular synthetic dataset. We 879 

show two synthetic datasets of 8 (a) and 4 (b) unique synthetic measurements with 3 SKS, 880 

3 SKKS, 2 ScS measurements and 1 SKS, 2 SKKS, and 1 ScS measurements, respectively. 881 

The last case (c) shows a test with the same 4 synthetic measurements as in (b) but with 882 

Gaussian distributed random error to the predicted fast directions. These projections show 883 

all possible permissible orientations (colored dots) of the Ppv tensor for the given synthetic 884 

dataset plotted as an upper hemispherical projection of the [100], [010], and [001] axes. 885 

The white dots mark local minima, where the magenta dots represent the global minimum. 886 

The magenta dots indicate the global minimum misfit, which should be equal to a non-887 

rotated Ppv (that is, horizontal [100] and [010] axes and vertical [001] axis).  888 

 889 
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Figure 8: Results of synthetic tests that aim to uniquely constrain the starting 890 

model/mechanism, as discussed in section 3.2. Three different sets of tensors were tested, 891 

while three different aspects of the raypath configuration were varied. In (a), each row 892 

shows plots of the probability of uniquely identifying the given starting model (Ppv, Br, 893 

and MgO). Each column represents the variable describing raypath configuration that was 894 

allowed to vary, while the other two were fixed. In the first column, we varied the number 895 

of measurements N, but fixed the SKS ratio (0.67) and tested the full range of possible R 896 

values. In the second column, we varied SKS number but fixed the number of 897 

measurements (N = 9) and tested the full range of possible R values. In the third column, 898 

we varied the angular dispersion R, but fixed the number of measurements and SKS 899 

number (N = 9 and SKS = 0.6). We further tested a range of starting orientations for each 900 

starting model (three for Ppv and Br, two for Fp); the labels (0, 45, 90) refer to the rotation 901 

angle (in degrees) about the [100] axis from the horizontal. In (b), we chose Model A in 902 

Figure 3 as the starting model and tested whether we could uniquely constrain this starting 903 

model using a combination of shear wave splitting and reflection measurements. For this 904 

test, the SKS number was fixed (0.67) and we tested the full range of possible angular 905 

dispersion values. The test shown in (b: left image) compares synthetic datasets with only 906 

shear wave splitting measurements (black line, SS) to those that include splitting plus one 907 

additional reflection measurement for a P and S reflected phase off the D" over a randomly 908 

defined azimuth (gray line, SS+R). The difference in probability between these two raypath 909 

configuration scenarios is shown in right image.  910 

 911 

Figure 9. Results of synthetic tests that aim to uniquely constrain the orientation of 912 

a Ppv starting model, as discussed in section 3.3. In (a), each row shows plots of the 913 
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probability of uniquely identifying the given starting model’s orientation using the 914 

synthetic data, for three different orientations about the [100] axis in the starting model, as 915 

shown in the legend (with the labels 0 and 90, referring to the angle about the [100] axis) 916 

and described in the text. As in Figure 7, each column represents the variable that was 917 

allowed to vary, while the other two were fixed. The second row illustrates the results of 918 

tests that aimed to uniquely constraining the starting model orientation for textured Ppv 919 

models invoking slip on the (010) plane (Walker et al., 2011). For these tests, we 920 

distinguish between scenarios in which we increased the sensitivity (that is, discarded 921 

“unstable” solutions, as described in the text). Tests in which unstable solutions were 922 

discarded (gray line) increased the probability of identifying the orientation of anisotropy 923 

in comparison to retaining unstable solutions (black line). In (b), we show results of tests 924 

of the effect of adding one additional reflection measurement to the shear wave splitting 925 

measurements, using Model A in Figure 3 as the starting model. For these tests, the SKS 926 

number was fixed (0.67) and we tested the full range of possible angular dispersion values. 927 

The test shown in (b: left image) compares synthetic datasets with only shear wave splitting 928 

measurements (black line, SS) to those that include splitting plus one additional reflection 929 

measurement for a P and S reflected phase off the D" over a randomly defined azimuth 930 

(gray line, SS+R). The difference in probability between these two raypath configuration 931 

scenarios is shown at right.  932 

 933 

Figure 10: Results of tests that aimed to uniquely identify the orientation of a single-934 

crystal Ppv starting model, with Gaussian distributed random errors (standard deviation = 935 

9°) incorporated into the synthetic shear wave splitting dataset. In (a), we varied the number 936 

of shear wave splitting measurements and calculated the probabilities of correctly 937 
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retrieving the starting model orientation. In (b), we plot the probability of correctly 938 

identifying the starting orientation for a synthetic dataset with Gaussian error applied based 939 

on an identification of the minimum misfit (as opposed to searching for a unique solution). 940 

In (b), the black line (unique solution, same as in (a)) shows the probability of uniquely 941 

constraining the orientation of the starting model. The other two lines show the probability 942 

of identifying the correct solution within 10° or 20° by using the minimum misfit. 943 

 944 

Figure 11. Map of regions of the lowermost mantle in which the various 945 

measurement methods (SKS [distance range: 108° – 122°], SKKS [108° – 122°], and ScS 946 

[60° – 80°] shear wave splitting and reflection polarities) used in this study could 947 

potentially be applied. We parameterize the D” layer into a 5° by 5° grid. We calculated 948 

raypaths for different seismic phases using TauP (Crotwell et al., 1999) assuming a 250km 949 

thick D” layer. We used a set of seismic stations with simple upper mantle anisotropy 950 

(Lynner and Long, 2013, 2014b) for all events greater than Mw6.5 that occurred in the 951 

time span of deployment for each seismic station for SKS, SKKS, and ScS. For reflection 952 

polarities, we considered only dense arrays openly available: TAMNNET, POLENET, 953 

GAMSEIS, Yellowknife Array, KNET, Southern California Network, GRSN Array, F-954 

Net, USArray (using stations in Alaska), USArray (using stations in Texas), USArray 955 

(using stations in Minnesota), USArray (using stations in New York), USArray (using 956 

stations in South Carolina), and the Pacific Northwest Seismic Network.  957 
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 16 

Figure S1. Schematic diagram showing the definition of angular dispersion (R), with 17 

arrows indicating a direction anywhere from 0° to 360°. Small values of R indicate a wide 18 

distribution of directions, while larger values indicate a tight configuration.  19 

 20 

R = 0 R = 1 R ≈ 0.7



 21 

 22 

Figure S2. Angular dispersion – R – plots of all predicted fast axis directions for SKS (red), 23 

SKKS (orange), SKS and SKKS (violet), and ScS (blue). Equations (2) and (3) from the main text 24 

were used to calculate R; however, since fast axis directions can only vary from -90° to 90°, the 25 

fast axis orientations were adjusted from -90 to 90 to 0 to 360. Angular dispersion is plotted in 26 

terms of the clockwise rotation angle about the [100] axis of (a) post-perovskite (PPV), (b) 27 

bridgmanite (Br), (c) ferropericlase (Fp), and (d) LPO of PPV of the given models, respectively. 28 

Magenta triangles indicate the starting models’ orientations used in the modeling in the main text 29 

as in Figures 8 and 9.  30 
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 32 

 33 

Figure S3. Results of synthetic tests that aim to uniquely constrain the orientation of a Ppv 34 

starting model, as discussed in section 3.3 in the main text, by selecting 9 random the starting 35 

orientations of the Ppv tensor. Each figure illustrates the probability of uniquely identifying the 36 

given starting model’s orientation using the synthetic data, for nine different orientations of Ppv. 37 

As in Figure 7, each column represents the variable that was allowed to vary, while the other two 38 

were fixed. For (a), the SKS number was fixed (0.67). For (b), the number of measurements was 39 

fixed to six. For (c), the number of measurements was fixed to nine measurements and an SKS 40 

number of 0.67. The blue lines in (b) and (c) correlate to the blue line in (a), where the variation 41 

of SKS number and angular dispersion were only tested for one of the starting model orientations.  42 
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Figure S4: Example illustrating the identification of unstable solutions in a test that aimed 49 

to identify the starting orientation of a horizontal textured Ppv LPO. The polar plots show all 50 

possible orientations that fit a given synthetic dataset. The colors represent misfit values. The white 51 

circles mark the minimum misfit of each cluster of possible orientations. The magenta circles show 52 

the correct solution. The orange boxes highlight some of the unstable solutions. Each row 53 

represents a different misfit cutoff. The top row represents the cutoff used in this study (20°). The 54 

second row uses a cutoff of 15° and the third row 10°. With a lower cutoff, the unstable solutions 55 

are eliminated. The bottom elastic tensors on the left show and example of one of the resulting 56 

unstable solution from the orange boxes in the first row. The elastic tensor on the right show the 57 

same tensor but rotated by 5°, which fails the misfit criterion. The magenta lines represent the 58 

measurements used in this simulation. Colors here represent %S wave anisotropy.  59 
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