-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Explore Bristol Research

E% University of
OPEN ACCESS |4 BRISTOL

Purves, T., & Short, T. (2019). Nonclassically causal correlations without
backwards-in-time signaling. Physical Review A, 99(2), [022101].
https.//doi.org/10.1103/PhysRevA.99.022101

Peer reviewed version

Link to published version (if available):
10.1103/PhysRevA.99.022101

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via APS at https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.022101 . Please refer to any applicable
terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published

version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms


https://core.ac.uk/display/195284405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1103/PhysRevA.99.022101
https://doi.org/10.1103/PhysRevA.99.022101
https://research-information.bris.ac.uk/en/publications/nonclassically-causal-correlations-without-backwardsintime-signaling(e8106776-c954-4879-aef1-f11894002101).html
https://research-information.bris.ac.uk/en/publications/nonclassically-causal-correlations-without-backwardsintime-signaling(e8106776-c954-4879-aef1-f11894002101).html

Non-classically causal correlations without backwards in time signalling

Tom Purves and Anthony J. Short
H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, U.K.
(Dated: January 11, 2019)

We investigate the relationship between no backwards in time signalling and classically causal
correlations. We discover that unlike the case for two parties, the no backwards in time signaling
paradigm for three parties is not enough to ensure that correlations can be reproduced with a
classical causal ordering. We demonstrate this with an explicit example. We also generalise some
existing results for linear two-time states to multi-party scenarios.

I. INTRODUCTION

Recently, there has been growing interest in indefinite
causal order in quantum theory [1-7], for which no clas-
sical ordering of events can explain the results. This
may arise for many reasons, for example due to quan-
tum switches (in which the order of two operations is
controlled by a quantum bit) [3, 8, 9], superpositions of
causal order arising from a quantum theory of gravity
[10-12], or post-selection [13-18].

An interesting situation to consider is one in which a
number of parties carry out experiments within individ-
ual laboratories, each of which obeys standard quantum
theory (with a fixed causal order), whilst the connec-
tions between laboratories are more exotic. The most
general object representing such connections is a process
matriz [2, 6, 19-22]. Process matrices can lead to cor-
relations between laboratories which defy any classically
causal explanation, in an analogous way to that in which
Bell-inequality-violating correlations defy local explana-
tion [23].

In a recent paper [18], a particular class of experi-
ments was considered, in which each party performs a
fixed measurement followed by a chosen transformation.
In this scenario, no-backwards-in-time-signalling (NBTS)
correlations are considered, for which each party individ-
ually sees results consistent with the normal flow of time
within their laboratory (i.e. their measurement results
do not depend on which transformation they later per-
formed). This leads to NBT'S-conditions which are anal-
ogous to the spatial no-signalling conditions for Bell-type
scenarios. It was shown for two parties that a connection
between the laboratories involving post-selection satisfies
the NBTS-conditions if and only if it can be represented
by a process matrix (or equivalently a linear two-time
state). In this paper, we extend these results to multiple
parties.

Surprisingly, the correlations that could be obtained in
the two-party NBTS scenario were limited to the classi-
cally causal set, despite the existence of consistent non-
classical possibilities. This raises the interesting question
of whether process matrices always lead to classical cor-
relations in the NBTS-scenario. If this were the case
it could lead to interesting insights about the nature of
quantum causality. In this paper, however, we show that
this is not the case, by giving an explicit counterexample

FIG. 1. A laboratory which obeys the NBTS paradigm. Ex-
perimenters in this lab always make measurements before
transformations.

for three parties.

II. THE NBTS PARADIGM

We first clarify the NBTS scenario. Any protocol that
fits within this framework contains a number of labeled
laboratories, with each laboratory obeying a well defined
procedure. The procedure (illustrated in figure 1) is al-
ways of the form:

1. A system enters laboratory.

2. A fixed measurement of the received system is
made, and the classical result is recorded as an out-
put.

3. A classical input is received. This can be thought
of either as randomly generated, or provided by an
independent external agent.

4. A transformation of the system is made, which may
depend on the received input.

5. The system exists the lab.

If time in the labs is flowing normally we expect that
outputs of the laboratories cannot depend on the inputs.
Considering a single party, the conditional probability



distribution obeyed by her input = and output a therefore
satisfies

p(alz) = p(a) (1)

which we call the NBTS condition [24].

Now consider three parties, Alice, Bob and Charlie,
with each party obeying the NBTS procedure. Alice
gets input x, and outputs a. Bob and Charlie get in-
puts y and z, and output b and ¢ respectively. We expect
the probability distribution for Alice’s output, obtained
by marginalizing p(a, b, c|z,y, z) over Bob and Charlie’s
outputs, to also be independent of her input, because
the NBTS scenario imposes that the generation of out-
put happens strictly before her input. More explicitly,
we expect

palalz,y,2) =Y pla,b,clz,y, 2) (2)
b,c

to be independent of x. Hence;

pA(a‘|xay7Z) :pA(a|x',y7z) EpA(a|y,Z) (3)

for all a,z, 2’ y, z. We also need to same to hold for Bob,
as he should also conclude that there is no backwards in
time signaling. Thus, Bobs marginal distribution should
follow

pp(blr,y, 2) = pp(blz, 2), (4)

and similarly for Charlie,

pc(clz,y, z) = pe(clz,y). (5)

We may describe the permitted probability distribu-
tions as a convex polytope in probability-space [18, 20].
Here we consider the case where all inputs and outputs
are binary for simplicity. For three parties, the situation
is described by the 64 co-ordinates p(a, b, c|z,y, z) for all
possible values of the inputs and outputs. We demand
that our coordinates are probabilities, and as such each
coordinate varies between 0 and 1, and respect normal-
ization,

0 <pla,b,clz,y,z) <1

> pla,b,clz,y, ) = 1.
a,b,c
(6)

We also require that the probability distribution obeys
the NBTS conditions (3)-(5) on each party. This gives
a convex set which we refer to as the NBTS-polytope
(which plays an analogous role to the non-signalling
polytpe in non-locality). We also define a classically
causal polytope that sits within the NBT'S polytope that
contains probabilities that could be achieved classically
(analogous to the local polytope), in which systems can
be represented by classical random variables, and the lab-
oratories are arranged either with a deterministic clas-
sical ordering, or a mixture of such orderings. Deter-
ministic classical strategies will sit at vertices of such a

polytope, and hence it can be generated in vertex repre-
sentation by considering all such classical strategies. For
example, suppose Alice goes first. This means that her
output can only ever be a constant bit, as it occurs be-
fore any input. We can consider a strategy where Alice is
followed by Bob, and then Charlie. An example strategy
of this from is,

1if a=a,b=Bx®46
c=yry@ Az dvyop (7)
0 otherwise

pla,b,clz,y, z) =

where «, 3,7,6, A\, u, v are bits and @& denotes addition
modulo 2. There are also strategies where there is some
freedom to choose the subsequent ordering based on Al-
ice’s input. For example, suppose that Alice’s output
system encodes her input bit, and that when x = 0 the
system is next given to Bob and then Charlie, whereas
when x = 1 the system is given to Charlie then Bob.
Such a strategy is described by the formula

1if a=a,b=p,c=dyd~
0 otherwise

p(a,b,c|0,y,z) = { (8)

1if a=a,c=A\b=vz2dpu

9)

p(a;byelly, 2) = {0 otherwise.
where once again «, 3,7, d, A, p, v are bits. We then con-
struct the full polytope by considering all strategies of
these forms, and constructing the convex hull. We find
by direct computation that there are 560 such vertices,
once redundancies are removed. A facet representation
is computationally hard to determine, and for the scope
of the current paper irrelevant thus has been omitted.

Finally, we also define a quantum set, which again is
analogous to the convex set of the same name in the
non-locality scenario. Strategies within the quantum set
are allowed to use process matrices outside the laborato-
ries and standard quantum theory inside the laboratories.
Hence; the quantum set sits in the middle of the size hi-
erarchy. In [18] it was shown that for the case of two
parties the quantum set and the classically causal poly-
tope are identical in the NBTS scenario. While there
are plenty of exotic ways to wire together two parties,
we find that any resultant physical correlations are no
different to those generated by Alice going first or Bob
going first, or a mixture of the two. We may then ask, is
the NBTS paradigm enough to ensure such a classically
causal description?

In section IV we will show that this is not the case, by
giving an explicit quantum protocol for three parties that
generates an extreme point of the NBTS polytope, that
is strictly not contained within the classical polytope.

III. LINEAR TWO-TIME STATES

In [17] it was shown that any two-party process ma-
trix can be simulated within quantum theory, given the



power of post-selection. In particular, process matrices
correspond to a particular set of pre- and post-selected
states called linear two-time states.

The formalism we use to describe pre- and post-
selected states is developed from [13, 15, 16] and de-
scribed in detail in [17]. Key elements of the formalism
are that all states, measurement operators and channels
are represented as vectors in Hilbert spaces and their dual
spaces, while time evolution is represented in a symmet-
ric way by the connections between these vectors. Differ-
ent vectors can be combined via the e operation, which
connects vectors within a Hilbert space and its dual to
give a scalar (i.e. (1| e|p)* = (1)]¢)), whilst combining
vectors in different Hilbert spaces as a tensor product.
As in relativity, we perform contractions between vectors
with the same label raised and lowered. We call a vector
7 (with labels nﬁigz%'o) a linear two-time state for three
parties if it obeys the relation

pla,b,clx,y,z) = (J(a\x)ﬁj ® K(b\y)gj ® L(c|z)g°> o7

(10)
where J (a|m)ﬁ: represents a standard quantum measure-
ment channel[25] between Alice’s input A; and output A4,
which depends on x and has output a, and similarly for
the other two parties. We note (10) is a linear function
of the state and measurements.

In appendix A we show explicitly that the linear two-
time state and process matrix formalisms are equivalent
for any number of parties; given a process matrix there
will always be a linear two-time state that is isomorphic.
In appendix B we also show that imposing the NBTS
conditions on a pre- and post-selected quantum state for
all choices of the parties’ measurements and transforma-
tions enforces that the state can be represented by a lin-
ear two-time state. These results were shown in [17, 18]
for two parties, but we generalize them to any number of
parties.

IV. THE PROTOCOL

In this section, we construct a tripartite NBTS-
scenario which cannot be explained with a classically
causal strategy. We use the same wiring of the labo-
ratories as that given by Baumeler et al. in [5] to show
that classical process matrices can violate causal inequal-
ities, but a new protocol that respects the NBTS-scenario
and only requires a binary input for each party. Alice,
Bob, and Charlie are sat in their closed labs. Outside of
the labs, they have no idea of how they are connected
together. They each perform the following protocol: At
some point a qubit enters their lab. They first measure
the qubit in the computational basis, then receive a clas-
sical input bit. If this input bit is 0, they pass the qubit
out of the door of their labs, and if it is a 1, they flip the
qubit (by applying the gate X = [0)(1]+1)(0|) and then
pass it out. The action of Alice, whose input and out-
put spaces are labelled by A; and A,, and who received

input x and obtained output a in her measurement, can
be represented by the vectors

M(ae)4e = la® )" ® alal @ ) @ {a®al.
(11)

We denote primitive Hilbert spaces with calligraphic let-
ters, and full Hilbert spaces with Roman labeling, i.e
HA = H* ® H 4+. The laboratories have been wired to-
gether in rather odd way. The labs are connected in a
cyclic fashion, as shown in figure 2, with probability 1/2
that there is an external z basis measurement between
them all. There is also 1/2 probability that they are all
connected with a z basis measurement followed by an X
gate. This can be represented by the two-time state

1 v . B O AL
n:?Mﬁ@A@ﬁMW%+Mﬁ®M&®M&)Qm
where the operators M and M are given as

ME = M(0]0)5 + M(1]0)5 (13)
MB = M©OD)E + Mm(1]1)5. (14)

One may think at first glance that this setup does not re-
spect the NBTS paradigm; it seems like there is a direct
path between Alice’s output and her input. However, a
careful consideration of the scenario shows that a maxi-
mally random state will always enter each of the parties
laboratories, and as such the NBTS conditions are re-
spected. Furthermore, we show in appendix C that 7 is
a linear two-time state, and hence will satisfy the NBTS
conditions regardless of the specific measurements and
transformations used by Alice, Bob and Charlie.

In order to calculate the measurement probabilities for
this scenario, we use (10) to get

pW@mwwﬁﬂMWWﬁ®M®w%®M@@%?%
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Evaluating this expression we arrive at the compact prob-
ability relation

1
p(aa bv C|x7 Y, Z) = 5 (5b,a@méc,b@y5a,c@z + 5b,a€Bi§c,b@Q5a,c®2)
(16)

where we use a bar above a bit to represent its negation
(e.g. T =x®1). This generates the probabilities in table
L.

We note that it carries some interesting relations,
namely we have that:

p(a” b’ c|x’ y’ z) :p(a7 B? E|:E7 y’ Z) = p(a” b’ c|j"’ g7 2) (17)
:p(b7 c7 a|y7 Z’ I) = p(a7 B? C|x7 y7 2)' (18)

We can use these relations to show that this probabil-
ity table cannot be generated by any classically causal
strategy, or affine combination of such strategies. Let p;
be some deterministic classical strategy that could con-
tribute to the affine combination that makes up p, i.e.



FIG. 2. Pictorial representation of the setup that n models. The black lines connecting laboratories represent channels with a
z-basis measurement. The gates labeled X are flip gates. Notice that in the frame of each laboratory the output is produced
before the input is received.

p(a,b, clz,y, 2)

000|001 ]010[100]011]101]110[111

000 [1/2[0 o |o fo [0 [0 [1/2
001 [0 [o [1/2]0 |o [1/2]0 o
010 |0 [o [o [1/2]1/2[0 [o Jo
z,y,2(100 |0 [1/2]0 o Jo [o [1/2]0
011 |o [1/2]0 [o Jo [o [1/2]0
101 (o o [o [1/2[1/2]0 [0 o
110 [0 o [1/2]0 o [1/2]0 o

1t J1/2fo o o o [o lo [1/2

TABLE I. Table of probabilities generated by the protocol.

p = >.; \ibi, with 0 < A < 1. Then, consider a particu-
lar choice of a, b, ¢, z,y, z such that

pi(a,b,c|x,y,z) > 07 (19)

Given that p(a, b, c|z,y, z) > pi(a,b, c|z,y, ), this is only
possible if p(a, b, ¢|x,y, z) = 0.5 (the only non-zero value
in the probability table), which also implies

p(a,b,c|z,y,z) = 0.5 and p(a, b, ¢|lr,y, z) = 0.5.  (20)
Hence, using normalization
p(a, b, clz,y, z) = 0. (21)

The cyclic symmetry may be used to derive similar rela-
tions for the logical not of the other inputs, so that

p(a,b,clx,§,z) =0 and p(a,b,c|lZ,y,z) =0. (22)

Yet, the deterministic classically causal strategy p; has
some party that goes last when the inputs are =, y, z. The
probability distribution must be the same when the last
party’s input is flipped (as it occurs after all outputs).
Hence p;(a, b, c|z,y, z) > 0 implies

pi(aa b, C|J_57 Y, Z) + pi(av b, C|‘T7 Ys Z) + pi(av b, C|l‘, Y, 2) >0,
(23)

as one of the three terms must be positive. This further
implies

pla,b,c|lz,y, z) + pla,b,clz, g, z) + p(a, b, c|lz,y, Z) > 0,
(24)

which creates a contradiction with (21) and (22). Hence
we cannot write p as a mixture of classically causal strate-
gies.

Any distribution in the polytope must satisfy the 20
NBTS equalities and normalization. The remaining con-
straints are all positivity inequalities, which are saturated
when p(a,b,clz,y,z) = 0. The probability distribution
given in Table I contains 48 zeros, corresponding to sat-
urated positivity inequalities. The combination of these
are not all linearly independent, but instead yield 64 lin-
early independent equalities. As the space is 64 dimen-
sional this leads to the point being extremal. The only
way it would be possible to mix two points together to
obtain this distribution would be for them both to violate
the NBTS or normalisation equalities, or for one of them
to violate a saturated positivity condition. However both
of these methods utilize points outside the polytope. It



follows that the distribution produced by the protocol
must be an extreme point of the NBTS set (and also an
extreme point of the quantum set).

V. DISCUSSION AND CONCLUSIONS

We have presented an explicit protocol for three parties
that cannot be realized with any classical causal order,
yet can be implemented with a linear two time state (or
process matrix), or within a more general theory that al-
lows for indefinite causal orderings. It was already known
that protocols of this form were able to violate causal in-
equalities [5], however we have confirmed that there also
exist violations when the individual laboratories obey lo-
cal no-backwards-in-time signalling principles. Moreover,
the correlations we obtain are an extreme point of the
NBTS polytope. This is in stark contrast to the two
party NBTS scenario, where it has been shown that no
such non-classically causal correlations exist. It is inter-
esting to note that the state, measurements and transfor-
mations used in the protocol only involve Z-basis mea-
surements and X-gates, and could therefore be obtained

using classical stochastic processes on a classical linear
two time state (classical process matrix). An interest-
ing question is whether all quantum correlations for the
NBTS scenario can be realised in such a way. In other
words, do the NBTS conditions prevent any particular
quantum advantage?

In this paper, we have focused on the case of indefi-
nite relative timings between the three parties. In [18],
cases in which the timings of two parties are definite are
also considered, and it would be interesting to investigate
these cases further for three or more parties.

Another interesting question is what, if any, addi-
tional constraints or scenarios can be considered beyond
the NBTS case which are sufficient to ensure a classical
causal explanation for any pre- and post-selected quan-
tum procedure?
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Appendix A: Linear Two-Time States and Process Matrices give rise to the same probabilities

We give a general proof that process matrices and linear two time states exist that give the same probabilities.
Furthermore, following [17] we observe a natural isomorphism between process matrices and the linear two-time states.
we begin with the probability rule for process matrices from [19].
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which is equivalent to the probability rule for linear two-time states as quoted in the main text in (10). Furthermore,
note that 7 is ‘positive’ (in the sense required to be a valid two-time state [17]) if and only if W is a positive operator.
The isomorphism between W and 7 is obtained by expressing the former as a vector in the basis chosen for the
transpose and flipping bras and kets on the output spaces.

Appendix B: Connection between linearity of two-time states and the NBTS conditions

To see that a linear two-time state always satisfies the NBTS conditions, note that it is equivalent to a process
matrix. These are defined such that the phenomena inside individual laboratories obeys standard quantum theory
(without post-selection) and thus cannot lead to backwards in time signalling. Alternatively, one can construct a
multiparty analogue of equation (30) in [18] and use a similar argument to that in theorem 2 of [17].

Our task then is to prove that satisfying the NBTS conditions implies that a pre- and post-selected quantum state
can be represent by a linear two-time state, for which we use a multiparty generalisation of the argument in theorem
2 of [17]. We first consider the marginal state of the first party, given by

na, = (TP e 0MN)ey (B1)
where J is the channel for the k’th party summed over their output, which may depend on their input zj, and

could be an arbitrary channel. It was shown in [17] that the only single party marginal states that satisfy NBTS take
the form of a product with the identity operator on the output

na, = (P @ 1) (B2)

)



corresponding to states with no post-selection, or trivial post selection. Hence,
1
(e e, oM en= (1) e(pt oLy
=14 0 ph (B3)

where we have used the fact that for any trace-preserving channel Iz @ J§ = I4. Note that (B3) is independent of
JM and hence does not depend on z;. Using similar arguments for the other parties, (JIM @ ... ® JI) o 7 must

be a constant independent of the channels J! to JIN (and hence independent of all of the inputs z1,...,zy). By
appropriately normalising 1 (which doesn’t cause any physical effects in the two time state formalism) we can obtain
e, . eV en=1 (B4)

for all choices of channels JI!! to JIVI. From the general rule for probabilities in the two time state formalism,

@ . )7(J£ﬁ]®...®JL§}).n
plai,...,an _(J[1]®~--®J[N})'Tl
=le...e0JN)ey (B5)

which is the probability rule given in (10), and thus 7 is a linear two-time state.

Appendix C: Verification that 7 is a Linear Two-Time State

Verifying that 7 is linear two-time state amounts to showing that the relation
(JoK®L)en=1 (C1)

holds for all trace-preserving channels J, K, and L. Given that n contains a z-basis measurement in every link between
parties, it is sufficient to consider only classical stochastic channels for the parties (see Appendix D). For classical bits,
there are a set of four channels that are extreme points of the convex set of classical channels- the identity, the flip
or X gate, and the throw away and replace with 0 and 1 channels. If (C1) holds for these it will hold for any convex
combination of classical channels by linearity. Without loss of generality, consider Alice as the party of interest.

Let J be the identity channel firstly. Then consider

1
-
2

By using the identity channel on Alice to connect and contract the indices this is equal to

(Ifo @ Kpe @ LE) e (MY @ Mg @ M& + MY @ Mg @ M&). (C2)

1 I .
(K5 @ Lgy) o (M e M2 @ Mp! + MY o M2 @ My!). (C3)
We have the relations operationally that MY e M§ = M{ and M e M§ = M§ which gives
1 . v v —C,
(Kpy @ Lco) o 5 (Mg © My! + Mg @ M) (C4)
c 1 N es
=(Kpy @ Lg?) o (Mg @ o (Mg! + Mg)). (C5)

We note that % (Mgo + ]\Z[go) is equivalent to the operation throw away and replace with the maximally mixed state,

i.e. has the operational form Ip, ® %]Ici. Since all the remaining channels are by definition trace preserving they
satisfy I @ J§ =14, so we can move the identity through the state giving

1
2
1 G
=5 (I, ® Lcy) o (Mg ©17)

(Kpe @ LEe) o (ME @1p, @ 19)

1 .
:ng; o (Ig, ® %)

—1. (C6)



We should also confirm this when Alice applies the flip channel;
X5 =108 41| © 1) @ 51 (0] + 1) ® 40] @ (04 ® 1 (1] (C7)
which gives
(Xir @ Kpr @ Lcy) e %(Mf; ® M) © Mg + M © My © Mg)). (C8)
Now we have the relations that X§ e M§ = M{ and X5 ¢ M§ = M§. Then we get
(Kfr @ 1) e 1<M°"' @ NI o M4+ MG @ ME: o M4
= (Kp° @LgJ Ma ® ME + Mg @ ME)

(Mgi + Mg @ ME?)

(Kpe @ L) e (

—~ M\)—‘/—\

(Kpe @ Lg?) e (g, @ 1 @ ME)

1
2
=1

(C9)

By playing the same trick with all other channel types we can recover similar results. For instance the throw away
and replace with zero channel has the operational form

La, ®10)%® 4 (0]. (C10)

the method here can be visualised easily - if we have a circular structure of future preserving channels, we can always
move identity ‘backwards’ around the circle, until it ‘hits’ the prepared state and gives 1. In particular

1 . : : - B, -, — A,

(s, @ [0)® 4 (0] @ K7 @ Lee) o o (M @ Mig: @ MG! + M3 @ Mg: @ ME)

1 . , - B, -,
:(|0>AD®AZ<0|®K§;>®ng).§(Mf;®M§;®HCO+ME;®M§;®HCO)

1 , . - B, =,
= (10)%® 44 (0] © K57 ®1c,) 5 (M @ Mg + M © M)

1 v - B,

= ([0)* @ 44 (0] @ K57) o S (MZ: @1p, + M{ ©1p,)

1 , - B,
a0l ©15,) & S (ME: + M)

(C11)

Hence, the state is a linear two time state for all four extreme classical trace-preserving channels, and thus 7 is a
linear two time state.

Appendix D: Quantum channel between measurements

We observe the fact here that any quantum channel that is sandwiched between two z-measurements is effectively
stochastic, and superposition is destroyed. Consider a quantum channel with Kraus operators Ay, ‘sandwiched’
between two z basis measurements;

M.[E =" 1) Gil Akl il li) (i AL L) (] = Zqﬂm ilpli) (] (D1)

1,5,k

where g;; is equal to

g = 3 (il Akli) (i A1) (D2)

k



qj); is clearly positive and real, being the magnitude of a complex number. We can identify D1 with a classical
stochastic map if the numbers g;|; can be identified with probabilities, which they can be since

D g = DAl ALL) = Y14k ALL) = GIT17) = 1. (D3)

ki k

Thus, any quantum channel for qubits that gets sandwiched between two z-basis measurements can be simulated by
a stochastic channel.



