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Functional programmers have an established tradition of using traversals as a design pattern to work with

recursive data structures. The technique is so prolific that a whole host of libraries have been designed to

help in the task of automatically providing traversals by analysing the generic structure of data types. More

recently, lenses have entered the functional scene and have proved themselves to be a simple and versatile

mechanism for working with product types. They make it easy to focus on the salient parts of a data structure

in a composable and reusable manner.

This paper uses the combination of lenses and traversals to give rise to a library with unprecedented

expressivity and flexibility for querying and modifying complex data structures. Furthermore, since lenses and

traversals are based on the generic shape of data, this information is used to generate code that is as efficient

as hand-optimised versions. The technique leverages the structure of data to produce generic abstractions that

are then eliminated by the standard workhorses of modern functional compilers: inlining and specialisation.

CCS Concepts: • Software and its engineering → Data types and structures; Functional languages;
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1 INTRODUCTION

Traversals are a ubiquitous way of querying and manipulating data. They provide a reliable
interface for working with data types in a structured and predictable manner. An appropriate suite
of traversals is a valuable tool that eases the task of constructing programs that interact with diverse
data. Unfortunately, writing traversals quickly becomes tedious work that requires continuous
curation as code evolves over time. Naturally, our desire is to have our traversals provided for us.
Our goal is to identify a declarative family of useful traversals that is expressive enough for

a wide range of practical programming tasks. Furthermore, we want to completely remove the
burden of writing these traversals by automatically deriving them whenever possible. Not only
that, but we also want to generate code that performs as well as hand-written code.
The most famous existing solution, Scrap Your Boilerplate (SYB) [Lämmel and Peyton Jones

2003], treats this problem by performing run-time type tests to decide which part of the tree to
traverse. This leads to a flexible interface at the expense of performance: the approach is famously
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slow. In this paper we present generic-lens, a Haskell library that provides a suite of traversals
that is both faster and richer than SYB. In essence, we believe that it is time to scrap your SYB.

We are not the first to optimise SYB, and like our predecessors [Adams et al. 2015; Yallop 2017],
we make use of the fact that much of the information required for traversals is statically known,
thereby avoiding dynamic checks at run-time. Our innovation is to work with types and use these to
infer generated code generically in a suitable form for an automatic evaluator to optimise effectively.
By leveraging the static information that is provided by the generic structure of data, we are able
to produce much better generated code. The generic abstraction is eliminated.
To have a taste of the generic-lens library, consider a data type of weighted trees. There are

two type parameters, which correspond to the type of elements and weights in the tree:

data WTree a w = Leaf a

| Fork (WTree a w) (WTree a w)

| WithWeight (WTree a w) w

Suppose the object is to gather all the weights in the tree. The generic-lens library provides a
traversal for this data type called param which takes a type-level integer as an argument. This
allows a traversal to specify which parameter it wants to focus on. Counting from the right the
parameter @0 indicates focus on the 0th parameter, which is w , the weights in the tree.

weights ::WTree Int Int → [Int ]

weights = toListOf (param @0)

The toListOf combinator takes a traversal and turns it into a fold which summarises what it is
focusing on. Applying weights to a tree will then correctly return a list of all the weights, even
though the node values are also integers. Thankfully, if an incorrect index is used, the generic-lens
library produces a bespoke compile-time error to help identify the mistake.

Contributions. The primary contribution of this paper is a demonstration of how guilt-free
generic programming using existing language features can be achieved. More specifically, our
contributions are the following:

(1) We specify a high-level interface for describing a family of useful lenses, prisms, and traversals
in a type-directed manner.

(2) We introduce a technique that allows generic traversals over multiple type parameters.
(3) We outline the implementation of generic-lens, a library that implements this interface

using generics.
(4) We provide benchmarks which demonstrate that generic-lens is as fast as hand-written

code. We also discuss the optimisations which we require a compiler to perform.

The remainder of this paper is structured as follows. Section 2 motivates the use of the generic
lenses and traversals. Section 3 describes the interface that our library generic-lens supplies.
Section 4 gives the background necessary for the implementation of our library. We then move onto
implementing generic traversals that are directed by types in Section 5, by parameters in Section 6,
and by constraints in Section 7. The performance of generic-lens is considered in Section 8 and
we evaluate it with benchmarks in Section 9. Finally, we discuss related work in Section 10, and
conclude in Section 11.

2 TYPE-DIRECTED QUERIES

Suppose you are running a biscuit distribution company. You have customers who place orders for
biscuits which you need to keep track of and process. In addition, you allow customers to prioritise
their biscuit orders, which are then distributed from an entirely separate distribution facility.
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Lenses and Traversals

view :: Lens s t a b → s → a

update :: Lens s t a b → b → s → t

modify :: Lens s t a b → (a → b) → s → t

toListOf :: Traversal s s a a → s → [a]

over :: Traversal s t a b → (a → b) → s → t

traverseOf :: Traversal s t a b → (∀g.Applicative g ⇒ (a → g b) → s → g t)

(◦) :: o1,o2 ∈ {Lens ,Traversal} ⇒ o1 s t c d → o2 c d a b → (o1 ∨o2) s t a b

Generic Lenses

field :: ∀name s t a b. HasField name s t a b ⇒ Lens s t a b

typed :: ∀a s. HasType a s ⇒ Lens s s a a

position :: ∀pos s t a b. HasPosition pos s t a b ⇒ Lens s t a b

super :: ∀sup sub. Subtype sup sub ⇒ Lens sub sub sup sup

Generic Traversals

types_ :: ∀a s. HasTypes s a ⇒ Traversal s s a a

param :: ∀pos s t a b. HasParam pos s t a b ⇒ Traversal s t a b

constraints :: ∀c s t . HasConstraints c s t ⇒

(∀g.Applicative g ⇒ (∀a b.c a b ⇒ a → g b) → s → g t)

Fig. 1. The generic lens and traversal interface to generic-lens

To this end, you implement Item, a data type to represent a type of biscuit, and Invoice, a data
type to represent a single order. It is parameterised by the type of priority that is assigned to the
orders. Finally, Orders, a top-level data structure which contains the normal and priority queues.
The priority queue has an augmented priority field that keeps track of the priority level.

data Item = Item {name :: String, cost :: Cost }

newtype Cost = Cost Double

data Invoice p = Invoice { item :: Item, name :: String, number :: Int , priority :: p}

data Orders = Orders [Invoice Int ] [Invoice (Int ,Double)]

Here is how a Bourbon Biscuit is represented, along with the invoices of some eager biscuit eaters.

bourbon :: Item

bourbon = Item "Bourbon" (Cost 100)

orders = Orders [Invoice bourbon "Earl" 1 0, Invoice bourbon "Johnny" 2 2]

[Invoice bourbon "George" 2 (0, 3)]

Generic queries from generic-lens will now be used to interrogate specific aspects of this data
structure. First a specification by example will be provided before an in-depth explanation in the
next section. The interface of the generic-lens library is summarised in Figure 1.

Starting from the simplest example, field derives a Lens which focuses on a named field in a data
type. The lens field @"name" focuses on the "name" field of an Item. This makes use of visible type
application [Eisenberg et al. 2016] to supply the static argument "name" to field . Once this field
has been focused it can be viewed or updated.
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> ghci> view (field @"name") bourbon

> "Bourbon"

> ghci> update (field @"cost") (Cost 110) bourbon

> Item "Bourbon" (Cost 110)

Why is the in-built record selector not used? For it is not compositional. Lenses can be composed
together using the composition operator ◦ in order to inspect nested fields. For example, finding
the name of an item is achieved by composing the two field lenses like so:

nameOfItem :: Invoice p → String

nameOfItem = view (field @"item" ◦ field @"name")

These lenses are read left-to-right: a lens that finds the field called "item" is applied, followed by a
lens that finds the field "name".

This is all well and good if only nested products are presented but no good at all for modifying
many parts of a data structure at once. As a special thank you to your customers, you wish to
decrease the cost of all invoices. This is achieved with a types traversal which creates a Traversal
that focuses on every part of a data structure with a specific type.

thankYou :: Orders → Orders

thankYou = over (types @Cost) (λ(Cost c) → Cost (c × 0.85))

Later you realise that you only really want to thank your priority customers. In order to do this
the focus must first be restricted to the priority queue before the previous incantation is reused.
The position lens selects the kth field of a data type by its position in the data declaration.

thankYouPriority :: Orders → Orders

thankYouPriority = over (position @2 ◦ types @Cost) (λ(Cost c) → Cost (c × 0.85))

The shows that a lens and a traversal have been composed to get a traversal. A lens is a special
case of a traversal that also allows a value to be extracted by focusing on one item.

Finally, like any good business, you give your customers the choice and opportunity to upgrade
their standard orders to premium orders. In order to do so, an Invoice Int must be modified into an
Invoice (Int ,Double). The param traversal is used in order to modify the 0th type parameter from
the right of Invoice from an Int to a (Int ,Double).

upgrade :: Double → Invoice Int → Invoice (Int ,Double)

upgrade bribe invoice = over (param @0) (λi → (i, bribe)) invoice

The above example highlights how a traversal can change the type of its argument. Traditionally
type changing is difficult to implement in generic traversal frameworks such as SYB.
At the end of the year, your auditors want to see a summary of all the items you have sold this

year. They don’t care whether they were priority orders or not: you just need to extract all the
Items you have sold. The types traversal can be used to focus on all Items in the tree to be extracted:

audit :: Orders → [Item]

audit = toListOf (types @Item)

The toListOf combinator summarises a Traversal by returning all the parts it focuses on.
These examples have demonstrated how it is possible to concisely traverse, modify, inspect, and

analyse the biscuit pipeline. This was made possible by the use of lenses and traversals that are
generically derived from the data types involved. The next section describes the generic combinators
that were used in these examples.
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3 INTERFACE

This section discuss ways of identifying certain parts of algebraic data types using a type-directed
approach. These can be classified into the following three categories, based on the underlying
structure of a data type.

Lenses : Patterns applicable to data types made from products

Prisms : Patterns applicable to data types made from sums

Traversals : Patterns applicable to data types made from sums of products

These abstractions are known together as optics. This paper will concentrate on lenses and traversals.
Prisms follow the same principles so are discussed only briefly.

3.1 Lenses

A lens focuses on one part of a product. The focus can then be viewed and updated whilst the rest
of the structure remains unchanged. A lens l :: Lens s t a b can be read as saying that l is a lens
whose source is of type s, its focus is on a value of type a which when changed to a value of type b
replaces the value of type a in s and produces a product of type t .

A lens can be used in three primitive ways.

view :: Lens s t a b → s → a

update :: Lens s t a b → b → s → t

modify :: Lens s t a b → (a → b) → s → t

Lenses with this interface are already well established [Pickering et al. 2017]. The view operation
extracts a component from its context. The update operation updates a structure. The modify

function is included as a means of efficiently viewing and updating a structure in a single step.
A contribution of this paper is to derive a number of generic lenses. The first consideration is

the ways in which access to different parts of a product data type can be specified. To achieve this
various Lenses that focus on precisely one part of a product are derived.

3.1.1 By name. For a data type with named fields it is possible to specify the lens that focuses
on a field with a certain name. As each field must have a unique name, this provides a way of
specifying a unique field in a larger product. A combinator named field is defined that provides
this lens for all suitable types.

field :: HasField name s t a b ⇒ Lens s t a b

HasField name s t a b instances are derived generically. The constraint means that the type s has a
field called name of type a, and if the field is changed from a to b, a structure of type t is obtained.
To illustrate this, consider a change of the cost field of an Item:

> ghci> modify (field @"cost") (λ(Cost c) → (Cost (c + 5))) bourbon

> Item "Bourbon" (Cost 105)

In this case, the type of the derived instance is the following:

field @"cost" @Item :: Lens Item Item Cost Cost

That is, the type of the Cost field can not be changed within Item ś of course, as it is fixed to be Cost
in Item’s definition. Contrast this with Invoice p: it is parameterised by a type variable. Invoice a
can be changed to Invoice b, as long as inner a can be changed into b.

field @"priority" @(Invoice ) :: Lens (Invoice a) (Invoice b) a b

Accordingly, this version of the lens readily allows type-changing manipulations to be carried out:
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> ghci> modify (field @"priority") (λi → (i, 0)) (Invoice bourbon "Johnny" 2 2)

> Invoice bourbon "Johnny" 2 (2, 0)

A lens focuses on exactly one part of a structure, meaning in this case that it must contain the field
of interest. But what happens if a field that does not exist is requested? A type error is thrown!

> ghci> view (field @"weight") bourbon

> error: * The type Item does not contain a field named weight.

Thus the existence of a field can be statically determined. Notice that the error message generated
by the library is informative and hides away the underlying complexities. The approach not only
provides a pleasant user experience, but also obviates the need for any dynamic checks.

3.1.2 By type. Often it is burdensome to access the fields by name, as it can change over time.
In many cases it does not matter how exactly the subpart can be located, as long as it is uniquely
identified by its type. The typed lens focuses on the unique type in a product.

typed :: HasType a s ⇒ Lens s s a a

For example, Item has one Cost field so the typed lens can be used to update and modify it.

> ghci> update (typed @Cost) (Cost 200) bourbon

> Item "Bourbon" (Cost 200)

Often in practice, the type of interest can even be inferred from the context, and does not need to
be specified explicitly. For example:

> ghci> modify typed ("Chocolate "++) bourbon

> Item "Chocolate Bourbon" (Cost 100)

It is clear that appending text requires a String, and therefore typed knows which field to select. As
expected, requesting a lens for a type not contained in the product yields a type error.

The typed lens is monomorphic as it is complicated to specify precisely when it is safe to change
the type. For instance, the target could be łlostž if the field’s type is changed to something already
present in the structure, as this type would no longer be uniquely identifiable. These complications
do not arise for the field and position lenses.

3.1.3 By position. Not all product types have named fields. For example, consider Orders: it
contains no named fields, yet it may still be desirable to restrict attention to either the first or
second order queue. In this case fields can be referred to positionally.

position :: HasPosition pos s t a b ⇒ Lens s t a b

Indexed from 1, the position lens focuses on the kth field in a product. HasPosition instances are
derived generically for all product types.

> ghci> view (position @2) orders

> [Invoice bourbon "George" 2 (0, 3)]

Trying to access an łout of boundsž element results in a type error:

> ghci> view (position @3) orders

> error: * The type Orders does not contain a field at position 3

This lens works equally well for any product data type including in-built types such as tuples.
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3.1.4 By structure. Finally, the super lens generalises the field lens to focus on a collection of
fields rather than just one. The Subtype sup sub constraint holds if the data type sub contains all
the fields labels (with the same types) as sup contains.

super :: Subtype sup sub ⇒ Lens sub sub sup sup

Consider a new data type WeighedItem which adds a new weight field to Item so the postage
cost for orders can be calculated. The super lens will be used to extract a value of type Item from
WeighedItem. As such, WeighedItem is a subtype of Item as it contains all the fields which Item

contains. Thus super @Item @WeighedItem :: Lens WeighedItem WeighedItem Item Item.

newtype Weight = Weight Double

data WeighedItem = WItem {name :: String, cost :: Cost ,weight ::Weight }

Now super can be used to modify several fields at once.

> ghci> view (super @Item) (WItem "Bourbon" (Cost 2000) (Weight 0.03))

> Item "Bourbon" (Cost 2000)

> ghci> update (super @Item) bourbon (WItem "Bourbon+" (Cost 500) (Weight 0.03))

> WItem "Bourbon" (Cost 100) (Weight 0.03)

This kind of lens is particularly useful in data processing pipelines where additional steps add
computed fields to a data type.

3.2 Prisms

Prisms are the dual to lenses: while a lens focuses on one part of a product, a prism focuses on one
part of a sum. As such, the focused value might not be present. Prisms can be used in the other way;
they can construct the sum by injecting in the focused part. Prisms for data types which are made
from sums can be derived. A prism p :: Prism s t a b consumes values of type s and, supposing an a

can be turned into a b, it produces values of type t .

match :: Prism s t a b → s → Either t a

build :: Prism s t a b → b → t

Since prisms behave similarly to lenses, they are described only briefly in this section to give an
intuition of their use. The remainder of the paper focuses on lenses and traversals.
Consider a simple sum type D that makes use of the sum of constructors:

data D = DInt Int | DPair Bool String

As with lenses, three different ways of deriving prisms for sum types are provided.

3.2.1 By name. The _Ctor prism selects a constructor by its name.

_Ctor :: AsConstructor name s t a b ⇒ Prism s t a b

> ghci> match (_Ctor @"DInt") (DInt 1)

> Right 1
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3.2.2 By type. The _Typed prism selects a constructor by the type inside the constructor. Con-
structors that contain multiple values are viewed as a tuple of those values.

_Typed :: AsType s a ⇒ Prism s s a a

> ghci> build _Typed (False, "wurble") :: D

> DPair False "wurble"

3.2.3 By structure. The _Sub prism allows a substructure to be injected into a superstructure.

_Sub :: AsSubtype sub sup ⇒ Prism sup sup sub sub

A sum Sub is a subtype of another sum Sup if a value of Sub can be given (modulo naming of
constructors) whenever a value of Sup is expected. Consider the data type E , a supertype of D:

data E = EInt Int | EPair Bool String | EChar Char

The parameter _Sub @D is used to pattern match on values of E as if they were D (in this case a
failure as D has no corresponding Char constructor):

> ghci> match (_Sub @D) (EChar ’a’)

> Left (EChar ’a’)

Or in the other direction, build values of E from D:

> ghci> build _Sub (DInt 10) :: E

> EInt 10

The combination of prisms and lenses make for an extremely powerful and versatile querying
language when combined with traversals, which are discussed next.

3.3 Traversals

For algebraic data types (i.e. those constructed using a combination of sums and products), traversals
are derived. A traversal written Traversal s t a bwalks over a value of type s, modifying all as into bs,
resulting in a value of type t . For example, imagine a traversal tree :: Traversal (Tree a) (Tree b) a b

that focuses on all the elements in a tree. While the most general combinator is traverseOf , the
specialisations over and toListOf which modify and summarise will usually be used instead.

over :: Traversal s t a b → (a → b) → s → t

toListOf :: Traversal s s a a → s → [a]

traverseOf :: Traversal s t a b → (∀g.Applicative g ⇒ (a → g b) → s → g t)

The different traversals that can be generically derived are now described.

3.3.1 By type. The types function allows all values of a given type in a data type to be traversed.

types :: HasTypes s a ⇒ Traversal s s a a

Recalling an example introduced in the previous section, types @Cost generates a traversal that
considers all values of type Cost wherever they are located in a structure. This can be used to
uniformly modify all the costs in a data structure.

costInc :: HasTypes t Cost ⇒ t → t

costInc = over (types @Cost) (λ(Cost c) → Cost (c + 5))

By using the types combinator, it is not necessary to spell out the recursion over Orders. Further-
more, the function costInc is polymorphic and will work for any data structure containing costs.
For similar reasons to the typed lens, the types traversal is monomorphic and can not change types.
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However, there is a danger lurking in the shadows: when using types, a type that is too general
must be avoided. Consider the running example again where only the priorities of a normal invoice
are to be modified. A first attempt might be:

modifyPriority :: (Int → Int) → Invoice Int → Invoice Int

modifyPriority = over (types @Int)

This will have have unexpected consequences as there are other values of type Int in the Invoices,
namely the order number. The modification function will also unfortunately update all of those
as well. The tree contains many Ints used in different ways. For this reason, the types combinator
should be used with care. The programmer must maintain good type discipline to avoid semantically
different types being traversed together. This is because the way modifyPriority was specified did
not quite reflect what was actually meant. The intention is to update only the Ints that are in the
priority positions. A type-based query is insufficient here because it cannot distinguish between
uses of Int . This problem did not exist for the lens version, because that requires the type to appear
exactly once, avoiding such clashes.

3.3.2 By parameter. In the previous example, the intention was to select only the values in the
priority fields, or in other words, those that correspond to the p type parameter. To solve this the
library provides traversals that are defined over a specific type parameter. Positional indexing is
used to refer to the type parameter of interest.

param :: HasParam pos s t a b ⇒ Traversal s t a b

Numbering starts from the outside, meaning that the last parameter has the index 0. Trying to
access an out of bounds type parameter results in a type error. Using param, the modifyPriority

function can be revised:

treeIncParam :: HasParam 0 s s Int Int ⇒ s → s

treeIncParam = over (param @0) (+1)

This revised definition now properly distinguishes between the different Ints in the Invoices.

3.3.3 By constraint. The most general type of traversal is the constrained traversal. A constrained
traversal focuses on all positions in a data type. It does this by requiring that that the types in all
positions satisfy a constraint, and then uniformly applies a function in terms of this constraint to
all fields.
A constrained traversal thus has the following type:

constraints :: HasConstraints c s t ⇒ Applicative g ⇒ (∀a b.c a b ⇒ a → g b) → s → g t

The user can instantiate the traversal to any type class of their choosing, thereby specifying
the traversal strategy. The traversing function has to be one that only has knowledge of what
information is available in the class c. Via the ad-hoc overloading mechanism of type classes, the
function is instantiated to the version specified for each field in s.

There are many choices to which c could be instantiated. In fact, it is the most general traversal
and subsumes the two other traversals that have been discussed. Users might also decide to
instantiate c to a constraint based on Data or Generic in order to specify dynamically how each field
is processed. The constraints traversal just provides a framework whilst the constraint determines
how to deal precisely with each subpart.
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3.4 Composition

The final ingredient is an overloaded composition operator ◦which can be used to compose together
any combination of lenses, prisms and traversals.
The type of this operator can be thought of abstractly as

(◦) :: o1,o2 ∈ {Lens ,Traversal} ⇒ o1 s t c d → o2 c d a b → (o1 ∨o2) s t a b

The join operation is specified by defining a Traversal to be above a Lens. The composition operator
is presented in this way as in the full generality there are more components (such as prisms) to the
hierarchy [Pickering et al. 2017]. The intuition is that a lens is a special case of a traversal where
there is exactly one focused element. Being more restrictive allows lenses to support the additional
operations of viewing that traversals do not support.

Summary. This section has described the various widgets that allow values to be traversed,
modified, and inspected using generic lenses and traversals. These operations form an interface for
the generic-lens library, which is summarised in Figure 1.

4 BACKGROUND: LENSES, TRAVERSALS, AND GENERICS

This section begins to describe an efficient implementation of the interface found in Figure 1, while
introducing the necessary background that is the foundation for generic traversals.

4.1 Lenses and Traversals

The concrete representations of Lens and Traversal and the associated operators are described first,
before explaining the implementation of the different derived lenses and traversals.

Lenses. The representation of lenses used is the van Laarhoven representation [van Laarhoven
2009]. A van Laarhoven lens is a function of the following type:

type Lens s t a b = ∀f .Functor f ⇒ (a → f b) → (s → f t)

The view and update functions are implemented as required by the interface by suitably instantiating
f to the Const and Identity functor respectively [McBride and Paterson 2008].

view :: Lens s t a b → s → a

view l = getConst · l Const

update :: Lens s t a b → b → s → t

update l b = runIdentity · l (const (Identity b))

Traversals. The van Laarhoven representation is also convenient as the type is similar to that of
traversals. The type Traversal s t a b is implemented with functions of the following type:

type Traversal s t a b = ∀f .Applicative f ⇒ (a → f b) → (s → f t)

Again, the interface is implemented by instantiating the applicative f to Identity and Const , which
provides the correct specialisation to implement the functions.

over :: Traversal s t a b → (a → b) → s → t
over t f = runIdentity · t (Identity · f )

toListOf :: Traversal s s a a → s → [a]

toListOf t = getConst · t (Const · singleton)

traverseOf :: Traversal s t a b → (∀g.Applicative g ⇒ (a → g b) → s → g t)

traverseOf = id

singleton :: a → [a]

singleton x = [x ]
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Additional justification for this representation is not provided in this paper as it has been exten-
sively studied elsewhere [Bird et al. 2013; Jaskelioff and O’Connor 2015; O’Connor 2011]. In any
case, the choice is not crucial to this work. Instead, the same techniques could be applied to the
profunctor [Pickering et al. 2017] and other encodings.

Composition. With this representation, ◦ simply becomes composition:

(◦) :: Lens s t c d → Lens c d a b → Lens s t a b

(◦) = (·)

In order to make lenses and traversals compose, a lens composed with a traversal must result in a
traversal. This is easy to observe as the type of a Traversal is more constrained than that of a Lens
because Functor is a superclass of Applicative.

4.2 Generic Programming

Datatype-generic programming allows data types to be decomposed into their constituent parts,
which are shown below:

data f :+: g = L f | R g

data f :×: g = f :×: g

newtype K a = K a

data V

data U = U

newtype M (m ::Meta) a = M a

data Meta = MetaData Symbol

| MetaCons Symbol

| MetaSel (Maybe Symbol)

This is a sum-of-products representation similar to that proposed by Hinze [2000]. Algebraic data
types can be uniformly viewed in this way: choice between constructor variants is encoded as
(potentially nested) binary sums (:+:). A single field of type a inside a constructor is stored as
K a; multiple fields are collected in (potentially nested) binary products (:×:). Datatypes with no
constructors are represented by V , and constructors with no fields by U.

Additional metadata (name of the datatype, names of constructors, and (optional) names of fields)
can be attached to the nodes viaM. Themeta constructorMmakes use of datatype promotion [Yorgey
et al. 2012], which allowsMeta’s constructors to be used in a type context. In general, promotion
allows data types like Meta and Bool to be used as kinds.
The isomorphism between concrete types and their sum-of-products view is witnessed by an

instance of the Generic type class:

class Generic a where

type family Rep a ::⋆

from :: a → Rep a

to :: Rep a → a

As the type of the generic view is different for each type, Generic associates the concrete type and
their representation type via the Rep type family [Chakravarty et al. 2005]. Writing these instances
is laborious, but straightforward. The Glasgow Haskell Compiler (GHC) provides built-in support
for deriving these instances [Magalhães et al. 2010]. In practice, this requires a deriving Generic

clause to be appended to the data definitions: this is omitted in the presentation.
Now consider the following definition of linked lists:

data List a = Empty | Cons a (List a)

The generic view of List Int has the type
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Rep (List Int) ≡ M (′MetaData "List") (M (′MetaCons "Empty") U

:+:M (′MetaCons "Cons") (M (′MetaSel ′Nothing) (K Int)

:×:M (′MetaSel ′Nothing) (K (List Int))))

Reflecting the algebraic structure of List Int to the type-level in this way allows the shape and
metadata of the type to be statically introspected. Using this information allows safe and optimal
transformations to be derived without having to write boilerplate code.

5 GENERIC TRAVERSALS WITH TYPES

Now that the basic parts of the interface have been implemented, the next task is deriving interesting
traversals. Traversals are given special attention since the principles for deriving lenses are the
same.
The principle of the implementation is simple. In order to generate an optic for a specific data

type, it is converted to its generic representation using from :: Generic a ⇒ a → Rep a. The
type family Rep turns a type into the type of its generic representation. The type of its generic
representation directly corresponds to the structure of the generic representation.
In order to implement a function that consumes the generic representation, a type class must

be defined for the desired function to be implemented, followed by a type class instance for each
clause of the function. Thus, a separate case will be defined to deal with empty types, products,
sums and so on.

There are two complexities that must be considered in the implementation. First, is establishing
whether or not access to a specific value at the leaves of a data structure is desired. The second
complexity in the implementation is maintaining good type-inference behaviour. To give a sense of
how these complexities are dealt with, the implementation of the types traversal is first described,
followed by an outline of how type inference works.

Implementing types. The first focus is on how traversals are implemented using this machinery.
As a reminder, the types traversal is indexed by a type, and it provides access to all subparts of a
structure that have the specified type. This section implements a naive first attempt at types with
deficiencies that will be addressed later on.
First, a type class HasTypes_ s t a b is created, which represents that s contains some (zero

or more) values of type a, and changing these as into bs results in a structure of type t . The sole
member of this type class is the types_ combinator.

class HasTypes_ s t a b where

types_ :: Traversal s t a b

HasTypes_ is the abstract interface that is going to be instantiated by induction over the generic
view. Matching on individual cases is done using the auxiliary type class GHasTypes s t a b. Then
each type whose generic representation admits a GHasTypes instance has a HasTypes_ instance
itself derivable via the isomorphism.

class GHasTypes s t a b where

gtypes :: Traversal s t a b

instance (GHasTypes (Rep s) (Rep t) a b,Generic s,Generic t)

⇒ HasTypes_ s t a b where

types_ = isoRep · gtypes
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Where isoRep is a lens that views a value as its (isomorphic) generic representation by using the
methods from the Generic type class. Changes made on the generic representations are reflected
on the original type, including changes of types.

isoRep :: (Generic s,Generic t) ⇒ Lens s t (Rep s) (Rep t)

isoRep f = fmap to · f · from

The above instance is defined for all types, meaning that all types queries require s and t to have a
Generic instance, as per the constraints. However, certain types do not admit a Generic instance,
namely the non-algebraic primitive types. For these, overlapping instances are defined that are
picked instead of the general one above.

instance HasTypes_ Char Char a b where

types_ = pure

The code above shows the instance for Char , and is similar for other primitive types such as Double,
Float , Int , and Integer . Given that these types are not actually containers, they can not possibly
contain any interesting values, thus their traversal is defined as the no-op pure.
Additionally, the isoK and isoM lenses are defined, which focus on the value inside the K node

and the generic structure wrapped by metadata nodes respectively.

isoK :: Lens (K a) (K b) a b

isoK f s = K ⟨$⟩ f (unK s)

isoM :: Lens (M m s) (M m t) s t

isoM f s = M ⟨$⟩ f (unM s)

The generic cases are now dealt with one-by-one. As the types traversal is oblivious to metadata
such as constructor names, gtypes simply skips over these.

instance GHasTypes s t a b ⇒ GHasTypes (M m s) (M m t) a b where

gtypes = isoM · gtypes

Next, sums are handled, which correspond to the constructors of a datatype. Since the aim is to
discover every node in the structure, the function gtypes is recursively called on whichever case
alternative is present. The constraints GHasTypes l1 l2 a b and GHasTypes r1 r2 a b ensure that
both cases can indeed be traversed.

instance (GHasTypes l1 l2 a b,GHasTypes r1 r2 a b)

⇒ GHasTypes (l1 :+: r1) (l2 :+: r2) a b where

gtypes f (L l) = L ⟨$⟩ gtypes f l

gtypes f (R r) = R ⟨$⟩ gtypes f r

Products are treated similarly: both left and right trees are traversed, looking for as.

instance (GHasTypes l1 l2 a b,GHasTypes r1 r2 a b)

⇒ GHasTypes (l1 :×: r1) (l2 :×: r2) a b where

gtypes f (l :×: r) = (:×:) ⟨$⟩ gtypes f l ⟨∗⟩ gtypes f r

Now the interesting case ś that is, when a field of type a is encountered. In this case the search can
be stopped with focus on this leaf node.

instance GHasTypes (K a) (K b) a b where

gtypes = isoK

What if the leaf is not actually the desired type, but something else? In the case of a shallow traversal,
this is where the traversal would stop. Given that these traversals are deep, the search continues
further to see if this leaf contains any more values of type a, by recursively invoking a HasTypes_
constraint, and the corresponding types_ traversal, now for the leaf. Note that this instance is
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overlapped by the previous one, as it is strictly more general than the previous case, and it is picked
when the above does not match.

instance HasTypes_ s t a b ⇒ GHasTypes (K s) (K t) a b where

gtypes = isoK · types_

When the leaves are primitives this process stops, since their HasTypes_ instance is pure.
Two cases remain: U, when the field contains no value at all (isomorphic to unit), and V , which

corresponds to types with no constructors. Both of these are just skipped.

instance GHasTypes U U a b where

gtypes = pure

instance GHasTypes V V a b where

gtypes = pure

All cases have now been covered, but care is required; the two overlapping instances for the K
cases can lead to surprising results when the query is changing types. Consider the type IntPair :

data IntPair a = IntPair Int a

As expected, updating the Ints in an IntPair Int updates both the monomorphic value, and the field
corresponding to the type variable:

> ghci> over types_ ((+10) :: Int → Int) (IntPair 1 (2 :: Int)) :: IntPair Int

> IntPair 11 12

However, when a function that changes the types is mapped, the monomorphic Int is left alone:

> ghci> over types_ (show :: Int → String) (IntPair 1 (2 :: Int)) :: IntPair String

> IntPair 1 "2"

While technically the correct behaviour, it is rather confusing. Therefore this combinator is restricted
to only allow monomorphic updates.

type HasTypes s a = HasTypes_ s s a a

types :: ∀a s.HasTypes s a ⇒ Traversal s s a a

types = types_

Another thing to note is the abundance of explicit type annotations in the above examples. The
promise of type inference is that the type of functions can be inferred from their use without
providing type signatures.
However, here the type really is an input to the function, as it determines the nature of the

traversal. The type abstraction ∀a can be instantiated using visible type applications [Eisenberg
et al. 2016] to provide hints to the compiler. This allows the much more concise form of application:

> ghci> over (types @Int) (+10) (IntPair 1 (2 :: Int))

> IntPair 11 12

Note that the order in which type variables are quantified for types has been carefully chosen: it is
much more common to provide the targeted type than the structure’s type.

5.1 More Efficient Traversals

Let us now evaluate our traversal so far. Consider the following simple datatype:

data T = MkT Int String (Maybe Bool)

Suppose that the task is to collect all the Int values in a given T into a list, as follows:

> ghci> toListOf (types @Int) (MkT 10 "a long string" (Just True))

> [10]
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Clearly, the only interesting field is the first one. At runtime, there is no need to inspect either the
String field or the Maybe Bool field. However, our naive implementation does inspect both. Worse,
it traverses the whole string, character by character! In theMaybe Bool case, the compiler’s inliner
comes to the rescue: by inlining the traversal’s definition sufficiently many times, it is able to tell
that only the pure function is ever called, thus the whole field can be skipped.
The bigger problem is the string as the String type in Haskell is defined as a linked list of

characters, the generated traversal is recursive. As such, there is no hope that the inliner could
ever work out that this traversal is fruitless. For large types that contain many recursive subparts,
the performance penalty is significant.

Interesting types. In order to avoid this penalty at runtime, the subparts that need to be traversed
must be identified at compile-time; we call these subparts łinterestingž. A type is interesting if it
immediately contains the queried type or it contains other interesting types. Crucially, a mutually
recursive group that does not contain the queried type need not be traversed at runtime ś our
predicate aims to filter out precisely these cases.
This section proceeds by defining the łinterestingž predicate inductively on the type of the

generic structure. To express this type-level computation, the Interesting closed type family is used.
Closed type families [Eisenberg et al. 2014] comprise an ordered set of potentially overlapping type
equations.
The first two arguments are the generic structure and the queried type. The third argument

keeps a list of already seen types. This is to break loops in case of (mutually) recursive types.

type family Interesting (rep ::⋆) (a ::⋆) (seen :: [⋆]) :: Bool where

Interesting (l :+: r) t seen = Interesting l t seen ∨ Interesting r t seen

Interesting (l :×: r) t seen = Interesting l t seen ∨ Interesting r t seen

Interesting (K t) t seen = ′True

Interesting (K Char) =
′False

…

Interesting (K Word) =
′False

Interesting (K r) t seen = InterestingUnless (Elem r seen) (Rep r) t (r ′ : seen)

Interesting (M f ) t seen = Interesting f t seen

Interesting =
′False

type family InterestingUnless (s :: Bool) f (a ::⋆) (seen :: [⋆]) :: Bool where

InterestingUnless ′True =
′False

InterestingUnless ′False f a seen = Interesting f a seen

In addition to overlapping equations, two properties of closed type families are used:

(1) Pattern matching on members of the open type universe ⋆ (in the rep argument). This is not
essential in our work since an inductive universe for the generic constructors could have
been defined.

(2) Non-linear patterns: the pattern Interesting (K t) t seen matches when the type of the field
matches the query.

Most of the cases are self-explanatory. For :+: and :×: nodes, a requirement is that either branch
is interesting. Fields are interesting when their type matches the query. Otherwise, for primitive
types such as Char the search stops. The rest of the fields are inspected further, as they might
contain the query. Their inspection is done by recursively invoking the Interesting predicate on
their representation type. Elem r seen is a predicate that returns true when the field r is already in
the seen set. This recursive branch could be written as
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Interesting (K r) t seen = If (Elem r seen) ′False (Interesting (Rep r) t (r ′ : seen))

However, type families are eagerly evaluated [Vytiniotis et al. 2011], so both branches of If are
evaluated. This would be disastrous, as without the seen predicate, the recursive branch would
diverge for mutually recursive groups. Instead, InterestingUnless is implemented to encode the
conditional and ensure that the recursive case is only evaluated for fields not visited already.

The implementation of types is now refined by using Interesting to eliminate unnecessary runtime
traversals. An auxiliary class, HasTypesOpt , is introduced, which is indexed by a boolean flag:
whether to inspect its argument or not.

class HasTypesOpt (i :: Bool) s t a b where

typesOpt :: Traversal s t a b

instance (Generic s,Generic t ,GHasTypes (Rep s) (Rep t) a b)

⇒ HasTypesOpt ′True s t a b where

typesOpt = isoRep · gtypes

instance HasTypesOpt ′False s s a b where

typesOpt = pure

The default HasTypes_ instance is revised by dispatching to the helper HasTypesOpt with the flag
set to the Interesting predicate applied to the structure.

instance (Generic s,Generic t ,HasTypesOpt (Interesting (Rep s) a ′[s ]) s t a b)

⇒ HasTypes_ s t a b where

types_ = typesOpt @(Interesting (Rep s) a ′[s ])

Now depending on the result of computing Interesting for this type, the traversal will either stop or
carry on recursively if more vales should be traversed. This saves unnecessary work from being
performed as was the case in the example of traversing T .
The approach outlined above works for many polymorphic recursive data types, but has its

limitations. Consider the type of perfectly balanced trees:

data Perfect a = Single a | Balanced (Perfect (a, a))

This can be considered to be divergent polymorphic recursion in the sense that the type changes at
every level, and that no finite fix point can be found. To tackle such cases it is worth considering
augmenting the predicate with a number that acts as a depth bound.

6 GENERIC TRAVERSALS WITH PARAMETERS

The implementation of the param traversal which focuses on all values corresponding to a type
parameter is discussed in this section. The motivation is to derive a traversal which is able to change
the type of the elements in a container. Recall that for types this was disallowed as the behaviour
of the traversal is not easy to specify. On the other hand, param doesn’t have this problem as only
the necessary positions are changed in order to change the type of a parameter.
Implementing param poses a number of new challenges:

Locating parameters The traversal must distinguish between values that correspond to the
queried type parameter, and values that were monomorphically defined (or correspond to
other parameters). Even (and especially) when the query is not type-changing, it must not
confuse a monomorphic Int with a type parameter instantiated to Int .

Multiple parameters It is important that param works for any number of type parameters,
as opposed to the special case where there is just one.
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Type inference When specifying a type-changing traversal, it is important to infer how the
type of the structure will change.

Our solution to these problems uses only the Generic class and a set of type-level algorithms.
Previous approaches [Magalhães et al. 2010] extended the generic representation to allow working
with a single type parameter, but our approach is more flexible and uses existing machinery.

6.1 Locating Parameters

We first tackle the problems of locating parameters and dealing with multiple parameters simul-
taneously. The type family Rep in the Generic class takes as argument a type with kind ⋆. This
means that it must be called on type constructors that are fully saturated.

Recall the Invoice a type from our biscuit factory. When in the normal queue case it is instantiated
to Invoice Int , Rep is unable to distinguish between the priority and number fields by their types, as
both are Ints, since Rep (Invoice Int) ≡ K Item :×:K String :×:K Int :×:K Int . In order to implement
param the two must be somehow distinct.

To solve this, each type parameter is tagged with a unique index, corresponding to the parameter’s
position in the original type. The position of each type parameter can then be tracked in the generic
representation. The Param newtype wraps a value of type a. It is indexed by a type-level natural
representing which parameter it corresponds to.

newtype Param (i :: Nat) a = Param {unParam :: a}

Then, given any concrete instantiation of a type, its type parameters are iterated through and
wrapped in Param constructors with increasing indices. The Index type family does that.

type family Index (t :: k) (i :: Nat) :: k where

Index (t a) i = Index t (i + 1) (Param i a)

Index t = t

This conversion allows us to track the parameters:

Index (Invoice Int) 0 ≡ Invoice (Param 0 Int)

Index (Either Int String) 0 ≡ Either (Param 1 Int) (Param 0 String)

Note that numbering starts at the last parameter, as it is the outermost one. With the new indexing
in place, determining the origin of types in the generic representation is no longer a problem. If the
type is wrapped in a Param constructor, it was a type parameter, otherwise it was an ordinary field.

Rep (Index (Invoice Int) 0) ≡ K Item :×: K String :×: K Int :×: K (Param 0 Int)

Only one problem remains: the functions to and from operate on Rep a. to :: Rep a → a ś how is
this turned into Rep (Index a 0) → a? Rep (Index a 0) extends Rep a by wrapping certain fields
in the Param newtype. Newtype wrappers have no runtime representation, which means that
Rep (Index a 0) and Rep a are representationally equal: they are the same at runtime. This means
that they can be safely coerced [Breitner et al. 2014].

The GenericN class can be thought of as an extension of the Generic class, whose toN and fromN

functions take care of the coercions, by requiring that Rep a and RepN a are indeed coercible.

class (Coercible (Rep a) (RepN a),

Generic a) ⇒ GenericN (a ::⋆) where

type RepN a ::⋆

toN :: RepN a → a

fromN :: a → RepN a

instance (Coercible (Rep a) (RepN a),

Generic a) ⇒ GenericN a where

type RepN a = Rep (Index a 0)

toN = coerce (to @a)

fromN = coerce (from @a)

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 85. Publication date: September 2018.



85:18 Csongor Kiss, Matthew Pickering, and Nicolas Wu

To reflect, the first two difficulties have been taken care of. By using the Index type family to label
each of the parameter positions, it is possible to keep track of which fields arise from parameters
and which ones do not. This also works for any number of parameters.

Once this information has been identified, notice that the problem of traversing the ith parameter
can be formulated as a typed traversal of Param i a over the Indexed view of the structure. The
implementation of the param traversal is thus:

instance (GenericN s,GenericN t ,GHasTypes (RepN s) (RepN t) (Param i a) (Param i b))

⇒ HasParam i s t a b where

param = isoRepN · gtypes · paramIso @i

Here, paramIso is the lens that focuses on the values by forgetting the Param i wrapper.

paramIso :: ∀i a b.Lens (Param i a) (Param i b) a b

paramIso f p = Param ⟨$⟩ f (unParam p)

The function isoRepN is analogous to isoRep, but for the new RepN representation.

isoRepN :: (GenericN s,GenericN t) ⇒ Lens s t (RepN s) (RepN t)

isoRepN f s = toN ⟨$⟩ f (fromN s)

Now we turn to the problem of improving type inference for our type changing traversals.

6.2 Type Inference

The four parameters of Traversal s t a b have interesting connections, and even from partial
information the rest can be inferred. More formally, the HasParam i s t a b class is defined with a
single function, param :: Traversal s t a b, which describes the traversal of the ith type parameter,
a, of s. t is the result of changing the ith parameter of s to b.

class HasParam (i :: Nat) s t a b | i s b → t , i s → a, i t a → s, i t → b where

param :: Traversal s t a b

In order to resolve which instance of HasParam to use, the types of all five type parameters must
be known. The user is expected to provide i by using type applications but the other four can be
inferred in different situations.

The four functional dependencies [Sulzmann et al. 2007] each specify what type information can
be inferred if some of the types are known. They act as a specification as to what relationship must
hold between the type variables in each instance.

i s b → t The source type and modification function are known. Then the target type t can be
uniquely determined. This ensures that if i is provided as a type argument and the traversal
is fully applied, then the result type can be inferred.

i s → a From a position and the source type only, the type of the parameter at that position
can be uniquely determined.

i t a → s The result type and modification function are known. Then the source type s can be
uniquely determined. This dependency helps traversals to be composed together where there
would otherwise be ambiguous type variables in the middle of the composition.

i t → b From a position and the target type only, the type of the parameter at that position can
be uniquely determined.

Without these functional dependencies it would be very difficult to use these optics without
explicitly writing type signatures.
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Now, the instance forHasParamwhich was defined above must be modified in order to implement
the stated functional dependencies. The way that we prove to the compiler that each functional
dependency holds is by defining a type family which witnesses each assertion.
There are two kind of dependencies: i s → a and i t → b both get the parameter at index i,

while i s b → t and i t a → s both set it. In order to assign an operational meaning to these
functional dependencies, two type families are defined that express the getting and the setting
relations respectively. First, GetParam peels off the parameters of its argument one by one until it
reaches the ith.

type family GetParam (t :: k) (i :: Nat) ::⋆where

GetParam (t a) 0 = a

GetParam (t ) i = GetParam t (i − 1)

Similarly, PutParam digs into its argument to find and the ith parameter.

type family PutParam (t :: k) (i :: Nat) (b ::⋆) :: k where

PutParam (t ) 0 b = t b

PutParam (t a) i b = (PutParam t (i − 1) b) a

Notice that both GetParam and PutParam operate on poly-kinded arguments, even though we
only intend to call them on types of kind ⋆. However, as both functions peel off the arguments,
intermediate recursive calls operate on higher-kinded types.

GetParam (Either Int String ::⋆) 1 ≡ GetParam (Either Int ::⋆→ ⋆) 0 ≡ Int

GetParam and PutParam highlight another important aspect of closed type families: they are not
parametric, as arguments that have polymorphic kinds can be matched on. They can also decompose
application forms, as in the t a pattern [Weirich et al. 2011].
Now we have a method of proving these dependencies. The proofs are supplied as instance

constraints which allow the compiler to conclude the validity of the functional dependencies. This
leaves the final definition for param.

instance (a ∼ GetParam s i, b ∼ GetParam t i, t ∼ PutParam s i b, s ∼ PutParam t i a,

GenericN s,GenericN t ,GHasTypes (RepN s) (RepN t) (Param i a) (Param i b))

⇒ HasParam i s t a b where

param = isoRepN · gtypes · paramIso @i

As an example, consider the Poly a b type, which is a list that alternates between elements of
type a and type b (note the polymorphic recursion in the tail).

data Poly a b = PNil | PCons a (Poly b a)

With param, a traversal can be specified that updates the Strings that correspond to the a parameter:

> ghci> over (param @1) length (PCons "wafer" (PCons "oreo" (PCons "nice" PNil)))

> PCons 5 (PCons "oreo" (PCons 4 PNil))

7 GENERIC TRAVERSALS WITH CLASS

Inspecting the inductive definition of GHasTypes s t a b in Section 5, notice that all the inductive
cases do is merely łforward the focusž to their children. The first time any decision is made is at K :
whether to stop, or keep going via the mutually recursive HasTypes_ class. Defining traversals that
employ a different operation on fields would require writing a very similar inductive definition for
each traversal, only differing at the last case: the fields.
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Instead, we define an extensible generic traversal that is parameterised over a type class [Boling-
broke 2011] that provides the action applied to the fields. The requirement is that all fields have an
instance of this class, giving the name constrained traversal.

type TraversalC (c ::⋆→ ⋆→ Constraint) s t

= ∀f .Applicative f ⇒ (∀a b.c a b ⇒ a → f b) → s → f t

Instead of specifying up-front the type of the focus a, we say that we target every field of every
type, as expressed by the rank-2 [Peyton Jones et al. 2007] quantification of the variables a and b in
the first argument. Different instantiations of c can relate a and b in different ways. HasConstraints
classifies types that can be traversed in this way, andGHasConstraints provides a concrete definition
by induction over the generic structure.

class HasConstraints (c ::⋆→ ⋆→ Constraint) s t where

constraints :: TraversalC c s t

class GHasConstraints (c ::⋆→ ⋆→ Constraint) s t where

gconstraints :: TraversalC c s t

The nodes :×:, :+:, U, V and M are treated analogously to HasTypes_. We target our focus at the
values, as specified by the action c.

instance c a b ⇒ GHasConstraints c (K a) (K b) where

gconstraints = isoK

Here, isoK is instantiated to the constrained traversal

isoK :: c a b ⇒ TraversalC c a b

isoK :: ∀f .(Functor f , c a b) ⇒ (∀a1 b1.c a1 b1 ⇒ a1 → f b1) → K a → f (K b)

Since its function argument can be applied to any a1 and b1, it is certainly applicable to a and b (as
the c a b instance is given).
To show that this traversal is indeed the most general, we allude briefly to an implementation

of HasTypes_ in terms of HasConstraints. Note that compared to HasTypes_ s t a b, the type
parameters of HasTypesC a b s t are swapped. This is because the traversal will be constrained by
HasTypesC a b ś intuitively, we require that each field be traversable with an a → b action.

class HasTypesC a b s t where

typesC :: Traversal s t a b

The decision at the leaf nodes can be encoded via two corresponding instances. The first instance
describes what to do when the target of the focus is a.

instance HasTypesC a b a b where

typesC f s = f s

Here note that this instance allows the field transformation to select the queried types

isoK :: (∀a1 b1.HasTypes_ a b a1 b1 ⇒ a1 → f b1) → K a → f (K b)

When a ∼ a1 and b ∼ b1, instance resolution picks the above instance, applying the transformation.
Otherwise, the more general instance is selected, which guides the recursion:

instance (Generic s,Generic t ,HasConstraints (HasTypesC a b) s t)

⇒ HasTypesC a b s t where

typesC f = constraints @(HasTypesC a b) (typesC f )

We omit here the definition for primitives, which can be defined analogously to HasTypes_.
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If HasConstraints is indeed the most general traversal, then why not use it to define HasTypes_?
The answer is of a practical nature: the additional burden on the constraint solver slows down
compilation times, and the optimiser misses inlining and specialisation opportunities more easily.

8 PERFORMANCE

When working generically we must always ask whether the abstraction comes at the cost of
performance. In this case, it is pleasing that our use of generics is optimised away by the compiler.
There are four crucial reasons why we can be confident that GHC will produce efficient code.

Evidence generation. By using a type-directed approach, the call hierarchy is known at
compile time and this information can be used to unroll the definitions. This unrolling is
achieved during evidence generation.

Specialisation. Functions using our methods will have constrained types but this overhead is
eliminated via specialisation.

Inlining. We define our operations such that the composition operator is not recursive and
can hence be readily inlined.

Internal representation. Finally, we choose an internal representation of our optics such that
they expose the optimisation opportunities to the compiler.

In this section we describe the optimisations which we rely on to produce efficient code. We explain
each of these techniques in turn. Our running example in this section is the incList function which
maps over a list of trees and increments the Ints inside the tree.

data Tree a = Leaf a | Branch (Tree a) (Tree a)

incList :: [Tree Int ] → [Tree Int ]

incList [ ] = [ ]

incList (x : xs) = over (types @Int) (+1) x : incList xs

8.1 Evidence Generation

During compilation, type class constraints are desugared into arguments to the function [Wadler
and Blott 1989]. The argument is known as a dictionary and contains a field for each method of a
type class. Type class methods are then desugared as lookup functions into this dictionary.
The definition of incList uses types so the constraint solver must generate an evidence of

HasTypes (Tree Int) Int , it does so by creating an appropriate dictionary.
The instance for HasTypes s a has constraints Generic s, and GHasTypes (Rep s) a. We focus

on HasTypes and GHasTypes, treating the dictionary for Generic (Tree Int) implicitly. Thus the
produced dictionaries are HasTypesDict and GHasTypesDict , corresponding to the appropriate
classes.

data HasTypesDict s a = HasTypesDict { types :: Traversal s s a a}

data GHasTypesDict s a = GHasTypesDict {gtypes :: Traversal s s a a}

The necessary evidence generated for GHasTypes (Rep (Tree Int)) Int comes by providing the
dictionaries for this type. The simplified representation for Tree Int without metadata nodes is:

Rep (Tree Int) ≡ K Int :+: (K (Tree Int) :×: K (Tree Int))

By working through this structure methodically, we arrive at the following dictionary definitions:

hasTypesDictTreeInt :: HasTypesDict (Tree Int) Int

hasTypesDictTreeInt = HasTypesDict { types = isoRep · gtypes ghasTypesDictTreeInt }

ghasTypesDictTreeInt :: GHasTypesDict (Rep (Tree Int)) Int

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 85. Publication date: September 2018.



85:22 Csongor Kiss, Matthew Pickering, and Nicolas Wu

ghasTypesDictTreeInt = GHasTypesDict {gtypes = λf l1r1 → case l1r1 of

L l → L ⟨$⟩ gtypes ghasTypesDictKInt f l

R r → R ⟨$⟩ gtypes ghasTypesDict :×: f r }

ghasTypesDictKInt :: GHasTypesDict (K Int) Int

ghasTypesDictKInt = GHasTypesDict {gtypes = isoK }

ghasTypesDictKTreeInt :: GHasTypesDict (K (Tree Int)) Int

ghasTypesDictKTreeInt = GHasTypesDict {gtypes = isoK · types hasTypesDictTreeInt }

ghasTypesDict :×: :: GHasTypesDict (K (Tree Int) :×: K (Tree Int)) Int

ghasTypesDict :×: = GHasTypesDict {gtypes = λf (l :×: r) → (:×:) ⟨$⟩

gtypes ghasTypesDictKTreeInt f l ⟨∗⟩ gtypes ghasTypesDictKTreeInt f r }

Evidence is first generated by using the instance for :+:, before recursing into both branches and
finding evidence for :×: and the K Int nodes. As such, we have a dictionary for each type constructor.
The constraint solver will terminate as it will observe that the ghasTypesDictTreeInt dictionary can
be used when trying to solve the recursive case. Thus, these dictionaries form a mutually recursive
group. The dictionaries generated are straightforward transcriptions of the instances, with instance
constraints solved and β-reduced. The definition of ghasTypesDictTreeInt is still not as efficient as it
could be, and we discuss how it can be further improved with inlining in Section 8.2.1.

We see that the process of generating evidence also unrolls definitions. If we had instead defined
types as a function over a normal data type without any type direction, it would be self-recursive
and hence not able to be eliminated in the same manner. This process is safe as types are finite
and statically known at compile time. Without additional language pragmas, the restrictions on
instance contexts guarantee that the constraint solving process terminates.

8.2 Inlining

Once the structure is in place, there is still indirection present which can be removed. The first step
of doing this is inlining. Inlining is the process of replacing a function’s name by its definition. It
is the most crucial optimisation in the compiler’s pipeline as it enables all other optimisations to
occur. We already saw how the compiler generates naive verbose code which is simplified when
inlined. This is in general true for all programs.

However, whilst always safe in a pure language like Haskell, we must still be careful about when
we inline. If we inline too little then we miss optimisation opportunities. If we inline too much then
the size of our program becomes very large and takes a long time to compile.

The compiler contains a set of balanced heuristics to decide whether to inline a definition [Pey-
ton Jones and Marlow 2002]. These include factors such as: the syntactic size of a function, as a
measure to stop a lot of code duplication; whether a function is recursive, recursive functions are
never inlined; whether a function is applied to known arguments, there is a good chance that the
body will scrutinise the arguments and perform more simplification and so on.
There are also manners in which the user can influence these automatic decisions. One in

particular is the use of INLINE pragmas which can be used to mark definitions as very desirable to
INLINE. In our use cases, marking some instance methods as INLINE was necessary to unstick the
optimiser and enable it to perform much more simplification.

In addition, the optimiser will also evaluate programs by β-reducing, evaluating case expressions
with a known scrutinee and perform commuting conversions. For a full account of the simple
core transformations which the simplifier performs in order to generate simpler code, one should
consult [Peyton Jones and Santos 1998].
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8.2.1 Optimising Dictionaries. We recall that our generated dictionaries are mutually recursive.
This isn’t surprising, as we expect gtypes to be recursive in general if we are trying to traverse
a recursive data structure. Mutually recursive blocks of functions must be treated with care, as
repeatedly inlining them causes the inliner to diverge. Each mutually recursive group is thus
appointed a loop-breaker function, which is never inlined, but other definitions can be freely
inlined into each other in order to create a single self-recursive definition. After the dictionaries
are inlined into each other, we end up with the following evidence which has the correct unrolled
shape we were looking for.

ghasTypesDict ′TreeInt :: GHasTypesDict (Rep (Tree Int)) Int

ghasTypesDict ′TreeInt = GHasTypesDict {gtypes = λf l1r1 → case l1r1 of

L l → L ⟨$⟩ isoK f l

R b → R ⟨$⟩ (λf (l :×: r) → (:×:)

⟨$⟩ (isoK · isoRep · gtypes ghasTypesDict
′
TreeInt ) f l

⟨∗⟩ (isoK · isoRep · gtypes ghasTypesDict
′
TreeInt ) f r) f b }

In this case, ghasTypesDict ′TreeInt acts as the loop-breaker.

8.3 Specialisation

As we have seen, the evidence generation procedure and inlining are sufficient on their own to
eliminate much of the generic overhead of a statically known parameter as long as we call the class
method directly. However, we use class methods inside bigger functions and when we do they give
rise to class constraints. When these larger functions are called, the dictionary must be solved and
the required evidenced passed to the function.

For instance, we might want to write the more general type signature for incList to be parametric
over the choice of data structure contained in the list as long as it contains integers. We will call
this generalised version incListGen. If we call incListGen and instantiate s to be Tree Int then we
should expect that the definition would be identical to incList .

incListGen :: HasTypes s Int ⇒ [s ] → [s ]

incListGen [ ] = [ ]

incListGen (x : xs) = over (types @Int) (+1) x : incListGen xs

This problem is not trivial. When incListGen is called, the evidence witnessing the constraint
HasTypes will be passed to it. In order to eliminate this dictionary, it needs to be pushed inwards to
the call of types. Since incListGen is recursive, it cannot be inlined. Instead, we rely on specialisation.
The specialiser looks for calls to overloaded functions called at a known type. It then creates

a new type-specialised definition which does not take a dictionary argument and a rewrite rule
which rewrites the old version to the new version.

Suppose that we know that the value of s is Tree Int , and that the evidence dictionary for
HasTypes is called treeIntHasTypes. The naive desugaring of calling incListGen @(Tree Int) xs is:

incListGen treeIntHasTypes xs

The specialiser then observes this call to incListGen takes a dictionary argument and creates a
specialised version incListGenTreeInt with the following definition:

incListGenTreeInt :: [Tree Int ] → [Tree Int ]

incListGenTreeInt xs = (λhasTypesDict xs → case xs of

[ ] → [ ]
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(x : xs) → over (types hasTypesDict) (+1) x : incListGen hasTypesDict xs)

treeIntHasTypes xs

The right-hand side of the definition is the same as the right-hand side of incListGen applied to
treeIntHasTypes. Then, an additional rewrite rule is generated which replaces the overloaded call
with the specialised definition.

{-# RULES "specincListGen" forall xs . incListGen treeIntHasTypes xs

= incListGen_TreeInt #-}

That’s the whole process. After β-reduction, the dictionary selector types is now adjacent to
its dictionary and hence types can be inlined, and the correct method from treeIntHasTypes can
be selected. Notice that in the definition of incListGenTreeInt there is still an overloaded call to
incListGen, this will be rewritten when the rewrite rule is applied and then incListGenTreeInt will
become self-recursive. After these two steps, all occurrences of treeIntHasTypes and thus the
overloading overhead is eliminated.

Once again, specialisation is an enabling transformation. Later optimisation passes will perform
more complicated rearranging with the express goal of improving our code.

8.4 Internal Representation

After this unrolled pipeline of functions is created, the question remains how this can become the
same as hand-written definitions later in the compilation process. How precisely do inlining and
β-reduction lead to good code? How and why depends on the internal representation of lenses and
traversals we choose in the library.

8.4.1 Lenses. In the case of lenses, the inliner does a sufficient job of combining the composition
of lenses into a single lens without further intervention. The lens composition operator is not
recursive and hence is readily inlined which leads to much further simplification.

data Lens1 s t a b = Lens1 (s → a) (b → s → t)

(◦) :: Lens1 s t c d → Lens1 c d a b → Lens1 s t a b

(Lens1 get1 set1) ◦ (Lens1 get2 set2) = Lens1 (get2 · get1)

(λb s → set1 (set2 b (get1 s)) s)

In fact, the naive encoding given above for lenses does not produce the best results. Whilst it does
collapse a sequence of compositions appropriately, the type ensures that in order to implement a
modification operation, we must perform a get followed by a set and hence deconstruct s twice. We
can get around this problem by using the existential encoding which means that we can directly
implement an updating function by only deconstructing the source once.

data Lens2 s t a b = ∀c.Lens2 (s → (a, c)) ((b, c) → t)

Intuitively, the get function separates s into the the part we are focusing on of type a and its
complement c. In turn, the set function recombines a value of type b with the complement.

(•) :: Lens2 s t c d → Lens2 c d a b → Lens2 s t a b

(Lens2 get1 set1) • (Lens2 get2 set2) = Lens2 get set where

get s = let (c, com1) = get1 s; (a, com2) = get2 c in (a, (com1, com2))

set (b, (com1, com2)) = set1 ((set2 (b, com2)), com1)

modify :: Lens2 s t a b → (a → b) → (s → t)

modify (Lens2 get set) f s = let (a, c) = get s in set ((f a), c)
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Using this definition, chained modifications can be fused into a single function. Thus, in our
implementation, the lenses we use are of this latter encoding. Once we have fused them together,
we turn them into whichever encoding that we want the library to produce. By default, it is the
van Laarhoven encoding as found in the lens library [Kmett 2018].

8.4.2 Traversals. Optimising traversals in the same manner is slightly trickier as we must find
an encoding of a traversal which does not require a recursive composition operator. In order to do
this, we use a van Laarhoven style representation. The composition operator for these traversals
is the function composition operator. However, this is not sufficient, the downside of using this
composition operator is that it does not perform normalisation as happened with lenses. It is
necessary to appeal to the Applicative laws in order to rearrange and normalise these compositions.
The following technique is due to Eric Mertens and can be found implemented in the lens library.

A van Laarhoven Traversal is a function with the following type.

type Traversal s t a b = ∀g.Applicative g ⇒ (a → g b) → s → g t

The result type of these functions is a value constructed using Applicative operators. Applicative
expressions have a normal form of a single pure followed by a sequence of left-associated applica-
tions using the combinator ⟨∗⟩ [McBride and Paterson 2008]. In order to rewrite this normal form,
we must re-associate all uses of ⟨∗⟩ and then fuse together all uses of pure.

This first step is achieved by instantiating g to be Curried .

data Curried f a = Curried { runCurried :: ∀r .f (a → r) → f r }

instance Functor f ⇒ Functor (Curried f ) where

fmap f (Curried v) = Curried (λfar → v (fmap (·f ) far))

instance Functor f ⇒ Applicative (Curried f ) where

pure a = Curried (λfar → fmap ($a) far)

Curried mf ⟨∗⟩ Curried ma = Curried (ma · mf · fmap (·))

It is the definition of ⟨∗⟩ which performs the reassociation. Notice that the Applicative instance
for Curried delegates all calls to pure to the underlying functor. We will fuse those together with
an additional layer termed Yoneda which intercepts all the calls to fmap and fuses them together.

data Yoneda f a = Yoneda { runYoneda :: ∀r .(a → r) → f r }

instance Functor (Yoneda f ) where

fmap f (Yoneda v) = Yoneda (λk → v (k · f ))

instance Applicative f ⇒ Applicative (Yoneda f ) where

pure a = Yoneda (λf → pure (f a))

Yoneda m ⟨∗⟩ Yoneda n = Yoneda (λf → m (f ·) ⟨∗⟩ n id)

This time, we notice that Yoneda just delegates the definitions of the Applicative. Putting this
together, we instantiate g to be Curried (Yoneda g) and then use lowerCurriedYoneda in order to
return to a simple type parameterised by an Applicative constraint.

liftCurriedYoneda :: Applicative g ⇒ g a → Curried (Yoneda g) a

lowerCurriedYoneda :: Applicative g ⇒ Curried (Yoneda g) a → g a

This process performs the reassociating and fusion that we desired. However, in practice, it is
difficult to be sure that the compiler will remove this overhead. On the other hand, it does not
affect performance in common use cases such as modifying or summarising. This is because when
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g is instantiated to a known Applicative, the non-recursive Applicative methods can be inlined. We
usually instantiate to g to either Const or Identity which are completely eliminated.

Using similar techniques to traversals, van Laarhoven or profunctor representation of lenses and
prisms could also be optimised, but these simple minded techniques are the most reliable and very
effective in generating good programs without impacting compile times significantly.

8.5 Inspection Testing

In reality, compiler optimisations such as inlining are guided by heuristics, thus the exact shape of
the optimised program is difficult to predict. To aid in reasoning about program transformations,
Breitner [2018] developed a technique called inspection testing. Properties of the generated code
can be verified by inspecting the intermediate representation after optimisations and comparing it
against the hand-optimised version. The test suite of generic-lens uses inspection-testing to
guarantee that the abstraction overhead is eliminated by the optimiser.

9 BENCHMARKS

We compare the performance of generic-lenswith hand-written code as well as five other generic
programming libraries which derive traversals for data types. There are no other libraries which
derive lenses or prisms in a similar way so we could not compare this aspect of the library.

(gl) generic-lens The library which we describe in this paper.
(gp) geniplate-0.7.6 [Augustsson 2018] A library which provides a similar interface to the

uniplate library below but uses Template Haskell in order to generate traversals.
(up) uniplate-1.6.12 [Mitchell and Runciman 2007] A library which provides an interface

for traversing data. A traversal for a data type which has a Data instance is derived by using
Data.Generics.Uniplate.Data.

(lens) lens-4.16 [Kmett 2018] This library provides a reimplementation of the uniplate in-
terface to generate van Laarhoven style traversals rather than uniplate traversals.

(syb) syb-0.7 [Lämmel and Peyton Jones 2003] One of the first generics libraries using the
Data type class to dynamically decide which nodes to traverse.

(ol) one-liner-1.0 [Visscher and Xia 2018] A library implementing profunctor style generic
traversals using generics in a similar style to generic-lens. It generates the most general
constrained traversal which we instantiate suitably to turn it into an ordinary traversal.

We implement a collection of benchmarks which modify, update, and summarise data types of
three different sizes. Tree is a simple data type representing binary trees with 2 constructors. Logic
is a deep embedding of propositional logic with 6 constructors. HsModule is a large data type
representing a Haskell syntax tree with many constructors.
Our benchmarks have been compiled with -fexpose-all-unfoldings and enable a later spe-

cialisation pass. The former ensures more predictable cross-module inlining. The latter is a more
aggressive change which in particular helps the HsMod benchmark by performing a specialisation
pass towards the end of the compilation.
We show three results in Figure 2. The y-axis is a log scale where we normalise against the

hand-written code. The number above each column indicates the time relative to the hand-written
code. For example, a value of 2 indicates that the benchmark took twice as much time as the
hand-written definition. We include one modification benchmark for each different data type to
indicate the relative performance of the libraries.

One should notice how the performance of our generic-lens library, labelled (gl), is comparable
to the hand written examples and geniplate (gp) which uses Template Haskell to analyse the data
definitions and to produce the optimal code. On the other hand, SYB (syb) is consistently very slow.
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Fig. 2. Benchmarks showing execution time normalised as a factor of hand-written code

one-liner (ol) performs an order of magnitude worse than SYB in these benchmarks. Experiments
at higher inlining thresholds indicate that the performance can be comparable with our library.
We also have a large suite of other benchmarks which we have used to validate our approach.

These include effectful traversals, summarising and traversing dense and sparse structures. We
observe that in all these cases, the performance is very close to the hand-written definitions.

10 RELATED WORK

The scrap your boilerplate work pioneered the generation of code suitable for generic traver-
sals [Lämmel and Peyton Jones 2003; Lämmel and Peyton Jones 2004]. Our work can be seen as
the latest refinement in a long line of techniques. We believe that we are the first to provide an
efficient embedding in Haskell using existing language features which does not rely on Template
Haskell [Adams and DuBuisson 2012]. Furthermore, the type-changing variants which are enabled
by our use of generics is novel. Magalhães [2014] considered multiple parameters, but has a different
solution to ours and is less flexible.

Our method is to use the generic structure of data, which was prominently investigated by Hinze
[2000], and has led to an implementation in GHC that allows generic type classes to be derived [Ma-
galhães et al. 2010]. GHC.Generics was intended to be a low-level way for library authors to imple-
ment generic programming libraries. Later de Vries and Löh [2014] implemented generics-sop,
a high-level interface. In theory, we could have based our implementation on generics-sop as
it is also shallow and non-recursive like GHC.Generics so we would expect similar performance
characteristics. However, many of the library functions are currently implemented using recursion.
In principle, these could be rewritten in terms of type classes so that any "recursive" calls are
type-directed in the style of our definitions. In private communication, the authors have indicated
that they are intending to rework generics-sop in this manner. It would be worthwhile to attempt
to implement our interface using generics-sop once their work is completed. Visscher and Xia
[2018] have implemented the low-level one-liner library, which provides constrained profunctor
traversals. As we saw in the benchmarks, we predict their performance could be comparable to
ours with suitable compiler hints. In our interface we already provide several different traversal
schemes rather than just the constrained variant. We also consider problems such as removing
redundant traversals and type inference.
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Lenses have quickly been adopted into the Haskell ecosystem since [van Laarhoven 2009] and
have been described from first principles in [Pickering et al. 2017]. There are many different libraries
implementing lenses in the Haskell ecosystem but by far the most prominent and well used is
lens [Kmett 2018]. The interface of generic-lens is compatible with that of lens. The lens

library can also derive lenses using Template Haskell. We find this unsatisfactory as users must
decide up-front which lenses they want for their data types. As a result, users usually invent named
fields with a specific naming strategy and derive lenses with names based from them. They can’t
derive the other queries we specify, in part because defining all such lenses up front would incur
namespace pollution. It is more desirable to have the flexibility we provide in order to specify
precisely at use-sites the mode of inspection.
Yallop [2017] discusses how structured multi-staged programming techniques can be used to

improve SYB. The work observes the benefits which can be gained from a simple binding time
analysis. The insight is that when applied, the types a traversal must deal with are already known.
Once the target of the traversal is known, a specialised version for that specific structure is created.
Further, if the traversal function is also statically known, it can be partially evaluated at each node
to eliminate the dynamic type checks. The constrained traversal can be seen as an implementation
of the same idea in the current work. By statically knowing the type, we generate a specialised
traversal which targets all fields but has the right unrolled structure. By instantiating the constraint
(which we do statically) we can then select which parts of the data type to target.

They further develop this approach in order to analyse additional local transformations which
can be applied in order to improve the generated code. In section 8 we explained how compiler
optimisations performed by GHC amount to achieving the same thing. As one particular example,
they observe the need for let-insertion to deal with recursive definitions. Their solution is to use a
fixpoint combinator which supports memoisation. They then insert let bindings for each recursive
call. For us, this memoisation is performed in the same manner by the constraint solver.

Their work is valuable as it carefully analyses the optimisations needed to create optimal code. Our
work is complementary as we observe that with an automatic partial evaluator (GHC’s optimiser),
it is sufficient to instruct a simple unrolling before passing the code to be automatically optimised
once it is no longer recursive. Like ours, Yallop’s implementation also hinges on an observation
that implicit information can be treated as static, allowing much of the overhead to be eliminated.
[Magalhães 2012] also considered the behaviour of the optimiser on similar generic programs.
Adams et al. [2014] analysed the poor performance of SYB and performed code optimisations

expressed in HERMIT [Farmer 2015] to get better performance, in their extended work they show
how this can be done with an adapted version of GHC [Adams et al. 2015]. A large problemwith their
approach is that they rely on being able to symbolically evaluate type casts. The implementation
of Typeable [Peyton Jones et al. 2016] implements type equality by comparing fingerprints using
primitive operations. There is no hope for a compiler to evaluate these operations without additional
guidance. Our solution does not generate any domain specific idiosyncrasies which we need to
modify the optimiser in order to eliminate.

11 CONCLUSION

This paper has presented generic-lens, a library which has advanced the state-of-the-art for
traversing and manipulating data structures in two key ways: first, the library introduces a suite of
new traversals that can be easily combined with lenses for extremely flexible and powerful queries.
Second, the code that is generated competes with hand-optimised definitions. By embracing the
principled approach of generic programming, our library offers these benefits while remaining
robust and possible. For these reasons, we believe that generic-lens promises to be a successful
library that will be established as an essential tool for the working functional programmer.
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