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ABSTRACT

Estimation of models with structural breaks usually assumes a pre-specified number of

breaks. Previous models which do allow an endogenously determined number of breaks

require a simple structural model, and rarely allow for information transfer across the break.

We introduce a methodology that allows the number of breaks to be determined endogenously

and including an economically-motivated model of transition regimes between each break.

We demonstrate the usefulness of our approach for forecasts of the equity premium. We find

the demonstrated success of the historical average can be improved upon by an economic

model with theory informed priors estimated using our methodology.
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1. Introduction

There is mounting evidence that many macroeconomic and financial time series are sub-

ject to occasional shifts in parameters known as structural breaks (Stock and Watson, 1996;

Ang and Bekaert, 2002).1 Ignoring such breaks can be very costly for forecasting. Clements

and Hendry (1998) suggest that ignoring breaks is the primary cause of low forecasting

power. Indeed several recent works demonstrate that incorporating structural breaks can sig-

nificantly improve the forecasting power of econometric models (Pesaran and Timmermann,

2002; Pesaran, Pettenuzzo, and Timmermann, 2006; Koop and Potter, 2007; Giacomini and

Rossi, 2009; Inoue and Rossi, 2011).

In this paper we introduce a Bayesian multiple changepoint model where the number

of breaks is determined endogenously using a flexible and generic approach. We develop a

reversible jump Markov chain Monte Carlo algorithm (Green, 1995) that is applicable to

highly structured Bayesian multiple changepoint models that cannot be easily estimated

using existing approaches. We demonstrate how our methodology can be employed in the

context of one such model that estimates the path of the equity premium over a long sample

by formally modelling the multiple breakpoint process (Pastor and Stambaugh, 2001). An

important feature of this model is the assumption that successive shifts in the state variable

give rise to transitions regimes that reflect learning about these breaks. We might expect

transition regimes in other models where a series of interest reflects learning, for example

long yields that reflect learning about shifts in short yields, or exchange rates that reflect

learning about shifts in fundamentals. The structure of these breaks and transition regimes

are informed by economic theory through the specification of the prior distributions. Fur-

1A small handful off frequentist changepoint approaches include Andrews (1993), Bai (1997), Bai and
Perron (1998), Bai and Perron (2003), and Chen and Hong (2012).
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thermore, the Bayesian methodology also allows the uncertainty surrounding the parameters

of the model, including the timing of breaks, to be incorporated into the equity premium es-

timates. In their estimation Pastor and Stambaugh (2001) use the algorithm of Chib (1998),

which is restricted by the assumption that the number of breaks needs to be pre-specified

by the user. The consequence is that the full advantages of this appealing economic model

cannot be exploited. The merit of our reversible jump Markov chain Monte Carlo approach

is that it can be used to estimate these highly structured models with an endogenously

determined number of change points.

Previous Bayesian multiple changepoint models include that introduced by Pesaran et al.

(2006) who extend the framework of Chib (1998) to allow for out-of-sample breaks, but still

need to pre-specify the number of in-sample breaks.2 Koop and Potter (2007) made a

significant advance by extending the algorithm of Chib (1998) so that the number of in-

sample breaks may vary.3

The sampling approaches developed by Chib (1998) and Koop and Potter (2007) update

either the break locations or the parameters at any particular time. These approaches can

(i) have difficulty mixing and (ii) be sensitive to how the chain is initialised (Fearnhead,

2006). In contrast we propose a fitting scheme which updates both break locations and

parameters simultaneously, increasing the probability that the estimator converges to the

true data generating process as it does not have to pass through potentially implausible

intermediate moves, and is less sensitive to chain initialisation. Furthermore, our fitting

method is not specific to any particular prior on the regime durations, unlike the methods of

Chib (1998) and Koop and Potter (2007). Any prior can be easily specified by making small

2Other Bayesian changepint studies include Chernoff and Zacks (1964), Carlin, Gelfand, and Smith (1992),
Stephens (1994), and Ko, Chong, Ghosh, et al. (2015) to name but a few.

3See Bauwens, Koop, Korobilis, and Rombouts (2015) for an application of the method of Koop and
Potter (2007) to macroeconomic forecasting.
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adjustments to the fitting algorithm, and these adjustments will not have significant impact

on the running time of the method; this flexibility is in stark contrast with the prior-specific

approach of Koop and Potter (2007) which incurs a significant computational penalty in

switching from geometric to Poisson regime durations.

Giordani and Kohn (2008) introduce an efficient methodology for estimating condition-

ally Gaussian state-space models. Unfortunately an economically-informed structural breaks

model such as Pastor and Stambaugh (2001) cannot be cast in their framework, since the

dependence structure through a transition regime that represents a gradual structural break

precludes formulation as a Markovian state space model, even when conditioning on latent

variables. For similar reasons, the methodology of Maheu and McCurdy (2009) cannot be

applied in a more complex model like that of Pastor and Stambaugh (2001); their methodol-

ogy also relies on the fact that no information is transmitted across a break. More recently,

the infinite Hidden Markov Model approach of Fox, Sudderth, Jordan, and Willsky (2011)

(see also Song (2014)) has been proposed that approximately nests the multiple change-

point approach and the regime-switching framework of Hamilton (1989). However again this

approach cannot accommodate the idea of transition regimes.

Giordani, Kohn, and van Dijk (2007) and Koop and Potter (2010) (see also Lundbergh,

Teräsvirta, and Van Dijk (2003), and Bec, Rahbek, and Shephard (2008)) develop frameworks

for estimating smooth transition autoregressive models. Since we are interested in applying

the model of Pastor and Stambaugh (2001) in a recursive forecasting scheme we develop a

framework for estimating a model with gradual shifts in mean (and variance) as opposed to

a smooth transition autoregressive model.

In order to evaluate the benefits of our methodology we first revisit the full sample

equity premium estimates of Pastor and Stambaugh (2001). We find that fixing the number
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of breaks to 15 relative to incorporating the uncertainty surrounding the number of breaks

into the estimates of the equity premium tends to underestimate the premium. It also results

in estimation errors as high as 2.5 percentage points around the time of the Wall Street Crash

which is characterised as the most unstable period in our sample. Unstable periods such as

the oil price shocks of the 1970s and the Global Financial Crisis also exhibit large estimation

errors. The root-squared difference in estimates averages 0.78% across the sample.

Second, we apply our methodology to the problem of forecasting the U.S. equity premium.

Since this time series has been found to be subject to structural breaks (Kim, Morley, and

Nelson, 2005; Rapach, Strauss, and Zhou, 2009) a methodology that is better able to identify

these breaks should yield improved forecasts compared to conventional ad hoc techniques

that allow for breaks. The historical average has delivered very strong forecasts of the equity

premium outperforming a range of economic models (Goyal and Welch, 2008). This success

of the historic average is particularly surprising given the evidence of breaks in the equity

premium. If our method has real merits we should expect it to deliver superior forecasts

in this application. In order to judge whether our methodology yields tangible benefits we

test whether a mean variance investor could have made economic profits by employing our

methodology.

We find that forecasts obtained from a theoretically motivated Bayesian univariate model

in which stochastic structural breaks are explicitly modelled consistently beat the historical

average in the full sample 1927 to 2013 and in all of the three subsamples that we examine.

Moreover a risk averse mean-variance investor who employed a simple trading rule that varies

the fraction of their portfolio invested in equities with the forecast premium could have made

economically significant profits in the full sample and each of the three subsamples. We find

that a range of ad hoc methods for dealing with breaks such as rolling windows and an
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exponential smoothing model rarely outperform the historical average.

The remainder of this paper is structured as follows. Section 2 introduces our new model,

a modification of Pastor and Stambaugh (2001)’s model. Section 3 describes an empirical

test that compares the predictive abilities of several models. Section 4 presents and discusses

the empirical results. Section 5 concludes.

2. Methodology

In this section we introduce the main structural breaks model that we estimate. Our base

model is that of Pastor and Stambaugh (2001). This Bayesian model incorporates transition

regimes and allows the model to be informed by economic theory through the specification

of prior distributions.

Within our framework a structural break occurs gradually not instantly. A regime is a

period separated by two successive changepoints. Since the transition from one stable regime

to the next occurs gradually, each structural break is characterised by two changepoints. The

gradual break that occurs between these two successive changepoints is called a transition

regime (TR), during which the equity premium is transiting from one level to another. Each

TR separates two neighbouring stable regimes (SRs), during which the distribution of returns

is stable.

Allowing for gradual breaks means a negative prior association can be specified so that

high returns are expected during a TR in which the equity premium is transiting to a lower

value and vice versa. The strength of this negative relation is specified through the prior.

The ratio of the equity premium to variance, the ‘price of risk’, in the current regime helps

to estimate the current equity premium given the current regime’s estimated variance. The

dispersion in the prices of risk across regimes reflects the prior belief regarding the strength
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of the relation between volatility and the equity premium. It is also assumed that the equity

premium is unlikely to be subject to large shifts. A prior is specified that corresponds to this

assumption, placing most of the prior weight on relatively small shifts in the equity premium.

The equity premium is truncated at zero because risk averse investors must be compensated

for taking on increased risk and therefore nonpositive values of the equity premium should

be ruled out on theoretical grounds.

A Bayesian framework is also natural for a recursive forecasting exercise in the presence of

multiple structural breaks because it enables the uncertainty surrounding both the number

and timing of breaks to be incorporated into the parameter estimates. A frequentist approach

to modelling structural breaks consists of two stages. First, the break locations are estimated,

and then the parameters of the model are estimated conditional on the estimated break

locations. To show this approach more formally let θ denote the parameter vector, x denote

the data, and q denote the changepoint locations. A frequentist estimates the changepoint

locations, q̂, and then estimates the parameter vector, θ, conditional on the data, x, and

the estimated changepoint locations, q̂. Assuming that the estimated changepoint locations

are the true locations when estimating the parameters could however lead to estimation risk

as it ignores any errors in the estimates, q̂. This assumption could compromise parameter

estimates in finite samples.

The Bayesian approach of Pastor and Stambaugh (2001) enables them to draw the

posterior distribution of the changepoint locations conditional on the data, p(q | x), and

marginalise q when estimating θ

p(θ | x) =

∫
q

p(θ | x, q)p(q | x)dq, (1)
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thereby incorporating the uncertainty surrounding the changepoint locations into their es-

timates of θ. However, Pastor and Stambaugh (2001) are constrained by the algorithm of

Chib (1998) to fix the number of breaks in advance. Let K be the assumed number of breaks

in the sample. Pastor and Stambaugh (2001) perform their inference conditional on a fixed

number of breaks and therefore K has been suppressed in the above notation. Explicitly

they estimate θ as

p(θ | x,K) =

∫
q

p(θ | x, q,K)p(q | x,K)dq, (2)

in which they set K = 15.

The key technical innovation of this paper compared with Pastor and Stambaugh (2001)

is the development of a reversible jump Markov chain Monte Carlo (RJMCMC) algorithm

that allows us to approximate the posterior distribution of the number of breaks (Green,

1995). This has two main benefits. First, it enables the number of breaks to be inferred

automatically from the data for each estimation period in the recursive forecasting exercise.

Determining the number of breaks automatically enables the model of Pastor and Stambaugh

(2001), and potentially many other complex Bayesian models, to be easily applied in a

recursive forecasting exercise. Second, by approximating p(K | x) we can go one step further

than Pastor and Stambaugh (2001) by also marginalising K when estimating θ

p(θ | x) =

∫
K

∫
q

p(θ | x, q,K)p(q | x,K)p(K | x)dqdK, (3)

thereby incorporating not only the uncertainty surrounding the timing of the breaks but also

the uncertainty surrounding the number of breaks in our estimates of θ.

The model is estimated in exactly the same way as in Pastor and Stambaugh (2001) but

with the addition of a RJMCMC step that enables the addition or removal of a changepoint,
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and the removal of Chib (1998)’s changepoint methodology that is no longer necessary. Full

details are given in the Appendix. We now briefly revisit the model of Pastor and Stambaugh

(2001), indicating where we make modifications.

2.1. Pastor and Stambaugh’s model

Let x = (x1, . . . , xT ) denote the vector of T observations of excess market returns in the

data, in which xt denotes the excess market return at time t. Conditional on the number of

structural breaks, K, which is fixed, the sample period is split into 2K + 1 regimes. There

are K + 1 stable regimes (SRs) that are separated by the remaining K transition regimes

(TRs). The regimes alternate in order beginning and ending with a SR. The probability

distribution of excess market returns is stable in SRs but is undergoing change during each

TR.

Let q = (q1, . . . , q2K) denote a vector of changepoints, the times at which one regime

transits to the next. For convenience, assume q0 = 0. The first time point in the ith SR is

q2i−2 + 1 and the final time point is q2i−1. The first time point in the jth TR is q2j−1 + 1 and

the final time point is q2j. Denoting the duration of regime k as lk = qk − qk−1 the duration

of the ith SR and jth TR are l2i−1 and l2j, respectively. During each SRi the excess market

returns are assumed to be normally distributed with a regime specific mean µi and variance

σ2
i

xt ∼ N (µi, σ
2
i ), t ∈ SRi, i = 1, . . . , K + 1. (4)

Let µ = (µ1, . . . , µK+1) denote the vector of equity premiums and σ2
SR = (σ2

1, . . . , σ
2
K+1)

denote the volatilities in the SRs.

The mean excess return during each TR consists of two components. The first is the
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average of the mean excess returns in the two neighbouring SRs. This component represents

the unconditional expected return during the TR. The second component represents the

conditional expected return during the TR by conditioning on the shift in the mean excess

return, µj+1−µj. The second component therefore allows a prior to be specified that reflects

Pastor and Stambaugh (2001)’s belief that one expects to see high returns during TRs in

which the premium falls and low returns during TRs in which the premium rises. The

likelihood of xt during each TRj is

xt ∼ N
(
µj + µj+1

2
+ bj(µj+1 − µj), σ2

j,j+1

)
, t ∈ TRj, j = 1, . . . , K. (5)

Let σ2
TR = (σ2

1,2 . . . , σ
2
K,K+1) denote the volatilities in the TRs and b = (b1, . . . , bK) denote

the negative discount conditions. The likelihood function is

(6)

p(x | µ, σ2
SR, σ

2
TR, b, q,K)

∝

(
K+1∏
i=1

1

σ
l2i−1

i

)
exp

−1

2

K+1∑
i=1

q2i−1∑
t=q2i−2+1

(xt − µi)2

σ2
i


×

(
K∏
j=1

1

σ
l2j
j,j+1

)
exp

−1

2

K∑
j=1

q2j∑
t=q2j−1+1

(
xt −

(µj+µj+1

2
+ bj (µj+1 − µj)

)2
)

σ2
j,j+1

 .

It is difficult to perform meaningful inference over the full joint likelihood in a frequentist

setting therefore Pastor and Stambaugh (2001) suggest a Bayesian approach.

2.2. Prior beliefs

A Bayesian approach combines information in the data transmitted through the likeli-

hood function with prior information about the parameters of the model provided by the
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researcher. This approach enables economic theory to inform the model through the prior

distributions. Throughout, we use exactly the same prior specifications as Pastor and Stam-

baugh (2001). We therefore do not discuss the choices here, but for completeness note what

the prior specifications are in the remainder of this section. The only point where we could

differ is in the autoregressive structure placed on the equity premium values in the SRs.

2.2.1. Beliefs about regime durations.

The duration of the kth regime for k = 1, . . . , 2K follows a geometric distribution con-

ditional on the nontransition probability of that regime, pk,k, and the current estimated

number of breaks, K

p(lk | pk,k) = plk−1
k,k (1− pk,k), (7)

in which pk,k has a beta prior4

p(pk,k) =
Γ(ak + ck)

Γ(ak)Γ(ck)
pak−1
k,k (1− pk,k)ck−1. (8)

The marginal prior distribution of the duration of the kth regime, p(lk), for regimes k =

1, . . . , 2K can then be calculated as

p(lk) =

1∫
0

p(lk | pk,k)p(pk,k)dpk,k,

p(lk) =
ckΓ(ak + ck)Γ(lk + ak − 1)

Γ(ak)Γ(ak + lk + ck)
, k ∈ 1, . . . , 2K.

Chib (1998)’s method forces Pastor and Stambaugh (2001) to constrain the nontransition

probability of the final regime, p2K+1,2K+1, to be equal to 1. We do not assume that the final

4For simplicity, we suppress the conditioning notation on ak and ck throughout.
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regime ends at time T so q2K+1 may occur beyond the end of the sample. The probability

of observing l2K+1, which denotes the distance between q2K and the end of the sample T , is

p(l2K+1 | p2K+1,2K+1) = p
l2K+1

2K+1,2K+1. (9)

The marginal prior on the final regime length, l2K+1 is

p(l2K+1) =
Γ(a2K+1 + c2K+1)Γ(a2K+1 + l2K+1)

Γ(a2K+1)Γ(a2K+1 + c2K+1 + l2K+1)
. (10)

This specification results in at least some positive prior probability that q2K ≥ T and for

K breaks to occur in-sample we require q2K < T . It is therefore important to specify the

prior through the hyperparameters, ak and ck, such that the prior probability that q2K ≥ T

is not too large.5 Such a specification is complicated since we entertain different values of

K.

Our empirical application conducts a recursive out-of-sample forecasting exercise and thus

the value of T is recursively increasing. For a given value of T our model is estimated for

g = 1, . . . , G iterations in the Markov chain Monte Carlo sweep. Let KT,g denote the number

of breaks estimated on the gth iteration when the sample size is T . We specify aTR=11 and

cTR=2 such that the expected duration of a transition regime is E(lTR) = aTR+cTR−1
cTR−1

=12.

There are KT,g transition regimes in-sample and thus the sum of the expected prior durations

of all transition regimes is KT,gE(lTR). Since there are KT,g + 1 stable regimes in-sample the

prior expected duration of each is equal to
T−KT,gE(lTR)

KT,g+1
. We fix cSR = 2 and compute aSR on

the gth iteration with a sample size of T to be consistent with the above values such that it

equals
(
T−KT,gE(lTR)

KT,g+1

)
− 1. This results in an ‘internally consistent’ prior such that the total

5We are grateful to a referee for pointing this out.
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prior expected duration of all regimes is equal to the sample size thereby limiting the prior

probability that q2K ≥ T (Pastor and Stambaugh, 2001).

Since our changepoint methodology differs from that of Chib (1998) insofar as it is not

constructed as a Hierarchical Hidden Markov model we can marginalise the pk,ks for simplic-

ity.6

2.2.2. Prior on the number of structural breaks.

The use of Chib (1998)’s algorithm by Pastor and Stambaugh (2001) restricts their model

to a geometric prior on the regime durations. Such a monotonically decreasing prior is

unrealistic in many scenarios, placing more weight on numerous short regimes occurring

in the sample. This could lead to a more complicated picture of the changepoint process

than is supported by the data. To avoid charges of overfitting in the forecasting exercise we

specify a counterbalancing geometric prior distribution over the number of breaks, K, with

hyperparameter, λ = 0.1

p(K) = (1− λ)K−1λ. (11)

The explanation of the choice of the value 0.1 for λ is detailed in Appendix A. Figure 1

illustrates the distribution p(K |
∑2K+1

k=1 lk = T ). It demonstrates how the priors on l and K

work together to give an effective prior on K in which the mass is concentrated on a number

of breaks being between 10 and 14, with a spread between 1 and 32.

6The values of all hyperparameters used for the in-sample analysis, all of which except λ, ρ and aSR are
taken directly from Pastor and Stambaugh (2001), are provided in Table I. For the out-of-sample analysis
hyperparameter values are recursively estimated using only the data available at the time each forecast is
made.
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Figure 1: Effective Prior

0.
00

0.
02

0.
04

0.
06

0.
08

Effective Prior

Number of Breaks

M
as

s

1 3 5 7 9 12 15 18 21 24 27 30 33

Figure 1: Effective prior on the number of structural breaks. This figure displays the effective prior
distribution of the number of structural breaks that occur during the sample 1871 to 2013. Most of the prior
mass is concentrated on the number of breaks being between 10 and 14 with a spread between 1 and 33
breaks. This specification corresponds to both the prior belief of a break occurring approximately every ten
years and the findings of Pastor and Stambaugh (2001).
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2.2.3. Beliefs about the TR parameters.

The prior distribution of the negative discount condition, bj, is assumed to be normal

with mean b < 0 and variance σ2
b

p(bj) ∝ exp

{
−(bj − b)2

2σ2
b

}
, j = 1, . . . , K. (12)

An inverse gamma distribution is placed on the prior of the volatility during TRs

p(σ2
j,j+1) ∝ 1

ση+1
j,j+1

exp

{
−(η − 2)α2

2σ2
j,j+1

}
, σ2

j,j+1 > 0, j = 1, . . . , K. (13)

The values of b̄ and σ2
b are recursively estimated using Campbell (1991)’s variance de-

composition of aggregate returns and only the data available at the time each forecast is

made.7

2.2.4. Beliefs about the premium’s association with volatility.

The prior relation between the equity premium and volatility in a SR is specified as

µi = γψiσ
2
i , i = 1, . . . , K + 1, (14)

in which γ > 0 and ψ = (ψ1, . . . , ψK+1). The prior aggregate price of risk (ratio of equity

premium to variance) is represented by γ. A gamma prior distribution is placed on γ

p(γ) ∝ γaγ−1 exp

{
− γ
bγ

}
, γ > 0. (15)

7We refer the reader to the Appendix of Pastor and Stambaugh (2001) for details of this specification.
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The prior distribution on ψi is assumed to be gamma

p(ψi) ∝ ψ
(ν/2)−1
i exp

{
−ψiν

2

}
, ψi > 0, i = 1, . . . , K + 1. (16)

Following Pastor and Stambaugh (2001) we set ν = 10 and recursively estimate α2 based

on the results in Campbell (1991) and recursively estimate aγ and bγ such that the prior

mean of γ equals unconditional price of risk estimate (see Pastor and Stambaugh (2001) for

details).

2.2.5. Beliefs about magnitudes of changes in the premium.

A hierarchical multivariate normal prior distribution with mean µ and covariance matrix

V −1
µ is placed on µ, the vector of mean excess returns

p(µ | µ,K) ∝ exp

{
−1

2
(µ− µı)′V −1

µ (µ− µı)
}
, µ > 0,

p(µ) ∝ 1, µ > 0,

in which ı denotes a (K + 1)× 1 vector of ones. The prior on µ is noninformative except for

the positive truncation. Let ∆i denote µi+1 − µi. Pastor and Stambaugh (2001) state that

the “unconditional prior variance of ∆i for any i is equal to σ2
∆ = Var(µi+1− µi). The value

of σ2
µ that produces a desired value of σ∆ is computed by simulation.”

Our interpretation of their description is that all inter-regime dependencies occur through

the hyperparameter µ̄, which is an ineffective model for producing forecasts. We therefore

deviate from this and specify the equity premium values in the SRs, µ, as an AR(1) process,

assuming that µi+2 is conditionally independent from µ1:i given µi+1, for all i. The (K +
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1)× (K + 1) covariance matrix is

V −1
µ = σ2

µ



1 −ρ 0 · · · 0

−ρ 1 + ρ2 −ρ · · · 0

0 −ρ 1 + ρ2 · · · 0

...
...

...
...

...

0 · · · 1 + ρ2 −ρ 0

0 · · · −ρ 1 + ρ2 −ρ

0 · · · 0 −ρ 1



, (17)

in which the unconditional prior variance of µi is denoted σ2
µ. We set ρ = 0.9 and σµ = 0.03.

Let the parameter vector, θ, consist of b, σ2
TR, γ, ψi, µ, and µ. All the priors except those

on µ and µ are assumed to be independent. Using (14) to substitute for the elements of σ2
SR

the joint posterior distribution is

p(θ | x, q) ∝

(
K∏
j=1

p(bj)

)(
K∏
j=1

p(σj,j+1)

)
p(γ)

(
K+1∏
i=1

p(ψi)

)

×

(
2K+1∏
k=1

p(lk)

)
p(µ | µ,K)p(µ | K)p(K)

×

(
K+1∏
i=1

(
ψiγ

µi

)l2i−1/2
)

exp

−1

2

K+1∑
i=1

q2i−1∑
t=q2i−2+1

(xt − µi)2

µi
γψi


×

(
K∏
j=1

1

σ
l2j
j,j+1

)
exp

−1

2

K∑
j=1

q2j∑
t=q2j−1+1

(
xt −

(µj+µj+1

2
+ bj (µj+1 − µj)

)2
)

σ2
j,j+1

 .

(18)
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Table I

Hyperparameter Values

Hyperparameter SR TR Regime Unspecific

ak

(
T−KT,gE(lTR)

KT,g+1

)
− 1 11

ck 2

b -15.13
σb 5.04
α2 0.00063
η 10
aγ 18.7
bγ 0.1
ν 10
λ 0.1
σµ 0.03
ρ 0.9

Table 1: Hyperparameter Values. This table presents the specified values of all the hyperparameters
for the various prior distributions in our multiple breaks model. Except for the values of λ and ρ, all
hyperparameter values are taken from Pastor and Stambaugh (2001). The autoregressive parameter on
the change in the equity premium, ρ, is specified to equal 0.9. The hyperparameter on the prior on K,
λ, is set equal to 0.1 because this value corresponds to a realistic effective prior (explained in Appendix
A). The value of ak in stable regimes is dependent upon the estimated number of breaks,Kg, on the gth
iteration of the MCMC loop with a sample size of T as explained in Section 2.2.1.

2.3. Posterior predictive distribution

To generate out-of-sample forecasts we simply need to simulate the model forward in time,

for each set of parameters sampled in the MCMC run. The average of the predicted values

then corresponds to the mean prediction when all uncertainty surrounding the parameters

of the model is taken into account. Since our forecasting exercise follows Campbell and

Thompson (2008) we need only consider one-step ahead forecasts and can therefore simply
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generate forecasts using the parameters from the final in-sample regime

E(xT+1 | x1:T ) =

∫
K

∫
θ

E(xT+1 | x1:T , θ,K)p(θ | x1:T , K)p(K | x1:T )dθdK

≈ 1

N

N∑
(n)=1

E
(
xT+1 | x1:T , θ

(n), K(n)
)

=
1

N
µ

(n)

K(n)+1
,

where (n) denotes the iteration of the chain.

3. Forecasting Methodology

A recursive out-of-sample forecasting exercise is conducted to compare the forecasting

performance of the alternative models that allow for structural breaks considered in this

paper with the benchmark null model, the historical average. Formally, the one step ahead

forecast made at time T using the benchmark model is

xT+1 =
1

T

T∑
t=1

xt. (19)

The first of the ad hoc alternative models is an exponential smoothing model with persistence

parameter, ω. A one-step ahead forecast made at time T using the exponential smoothing

model is

xT+1 = ωxT + ω(1− ω)xT−1 + ω(1− ω)2xT−2+, . . . ,+ω(1− ω)T−1x1 (20)

= ω
T−1∑
t=0

(1− ω)txT−t. (21)

19



A range of values for ω are entertained in the empirical analysis and results are reported for

ω=0.99 because that value delivered the strongest forecasting performance. The remaining

ad hoc break models are three rolling window models with window lengths set at 5, 10,

and 20 years, respectively. The one-step ahead forecast using the rolling window model is

therefore

xT+1 =
1

lw

T∑
t=T−lw+1

xt, (22)

where lw denotes the length of the window. The out-of-sample forecasting procedure follows

that of Campbell and Thompson (2008).

3.1. Data

We use monthly equity premium data, that is, the total rate of return on the aggregate

stock market portfolio minus the risk-free rate. The aggregate market portfolio is the S&P

500. Returns on the S&P 500 since 1927 are sourced from CRSP, and before 1927 from

Robert Shiller’s website. Since 1920 the risk-free rate is the Treasury-bill rate. Prior to 1920

there was no risk-free short-term debt, and therefore we use the risk-free rate estimated by

Goyal and Welch (2008). They estimate the risk-free rate from Commercial paper rates for

New York City sourced from the National Bureau of Economic Research Macrohistory data

base (see Goyal and Welch for a detailed description).

Since total return data before 1927 are constructed by linear interpolation of lower-

frequency dividend payments and therefore may be of dubious quality we limit the out-of-

sample evaluation period to the CRSP data period, but use the earlier data to estimate the

models. We also need a substantial accumulation of data before we can attempt to forecast

which is another reason for limiting the out-of-sample evaluation period to the CRSP data
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period. We present forecast results for the entire out-of-sample period as well as three

subsamples corresponding to those analysed by Campbell and Thompson (2008).

3.2. Evaluation of Forecasting Performance

To evaluate the forecasting performance of the competing models we calculate the fol-

lowing out-of-sample R-squared statistic

R2
OS = 1−

T∑
t=1

(rt − rA,t)2

T∑
t=1

(rt − rN,t)2

,

where rN,t and rA,t denote the forecasts from the null and alternative models, respectively,

at period t− 1. A positive R2
OS value indicates the alternative model in question delivers a

lower MSE than the historical average.

While our Bayesian framework is readily applicable to evaluating density forecasts, we

consider only point forecasts to make our results directly comparable to the majority of the

existing literature on equity premium forecasts.8 We leave evaluation of density forecasts

using a Bayesian model that admits breaks to future work.

We also examine the economic value of forecasts to a mean-variance investor. The utility

calculation in the remainder of this section follows Campbell and Thompson (2008), Goyal

and Welch (2008), and Rapach, Strauss, and Zhou (2009). We calculate the average util-

ity gain for a mean-variance investor from forecasting with each of the alternative models

compared with forecasting with the null model. We assume an investor has a risk-aversion

coefficient, A, of three, and that the weight of the portfolio allocated to equities is restricted

8A handful of studies on equity premium forecasts that focus on point forecasts are Campbell and Thomp-
son (2008), Goyal and Welch (2008), Rapach et al. (2009), and Neely, Rapach, Tu, and Zhou (2014).
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to lie between 0% and 150% to prevent short-selling of equities and investors taking more

than 50% leverage.

The average utility derived from a portfolio constructed using the historical average is

UN = µ̂N −
1

2
Aσ̂2

N , (23)

where µ̂N and σ̂2
N denote the sample mean and variance for the return on the portfolio

formed using the null model over the out-of-sample period, and A denotes the risk aversion

coefficient. To calculate the portfolio return from the null model we must calculate the

proportion of the portfolio to be allocated to stocks at period t

wN,t =
1

A

rN,t+1

σ̂2
t+1

, (24)

where rN,t+1 denotes the equity premium forecast from the null model for t+ 1 made using

information available at time t and σ̂2
t+1 denotes the variance of stock returns estimated

using a 5-year rolling window of lagged monthly stock returns, as used by Campbell and

Thompson (2008).

The average utility for the same investor using the forecasts from the alternative model

is

UA = µ̂A −
1

2
Aσ̂2

A, (25)

where µ̂A and σ̂2
A denote the sample mean and variance for the return on the portfolio formed

using the alternative model over the out-of-sample period. The proportion of the portfolio
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that shall be allocated to stocks at period t when forecasting with the alternative model is

wA,t =
1

A

rA,t+1

σ̂2
t+1

, (26)

where rA,t+1 denotes the equity premium forecast using the alternative model for t+ 1 made

using information available at time t.

The utility gain is measured as UA−UN and this figure is multiplied by 1200 for monthly

returns and 100 for annual returns to represent it as an average annualised percentage return.

The utility gain can be viewed as the portfolio management fee an investor would be willing

to pay to exploit the information available in the alternative model compared with having

only the information from the null model.

Any economic gains delivered by a forecasting model may dissipate if the asset allocation

exercise has high turnover and thus incurs high transaction costs. We therefore evaluate the

utility gain net of transaction costs. Following Neely et al. (2014) (see also Balduzzi and

Lynch (1999)) monthly turnover is the percentage of wealth traded every month and trans-

action costs are computed using monthly turnover while assuming proportional transactions

cost equal to 50 basis points per transaction. We evaluate the utility gain net of transaction

costs.

4. Empirical results

First, we revisit the full sample estimation of the equity premium conducted by Pastor

and Stambaugh (2001) to explore whether fixing the number of breaks at 15 leads to any

economically meaningful estimation error of the equity premium relative to allowing the

number of breaks to vary and subsequently incorporating the uncertainty surrounding the
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number of breaks into the estimates of the premium. Second, we explore whether allowing

for breaks in a mean model can improved forecasting performance.

4.1. Full sample estimates of the equity premium

We now revisit the work of Pastor and Stambaugh (2001) exploring whether fixing the

number of breaks equal to 15 relative to incorporating the uncertainty surrounding the num-

ber of breaks into the estimates of the equity premium leads to any considerable estimation

error. Figure 2 graphs the evolution of the equity premium estimated from both methods.

Of course, both estimates follow similar paths but the exact differences between the two

are worthy of note. First, fixing the number of breaks tends to underestimate the premium

for the majority of the sample. Second, as can be seen in Figure 3 the estimation error is

often as high as one percentage point and around the time of the Wall Street Crash, which

exhibits the greatest degree of uncertainty in our sample, the estimation error is above 2.5

percentage points. The estimation error is also notably large around the oil price shocks of

the 1970s and the Global Financial Crisis. The root-squared difference in estimates averages

0.78% across the sample as displayed in Figure 4.

Estimation errors of 0.78% and at times as much as 2.5% could have considerable eco-

nomic significance. The equity premium is one of the most important numbers in finance

being used for estimating the cost of capital, the CAPM, and allocating wealth between

risky and risk-free portfolios. Our procedure could therefore have far reaching economic

significance for many applications in finance.
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4.1.1. Mixing of the algorithm

To compare the mixing of our algorithm with those of Chib (1998) and Koop and Potter

(2007) we report the popular convergence diagnostic of Gelman and Rubin (1992) for all

three algorithms. Since the equity premium estimate µ is the parameter of interest both

in-sample and in the out-of-sample analysis that follows, we focus on this parameter when

computing the Gelman-Rubin statistic. To calculate this statistic, for each method we

estimate m = 1, . . . ,M independent Markov chains for g = 1, . . . G iterations. We first

compute the variance of each chain9

s2
m =

1

G

G∑
g=1

(µgm − µ̄m)2 (27)

and second the variance pooled across chains

W =
1

M

M∑
m=1

s2
m. (28)

Letting

¯̄µ =
1

M

M∑
m=1

µ̄m (29)

and

B =
G

M − 1

M∑
m=1

(µ̄m − ¯̄µ)2 (30)

the Gelman-Rubin diagnostic is computed as

R =

√
ˆV ar(µ)

W
(31)

9Calculations are averaged across regimes, the subscript notation for which is omitted here for expositional
simplicity.

25



in which

ˆV ar(µ) = (1− 1/G)W +
1

G
B. (32)

We carry out the same procedure for the methods of Chib (1998) and Koop and Potter

(2007).

The closer the Gelman-Rubin statistic R is to one the more evidence there is that the

algorithm has converged. The statistic from our algorithm is equal to 1.02 while Chib (1998)

delivers a value of 1.04 and Koop and Potter (2007) 1.06. All the values are relatively close

to one suggesting good mixing of each algorithm. This evidence suggests that our algorithm

is most likely to have converged with the algorithm of Koop and Potter (2007) least likely.

This may reflect the sensitivity of the Hidden Markov Models to poor chain initialisation,

whereas the the reversible jump Markov chain Monte Carlo algorithm can more easily escape

from this (Fearnhead, 2006).

4.1.2. Computational issues

Estimating Bayesian models with multiple changepoints can incur large computational

costs. We compare run times for our algorithm with the algorithms of Chib (1998) and Koop

and Potter (2007). Table II displays the results. The computational burden of our method

relative to the Hidden Markov Models is reduced. The method of Koop and Potter (2007),

denoted KP, is clearly the most burdensome with run times that are approximately twice as

long as our reversible jump (RJ) algorithm. The algorithm of Chib (1998) improves upon

Koop and Potter (2007) but still takes longer than our method to complete.
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Table II

Computation times

Method Number of iterations

50,000 100,000 250,000 500,000 1m 3m

RJ 1 2 6 14 30 96

Chib 2 3 10 20 42 132

KP 2 5 13 26 57 181

Table II: Computation times. This table displays computation

times in minutes of the model presented here estimated using our

algorithm and the algorithms of Chib (1998) and Koop and Potter

(2007) for various numbers of iterations. Run times are rounded

to the nearest minute.

4.2. Out-of-sample forecasts of the equity premium

We now explore whether allowing for structural breaks can improve upon the out-of-

sample performance of a mean model when forecasting the equity premium at both the

monthly and annual horizons. We recursively estimate the hyperparameter values when

making each forecast. Given our initial estimation period is so long (1871-1926), the re-

cursively estimated hyperparameters are relatively stable thereafter as displayed in Figures

5-7.
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Figure 2: Full sample estimates of the equity premium
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Figure 2: Full sample estimates of the equity premium. This figure graphs the evolution of the
equity premium over the full sample estimated from the model which allows the number of breaks to vary
(black solid line) and the model which fixes the number of breaks at 15 (red dotted line).
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Figure 3: Difference in equity premium estimates
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Figure 3: Difference in equity premium estimates. This figure graphs the difference over the full
sample in the equity premium estimates from the model which allows the number of breaks to vary and the
model which fixes the number of breaks at 15.
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Figure 4: Root squared difference in equity premium estimates
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Figure 4: Root squared difference in equity premium estimates. This figure graphs the root squared
difference over the full sample in the equity premium estimates from the model which allows the number of
breaks to vary and the model which fixes the number of breaks at 15.
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Figure 5: Hyperparameter estimates
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Figure 5: Hyperparameter estimates. This figure graphs the recursively estimated hyperparameter
values aγ (black solid line) and bγ (red dotted line). The vertical line marks the date at which the out-of-
sample forecasting period begins, January 1927.
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Figure 6: Hyperparameter estimates
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Figure 6: Hyperparameter estimates. This figure graphs the recursively estimated hyperparameter
value α2 over the sample. The vertical line marks the date at which the out-of-sample forecasting period
begins, January 1927.
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Figure 7: Hyperparameter estimates
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Figure 7: Hyperparameter estimates. This figure plots the prior distribution of bj using three sets
of hyperparameters b̄ and σb. The black plot uses the values computed from Campbell (1991)’s variance
decomposition of stock returns from 1927 through 1988. The red dashed and green dotted lines are computed
using the same technique using data from 1927 through 1951, and 1951 through 1988, respectively.
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4.2.1. Monthly prediction

Tables III and IV display the performance of the alternative models that allow for breaks

in forecasting the equity premium compared with the null model, the historical average.

Specifically, they display both the out-of-sample R-squared and the utility gain values. It

can be seen in Table III that the R2
OS statistics for all of the simple univariate models

that allow for breaks are negative over the entire out-of-sample period, indicating inferior

performance relative to the historical average. The historical average also outperforms the

simple univariate break models over the three subsamples apart from a few exceptions. This

poor performance is not surprising in the light of the reservations we expressed above about

these methods.

It is important, as Goyal and Welch (2008) note, that any full sample outperformance is

not clustered around one or two short periods. It is also important that any overall success

is just as evident in recent forecasts. We see that the multiple breaks model satisfies these

criteria. It delivers consistent outperformance with a positive R-squared value and a positive

annualised utility gain in each of the three subsamples.
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Table III

Forecasts of Monthly Equity Premium

Sample

Model 1927-2013 1927-1956 1956-1980 1980-2013

R2
OS ∆U Turn Net ∆U R2

OS ∆U R2
OS ∆U R2

OS ∆U

5-year Rolling Window -2.24 -1.01 3.74 -2.47 -2.64 -2.37 0.19 2.15 -2.73 -2.07

10-year Rolling Window -0.49 -0.10 2.86 -0.63 -0.34 -1.24 0.17 2.41 -1.29 -0.89

20-year Rolling Window -0.29 -0.28 2.02 -0.39 0.13 0.17 -1.03 0.57 -0.94 -1.36

Exponential Smoothing -0.44 -0.13 2.33 -0.56 -0.32 -1.11 -0.39 1.26 -0.83 -1.22

Multiple Breaks 0.75 1.37 2.95 1.22 0.57 0.74 1.57 2.86 0.65 1.02

Multiple Breaks (pre) 0.34 0.79 1.55 0.69 0.26 0.61 0.82 1.57 0.32 0.74

Table III: Forecasts of monthly equity premium. This table presents out-of-sample error statistics for forecasts

of the monthly equity premium. Data prior to January 1927 are from Robert Shiller’s website. A positive value

of R2
OS indicates the model has superior out-of-sample forecasting power than the null model. The null model is

the historical average, except for Multiple Breaks (pre) in which the alternative model is our model and the null

model is the model with a prespecified number of breaks. R2
OS values have been multiplied by 100. ∆U denotes

the difference in average utility derived from forecasting with the alternative model compared with the null model.

∆U is reported as an annualised percentage return. The utility function is E(Rp) − A
2 V ar(Rp), the risk aversion

coefficient, A, is set equal to 3, and Rp denotes the return on the portfolio. Turn denotes the average turnover of

the portfolio exercise from the alternative model divided by that of the null model. Net ∆U denotes the difference

in average utility after accounting for transaction costs.

We graph in Figure 8 the cumulative R-squared over the out-of-sample period based

on forecasts from each of the univariate models that allow for breaks compared with fore-

casts from the historical average. An increase in the line indicates the alternative model

outperformed the null over the period in question and a fall in the line indicates the null

outperformed the alternative model. Figure 8 shows a general upward drift in the cumulative

R-squared based on the multiple breaks model relative to the historical average from just
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Figure 8: Cumulative R-Squared Based on Forecasts of Monthly Equity Premium
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Figure 8: Cumulative R-squared based on forecasts of the monthly equity premium from
univariate break models. Following Campbell and Thompson (2008), this figure displays the cumulative
R-squared over the out-of-sample period for each of the univariate models considered in this paper that
account for breaks compared with the historical average when forecasting the monthly equity premium.
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after 1930 through 2013 that is not clustered around one or two short periods.

The multiple breaks model developed in this paper outperforms the historical average

over the entire out-of-sample period, 1927 to 2013, delivering an R-squared value of 0.75%

and an annualised utility gain of 1.37%. The value of ∆U given in Table III determines

the annual percentage portfolio management fee an investor would have been willing to pay

to have exploited the information in each of the alternative models compared with having

only the information provided by the historical average. Campbell and Thompson (2008)

suggest that even a small value for ∆U of 0.5% could lead to the investor profiting from

the additional information provided by the alternative model. We see that a mean-variance

investor could have profited from forecasting with the multiple breaks model compared with

the historical average.

We further compare the performance of our forecasts with a method that prespecifies

the number of breaks and is estimated by the algorithm of Chib (1998). Forecasting in

the presence of breaks requires careful management of bias-variance tradeoffs (Pesaran and

Timmermann, 2007). Determining the number of breaks endogenously may induce large

estimation error into the parameter estimates and therefore lead to poor forecasts. The

bottom panel of Table III - Multiple Breaks (pre) - displays the out-of-sample R-squared

and utility gains delivered by our model relative to the model that prespecifies the number

of breaks. Our method outperforms this model in an economically meaningful manner with

an R-squared value of 0.34% and an annualised utility gain of 0.79%. This economically

meaningful outperformance holds across all subsamples and also holds after accounting for

transaction costs. This suggests that while allowing for a prespecified number of breaks is

important, obtaining the full benefits from breaks requires determining the number of breaks

endogenously.
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The full sample result that the investor with the specified utility function and trading

rule would have paid a 1.4% annual premium to have benefited from using the multiple

breaks model is economically meaningful when measured against an average value for the

equity premium of 6.3%.

If the multiple breaks model induces sufficiently high turnover in the portfolio allocation

exercise transaction costs may eliminate the utility gain relative to the historical average.

Table III reports that the average monthly turnover of the portfolio obtained from the

multiple breaks model divided by the average turnover from the historical average is 2.95.

The utility gain net of transaction costs is 1.22% and while lower than the original value of

1.37% is still economically meaningful and thus transaction costs have not eliminated the

utility gain derived from the improved forecasts.

4.2.2. Annual prediction

We now turn to evaluating forecasts of the annual equity premium. The idea of occasional

stochastic breaks does not imply any particular natural length of a single period measured in

calendar time. We obtain annual forecasts from the model estimated using annual returns,

which are measured as compounded monthly returns. We follow the procedure of Campbell

and Thompson (2008) and evaluate overlapping monthly forecasts of the annual premium.

Each month we construct forecasts of the equity premium over the next twelve months. So

for the model that we use for forecasting each month we estimate the model using 12 months

of data compounded up to that same month each year. So for example for forecasts made on

March 1st all the monthly data used to estimate the model is compounded over 12 months

ending on February 28th each year and so on.

Working with overlapping data allows us to fully exploit the data to estimate the economic
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value of these 12 month forecasts. This advantage comes at a price, since assessing the

statistical significance of the goodness of fit requires bootstrapping to accommodate the

overlapping data (see e.g. Mark, 1995 and Kilian, 1999). Bootstrapping is impossibly costly

in the recursive fitting exercise deployed here, but the alternative would be to work with

non-overlapping annual returns, resulting in a reduction in the number of forecasts by a

factor of 12, and laying open the possibility of data snooping by carefully selecting a month

in which to make the annual predictions. Therefore, although we report the R-squared values

of our predictions, we make no claims on their statistical significance. Instead we focus on

whether any difference in performance is economically meaningful.

We see in Table IV that the multiple breaks model outperforms the historical average for

the entire out-of-sample period, delivering an R-squared value of 7.94% and this outperfor-

mance is economically meaningful with a utility gain of 1.11%. It is also more successful than

all the alternative approaches that allow for structural breaks. As with monthly forecasts

we see consistent outperformance of the multiple breaks model compared with the historical

mean across all three subsamples.

Our method also outperforms the model with a prespecified number of breaks when fore-

casting the annual equity premium delivering an R-squared value of 3.92% and an annualised

utility gain of 0.82%. The outperformance is economically meaningful across all subsamples.

In line with the results for monthly forecasts, allowing for a prespecified number of breaks

improves forecasts but determining the number of breaks endogenously is required to derive

the full benefits of allowing for breaks in the forecasting exercise.

The average turnover of the portfolio constructed from the multiple breaks model divided

by the average turnover of the portfolio from the historical average is equal to 2.72 (Turn).

The higher turnover from the multiple breaks model relative to the historical average reduces
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the utility gain from 1.11% to 1.02% (Net ∆U) and thus the improved forecasts are still

economically meaningful after accounting for transaction costs.

Table IV

Forecasts of Annual Equity Premium

Sample

Model 1927-2013 1927-1956 1956-1980 1980-2013

R2
OS ∆U Turn Net ∆U R2

OS ∆U R2
OS ∆U R2

OS ∆U

5-year Rolling Window -8.27 -0.29 3.88 -0.52 -11.87 -1.66 17.71 3.27 -14.89 -1.79

10-year Rolling Window 2.69 0.34 3.13 0.20 4.82 -0.51 7.73 1.93 -7.31 -0.06

20-year Rolling Window -0.15 -0.09 2.15 -0.14 4.34 0.53 -9.53 0.52 -7.54 -1.25

Exponential Smoothing 3.34 0.40 2.97 0.32 4.64 0.18 3.96 1.38 -1.10 -0.19

Multiple Breaks 7.94 1.11 2.72 1.02 7.85 1.06 13.35 2.03 4.53 0.71

Multiple Breaks (pre) 3.92 0.82 1.32 0.78 3.33 0.80 5.29 0.98 3.04 0.60

Table IV: Forecasts of annual equity premium. This table presents out-of-sample error statistics when forecasting

the simple annual equity premium. Forecasts are based on 12 overlapping annual returns per year. Data prior to

January 1927 are from Robert Shiller’s website. A positive value of R2
OS indicates the model has superior out-of-

sample forecasting power than the null model. The null model is the historical average, except for Multiple Breaks

(pre) in which the alternative model is our model and the null model is the model with a prespecified number of

breaks. R2
OS values have been multiplied by 100. ∆U denotes the difference in average utility derived from forecasting

with the alternative model compared with the null model. ∆U is reported as an annualised percentage return. The

utility function is E(Rp) − A
2 V ar(Rp), the risk aversion coefficient, A, is set equal to 3, and Rp denotes the return

on the portfolio. Turn denotes the average turnover of the portfolio obtained from the alternative model divided by

the average turnover of the portfolio from the null model. Net ∆U denotes the difference in average utility net of

transaction costs.

Inspection of the subsample results in Table IV highlights the importance of the consis-

tency criterion. The 5-year rolling window model substantially outperforms all other models

in the 1956 to 1980 subsample, including the multiple breaks model, but performs badly in

both of the other subsamples. Both the exponential smoothing model and the 10-year rolling
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Figure 9: Cumulative R-Squared Based on Forecasts of Annual Equity Premium
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Figure 9: Cumulative R-squared based on forecasts of the annual equity premium from uni-
variate break models. Following Campbell and Thompson (2008), this figure displays the cumulative
R-squared over the out-of-sample period for each of the univariate models considered in this model that ac-
count for breaks compared with the historical average when forecasting the simple annual equity premium.
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window beat the historical mean over the full sample measured both by R-squared and the

utility gain. However, the success of both is largely due to the 1956 to 1980 subsample, and

crucially both underperform in the most recent sample. These results highlight how long a

period we need in order to judge the success of a proposed model for forecasting the equity

premium. In some contexts 25 years might seem a reasonable horizon over which to judge

the success of a model, but any investor who started in 1980 to trade on the basis of a model

that would have been profitable over the previous 25 years would have lost money over the

next 33 years, and a risk averse investor with the preferences and trading rule specified here

would have lost utility.

In Figure 9 we graph the year by year forecasting performance of the different models

at the annual horizon. Figure 9 shows that the success of the 5-year rolling window in the

middle subsample is due to two short periods in the 1950s and the 1970s. On the other hand

the multiple breaks model performs strongly from the early 1930s through the end of the

sample.

Dangl and Halling (2012) and Johannes, Korteweg, and Polson (2014) report that allow-

ing for time-variation in a predictive regression using popular variables such as the dividend

yield leads to improved equity premium forecasts relative to the historical average. We find,

however, that allowing for permanent shifts in a mean model outperforms the historical aver-

age when forecasting the equity premium at both the monthly and annual horizons. It would

therefore be interesting to investigate whether allowing for time-variation in a predictive re-

gression using the popular predictors outperforms a model which allows for time-variation

in the mean. If it does not outperform the time-varying mean model then these predic-

tive variables may not exhibit any additional predictive power. We leave a comprehensive

investigation of this matter to future work.

42



Figure 10: Posterior Distribution of the Number of Breaks
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Figure 10: Posterior distribution of the number of breaks. This plot displays the posterior distribu-
tion of the number of breaks that occur over the entire sample (1871 to 2013) when predicting the monthly
equity premium. The mode number of breaks is 14 with approximately 80% of the mass lying between 12
and 16 breaks.

4.3. Distribution of structural breaks

Figure 10 displays the posterior distribution of the number of structural breaks, K,

that occur over the sample 1871 to 2013 when estimating the monthly equity premium.

The posterior mode is 14 breaks with a probability of 27%. A posterior mode of 14 breaks

corresponds to a break occurring approximately every 10 years on average which corroborates

the findings of Pastor and Stambaugh (2001). Recall the effective prior (see Figure 1) has

a mode number of breaks of 12 with a spread between 1 and 29 breaks. The posterior

distribution of K has a spread from 11 to 19 breaks, with approximately 80% of the mass

lying between 12 and 16 breaks.

Each structural break is assumed to occur gradually and is thus represented by a TR

which separates two SRs. Figure 11 displays the posterior probability that a TR begins in

any given month over the out-of-sample period, 1927 to 2013. The greatest posterior break
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Figure 11: Posterior Distribution of Changepoint Locations
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Figure 11: Posterior distribution of the changepoint locations. This plot displays the posterior
distribution of the changepoint locations that occur in the out-of-sample period, 1927-2013, when predicting
the monthly equity premium. The most likely changepoint location, with a posterior break probability of
84%, is November 1982.

probability of 84% is attributed to November 1982. There are 25 months that have a posterior

break probability of at least 20%. There is a 76% probability of a TR beginning in either

October or November 1929. There is a 93% probability of a TR beginning between June

and September 1940, and an 84% probability of a TR beginning between December 1972

and February 1973. More recently, there is a 65% probability of a TR beginning between

December 1991 and February 1992. Finally, the recent financial crisis appears to represent

a structural break, with an 82% probability of a TR beginning between October 2007 and

April 2008.

4.4. Sensitivity of results to priors

Finally, we explore the sensitivity of the out-of-sample forecasting results to the hyper-

parameter value choices that control the exact shapes of the prior distributions. Specifically,
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we analyse the ability of our multiple breaks method relative to the historical average to fore-

cast the monthly equity premium when we adjust one hyperparameter value at a time. We

report out-of-sample R-squared values and the economic utility gain in terms of annualised

percentage for the full sample and across subsamples. Table V displays the results.

For all but one case, the out-of-sample R-squared values remain positive over the full

sample and all subsamples while the utility gain is economically meaningful. The only case

in which the outperformance breaks down is when we set σµ = 100. The higher is σµ the

more prior weight is placed on large shifts in the equity premium. Pastor and Stambaugh

(2001) specified a relatively tight prior here because large shifts in the equity premium are

implausible on economic grounds. Furthermore, forecasting in the presence of structural

breaks requires careful management of bias-variance tradeoffs (Pesaran and Timmermann,

2007). Increasing σµ to 100 results in (i) implausible equity premium estimates and (ii)

very noisy estimates causing all improvement in forecasting power relative to the benchmark

model to dissipate. This result is in line with the literature. For example, Wachter and

Warusawitharana (2009) report that allowing the prior variance on the dividend yield slope

coefficient in a predictive regression of stock returns to become very large eliminates all
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improved forecasting power.

Table V

Sensitivity of results to priors

Sample

Hyperparameter 1927-2013 1927-1956 1956-1980 1980-2013

R2
OS ∆U R2

OS ∆U R2
OS ∆U R2

OS ∆U

aγ = 1 0.69 1.23 0.61 0.80 1.47 2.80 0.75 1.13

α2 = 0.1 0.80 1.47 0.63 0.75 1.68 2.88 0.59 0.98

η = 1 0.76 1.33 0.59 0.74 1.60 2.93 0.62 1.00

b̄ = -5 0.69 1.28 0.54 0.68 1.56 2.80 0.60 1.01

ρ = 0.5 0.80 1.42 0.60 0.75 1.69 2.91 0.59 0.97

ν = 5 0.74 1.35 0.55 0.69 1.57 2.85 0.69 1.04

aSR = 450 0.78 1.40 0.58 0.74 1.61 2.90 0.66 1.02

σµ = 0.01 0.71 1.33 0.54 0.69 1.53 2.69 0.72 1.11

σµ = 0.1 0.77 1.38 0.60 0.77 1.56 2.82 0.65 1.06

σµ = 100 -1.29 -1.89 -0.87 -1.48 -1.87 -3.06 -1.32 -1.98

Table V: Sensitivity of results to priors. This table presents out-of-sample error

statistics when forecasting the simple monthly equity premium. We adjust one hy-

perparameter at a time and report the out-of-sample R-squared and improvement in

economic utility for the full sample and across subsamples for a mean-variance investor

from forecasting with the multiple break model relative to using only the information

available in the prevailing mean.
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5. Conclusions

In this paper we have developed a Bayesian multiple changepoint model that determines

the number of structural breaks endogenously in a generic and flexible framework that is

computationally efficient. Our approach is applicable to many highly structured models

for which some existing approaches are computationally more cumbersome. One particular

highly structured and inherently attractive model is that introduced by Pastor and Stam-

baugh (2001) that estimates the equity premium over a long sample in the presence of a

fixed number of breaks. We estimate this model using our multiple changepoint approach

that determines the number of breaks endogenously. The computational efficiency of our ap-

proach enables the model to be easily applied in a recursive forecasting exercise of the U.S.

equity premium. Goyal and Welch (2008) report that the historical average outperforms a

range of popular economic predictors when forecasting the equity premium. We find that

the forecasting performance of the univariate approach can be further improved by allowing

for an unknown number of breaks in a theory-informed model of the equity premium. For

mean-variance investors, our approach delivers forecasts that are an economically meaningful

improvement compared to use of the historical average.
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Appendix A. Specifying the Prior on the

Number of Structural Breaks

The RJMCMC algorithm is not restricted to a geometric prior on the regime durations.

Any prior can be used in a straightforward manner without complicating the computation.

With a sufficiently diffuse prior our method can determine any number of breaks ranging from

zero, assuming a constant equity premium, to a break every period as in the exponential

smoothing model. However, we have kept the geometric prior here to remain as close as

possible to the model of Pastor and Stambaugh (2001). Note, however, the effective prior is

more complicated because it is also affected by the geometric prior placed on the number of

breaks in the model (see Section 2.2.2.2), which in itself is also not a particularly restrictive

prior belief. To investigate this issue further, the sampler was run without data (so the

likelihood contribution is always set to 1). To find the value of λ that corresponded to the

prior belief of a break occurring approximately every ten years, we sampled from the prior

distribution of K using many different values for λ between 0 and 1.

Appendix B. Estimating the Model

Due to the complex nature of our Bayesian model, the joint posterior distribution is not

analytically tractable. We use simulation techniques known as Markov chain Monte Carlo

(MCMC) methods to sample from the joint posterior. With enough simulations our samples

give a good approximation to the joint posterior. The sampling of our model consists of

three stages: sampling the parameters conditional on the number of changepoints and their

locations, providing the local adjustment to the changepoint locations conditional on the
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number of changepoints, and finally sampling the number of changepoints.

Updating the parameters conditional on the changepoints: The Metropolis Hast-

ings and Gibbs steps are used to obtain draws of the parameter vector θ conditional on K

and q. Parameters are repeatedly drawn from their full conditional distributions. Draws be-

yond a transient burn-in stage are thinned at a specified interval to combat autocorrelation

of the draws.

Following the exposition of Pastor and Stambaugh (2001) we perform the change of

variables λ ≡ 1/γ and φ2
k ≡ 1/ψk and define ∆i ≡ µi+1 − µi. Incorporating the change of

variables, the full conditional distributions are derived from the joint posterior distribution:

µ | · ∼ N
(
ı′V −1

µ µ

ıV −1
µ ı

,
1

ı′V −1
µ ı

)
, µ > 0, (B1)

φ2
i | · ∼

ν +
q2i−1∑

t=q2i−2+1

(xt−µi)2
λµi

χ2
ν+l2i−1

, i = 1, . . . , K + 1, (B2)

λ | · ∼

2
bγ

+
K+1∑
i=1

q2i−1∑
t=q2i−2+1

(xt−µi)2
λµi

χ2

2aγ+
K+1∑
i=1

l2i−1

, (B3)

σ2
j,j+1 | · ∼

(η − 2)α2 +
q2j∑

t=q2j−1+1

(
xt −

(µj+µj+1

2
+ bj∆j)

))2

χ2
η+l2j

, j = 1, . . . , K (B4)

bj | · ∼ N (mbjνbj , νbj), j = 1, . . . , K, (B5)
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where

mbj =
b

σ2
b

+
∆jl2j
σ2
j,j+1


q2j∑

t=q2j−1+1

xt

l2j
− µj + µj+1

2

 ,

νbj =
1

1
σ2
b

+
∆2
j l2j

σ2
j,j+1

.

The full conditional distribution of µ is

(B6)

p(µ | ·) ∝

(
K+1∏
i=1

µ
(−l2i−1/2)

i

)

× exp

−1

2

(µ− µı)′V −1
µ (µ− µı) +

K+1∑
i=1

q2i−1∑
t=q2i−2+1

(xt − µi)2

λφ2
iµi

+
K∑
j=1

q2j∑
t=q2j−1+1

(
xt −

(µj+µj+1

2
+ bj∆j

))2

σ2
j,j+1

 , µ > 0,

∝

(
K+1∏
i=1

µ
(−l2i−1/2)

i

)
exp

{
−1

2

[
µ′(V −1

µ +D1 +D2)µ

− 2µ′(V −1
µ µı+ w + g) + d′x2

]}
, µ > 0,

where d is a (K + 1)-vector whose ith element is

di =
l2i−1

λµiφ2
i

, (B7)

w is a (K + 1)-vector whose ith element is

wi = − l2i−1

2λφ2
i

, (B8)
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x2 is a (K + 1)-vector whose ith element is

x2
i =

1

l2i−1

q2i−1∑
t=q2i−2+1

x2
t , (B9)

D1 =



z1,1 0 0 · · · 0 0

0 z2,1 + z1,2 0 · · · 0 0

0 0 z2,2 + z1,3 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · z2,K−1 + z1,K 0

0 0 0 · · · 0 z2,K


(B10)

D2 =



0 −z3,1 0 · · · 0 0

−z3,1 0 −z3,2 · · · 0 0

0 −z3,2 0 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · 0 −z3,K

0 0 0 · · · −z3,K 0


(B11)
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g =



z4,1

z5,1 + z4,2

z5,2 + z4,3

...

z5,K−1 + z4,K

z5,K


(B12)

and, for j = 1, . . . , K,

z1,j =
l2j
(
bj − 1

2

)2

σ2
j,j+1

(B13)

z2,j =
l2j
(
bj + 1

2

)2

σ2
j,j+1

(B14)

z3,j =
l2j
(
bj − 1

2

) (
bj + 1

2

)
σ2
j,j+1

(B15)

z4,j =
l2j
(
bj − 1

2

)
σ2
j,j+1

x2j (B16)

z5,j =
l2j
(
bj + 1

2

)
σ2
j,j+1

x2j (B17)

x2j =
1

l2j

q2j∑
t=q2j−1+1

xt. (B18)

The Gibbs Sampler is used to draw from all of the above full conditional distributions
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except for that of µ, which is not a standard distribution due to the truncation at 0. We

update µ one component at a time using a random walk Metropolis-Hastings step, using

univariate normal proposals with variance 0.0004, which has been tuned to achieve reasonable

acceptance rates.

Updating the changepoint locations: Pastor and Stambaugh (2001) recognise that us-

ing local adjustments of the changepoint locations will not allow sufficient exploration of

the posterior distribution. They therefore make use of Chib (1998)’s algorithm to sample

a complete new set of changepoint locations on each MCMC iteration. However, we will

introduce a mechanism for introducing and removing changepoints, rendering local adjust-

ments sufficient here and thereby avoiding the large computational burden associated with

Chib (1998)’s algorithm when the time series becomes long. Even improved versions of Chib

(1998)’s algorithm such as Pesaran, Pettenuzzo, and Timmermann (2006), Koop and Potter

(2007), and Giordani and Kohn (2008) are prohibitively expensive because they address the

full time series on every iteration. In contrast, local updates only address each changepoint

and since the number of changepoints is significantly less than the length of the time series

a computational saving is achieved.

Specifically, the method we use is a simple random-walk Metropolis Hastings step. For

each changepoint, k, we propose to perturb its location, qk, by a number sampled uniformly

from the interval [−5, 5]. Each proposal is accepted with probability equal to min(1, α), in

which α = p(q̂ | x, θ)/p(q | x, θ) and q̂ denotes the perturbed changepoint locations.

Updating the number of changepoints: The reversible jump Markov chain Monte

Carlo (RJMCMC) algorithm we develop in this article relaxes the restriction that K must

be fixed in advance by the user. The algorithm jumps between different numbers of change-
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points, drawing the posterior p(K | x) in the process. Determining the number of breaks

endogenously and providing automated online Bayesian Model Averaging in such a way re-

moves any requirement for offline calculations. Online Bayesian Model Averaging is impor-

tant for a recursive out-of-sample forecasting exercise, in which the number of changepoints

for each estimation period must be inferred automatically from the data.

RJMCMC allows an MCMC sampler to jump between statistical models of varying size

(Green, 1995). In the current example, it allows the sampler to jump between models with

different numbers of changepoints. On each iteration, the algorithm attempts to either add

(birth move) or remove (death move) one structural break. The proposed move is then

accepted with a probability which is calculated to ensure that detailed balance across the

full posterior (including K) is maintained. On each iteration, a birth move is attempted

with probability bk = 0.5 and a death move with probability dk = 0.5. Clearly, d0 = 0 and

bkmax = 0, where kmax corresponds to a break occurring every period.

Birth move: If a birth move is chosen, an attempt will be made to increase K to K + 1

and split an existing SRi into three regimes: two new SRs separated by a TR. Let these

three regimes be denoted SR∗−, TR∗, and SR∗+, respectively. Let the existing SRi, which we

attempt to split, be denoted SRic . We sample SRic uniformly from SR1:K+1. The length of

TR∗, denoted lTR∗ , is then proposed from a Negative Binomial distribution

lTR∗ ∼ NB(p, r), (B19)
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where p = 0.7 and r = 0.05.10 The first of the two new proposed changepoints, denoted

qTR∗−1, is drawn uniformly on the interval (q2ic−1 + 1,q2ic−1 − lTR∗), where q2ic−1 + 1 and

q2ic−1 denote the first and final time points of SRic , respectively. The move is immediately

rejected if l∗TR ≥ l2ic−1− 1. The second proposed changepoint, denoted by qTR∗ , is computed

as qTR∗−1 + lTR∗ . We now have three regimes where we once had a single SR so we must

propose a new equity premium value for each of the two new SRs, new price of risk values

to calculate the variance in the new SRs, the variance in the TR, and the negative discount

condition to calculate the equity premium in the newly proposed TR.11

Let µSR∗
−

and µSR∗
+

denote the values of the equity premium in SR∗− and SR∗+, respec-

tively. Their values are proposed from a normal distribution with mean, x, equal to the

mean of the equity premium data from the entire sample. The variance of this proposal

distribution, σ2
µ∗ , is selected to ensure the distribution has slightly heavier tails than the

empirical distribution of the equity premium data from the entire sample

µSR∗
−
, µSR∗

+
∼ N (x, σ2

µ∗), (B20)

where x =
T∑
t=1

xt/T and σ2
µ∗ = 0.01. We use an independent proposal distribution rather than

a split move to increase the acceptance rate of the proposed moves. The default split move

of Green (1995) often proposes equity premium values that are implausible and subsequently

rejected by the data. Our proposal distribution is centred at the mean of the data and we

find adopting this proposal distribution increases the acceptance probability.

The proposal distribution for the negative discount condition for the newly proposed TR,

10This proposal distribution was chosen to closely reflect the empirical distribution of the TR lengths
observed in an initial run with no RJMCMC step incorporated.

11Table VI lists the variables that need to be proposed.
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bTR∗ , is a normal distribution with hyperparameters b∗ and σ2
b∗

bTR∗ ∼ N (b
∗
, σ2

b∗), (B21)

where

b∗ =
xTR∗ −

µSR∗
+
−µSR∗

−
2

µSR∗
+
− µSR∗

−

, (B22)

xTR∗ is the mean of the excess return data from the TR∗ sample, and σ2
b∗ is set equal to 25.12

Recall from (5) that the mean excess return during a TR is specified as

µj + µj+1

2
+ bj(µj+1 − µj), j = 1, . . . , K. (B23)

We simply equate expression (B23) to xTR∗ to create the mean of the proposal distribution,

b
∗
. We then calculate the equity premium for TR∗ as

µTR∗ =
µSR∗

−
+ µSR∗

+

2
+ bTR∗(µSR∗

+
− µSR∗

−
). (B24)

Now φ2
SR∗

−
and φ2

SR∗
+

can be proposed from their full conditional distribution. The variances

for the proposed SRs are calculated as described in (14) and the variance for TR∗, σ2
TR∗,TR∗+1,

is proposed from its full conditional distribution.13

The set of new parameters required for the birth move is now complete. Although we have

a complex model, we need only independently propose three parameters to add the extra

regimes in the birth move. To calculate the acceptance probability we need to also know

the corresponding reverse proposal density. We therefore delay calculation of the acceptance

12This value is chosen to be slightly larger than the variance of the empirical distribution of the output of
b values from an initial run that incorporated no RJMCMC step.

13In which ψi ≡ 1/φ2i .
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probability until after describing the death move.

Death move: The death move attempts to reduce K to K-1 and thereby replace three

regimes, denoted SRc
−, TRc, and SRc

+, respectively, with a single SR, denoted SR∗. First,

TRc is sampled uniformly from TR1:K . The length of SR∗ is computed as

lSR∗ = lSRc− + lTRc + lSRc+ . (B25)

The values of bTRc and σ2
TRc,TRc+1 are discarded, as are µSRc− , µSRc+ , φ2

SRc−
, and φ2

SRc+
. The

µSR∗ value is proposed using (B20) and the new φ2
SR∗ is proposed from its full conditional

distribution. The full set of parameters that require proposing for both the birth and death

moves are presented in Table VI.

Table VI

Proposed Parameters

SR TR

Birth move
µSR∗

−

µSR∗
+

φ2
SR∗

−

φ2
SR∗

+

bTR∗

σ2
TR∗,TR∗+1

lTR∗

Death move
µSRc
φ2
SRc

Table VI: Proposed parameters. This table presents the parameters that require
proposing in the birth and death moves, respectively.

57



Acceptance probability: The model-jumping move is simply a Metropolis Hastings move,

and therefore an acceptance probability needs to be calculated to decide whether or not to

accept the proposed new values. Denote by θK the set of within-model parameters for model

K; the distribution from which we wish to sample is proportional to

p(K)p(θK |K)p(x | θK , K).

Green (1995), and Green and Hastie (2012) demonstrate that to retain reversibility of the

chain the moves from (K, θk) should be considered as the following process:

• Propose a model K∗ into which to jump, with probability j(K,K∗)

• Propose an appropriate random vector u with density qK,K∗

• Calculate (θ∗K∗ , u∗) = hK,K∗(θK , u) where hK,K∗ is a diffeomorphism

• Accept the proposal with probability

max

{
1,
p(K∗)p(θ∗K∗ |K∗)p(x | θ∗K∗ , K∗)

p(K)p(θK |K)p(x | θK , K)

j(K∗, K)qK∗,K(u∗)

j(K,K∗)qK,K∗(u)

∣∣∣∣∂(θ∗, u∗)

∂(θ, u)

∣∣∣∣} , (B26)

otherwise reject.

This description of the methodology has proved to be a barrier for many interested in ap-

plying the method. However some generic simplifications make the method much simpler.

The key simplification we propose is to assume a limited kind of dependency between θK

and θ∗K∗ . As in the proposals described above, much of θK is retained unchanged in θ∗K∗ (i.e.

all the parts of the state vector not corresponding to the regime that is being split or merged).

The new terms in θ∗K∗ should be drawn either from independent proposal distributions (such

as the fixed Gaussian distribution used for µ∗±) or from simple distributions conditional only
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on the parts of θK that are to be retained, and other newly proposed parts of θ∗K∗ (such as

the full conditionals used to propose φ2
SR∗

±
).

Considering u and u∗ to be vectors of independent uniform random variables, and the

diffeomorphism hK,K∗ to consist of identity functions and inverse cumulative distribution

functions, it is a simple calculation in this instance to show that the acceptance probability

in (B26) becomes

max

{
1,
p(K∗)p(θ∗K∗ |K∗)p(x | θ∗K∗ , K∗)

p(K)p(θK |K)p(x | θK , K)

j(K∗, K)

j(K,K∗)

q(θ∗K∗ , θK)

q(θK , θ∗K∗)

}
(B27)

where q(θK , θ
∗
K∗) is the sampling density of all the new components of θ∗K∗ when jumping

from θK and, similarly, q(θ∗K∗ , θK) is the sampling density of all the new components of θK

when jumping from θ∗K∗ .

In our example, whenever a move is proposed we have j(K,K∗) = j(K∗, K) = 1
2

(except

at the boundaries of model space, where we may have j = 0 or j = 1). Furthermore, since a

jump always either introduces or removes a single TR, we need only consider two proposal

densities. The proposal density when the birth of a new TR is proposed is

q(θK , θ
∗
K+1) =

1

K + 1
pNB(p,r)(l

∗
TR∗)fx̄,σ2

µ∗
(µ∗SR∗

−
)fx̄,σ2

µ∗
(µ∗SR∗

+
)fbTR,σ2

bTR

(b∗TR∗)

× p(σ2∗
TR∗,TR∗+1 | · · ·)p(φ2∗

SR∗
−
| · · ·)p(φ2∗

SR∗
+
| · · ·)

where the (K+1)−1 corresponds to the uniform selection of one of the current stable regimes

to break, pNB(p,r) is the mass function for the negative binomial proposal distribution for the

length of the new transition regime, fm,s2 gives the density of a normal random variable with

mean m and variance s2, and p(X | · · ·) is the full conditional distribution of the random
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variable X. The proposal density for a death proposal is

q(θK+1, θ
∗
K) =

1

K + 1
fx̄,σ2

µ∗
(µSR∗)p(φ2

SR∗ | · · ·)

where in this instance the (K+1)−1 corresponds to the uniform selection of one of the K+1

transition regimes to kill.

The use of the full conditional distributions results in canceling in (B27), so that values

of parameters proposed through these proposals have no effect on the acceptance probability.

The model-jumping step therefore has fewer effective dimensions and the chance of accepting

a proposal is increased.

The chain is run for 3 million iterations with a burn-in of 250,000 and a thinning interval of

20. Pastor and Stambaugh (2001) run 606,000 iterations and since we are also estimating the

number of breaks we have a larger parameter space to traverse. Running 3 million iterations

is computationally feasible in our framework since each iteration is much faster than the

forward-backward approach of Chib (1998) chosen by Pastor and Stambaugh (2001). This

number of iterations allows the sampler to traverse the entire parameter space. For each set

of priors and hyperparameters we run 2 chains with different seeds and starting values to

diagnose convergence.
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