
 Morales-Álvarez, P., Ruiz, P., Santos-Rodríguez, R., Molina, R., &
Katsaggelos, A. K. (2019). Scalable and efficient learning from crowds
with Gaussian processes. Information Fusion, 52, 110-127.
https://doi.org/10.1016/j.inffus.2018.12.008

Peer reviewed version
License (if available):
CC BY-NC-ND
Link to published version (if available):
10.1016/j.inffus.2018.12.008

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Elsevier at https://www.sciencedirect.com/science/article/pii/S1566253518304664. Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/195284346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.inffus.2018.12.008
https://doi.org/10.1016/j.inffus.2018.12.008
https://research-information.bris.ac.uk/en/publications/83e1ba96-241c-480a-94fe-a8519b850574
https://research-information.bris.ac.uk/en/publications/83e1ba96-241c-480a-94fe-a8519b850574

Scalable and Efficient Learning from Crowds
with Gaussian Processes

Pablo Morales-Álvareza, Pablo Ruizb, Raúl Santos-Rodŕıguezc, Rafael
Molinaa, Aggelos K. Katsaggelosb

aComputer Science and Artificial Intelligence Department, University of Granada, Spain.
bElectrical Engineering and Computer Science Department, Northwestern University, USA.

cIntelligent Systems Laboratory, University of Bristol, UK.

Abstract

Over the last few years, multiply-annotated data has become a very popular
source of information. Online platforms such as Amazon Mechanical Turk have
revolutionized the labelling process needed for any classification task, sharing
the effort between a number of annotators (instead of the classical single ex-
pert). This crowdsourcing approach has introduced new challenging problems,
such as handling disagreements on the annotated samples or combining the un-
known expertise of the annotators. Probabilistic methods, such as Gaussian
Processes (GP), have proven successful to model this new crowdsourcing sce-
nario. However, GPs do not scale up well with the training set size, which makes
them prohibitive for medium-to-large datasets (beyond 10K training instances).
This constitutes a serious limitation for current real-world applications. In this
work, we introduce two scalable and efficient GP-based crowdsourcing methods
that allow for processing previously-prohibitive datasets. The first one is an
efficient and fast approximation to GP with squared exponential (SE) kernel.
The second allows for learning a more flexible kernel at the expense of a heavier
training (but still scalable to large datasets). Since the latter is not a GP-SE
approximation, it can be also considered as a whole new scalable and efficient
crowdsourcing method, useful for any dataset size. Both methods use Fourier
features and variational inference, can predict the class of new samples, and
estimate the expertise of the involved annotators. A complete experimenta-
tion compares them with state-of-the-art probabilistic approaches in synthetic
and real crowdsourcing datasets of different sizes. They stand out as the best
performing approach for large scale problems. Moreover, the second method is
competitive with the current state-of-the-art for small datasets.

IThis work was supported by the Spanish Ministry of Economy and Competitiveness under
project DPI2016-77869-C2-2-R, the US Department of Energy (DE-NA0002520) and the Vis-
iting Scholar Program at the University of Granada. PMA received financial support through
La Caixa Fellowship for Doctoral Studies (La Caixa Banking Foundation, Barcelona, Spain).

Email addresses: pablomorales@decsai.ugr.es (Pablo Morales-Álvarez),
mataran@northwestern.edu (Pablo Ruiz), enrsr@bristol.ac.uk (Raúl Santos-Rodŕıguez),
rms@decsai.ugr.es (Rafael Molina), aggk@eecs.northwestern.edu (Aggelos K. Katsaggelos)

Preprint submitted to Information Fusion December 31, 2018

Keywords: Scalable Crowdsourcing, Classification, Gaussian Processes,
Fourier Features, Bayesian Modeling, Variational Inference.

1. Introduction

The term crowdsourcing was coined in 2006 by J. Howe [1] to refer to “the
act of taking a job traditionally performed by a designated agent (usually an
employee) and outsourcing it to an undefined generally large group of people
in the form of an open call”. In the last decade, many crowdsourcing services
have proliferated in the Internet, where a dataset can be published and millions
of people around the world can provide labels in exchange for a reward [2].
Amazon Mechanical Turk (www.amt.com), Galaxy Zoo (www.galaxyzoo.org),
Zooniverse (www.zooniverse.org), Crowdflowers (www.crowdflower.com) or
Clickworker (www.clickworker.com) are among the most popular ones. Due
to the great number of potential annotators, large data sets can be labeled in a
very short time, overcoming one of the main limitations of the classical expert-
alone labelling process. However, this crowdsourcing approach has introduced
new challenging problems, such as combining the unknown expertise of anno-
tators, dealing with disagreements on the annotated samples, or detecting the
existence of spammer and adversarial annotators [2]. All these problems have
required probabilistic sound solutions, beyond the naive use of majority voting
plus classical classification methods.

Crowdsourcing applications are growing rapidly. Since the early innovative
use to detect small volcanoes in Magellan SAR images of Venus [3], crowdsourc-
ing techniques have been applied to a wide range of modern problems such as
mitosis detection in breast cancer histology images [4], topic modelling from
crowds [5], and detection of glitches in signals acquired by the laureate Laser
Interferometer Gravitational-Wave Observatory (LIGO) [6]. There also exist
some recent attempts to combine crowdsourcing with Deep Learning approaches
[4, 7]. Interestingly, the growth of social websites based on user-generated con-
tent (TripAdvisor, Twitter, YouTube) has turned multiple-annotation into a
very natural way of labeling reviews, opinions, or videos. This relates crowd-
sourcing to the emerging explainable-AI [8] which, in addition to predict a label
for a given sample, explains the decision process in a human understandable
and reconstructable way.

The first paper on crowdsourcing dates back to 1979 [9]. Early contribu-
tions addressed the estimation of the underlying true labels and the reliability
of the annotators, but were not conceived to learn a classifier. This idea was
explored by Raykar et al. [10], who proposed to jointly estimate the coefficients
of a logistic regression (LR) classifier and the annotators’ expertise. The latter
is modelled through the sensitivity and specificity concepts, which refer to the
accuracy of the annotator when labelling instances from each class. Yan et al.
[11] (see also the subsequent journal version [12]), introduced a crowdsourcing
classifier (also based on LR) which considers a feature-dependent model for the

2

www.amt.com
www.galaxyzoo.org
www.zooniverse.org
www.crowdflower.com
www.clickworker.com

annotators’ expertise. The main limitation of these two approaches is the sim-
ple LR classification model, which can only deal with linearly separable data.
Rodrigues et al. [13] overcame this problem by introducing a crowdsourcing
classifier based on Gaussian Processes (GP) [14, 15, 16]. GP is a probabilis-
tic state-of-the-art model for functions, which uses the so-called “kernel trick”
[17, Chapter 6] to deal with complex non-linear decision boundaries. Moreover,
its Bayesian formulation excels at uncertainty quantification [14]. Expectation
Propagation (EP) [18] (see also [14, Section 3.6]) was used as inference pro-
cedure for GP in [13]. Recently, Variational Inference (VI) [19, 20] was used
as an alternative to EP in crowdsourcing, outperforming it in both predictive
performance and computational cost [21, 22]. These probabilistic GP-based
methods have proven very successful in the crowdsourcing literature. However,
the poor scalability of standard GP models hampers their applicability to cur-
rent medium-to-large scale real-world problems. Therefore, the development of
scalable and efficient methods is one of the main research lines in crowdsourcing.

More specifically, classical1 GPs operate with N ×N kernel matrices, where
N is the training set size. This implies a O(N2) cost in RAM memory, a O(N3)
computational complexity at the training step (since the kernel matrix must
be inverted), and O(N2) cost in the test step. As a consequence, N = 104

instances is generally considered the practical limit of standard GPs [14]. Since
current real-world problems usually involve larger datasets, many sparse GP
approximations have been developed in the Machine Learning community during
the last years. The first approaches focused on selecting a convenient subset of
the training set and applying standard GP there [23], see also [14, Chapter 8].
Later on, pseudo-inputs and inducing points were proposed as a smarter way to
reduce the computational cost of classical GP without completely loosing the
information provided by the discarded points [24]. This approach has become
very popular, and many works have been devoted to analyze it in depth and
advance it further [25, 26, 27, 28]. Another recent promising approach is based
on the random Fourier features approximation to the kernel matrix [29], which
was proposed for GP-regression in [30] and further improved in [31]. Moreover,
it was recently extended to GP-classification in [16].

In this work, we start by applying the aforementioned Fourier features
methodology to approximate the squared exponential (SE) kernel of the GP-
based crowdsourcing method proposed in [21, 22]. This approach is referred to
as RFF (Random Fourier Features). Then, we also propose VFF (Variational
Fourier Features), which does not approximate a SE kernel but learns a new one
well-suited for the data at hand. The training cost and RAM memory require-
ments for both approaches, including the computation of the Fourier features,
scale linearly with N , and their test cost is independent on N . These are very
significant reductions with respect to previous approaches. Whereas RFF is a
large-scale approximation of the previous approach in [21, 22], VFF is a whole

1Throughout this work, we will refer to classical and standard GP interchangeably to
denote the typical and well-known formulation in [14].

3

new scalable crowdsourcing method, whose additional flexibility allows one to
capture new relevant patterns (even in previously-reachable small datasets).
However, VFF is more prone to overfitting, and slower in practice. A complete
experimentation with real and synthetic crowdsourcing datasets of different sizes
will show that i) the proposed methods can handle much larger training sets
than previous approaches, ii) they have better generalization capability with a
faster training step, iii) the test computational cost is extraordinarily reduced,
iv) the estimations of annotators’ sensitivity and specificity are very accurate,
and v) VFF is competitive with other state-of-the-art methods in small datasets.

The rest of the paper is organized as follows. Section 2 introduces the prob-
abilistic modelling of the proposed methods. Section 3 presents the variational
inference scheme used to estimate the posterior distributions and all the pa-
rameters of the model. Section 4 shows the predictive distribution to be used
in the test step. Section 5 includes a complete experimentation evaluating the
proposed methods. Finally, the main conclusions and some future outlook are
provided in Section 6.

2. Probabilistic modelling

Formally, a crowdsourcing classification problem involves a training dataset
{X,Y}, where X = [x1, . . . ,xN]ᵀ ∈ RN×D is the set of features, and Y =
{yrn ∈ {0, 1}|n = 1, . . . , N, r ∈ Rn} is the set annotations. N , D, and R
denote, respectively, the number of training instances, their dimension (i.e. the
number of features), and the number of annotators. Rn ⊆ {1, . . . , R} denotes
the set of annotators that labelled the n-th instance. Analogously, we define
Nr ⊆ {1, . . . , N} as the set of instances annotated by the r-th annotator.

The most successful probabilistic crowdsourcing approaches model the set
of annotations Y by introducing a set of underlying unknown real labels z =
(z1, . . . , zN)ᵀ ∈ {0, 1}N . Given zn and r ∈ Rn, the r-th annotator’s label is
modelled with the conditional Bernoulli distributions

p(yrn = 1|zn = 1) = αr, p(yrn = 0|zn = 0) = βr, (1)

where αr, βr ∈ [0, 1] are called sensitivity and specificity for the r-th annotator,
respectively. These numbers represent the reliability of that annotator when
labelling instances in each class. Assuming independence between annotators
and across their annotations, we have

p(Y|z,α,β) =

R∏
r=1

∏
n∈Nr

[
α
yrn
r (1− αr)1−y

r
n

]zn [
(1− βr)y

r
nβ

1−yrn
r

]1−zn
, (2)

where we denote α = (α1, . . . , αR)ᵀ, and β = (β1, . . . , βR)ᵀ.
In this work, as in [22], all the αr and βr are treated in a Bayesian way, i.e.

they are assumed to be stochastic variables. More specifically, they are assigned
prior beta distributions αr → Beta(arα, b

r
α) and βr → Beta(arβ , b

r
β). Recall that

4

Beta(x|a, b) ∝ xa−1(1 − x)b−1 for 0 < x < 1, with E(x) = a/(a + b). During
inference, the following expectations of a beta distribution will be also required

E(log x) = ψ(a)− ψ(a+ b), E(log(1− x)) = ψ(b)− ψ(a+ b), (3)

where ψ denotes the digamma function (see [17, Exercise 2.11]). In a beta
distribution, the hyper-parameters a and b can be set to introduce prior knowl-
edge about the variable (in our case, the reliability of each annotator labelling
instances in each class). When no prior knowledge is available, a = b = 1 pro-
duces an uniform prior distribution. Since the specificity and sensitivity of the
different annotators are assumed independent, we have the joint priors:

p(α) =
R∏
r=1

Beta(αr|arα, brα), p(β) =

R∏
r=1

Beta(βr|arβ , brβ). (4)

Finally, to model the underlying real labels z given the features X, Gaus-
sian Processes (GP) has proven to be the most successful probabilistic ap-
proach, mainly because of its great flexibility and excellent uncertainty quantifi-
cation [13, 21, 22]. A GP introduces N latent variables (f1 = f(x1), . . . , fN =
f(xN)) =: f that jointly follow a multivariate normal distribution whose co-
variance matrix (the kernel matrix) depends on X, i.e. the distribution of f is
N (0,K = (k(xn,xm))1≤n,m≤N). The kernel function k : RD × RD → R en-
codes the properties (like smoothness) of the functions f(x) considered. Then,
given each latent variable fn, the underlying real label zn is modelled with the
sigmoid function σ, p(zn = 1|fn) = σ(fn) = (1 + exp(−fn))−1. Under this
common classical model, the main difference between the previous approaches
[13] and [21, 22] is the inference procedure used: Expectation Propagation [32]
in the former and Variational Inference [19, 20] in the latter (recall the second
paragraph of Section 1). Figure 1a) shows a graphical representation of this
GP-based classical model, which is in the basis of our proposal.

Although standard GP is well-known for modelling very complex data and
accurately quantifying and propagating uncertainty, it does not scale up well to
large datasets (recall the fourth paragraph in Section 1). Therefore, different
sparse GP approximations have been proposed over the last years in the Machine
Learning community [27, 28, 30, 31, 16]. Here, as it is done for regression in
[30, 31] and for classification in [16], we will resort to the interesting Fourier
features approximation [29] and will apply it to crowdsourcing.

2.1. Fourier features

The work [29] presents a general methodology to approximate any positive-
definite shift-invariant kernel k by a linear one. This is achieved by projecting
the original D-dimensional data x into 2Df Fourier features φ(x), whose lin-
ear kernel kL approximates the original k. In the case of GP, this linearity
enables one to undo the so-called kernel trick and work in the primal space of
features [17, Chapter 6]. With this, N ×N matrix inversions are substituted by

5

...
...X f z

y1

yR

↵1

↵R

�R

�1

⌦

...
...X z

y1

yR

↵1

↵R

�R

�1

� ⇢

⌦

a) b)

Figure 1: Graphical representations of the classical GP-based probabilistic model for crowd-
sourcing (left) and the new one proposed here (right). Yellow nodes represent the observed
variables, and blue nodes represent the variables to be estimated. Notice that the only dif-
ference is in the connection between the features X and the underlying real labels z (a GP
is used on the left and a Bayesian logistic-regression model based on Fourier features on the
right). In the latter, we have Ω = ω for RFF and Ω = W for VFF.

2Df ×2Df ones, yielding a total O(ND2
f +D3

f) training cost. In large-scale ap-

plications we can set Df � N , and the resulting O(ND2
f) complexity, which is

linear in N , constitutes an important reduction over the original O(N3). More-
over, both the test complexity and the memory cost reduce to O(D2

f), which
is independent on N . Of course, the main drawback of this process is that we
work with an approximation to the original kernel.

More specifically, let us consider the well-known SE kernel k(x,y) = γ ·
exp(−||x−y||2/(2ω2)), where the hyper-parameters γ and ω are called variance
and length-scale, respectively. Following [29], this kernel can be approximated
as k(x,y) ≈ kL(x,y) := γ · φ(x)ᵀφ(y), where the Fourier features φ are given
by

φ(x)ᵀ = D
−1/2
f ·

(
cos(wᵀ

1x), sin(wᵀ
1x), . . . , cos(wᵀ

Df
x), sin(wᵀ

Df
x)
)
∈ R2Df ,

(5)
and the Df Fourier frequencies wi must be sampled from a normal distribution
N (0, ω−2I). This approximation exponentially improves with the number Df

of Fourier frequencies used [29, Claim 1]. However, increasing Df will go at the
expense of increasing train and test computational cost and memory require-
ments in our methods. Other kernels could also be used, but that would involve
sampling from a different distribution.

2.2. The proposed models

Our first proposal consists of introducing this Fourier features approximation
for the SE kernel in the variational GP-based crowdsourcing method VGPCR
[21, 22]. Notice that, as explained above, the Fourier frequencies wi must be
sampled from N (0, ω−2I) and fixed, whereas the length-scale hyper-parameter
ω must be estimated during training (just as for standard GPs). To uncouple wi

6

and ω, we resort to the following equivalent expression for the Fourier features,
which makes explicit the dependence on ω

φ(x|ω)ᵀ = D
−1/2
f × (6)

×
(

cos(ω−1wᵀ
1x), sin(ω−1wᵀ

1x), . . . , cos(ω−1wᵀ
Df

x), sin(ω−1wᵀ
Df

x)
)
,

where now wi must be sampled now from N (0, I). Then, undoing the
kernel trick and passing to the primal space of features, we change the GP
for the equivalent2 Bayesian logistic-regression model p(zn = 1|xn, ω,ρ) =
(1 + exp (−φ(xn|ω)ᵀρ))−1, where the logistic-regression weights ρ follow a nor-
mal prior N (0, γI) (more details about the kernel trick in [17, Chapter 6]). Fi-
nally, assuming independence between the different instances given ρ, we have

p(z|ρ, ω,X) =

N∏
n=1

(
1

1 + e−ρᵀφ(xn|ω)

)zn (e−ρ
ᵀφ(xn|ω)

1 + e−ρᵀφ(xn|ω)

)1−zn

. (7)

This model will be refered to as RFFGPCR (Random Fourier Features Gaussian
Processes for Crowdsourcing), or RFF for short. In RFF, the Fourier frequencies
W = (w1, . . . ,wDf

)ᵀ ∈ RDf×D are randomly sampled from N (0, I) and fixed
from the beginning, whereas ω is estimated during training (to maximize the
marginal likelihood, see Section 3).

Our second proposal follows the same rationale as RFF, but optimizes the
Fourier frequencies wi in eq. (5). Since they are estimated to maximize the
marginal likelihood within a variational scheme (see Section 3), this approach is
refered to as VFFGPCR (Variational Fourier Features Gaussian Processes for
Crowdsourcing), or VFF for short. Therefore, the VFF model for z is identical
to that of RFF, eq. (7), but with W playing the role of ω and with the original
Fourier features expression in eq. (5) instead of the modified eq. (6). To unify the
notation, we will indistinctly write Ω for ω (RFF) or W (VFF), and therefore

p(z|ρ,Ω,X) =

N∏
n=1

(
1

1 + e−ρᵀφ(xn|Ω)

)zn (e−ρ
ᵀφ(xn|Ω)

1 + e−ρᵀφ(xn|Ω)

)1−zn

, (8)

with φ(xn|Ω) as in eq. (6) (RFF) or eq. (5) (VFF).
Unlike RFF, notice that VFF is no longer an approximation to VGPCR

(for which the Fourier frequencies must be sampled from N (0, ω−2I)), but a
whole new probabilistic crowdsourcing method that learns an appropriate ker-
nel. Moreover, its computational cost is similar to RFF ’s. More specifically, we
will see that the theoretical training complexity for VFF is O(NDfD +ND2

f)

(whereas it is O(ND2
f) for RFF). This is linear in N (like for RFF), and there-

fore much more scalable than the original VGPCR (O(N3)). Nonetheless, the

2Again, we stress that this new model is equivalent to GP with the Fourier features ap-
proximation for the SE kernel.

7

experimentation will show that the Fourier frequencies optimization significantly
slows down VFF when compared to RFF in practice. Moreover, whereas Df

has a clear influence in RFF performance (the higher, the better it is the ker-
nel approximation), it is related to the complexity of the model (the degrees of
freedom) in VFF. Therefore, in VFF, large values of Df may lead to overfitting
to the training set.

In summary, the proposed probabilistic crowdsourcing model is

p(Y, z,ρ,α,β|Ω, γ) = p(Y|z,α,β)p(z|ρ,Ω)p(ρ|γ)p(α)p(β), (9)

with p(Y|z,α,β) as in eq. (2), p(z|ρ,Ω) as in eq. (8), p(ρ|γ) = N (ρ|0, γI), and
p(α),p(β) as in eq. (4). Notice that, for clarity, we have omitted X from the
notation. Figure 1b) shows a graphical representation of the proposed model.

3. Variational Bayes inference

Once the training set {X,Y} is observed, Bayesian inference seeks to calcu-

late the maximum-likelihood hyperparameters (Ω̂, γ̂) = arg maxΩ,γ p(Y|Ω, γ),

and the posterior distribution p(z,ρ,α,β|Y, Ω̂, γ̂). However, in our case, the
marginal likelihood p(Y|Ω, γ) =

∫
z,ρ,α,β

p(Y, z,ρ,α,β|Ω, γ) cannot be ob-

tained in closed form (for simplicity, the sum in the discrete variable z is denoted
with integration). Variational inference [19, 20], see also [17, Section 10.1], is a
very popular approach to obtain an approximation to the posterior distribution
in Bayesian inference. It consists of finding, inside a predefined family Q, the
distribution q ∈ Q that minimizes the Kullback-Leibler divergence (KL) from q
to the real posterior. Recall that the KL divergence from a distribution q(x) to
another p(x) is defined as KL(q||p) =

∫
q(x) log(q(x)/p(x))dx, which is always

greater or equal to zero, and vanishes if and only if q = p. A different pop-
ular approach to approximate the posterior distribution is called Expectation
Propagation [18]. However, to the best of our knowledge, variational inference
has achieved better results in classical GP-based probabilistic crowdsourcing
methods, being also significantly more efficient (which is specially relevant in
large-scale scenarios like ours) [21, 22].

Here, for Ω and γ fixed, we propose an approximate posterior of the form

q(z,ρ,α,β) = q(ρ)q(α)q(β)q(z)3. (10)

The reason for “uncoupling” z is that integrating it out in the true posterior
p(z,ρ,α,β|Y,Ω, γ) is analytically intractable. Notice that this also applies
to ρ due to the sigmoids in eq. (8), for which we will additionally resort to the
local variational bound of the sigmoid [17, Section 10.5]. Using the factorization
proposed in eq. (10), the well-known mean-field formula [17, Section 10.1.1, eq.

3This is equivalent to the more general form q(ρ,α,β)q(z), since the variables ρ, α, and
β are coupled in the joint model of eq. (9) only through z.

8

(10.9)] yields the following update for q(z) (which factorizes along data points):

q(zn = 0) ∝
∏
r∈Rn

exp {yrnEq(log(1− βr)) + (1− yrn)Eq(log βr)} ,

q(zn = 1) ∝ exp(φ(xn|Ω)ᵀEq(ρ))

×
∏
r∈Rn

exp {yrnEq(logαr) + (1− yrn)Eq(log(1− αr))} ,

(11)

where the expectations are with respect to the current values of q(α), q(β) and
q(ρ). For the terms of the form Eq(log(·)), recall eq. (3). Analogously, the
updates for q(α) and q(β) factorize along annotators and are given by:

q(αr) = Beta

(
αr

∣∣∣∣∣arα +
∑
n∈Nr

Eq(zn)yrn, b
r
α +

∑
n∈Nr

Eq(zn)(1− yrn)

)
, (12)

q(βr) = Beta

(
βr

∣∣∣∣∣arβ +
∑
n∈Nr

(1− Eq(zn))(1− yrn), brβ +
∑
n∈Nr

(1− Eq(zn))yrn

)
,

(13)

where the expectations are with respect to the current distribution q(z).
In order to update q(ρ), we find analytic intractability in ρ due to the sig-

moids in p(z|ρ,Ω), recall eq. (8). To overcome this, we use the local variational
bound of the sigmoid [17, Section 10.5, eq. (10.144)], which yields

p(z|ρ,Ω) ≥ exp (vᵀΦρ− ρᵀΦᵀΛΦρ + C(ξ)) =: H(z,ρ,Ω, ξ). (14)

Notice that this lower bound is exponentially-quadratic in ρ, which will allow
us to identify a Gaussian distribution in ρ. In exchange, we are introducing N
additional hyper-parameters ξ = (ξ1, . . . , ξN) to be estimated. Here we are writ-
ing Φ = (φ1, . . . ,φN)ᵀ ∈ RN×(2Df) for the matrix of Fourier features, v = z−
(1/2)1, Λ = diag(λ(ξ1), . . . , λ(ξN)), and λ(ξ) = (2ξ)−1

(
(1 + exp(−ξ))−1 − 1/2

)
.

The term C(ξ) =
∑N
n=1

(
λ(ξn)ξ2n + ξn/2− log

(
1 + eξn

))
only depends on ξ.

Using eq. (14) we have, up to a constant, the following upper bound for the
KL divergence (which must be minimized, instead of the intractable KL itself,
in q(ρ), with q(z), q(α) and q(β) fixed):

KL(q(ρ)q(α)q(β)q(z)||p(z,ρ,α,β|Y,Ω, γ)) ≤∫
z,ρ,α,β,Ω,γ

q(ρ)q(α)q(β)q(z) log
q(ρ)q(α)q(β)q(z)

p(Y|z,α,β)H(z,ρ,Ω, ξ)p(ρ|γ)p(α)p(β)
.

(15)

Following the standard mean-field procedure [17, Section 10.1.1], this minimiza-
tion yields q(ρ) ∝ H(Eq(z),ρ,Ω, ξ)p(ρ|γ). Since H is exponentially-quadratic
in ρ, we have q(ρ) = N (µ,Σ), with

Σ =
(
γ−1I + Φᵀ(2Λ)Φ

)−1
, µ = ΣΦᵀEq(v). (16)

9

Then, approximating p(z|ρ,Ω) by its lower bound H(z,ρ,Ω, ξ) in the full
model p(Y, z,ρ,α,β|Ω, γ), we find that ρ can be marginalized out (again, H
being exponentially-quadratic in ρ is essential here). Using the current distri-
bution q(z), the maximum-likelihood estimators for Ω and γ are

(Ω̂,γ̂) = (17)

arg max
Ω,γ

(
− log |2γΦᵀΛΦ + I|+ Eq(v)ᵀΦ

(
γ−1I + 2ΦᵀΛΦ

)−1
ΦᵀEq(v)

)
.

Finally, the hyper-parameters ξ are estimated to minimize the right-hand
side of eq. (15), which yields (notice that the square is element-wise)

ξ =

√
diag (ΦΣΦᵀ) + (Φµ)

2
. (18)

In summary, the proposed methods calculate sequences {ξk}, {Ωk, γk},
{qk(ρ)}, {qk(α)}, {qk(β)}, {qk(z)} until convergence, following the formulas
derived in this section. The training process is summarized in Algorithm 1.
The computational cost of the algorithms is dominated by 2Df × 2Df matrix
inversions (e.g. eq. (17)) and (2Df ×N) · (N×2Df) matrix multiplications (e.g.
Σ in eq. (16)). This yields a theoretical complexity of O(D3

f + ND2
f) which,

in large scale scenarios (where Df will be taken Df � N), is O(ND2
f). In the

case of VFF, the optimization with respect to the Df · D components of W
introduces an additional dependence on D, and yields O(ND2

f +NDfD) cost.

Algorithm 1 Training of RFF and VFF

Require: X, Y, Ω0, q0(ρ), q0(z), k = 0.
repeat

Update ξk+1 with eq. (18) using qk(ρ) and Ωk;
Update γk+1 and Ωk+1 with eq. (17) using ξk+1 and qk(z);
Update qk+1(ρ) with eq. (16) using ξk+1, Ωk+1, γk+1 and qk(z);
Update qk+1(α) and qk+1(β) with eqs. (12)-(13) using qk(z);
Update qk+1(z) with eq. (11) using Ωk+1, qk+1(ρ), qk+1(α) and qk+1(β).
k = k + 1;

until convergence
Output: Final values ξ̂, Ω̂, γ̂, q̂(ρ), q̂(α), q̂(β), q̂(z).

It is interesting to examine and understand how the proposed methodology
mitigates the effect of weak annotators (i.e. those who may provide unreliable
labels). Recall from eq. (1) that each annotator reliability is modelled through
sensitivity and specificity parameters α and β. These parameters are estimated
during the training step, see eqs. (12) and (13). Then, these estimations of α
and β are used in eq. (11) in order to update the distribution of the underlying
real label z for each training instance. Importantly, note that the influence of
each annotation yrn is appropriately modulated by the estimations of α and β
for the corresponding annotator.

10

This becomes even clearer when degenerate posterior distributions are as-
sumed for αr and βr. In this case, the posterior distribution approximation q(zn)

in eq. (11) is proportional to
∏
r(1−βr)y

r
nβ

(1−yrn)
r and

∏
r α

yrn
r (1−αr)(1−y

r
n) for

zn = 0 and zn = 1, respectively. Suppose that an annotator labels an instance
as yrn = 1. Then, this implies a factor (which can be understood as a “multi-
plicative” weight) of (1−βr) for the probability of zn = 0, and a factor of αr for
zn = 1. If the annotator is a reliable one, then αr and βr are close to 1, which
implies a much greater weight for zn = 1 than for zn = 0. However, if the anno-
tator is a weak one (for both classes), then αr and βr will be close to 0, and the
weight for zn = 0 will be much greater than for zn = 1, making it very likely to
correctly switch the (very likely) wrong label provided by this weak annotator.
The weaker the annotator is, the more likely it is to switch the annotation. An
analogous interpretation applies when the annotator labels yrn = 0, or when the
annotator is weak only for one of the two classes. Observe also that a spammer
annotator (i.e. αr = βr = 0.5), will not influence the probability of zn, as both
weights will be identical.

Finally, notice that the Bayesian modelling allows for naturally specifying
the available prior knowledge on the annotators. For instance, if a particular
annotator is known to be weak (even only for one of the two classes), the cor-
responding Beta prior distribution (recall the paragraph before eq. (3)) can be
conveniently set to integrate in the model this valuable information.

4. The predictive distribution

Once the model is trained, the final distributions q̂(α) and q̂(β) represent
the estimated sensitivity and specificity for the annotators (as well as their
uncertainty). Analogously, q̂(z) describes the estimated uncertainty for the
underlying real labels of the training instances. The most common problem is
to, based on the training data, obtain the predictive distribution for the real
class of a new instance x∗ ∈ RD, i.e. compute p(z∗ = 1|Y) (obviously, p(z∗ =
0|Y) = 1−p(z∗ = 1|Y)). Using the standard approximation for the expectation
of the sigmoid under a Gaussian [17, Section 4.5.2, eq. (4.153)], we have

p(z∗ = 1|Y) = Eq̂(ρ)p(z∗ = 1|ρ, Ω̂) ≈ σ

 φ̂ᵀ
∗µ̂√

1 + (π/8)φ̂ᵀ
∗Σ̂φ̂∗

 , (19)

where σ(x) = (1 + exp(−x))−1 is the sigmoid, µ̂ and Σ̂ are the mean and
covariance of the posterior q̂(ρ) (which are obtained in the training step), and

φ̂∗ = φ(x∗|Ω̂) (using eq. (6) in the case of RFF and eq. (5) for VFF).
The theoretical computational complexity for the test step is dominated by

the computation φ̂ᵀ
∗Σφ̂∗. This implies a O(D2

f) cost per test instance. Unlike

classical GP, whose corresponding complexity is O(N2), this is independent on
the number of training instances N . In large scale scenarios (where N is large),
this will translate into an overwhelming superiority of the proposed methods in

11

terms of “production” time (i.e. time needed for prediction), which is essential
in real-world applications.

Finally, since eq. (19) is one of the key ingredients for Active Learning (AL)
techniques, let us conclude this section by commenting on the use of AL for our
RFF and VFF models. In section 1 we motivated the use of crowdsourcing in
labeling tasks as a very efficient way to annotate large datasets. In order to
further speed up this process, crowdsourcing can be combined with AL. For a
classic (non-crowdsourcing) classifier, AL selects the most informative instance
from a set of unlabeled samples, and the expert provides the corresponding
label. The new labeled sample is included in the training set, and the classifier
is retrained (updated). It has been shown that AL significantly reduces the
number of samples to be labeled in order to train an accurate classifier (see, for
instance, [33]).

In crowdsourcing labeling problems, AL becomes an even more interesting
(and challenging) problem, since the best annotator/s to provide the label must
also be selected. Interestingly, the majority of probabilistic crowdsourcing AL
methods in the literature are based on different combinations of the same two
key ingredients: the uncertainty of the model when labeling a new instance (in
our case given by the predictive distribution in eq. (19)), and the estimated ex-
pertise for each annotator (in our case the sensitivity and specificity posteriors
given in eqs. (12) and (13)). Rodrigues et al. [13] first select the closest sample
to the decision boundary and then the annotator who maximizes the expected
probability of success. Yan et al. [34] minimize an objective function to simulta-
neously find the closest sample to the decision boundary and the annotator who
minimizes the probability of mistake. More recently, Yang et al. [35] select the
sample that maximizes the Shannon entropy of the predictive distribution and
the annotator who maximizes the probability of success. All these approaches
can be naturally used with our predictive distribution in eq. (19) and our es-
timated sensitivities and specificities in eqs. (12) and (13). However, since the
use of AL in crowdsourcing is not the goal of this work, the comparison and
development of AL techniques will not be explored here.

5. Experiments

In this section, we evaluate the performance of our methods and com-
pare them with current state-of-the-art probabilistic crowdsourcing approaches.
These include the GP-based VGPCR [22] and Rodrigues [13]. We also include
the most straightforward manner to apply a GP to the crowdsourcing setting,
GP-MV, which consists of a standard GP classifier trained with the majority
voting (MV) labels. Finally, to obtain a more thorough comparison, the classi-
cal LR-based methods Raykar [10] and Yan [11] are also considered (recall the
second paragraph in Section 1).

Since the main goal is to illustrate the scalability and performance of RFF
and VFF in previously-prohibitive settings, we include two such datasets (where
classical approaches must be trained with a subset). The first one, with 28000
training instances, comes from a real health-care activity-recognition problem.

12

The second one, synthetic and with 100000 training samples, shows the potential
of the proposed methods in even larger scale problems. Finally, two real datasets
with 700 and 4999 training instances, respectively, are included to illustrate the
performance of the proposed methods on small-scale problems. They cover
different application domains such as audio recognition and sentiment analysis.

The predictive performance of the methods is compared using the area under
the ROC curve (AUC). This metric deals well with imbalance scenarios (it
penalizes errors in the minority class), and is independent on the threshold used
for the final prediction. In order to compare the computational cost, the CPU
time needed for both train and test steps will be reported. Please notice that the
train CPU time includes the optimization of all the model parameters, including
the Fourier frequencies for VFF (recall that RFF does not estimate them).

We implemented RFF, VFF, VGPCR, GP-MV, Raykar, and Yan in Matlab c©,
whereas a Matlab c© implementation for Rodrigues can be downloaded from his
website http://www.fprodrigues.com. All the code and datasets will be made
available at http://decsai.ugr.es/vip/software.html upon acceptance of
the paper. The experiments were run on the same machine Intel c© Xeon c©

E5-2630 v4 @ 2.20GHz.

5.1. The sphere dataset

Sphere (Sensor Platform for HEalthcare in Residential Environment) is a
recognition dataset where activity predictions are made based on RBG-D video,
a tri-axial accelerometer, and environmental sensors [36]. Data was collected
from 10 people on two different occasions. There were 8 males and 2 females,
with 8 between the ages of 18 to 29 and 2 within the ages of 30 to 39. Each
participant was wearing a wrist-worn accelerometer and was asked to perform
a series of scripted activities, taking around 25 to 30 minutes in total. These
activities are categorized into ambulation actions (e.g. walking), posture actions
(e.g. standing), and transitional actions (e.g. sit to stand). The script was
carried out twice in full by each participant on different days.

Labeling this data is challenging, since the annotations are inherently noisy.
For instance, the precise selection of start and end time is inherently ambigu-
ous, as is the distinction among closely related actions (e.g., “bending” and
“kneeling”). In order to mitigate these issues, the full dataset was annotated at
least twice by a team of R = 12 annotators that were recruited and trained to
annotate the set of activities. Our experiments consider the binary task of clas-
sifying between ambulatory and sedentary activities based on D = 12 statistical
features (mean, minimum, maximum, standard deviation, variance) extracted
from the acceleration data. This yields a final dataset with 31050 instances.

A set with 3050 instances was left for test4, yielding a maximum number
of 28000 training instances. In order to study the scalability of the com-
pared methods, increasing training set sizes were considered, namely N ∈

4Since true underlying labels were not available in this real problem, test instances were
selected among those not having discrepancies between different annotators.

13

http://www.fprodrigues.com
http://decsai.ugr.es/vip/software.html

{1000, 5000, 10000, 15000, 20000, 28000}. As classical GP-based methods are
limited in practice to 10000-15000 training points, VGPCR and GP-MV could
not be trained beyond N = 150005. A special grid N ∈ {100, 500, 1000, 2500}
was used for Rodrigues, since it did not manage to converge properly and there-
fore its computational training cost exploded as N increased (as we will see in
Figure 4). Different values of Df (number of Fourier frequencies) were also con-
sidered for RFF, Df ∈ {10, 50, 100, 200, 300, 400, 500, 600, 700}, and for VFF,
Df ∈ {1, 5, 10, 30, 50, 70, 90, 110, 130, 150}. Notice that, since VFF optimizes
over the Fourier frequencies, it is natural to train it with smaller values of Df .

The main ideas and interpretations will be provided in this section together
with the most relevant figures. For completeness, additional information is
included in the tables in Appendix A. Namely, Table A.1 contains the test AUC
for all the compared methods (except for Rodrigues, see its own Table A.2).
Mean and covariance over five independent runs6 are shown. Analogously, Table
A.3 (Table A.4 for Rodrigues) shows the CPU time needed for train, and Table
A.5 (Table A.6 for Rodrigues) the CPU time needed for test.

First, let us examine the trade-off between generalization capability and
training CPU time for the compared methods, see Figure 2. Notice that Ro-
drigues does not appear in the figure, since its predictive performance in this
problem is around 0.5 in AUC, see Table A.2. Among the rest of methods, (the
x-axis of) Figure 2 shows a clear distinction between LR-based ones (Raykar and
Yan, which are below 0.7 in AUC) and GP-based ones (the other four, which
reach around 0.79). Of course, this is to be expected due to the more complex
non-linear boundaries provided by GP-based methods, and reveals an underly-
ing non-linear structure for the sphere dataset (otherwise, the gap between LR-
and GP-based methods would be smaller).

Now, among the four outstanding methods in terms of test AUC, the y-axis
of Figure 2 shows a clear difference in the CPU time needed to train each one
(recall the logarithmic scale in this axis). Namely, the proposed RFF and VFF
are around three and fifty times faster than GP-MV /VGPCR, respectively.
Notice also that, in terms of predictive performance, RFF is slightly below GP-
MV /VGPCR, whereas VFF is slightly above them. This is the natural and
logical behavior of the proposed pair of methods: since VFF optimizes over the
Fourier frequencies, it is more computationally demanding than RFF ; on the
other hand, it manages to achieve more accurate results. This latter advantage
will be more noticeable in the next experiment, where many more training points
will be available to learn from.

Second, an essential aspect in real-world applications is the test CPU time,
also known as production time. This amounts to the actual time that the system
needs to make a prediction once it is trained. Depending on the problem at hand,

5When trying with N = 20000 for any of these methods, the RAM memory requirements
exceeded the possibilities of the considered machine.

6These independent runs differ in the training subset if N < 28000, and also in the Fourier
frequencies initialization for RFF and VFF.

14

0.68 0.7 0.72 0.74 0.76 0.78 0.8

test AUC

100

102

103

104

105

106

tr
ai

n
C

P
U

 ti
m

e
(s

)

Raykar

Yan

GP-MV

VGPCR

RFF

VFF

Figure 2: Trade-off between predictive performance (test AUC) and training cost (training
CPU time) in the sphere dataset. Each method is trained with its maximum possible number
of training points. For RFF and VFF, the full Df -grids specified in the text are used. We
observe that both RFF and VFF are significantly (more than three times) faster than the other
competitive methods (GP-MV and VGPCR). Indeed, VFF manages to slightly outperform
them, whereas RFF is around 50 times faster (and very close in predictive performance).
Notice the logarithmic scale in the y-axis.

test CPU time might be more relevant than train one, since the latter affects
only once whereas the former is involved in any new prediction. In our case, a
fast prediction is essential to develop a practical health-care activity-recognition
system that can be deployed in real nursing or retirement homes. Thus, let us
now analyze the compared methods in terms of test CPU time, see Figure 3.

The difference between the proposed RFF/VFF and GP-MV /VGPCR (the
only competitive methods in predictive performance, recall Figure 2) is over-
whelming. Whereas the latter need more than 350 seconds to provide a predic-
tion (for all the 3050 test instances), the former take less than 1 second. But,
actually, the difference goes beyond these “absolute” numbers in this particular
problem: whereas the test CPU time for the classical GP-based methods grows
as O(N2) with the training set size N , the novel RFF/VFF are independent
on N (as expected from their theoretical formulation, recall Section 4). This
fact makes classical GP-based probabilistic crowdsourcing methods prohibitive
in practice for any medium-size real-world application where the production
time plays an important role. Indeed, the new RFF/VFF might be the only
choice for these scenarios (of course, as shown in the figure, test CPU time for
LR-based methods is also independent on N , but their linear boundaries usually
limit their applicability to real-world problems).

15

0 0.5 1 1.5 2 2.5 3

N 104

0

50

100

150

200

250

300

350

400

te
st

 C
P

U
 ti

m
e

(s
)

Raykar
Yan
GP-MV
Rodrigues
VGPCR
RFF-10
RFF-300
RFF-700
VFF-1
VFF-50
VFF-150

0 0.5 1 1.5 2 2.5 3

N 104

10-3

10-2

10-1

100

101

102

103

te
st

 C
P

U
 ti

m
e

(s
)

Figure 3: CPU time needed at test step (production time) as a function of the training set
size in the sphere dataset. The linear (standard) scale in the left plot allows for a more
intuitive perception of the methods scalability. The logarithmic scale in the right plot shows
the differences between the fastest ones. Different representative values of Df are shown for
RFF and VFF. These are more than 350 times faster than GP-MV and VGPCR (the only
competitive methods in terms of predictive performance). Moreover, as theoretically expected,
their test cost is independent on N .

Among the proposed methods, notice that test CPU time grows with Df (in-
deed, recall from Section 4 that their theoretical complexity is O(D2

f)). There-
fore, and since RFF usually works with larger values of Df , it is usually slightly
slower than VFF in production time. Nonetheless, the difference is normally
insignificant.

We have just seen that our methods are scalable in terms of test CPU time
(in fact, they are independent on N). Let us now analyze the scalability with
N in terms of training CPU time. Figure 2 already showed that RFF/VFF can
be trained with N = 28000 instances significantly faster than GP-MV /VGPCR
with N = 15000 (their maximum possible N). Now we examine more carefully
the explicit dependence on N , see Figure 4.

This figure confirms in practice the theoretical linear-in-N training cost of
the novel RFF and VFF, as well as the cubic of the classical GP-based methods
(GP-MV, Rodrigues, VGPCR). This means that our methods can still scale up to
pretty larger datasets (in fact, in the next experiment they will reach N = 105),
whereas classical ones are not suitable for such scenarios. Moreover, this training
CPU time explosion is not the only limitation of classical approaches. Even if
we did not have training time restrictions (which, of course, is not realistic in
practical applications), classical methods need to deal with N × N matrices,
which implies a O(N2) RAM memory cost. However, RFF and VFF substitute
these matrices with 2Df ×2Df ones, removing the quadratic dependence on N .

Figure 4 also shows that, although both RFF and VFF are linear in N ,
the latter is computationally more expensive than the former (because of the
Fourier frequencies optimization). Finally, the extraordinary long training CPU
time of Rodrigues is explained because the convergence process oscillates and
the maximum number of iterations is reached. This might be related to the

16

0 0.5 1 1.5 2 2.5 3
N 104

0

2

4

6

8

10

12

14

tr
ai

n
C

P
U

 ti
m

e
(s

)

104

Raykar
Yan
GP-MV
Rodrigues
VGPCR
RFF-10
RFF-300
RFF-700
VFF-1
VFF-50
VFF-150

Figure 4: Training computational cost as a function of the training set size in the sphere
dataset. Different representative values of Df are shown for RFF and VFF. As theoreti-
cally expected, we observe a linear growth with N for the proposed methods, which makes
them suitable for large-scale applications. On the contrary, classical GP-based methods cubic
growth is prohibitive for that setting.

different inference procedure.
Finally, it is interesting to analyze the role of Df in RFF and VFF, that is,

how it influences their predictive performance in practice. Figure 5 addresses
this question. According to their theoretical formulation (recall second-to-last
paragraph in Section 2.2), increasing Df in RFF improves its approximation to
a GP with SE kernel. However, in VFF it regulates the complexity of the model
and, therefore, large values might lead to overfitting to the training set. The left
plot in Figure 5 confirms the simple behavior of RFF. Analogously, the right
plot shows a more complicated behavior for VFF, with a slightly decreasing
tendency after reaching a maximum performance. This will be also observed in
the next experiment. Finally, as is natural, the performance of both methods
improves with the number of training instances N .

5.2. The cubes dataset

This experiment shows that the proposed methods scale up to even larger
datasets, reaching N = 100000 training instances. Moreover, its synthetic na-
ture allows us to i) have access to the true labels for test instances, and ii)
have true sensitivity and specificity values for the annotators (and, therefore,
evaluate the accuracy of their estimation). In order to analyze the differences
with the previous experiment, we simulated a classification dataset with similar

17

0 100 200 300 400 500 600 700
D

f

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

te
st

 A
U

C

RFF (1000)
RFF (5000)
RFF (10000)
RFF (15000)
RFF (20000)
RFF (28000)

0 50 100 150
D

f

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

te
st

 A
U

C

VFF (1000)
VFF (5000)
VFF (10000)
VFF (15000)
VFF (20000)
VFF (28000)

Figure 5: Predictive performance as a function of the number of Fourier frequencies used in
RFF (left) and VFF (right) for the sphere dataset. In both cases, different training set sizes
N are used. As theoretically hypothesized, RFF performance increases with Df (regardless
of N). However, VFF may suffer from over-fitting when Df exceeds some complexity limit
(which usually increases with the training set size N).

dimensionality, D = 15. Its structure is simple7, and consists of a cube fitted
inside a bigger one. Figure 7 shows the intuitive idea in R and R2.

More specifically, the cubes dataset is defined in [−1, 1]15 ⊂ R15, i.e. the
15 features are in the interval [−1, 1]. Training and test datasets are sampled
from [−1, 1]15 uniformly and independently. In order to define the probability
that x ∈ [−1, 1]15 belongs to class 1, we resort to the so-called infinity norm,
||x||∞ = max (|x1|, . . . , |x15|). The level hyper-surfaces of this norm (i.e. the
points that satisfy ||x||∞ = ct.) are (the border of) the hyper-cubes inside
[−1, 1]15. Therefore, defining p(y = 1|x) = ϕ(||x||∞) with ϕ : [0, 1] → R an
increasing function, we obtain a dataset in which class 1 is mainly located in the
border of the [−1, 1]15 hyper-cube whereas class 0 is mainly located in its center.
More specifically, we used the function ϕ(w) = max

(
0, 128(w − 0.5)7

)
, which is

represented in Figure 6. The reasons for this choice is that ϕ(0) = 0, ϕ(1) = 1,
and that it generates a balanced dataset (because the measures of the subsets
{x ∈ [−1, 1]15 : 0 ≤ ϕ(||x||∞) ≤ 0.5} and {x ∈ [−1, 1]15 : 0.5 ≤ ϕ(||x||∞) ≤ 1}
are very similar).

Then, five annotators, with sensitivities α = {0.9, 0.7, 0.8, 0.1, 0.9} and speci-
ficities β = {0.6, 0.8, 0.5, 0.2, 0.8}, are simulated. This produces both very reli-
able annotators (e.g. the fifth) and adversarial ones (e.g. the fourth). Training
and test sets with 100000 and 200000 instances, respectively, were generated.
As in the previous experiment, training sets of increasing size were consid-
ered in order to examine the scalability of the compared methods, namely

7The more complex the dataset structure is, the more relevant it is to have a large training
dataset which can reveal more detailed patterns (in other words, if the structure of the dataset
is really simple, say linear, the amount of training data needed to puzzle it out reduces).
Therefore, by avoiding complex dataset, we prevent the introduction of artificial complexities
that could favor the proposed methods.

18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.25

0.5

0.75

1

Figure 6: Graphical representation of ϕ, the function used to define the separation between
classes in the synthetic dataset cubes.

Class 0
Class 1

R1 R2

Figure 7: Structure of the two classes in the synthetic dataset cubes. It consists of a cube (more
generally an hyper-cube, since we work in R15) fitted inside a bigger one. The probability of
class 1 grows as we approach the border.

N ∈ {1000, 5000, 10000, 15000, 50000, 100000}. As before, classical GP-based
methods GP-MV and VGPCR could not be trained beyond N = 15000, and
Rodrigues used its own grid N ∈ {100, 500, 1000, 2500} (although this time it did
not exhibit convergence problems, its inference procedure is again slow in prac-
tice). Finally, the same grids Df ∈ {10, 50, 100, 200, 300, 400, 500, 600, 700} and
Df ∈ {1, 5, 10, 30, 50, 70, 90, 110, 130, 150} were used for the number of Fourier
frequencies in RFF and VFF, respectively. For completeness, all the raw results
are shown in Appendix A, Tables A.7 and A.8 (test AUC), A.9 and A.10 (train
CPU time), and A.11 and A.12 (test CPU time).

First, let us analyze the trade-off between generalization capability and train-
ing computational cost for the compared methods, see Figure 8. Again, in terms
of predictive performance (see x-axis), we observe a clear distinction between
LR-based methods (Raykar, Yan), which can only provide linear boundaries,
and GP-related ones (GP-MV, VGPCR, RFF, VFF). Rodrigues is located in
the middle since, although it also provides non-linear boundaries, its inference
procedure limited its application to N = 2500 training instances (Figure 10 will
analyze its lack of scalability).

Most importantly, the novel RFF and VFF exhibit the expected complemen-
tary behavior that was already observed in the previous experiment: whereas

19

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

test AUC

102

103

104

105

106

tr
ai

n
C

P
U

 ti
m

e
(s

)

Raykar
Yan
GP-MV
Rodrigues
VGPCR
RFF
VFF

Figure 8: Trade-off between predictive performance (test AUC) and training cost (training
CPU time) in the dataset cubes. Each method is trained with the maximum possible number
of training points. For RFF and VFF, the Df -grids specified in the text are used. We observe
that RFF is more than 50 times faster than VGPCR (the other competitive method in terms
of predictive performance). Moreover, it slightly outperforms VGPCR in that aspect. It is
precisely in predictive performance where VFF achieves an overwhelming superiority (more
than 8 points of test AUC better than VGPCR). Moreover, it is also faster than VGPCR.
Notice the logarithmic scale in the y-axis.

RFF is significantly more efficient and faster (it does not optimize over the
Fourier frequencies), the flexibility of VFF allows it to capture additional rele-
vant patterns and, therefore, achieve a superior predictive performance. Here,
notice that RFF with Df = 200 is around 500 times faster than VGPCR (the
only competitive method in terms of predictive performance), while it is already
(slightly) better in that aspect. Moreover, VFF reaches a 0.788 in test AUC,
whereas classical approaches get a maximum of 0.704 (VGPCR).

It is also interesting to observe that VFF with Df = 1 obtains a very similar
result (in test AUC) to LR-based methods (Raykar, Yan). This is reasonable
according to its formulation, since it is optimizing one Fourier frequency that
plays the role of the linear regression coefficients. Moreover, in Figure 11 we
will analyze how the number of Fourier frequencies Df influences the behavior
of RFF and VFF.

The second main idea is the overwhelming superiority of RFF and VFF in
test CPU time, see Figure 9. As in the previous experiment, their theoretical
independence on N is confirmed here in practice, as opposed to the O(N2)
growth of the classical GP-based crowdsourcing methods. This makes the latter
prohibitive for any real-world problem where the test time plays an important
role. Again, we observe that the test CPU time for RFF and VFF grows with

20

Df , as theoretically expected.

0 2 4 6 8 10

N 104

0

0.5

1

1.5

2

te
st

 C
P

U
 ti

m
e

(s
)

104

Raykar
Yan
GP-MV
Rodrigues
VGPCR
RFF-10
RFF-300
RFF-700
VFF-1
VFF-50
VFF-150

0 2 4 6 8 10

N 104

10-2

10-1

100

101

102

103

104

105

te
st

 C
P

U
 ti

m
e

(s
)

Figure 9: CPU time needed at test step (production time) as a function of the training
set size in the cubes dataset. The linear (standard) scale in the left plot allows for a more
intuitive perception of the methods scalability. The logarithmic scale in the right plot shows
the differences between the fastest ones. Different representative values of Df are shown for
RFF and VFF. These are more than 250 times faster than VGPCR (the only competitive
method in terms of generalization capability). Moreover, as theoretically expected, their test
cost is independent on N .

Third, Figure 10 analyzes the train CPU time scalability of the compared
methods in this large dataset. As theoretically justified, recall also the previous
experiment, we confirm here that RFF/VFF growth depends linearly on N ,
whereas classical GP-based approaches increase with N3. In fact, notice that
our slowest method (VFF with Df = 150 and N = 100000) is twice faster than
VGPCR with N = 15000 (the best among the competitors, and still 9 points
below in predictive performance), and very similar to VGPCR with N = 10000.
This suggests that our methods can be applied to even larger datasets, whereas
classical GP-based ones have already achieved their maximum capabilities in a
standard machine (recall their O(N2) cost in RAM memory).

Figure 10 also confirms that the Fourier frequencies optimization of VFF
makes it significantly slower than RFF. Finally, notice the prohibitive growth
of Rodrigues, which was conceived to deal with small datasets. Although the
RAM memory requirements did not prevent us from training Rodrigues until
N = 15000 (just like the rest of classical GP-based methods), we did not try
beyond N = 2500 because of this very large training CPU time.

Let us now analyze how the number of Fourier frequencies Df influences
the predictive performance of the proposed methods, see Figure 11. Again,
this is in accordance with their theoretical formulation (recall the second-to-last
paragraph of Section 2.2) and the results obtained in the previous experiment.
For RFF, it is simple: increasingDf improves its approximation to a GP with SE
kernel, and therefore enhances its predictive performance. For VFF, large values
of Df may lead to excessively complex models which overfit the training data
and lose generalization capability. This produces the characteristic evolution
observed in Figure 11, in which test AUC increases until an optimal value of

21

0 2 4 6 8 10

N 104

0

0.5

1

1.5

2

2.5

3

3.5

tr
ai

n
C

P
U

 ti
m

e
(s

)

105

Raykar
Yan
GP-MV
Rodrigues
VGPCR
RFF-10
RFF-300
RFF-700
VFF-1
VFF-50
VFF-150

Figure 10: Training computational cost as a function of the training set size in dataset cubes.
Different values of Df are shown for RFF and VFF. As theoretically expected, we observe
a linear growth with N for the proposed methods, which makes them suitable for large-scale
applications. On the contrary, classical GP-based methods cubic growth is prohibitive for
that setting. In fact, notice that our methods training with 100000 data points is faster than
VGPCR (the best method among the competitors in terms of predictive performance) with
15000 instances (and already analogous to VGPCR with 10000 instances).

Df and then decreases. Naturally, a greater training set size N usually requires
a greater complexity Df to overfit.

Finally, since we have available the real sensitivity and specificity values of
the annotators, it is interesting to assess the quality of the estimations provided
by RFF and VFF. We describe the case N = 100000, since the main goal
of this work is to deal with large-scale scenarios. The results obtained for
N < 100000 were almost identical. Table 1 show the estimations of the proposed
methods for sensitivity and specificity. We observe that both RFF and VFF
provide very accurate estimations for all the annotators in both sensitivity and
specificity. Namely, the maximum absolute difference in sensitivity is 0.0118
for RFF, and 0.0039 for VFF. In specificity, it is 0.0123 for RFF, and 0.0022
for VFF. Moreover, the accuracy in the estimation does not depend on Df .
Notice that this is natural from a theoretical viewpoint, since Df (the number
of Fourier frequencies) is not related to the model of the annotations Y given
the latent true labels z (but to the model of z given the features X, recall Figure
1).

5.3. Music genre dataset

In this experiment we use the Music Genre dataset presented in [37], which
consists of 1000 fragments (30 secs. length) of songs. The goal is to distinguish

22

Sensitivity (α), RFF

Annot. Real
Df

10 50 100 200 300 400 500 600 700
1 0.9 0.903 0.897 0.894 0.893 0.893 0.893 0.893 0.893 0.893
2 0.7 0.704 0.696 0.692 0.691 0.691 0.691 0.691 0.691 0.691
3 0.8 0.799 0.795 0.794 0.793 0.793 0.793 0.793 0.793 0.793
4 0.1 0.091 0.101 0.107 0.108 0.108 0.108 0.108 0.108 0.108
5 0.9 0.903 0.894 0.889 0.888 0.888 0.888 0.888 0.888 0.888

Specificity (β), RFF

Annot. Real
Df

10 50 100 200 300 400 500 600 700
1 0.6 0.594 0.603 0.608 0.609 0.609 0.609 0.609 0.609 0.609
2 0.8 0.795 0.801 0.805 0.806 0.806 0.806 0.806 0.806 0.806
3 0.5 0.500 0.505 0.508 0.509 0.509 0.509 0.509 0.509 0.509
4 0.2 0.205 0.194 0.189 0.188 0.188 0.188 0.188 0.188 0.188
5 0.8 0.792 0.804 0.810 0.811 0.811 0.811 0.811 0.811 0.811

Sensitivity (α), VFF

Annot. Real
Df

1 5 10 30 50 70 90 110 130 150
1 0.9 0.900 0.899 0.899 0.900 0.900 0.900 0.899 0.899 0.900 0.900
2 0.7 0.700 0.700 0.699 0.700 0.700 0.700 0.700 0.700 0.700 0.700
3 0.8 0.797 0.797 0.797 0.798 0.798 0.797 0.797 0.797 0.797 0.797
4 0.1 0.096 0.097 0.097 0.096 0.096 0.096 0.097 0.097 0.096 0.097
5 0.9 0.898 0.898 0.898 0.899 0.899 0.899 0.899 0.899 0.899 0.899

Specificity (β), VFF

Annot. Real
Df

1 5 10 30 50 70 90 110 130 150
1 0.6 0.599 0.599 0.599 0.598 0.598 0.599 0.599 0.599 0.599 0.599
2 0.8 0.798 0.798 0.798 0.798 0.798 0.798 0.799 0.799 0.798 0.798
3 0.5 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503
4 0.2 0.199 0.199 0.198 0.200 0.200 0.199 0.199 0.199 0.199 0.199
5 0.8 0.799 0.799 0.800 0.799 0.799 0.799 0.800 0.800 0.799 0.799

Table 1: Sensitivity and specificity estimations of RFF and VFF for the five annotators in
the cubes dataset. Different values of Df are used, and N is set to 100000. The results are
the mean over five independent runs. We observe very accurate estimations, independently
on Df .

23

0 100 200 300 400 500 600 700
D

f

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

te
st

 A
U

C

VGPCR
RFF (1000)
RFF (5000)
RFF (10000)
RFF (15000)
RFF (50000)
RFF (100000)

0 50 100 150
D

f

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

te
st

 A
U

C

VGPCR
VFF (1000)
VFF (5000)
VFF (10000)
VFF (15000)
VFF (50000)
VFF (100000)

Figure 11: Predictive performance as a function of the number Df of Fourier frequencies used
in RFF (left) and VFF (right) for the cubes dataset. In both cases, different training set sizes
N are used. As theoretically hypothesized, RFF performance increases with Df (regardless
of N). However, VFF may suffer from over-fitting when Df exceeds some complexity limit
(which usually increases with the training set size N).

between 10 music genres: classical, country, disco, hiphop, jazz, rock, blues, reg-
gae, pop, and metal. We use an one-vs-all strategy to address this multi-class
crowdsourcing classification problem, and the results are averaged over the 10
experiments. For preprocessing and feature extraction, the Marsyas music infor-
mation tool (http://marsyas.info/) was used to extract 124 features from the
original dataset [38]. These features include relevant technical metrics such us
means and variances of timbral features, time-domain zero-crossings, spectral
centroid, rolloff, flux, and Mel-Frequency Cepstral Coefficients (MFCC). The
dataset contains 100 samples from each genre, which were randomly divided in
70 samples for training and 30 for testing. Crowdsourcing labels were obtained
with Amazon Mechanical Turk [39]. Each annotator listened to a subset of frag-
ments and labeled them as one of the ten genres listed above. A total amount
of 2945 labels were provided by 44 different annotators.

Although RFF and VFF are initially conceived for large-scale problems out
of the reach of classical GP-based crowdsourcing methods, it is interesting to
analyze their behavior when applied in a small (700 training instances) real
crowdsourcing problem. Figure 12 shows the predictive performance (left) and
training computational cost (right) for the compared methods, using different
values of Df for RFF/VFF. Since the training is much faster now, the same fine
grid Df = {1, 5, 10, 20, 40, 60, 80, 100, 120, ..., 460, 480, 500} was used for both
methods. In all cases, the whole training set was used (i.e. N = 700).

Figure 12 is in accordance with the theoretical formulation of the proposed
methods. RFF is an (efficient and scalable) approximation to VGPCR and,
therefore, its predictive performance is limited by that of VGPCR (as long as
they are trained with the same set, like here; the advantage of RFF is precisely
that i) it can scale up to larger datasets, and ii) it is faster than VGPCR even in
this small set). Consequently, in practice, and provided that VGPCR can handle
the dataset at hand, it should be preferred to RFF if we are only interested in

24

http://marsyas.info/

0 50 100 150 200 250 300 350 400 450 500
D

f

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

te
st

 A
U

C

Raykar
Yan
GP-MV
Rodrigues
VGPCR
RFFGPCR
VFFGPCR

0 100 200 300 400 500
D

f

0

1000

2000

3000

4000

5000

6000

7000

tr
ai

n
C

P
U

 ti
m

e
(s

)

Raykar
Yan
GP-MV
Rodrigues
VGPCR
RFFGPCR
VFFGPCR

Figure 12: Left: predictive performance of the compared methods in the Music dataset. As
theoretically expected, RFF constitutes an (efficient and scalable) approximation to VGPCR.
However, VFF is a whole new crowdsourcing method which is also competitive with (even
outperforms for some values of Df) the state-of-the-art in small datasets. Right: training
computational cost for the compared methods in the Music dataset. The approximation RFF
stands out for its efficiency, whereas the new VFF is competitive with the rest of state-of-the-
art approaches.

generalization capability. If training CPU time is an issue, the right plot shows
that RFF becomes an interesting more efficient alternative.

For its part, since it does not approximate a GP with SE kernel but learns
its own one, VFF is not limited by the performance of VGPCR (i.e., it is a
whole novel approach). In fact, the left plot shows that VFF can outperform
VGPCR for many choices of Df . In any case, we observe that VFF is a new
probabilistic crowdsourcing method that is competitive with the current ones in
previously-reachable datasets. Moreover, its scalability to larger datasets makes
it push further the state-of-the-art in this field.

5.4. Sentence polarity dataset

Finally, in order to further assess the robustness of the proposed methods, let
us evaluate their performance in an additional application domain: sentiment
analysis. More specifically, the sentence polarity dataset is a real crowdsourc-
ing problem that consists of 10427 sentences extracted from movie reviews in
“Rotten Tomatoes” website http://www.rottentomatoes.com/. The goal is to
decide whether a sentence corresponds to a positive or negative review. In Table
2 we show six sentences in the dataset. Preprocessing and feature extraction
were carried out by Rodrigues et al. [38], which resulted in feature vectors with
1200 components. The dataset is divided into train and test sets, with 4999 and
5428 samples, respectively. To obtain crowdsourcing labels, the train set was
made available in Amazon Mechanical Turk. A total amount of 27746 labels
were obtained from 203 different annotators.

This dataset was used to evaluate Rodrigues method in [13]. With 4999
training instances, it is within the reach of classical crowdsourcing approaches.
Yet, let us check that our large-scale-oriented methods obtain consistent test

25

http://www.rottentomatoes.com/

Table 2: Examples of positive and negative samples in sentence polarity dataset.

Sentence True Label

“An original gem about an obsession with time.”
“positive”“A taut, intelligent psychological drama.”

“Clever, brutal and strangely soulful movie.”

“This is amusing for about three minutes.”
“negative”“The film can depress you about life itself.”

“The pool drowned me in boredom.”

results in this setting, comparing them to those reported in [13, Table 3] (namely,
0.783 and 0.781 in test AUC for GP-MV and Rodrigues respectively).

First, since RFF approximates the SE kernel, its performance is expected to
be below that of classical methods when the same amount of training instances
is used (its power is, precisely, the ability to scale up to large datasets, as shown
in previous experiments). Moreover, its performance should increase with the
number Df of Fourier frequencies used, since the SE kernel is recovered when
Df → ∞. These hypotheses are confirmed in the results shown in Figure 13,
left plot. Notice how the test performance grows with Df and approaches that
of the previously-reported methods. Observe also that high values of Df have
been used for RFF (up to 3500), since the high original dimension of the data
(1200 features) requires a large number of Fourier frequencies to approximate
the kernel.

Second, as VFF learns a new kernel (which might be better suited for the
data at hand), its behavior is more difficult to predict from a theoretical view-
point. In any case, it is expected to be competitive with previous approaches
in non-large-scale settings. Indeed, Figure 13, right plot, shows that it outper-
forms the methods reported in [13], reaching a test AUC of 0.7862 for Df = 500
and 0.789 for Df = 1000. Unlike RFF, observe that VFF achieves good results
with significantly less Fourier frequencies, since they are optimized and therefore
have a weaker dependence on the original dimension of the data.

6. Conclusions and future work

We have introduced two new scalable and efficient probabilistic crowdsourc-
ing methods that can deal with previously-prohibitive datasets. Both are closely
related to Gaussian Processes (GP), rely on the Fourier features approximation
to achieve scalability, and utilize variational inference to estimate all the model
unknowns. Unlike classical GP-based crowdsourcing approaches, whose train-
ing computational cost and RAM memory requirements grow as O(N3) and
O(N2) respectively, the proposed methods scale up linearly with the training
set size N in both aspects. This allows them to go beyond the GP practical
limit of N = 10000, reaching datasets with up to N = 100000 samples. In turn,
this allows them to outperform the previous approaches in terms of predictive
performance, while still remaining more efficient and faster. Moreover, an over-
whelming superiority is achieved in test computational cost (i.e. production

26

0 500 1000 1500 2000 2500 3000 3500
D

f

0.6

0.65

0.7

0.75

0.8

te
st

 A
U

C

GP-MV
Rodrigues
RFFGPCR

0 200 400 600 800 1000
D

f

0.6

0.65

0.7

0.75

0.8

te
st

 A
U

C

GP-MV
Rodrigues
VFFGPCR

Figure 13: Predictive performance of RFF (left) and VFF (right) in the sentence polarity
dataset, compared to the results reported in [13]. As theoretically expected, the approximated
RFF stays below classical methods in previously-reachable datasets, becoming closer as Df

grows. However, VFF is a whole new crowdsourcing algorithm which is competitive with
(even outperforms for some values of Df) the previous approaches in small datasets.

time), where the novel methods are independent on N whereas classical ones
grow as O(N2). The novel RFF is a large-scale approximation to the recent
GP-based crowdsourcing method VGPCR, while VFF is capable of estimating
a new kernel (different to the squared exponential one that VGPCR is equipped
with) tailored to the training data. In exchange, VFF is slower in practice,
and more prone to overfitting. The proposed methods have proven to be the
leading approach for medium-to-large scale problems. They are complementary
approaches, and the final choice strongly depends on the application: whereas
RFF guarantees a very fast and efficient training, VFF may achieve a higher
predictive performance. Finally, the number of Fourier frequencies used, Df , is
an essential quantity in the novel approaches. As theoretically expected, more
frequencies are always better for RFF, whereas it might lead to overfitting in
VFF.

This is precisely the main future research line. A Bayesian treatment of the
Fourier features in VFF could contribute to weight them across a wide poste-
rior probability distribution, instead of relying on a single maximum likelihood
estimation. An analogous idea has been successfully applied for regression in
[31]. A multi-class crowdsourcing formulation and the use of inducing points
(instead of Fourier features) to sparsify the underlying GP will also be explored
in the future.

References

[1] J. Howe, The rise of crowdsourcing, Wired Magazine 14 (6).

[2] J. Zhang, X. Wu, V. S. Sheng, Learning from crowdsourced labeled data:
a survey, Artificial Intelligence Review 46 (4) (2016) 543–576.

[3] P. Smyth, U. M. Fayyad, M. C. Burl, P. Perona, P. Baldi, Inferring ground

27

truth from subjective labelling of Venus images, in: Advances in Neural
Information Processing Systems (NIPS), 1995, pp. 1085–1092.

[4] S. Albarqouni, C. Baur, F. Achilles, V. Belagiannis, S. Demirci, N. Navab,
AggNet: Deep Learning From Crowds for Mitosis Detection in Breast Can-
cer Histology Images, IEEE Transactions on Medical Imaging 35 (5) (2016)
1313–1321.

[5] F. Rodrigues, M. Lourenco, B. Ribeiro, F. Pereira, Learning supervised
topic models for classification and regression from crowds, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 39 (12) (2017) 2409–
2422.

[6] M. Zevin, S. Coughlin, S. Bahaadini, E. Besler, N. Rohani, S. Allen, et al.,
Gravity spy: integrating advanced ligo detector characterization, machine
learning, and citizen science, Classical and Quantum Gravity 34 (6) (2017)
064003.

[7] F. Rodrigues, F. Pereira, Deep learning from crowds, in: Conference on
Artificial Intelligence (AAAI), 2018, pp. 81–92.

[8] R. Goebel, A. Chander, K. Holzinger, F. Lecue, Z. Akata, S. Stumpf,
P. Kieseberg, A. Holzinger, Explainable ai: The new 42?, in: A. Holzinger,
P. Kieseberg, A. M. Tjoa, E. Weippl (Eds.), Machine Learning and Knowl-
edge Extraction, Springer International Publishing, Cham, 2018.

[9] A. Dawid, A. Skene, Maximum Likelihood Estimation of Observer Error-
Rates Using the EM Algorithm, Journal of the Real Statistical Society.
Series C (Applied Statistics) 28 (1) (1979) 20–28.

[10] V. Raykar, S. Yu, L. Zhao, G. Hermosillo Valadez, C. Florin, L. Bogoni,
L. Moy, Learning from crowds, Journal of Machine Learning Research
11 (Apr) (2010) 1297–1322.

[11] Y. Yan, R. Rosales, G. Fung, M. Schmidt, G. Hermosillo Valadez, L. Bo-
goni, L. Moy, J. Dy, Modeling annotator expertise: Learning when every-
body knows a bit of something, in: Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS),
Vol. 9, 2010, pp. 932–939.

[12] Y. Yan, R. Rosales, G. Fung, R. Subramanian, J. Dy, Learning from mul-
tiple annotators with varying expertise, Machine Learning 95 (3) (2014)
291–327.

[13] F. Rodrigues, F. Pereira, B. Ribeiro, Gaussian process classification and
active learning with multiple annotators, in: International Conference on
Machine Learning (ICML), 2014, pp. 433–441.

[14] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learn-
ing, MIT, 2006.

28

[15] P. Ruiz, R. Molina, A. Katsaggelos, Joint data filtering and labeling using
gaussian processes and alternating direction method of multipliers, IEEE
Transactions on Image Processing 25 (7) (2016) 3059–3072.

[16] P. Morales-Álvarez, A. Pérez-Suay, R. Molina, G. Camps-Valls, Remote
sensing image classification with large-scale gaussian processes, IEEE
Transactions on Geoscience and Remote Sensing 56 (2) (2018) 1103–1114.

[17] C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[18] T. P. Minka, A family of algorithms for approximate bayesian inference,
Ph.D. thesis, Cambridge, MA, USA (2001).

[19] T. S. Jaakkola, Tutorial on variational approximation methods, in: Ad-
vanced Mean Fields Methods: Theory and Practice, MIT Press, 2000, pp.
129–159.

[20] D. M. Blei, A. Kucukelbir, J. D. McAuliffe, Variational inference: A review
for statisticians, Journal of the American Statistical Association 112 (518)
(2017) 859–877.

[21] E. Besler, P. Ruiz, R. Molina, A. K. Katsaggelos, Classification of multiple
annotator data using variational gaussian process inference, in: European
Signal Processing Conference (EUSIPCO), 2016, pp. 2025–2029.

[22] P. Ruiz, P. Morales-Álvarez, R. Molina, A. Katsaggelos, Learning from
crowds with variational Gaussian Processes, Accepted for publication in
Pattern Recognition (2018).

[23] N. D. Lawrence, M. Seeger, R. Herbrich, Fast sparse gaussian process meth-
ods: The informative vector machine, in: Advances in Neural Information
Processing Systems (NIPS), MIT Press, 2003, pp. 625–632.

[24] E. Snelson, Z. Ghahramani, Sparse gaussian processes using pseudo-inputs,
in: Advances in neural information processing systems (NIPS), 2006, pp.
1257–1264.

[25] J. Quiñonero-Candela, C. E. Rasmussen, A unifying view of sparse approx-
imate gaussian process regression, Journal of Machine Learning Research
6 (Dec) (2005) 1939–1959.

[26] M. Titsias, Variational learning of inducing variables in sparse gaussian pro-
cesses, in: International Conference on Artificial Intelligence and Statistics,
Vol. 5, 2009, pp. 567–574.

[27] J. Hensman, N. Fusi, N. D. Lawrence, Gaussian processes for big data, in:
Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial
Intelligence (UAI), 2013, pp. 282–290.

29

[28] M. Bauer, M. van der Wilk, C. E. Rasmussen, Understanding probabilistic
sparse gaussian process approximations, in: Advances in neural information
processing systems (NIPS), 2016, pp. 1533–1541.

[29] A. Rahimi, B. Recht, Random features for large-scale kernel machines,
in: Advances in neural information processing systems (NIPS), 2008, pp.
1177–1184.

[30] M. Lázaro-Gredilla, J. Quiñonero Candela, C. E. Rasmussen, A. R.
Figueiras-Vidal, Sparse spectrum gaussian process regression, Journal of
Machine Learning Research 11 (2010) 1865–1881.

[31] Y. Gal, R. Turner, Improving the gaussian process sparse spectrum approx-
imation by representing uncertainty in frequency inputs, in: International
Conference on Machine Learning (ICML), 2015, pp. 655–664.

[32] T. P. Minka, Expectation propagation for approximate bayesian inference,
in: Seventeenth Conference on Uncertainty in artificial intelligence, Morgan
Kaufmann Publishers Inc., 2001, pp. 362–369.

[33] P. Ruiz, J. Mateos, G. Camps-Valls, R. Molina, A. Katsaggelos, Bayesian
active remote sensing image classification, IEEE Transactions on Geo-
science and Remote Sensing 52 (4) (2014) 2186–2196.

[34] Y. Yan, G. Fung, R. Rosales, J. Dy, Active learning from crowds, in: Pro-
ceedings of the 28th international conference on machine learning (ICML-
11), 2011, pp. 1161–1168.

[35] J. Yang, T. Drake, A. Damianou, Y. Maarek, Leveraging crowdsourcing
data for deep active learning an application: Learning intents in alexa, in:
Proc. of the 2018 World Wide Web Conference, International World Wide
Web Conferences Steering Committee, 2018, pp. 23–32.

[36] N. Twomey, T. Diethe, M. Kull, H. Song, M. Camplani, S. Hannuna,
X. Fafoutis, N. Zhu, P. Woznowski, P. Flach, I. Craddock, The sphere chal-
lenge: Activity recognition with multimodal sensor data, arXiv preprint
arXiv:1603.00797.

[37] G. Tzanetakis, P. Cook, Musical genre classification of audio signals, IEEE
Transactions on Speech and Audio Processing 10 (5) (2002) 293–302.

[38] F. Rodrigues, F. Pereira, B. Ribeiro, Learning from multiple annotators:
Distinguishing good from random labelers, Pattern Recognition Letters
34 (12) (2013) 1428–1436.

[39] R. Snow, B. O’Connor, D. Jurafsky, A. Ng, Cheap and fast, but is it
good?: evaluating non-expert annotations for natural language tasks, in:
Conference on Empirical Methods in Language Processing (EMNLP), 2008,
pp. 254–263.

30

Appendix A. Tables of results

This appendix contains all the results obtained in the previously-prohibitive
datasets sphere and cubes. Tables A.1, A.3 and A.5 show the test AUC, train
CPU time and test CPU time, respectively, in the sphere dataset for all the
methods except for Rodrigues (respectively, Tables A.2, A.4 and A.6 are dedi-
cated to Rodrigues). Analogously, Tables A.7, A.9 and A.11 show the test AUC,
train CPU time and test CPU time, respectively, in the cubes dataset for all
the methods except for Rodrigues (respectively, Tables A.8, A.10 and A.12 are
dedicated to Rodrigues).

N
1000 5000 10000 15000 20000 28000

Raykar 0.693±0.010 0.699±0.003 0.699±0.001 0.699±0.001 0.700±0.001 0.699±0.000
Yan 0.679±0.018 0.683±0.013 0.696±0.005 0.698±0.003 0.697±0.001 0.697±0.000

GP-MV 0.717±0.006 0.765±0.006 0.780±0.005 0.788±0.004 - -
VGPCR 0.718±0.005 0.767±0.006 0.780±0.004 0.788±0.003 - -
RFF-10 0.685±0.014 0.691±0.012 0.692±0.008 0.695±0.008 0.696±0.007 0.696±0.008
RFF-50 0.691±0.010 0.726±0.003 0.734±0.005 0.737±0.004 0.739±0.004 0.740±0.004
RFF-100 0.702±0.002 0.739±0.006 0.745±0.006 0.749±0.004 0.750±0.004 0.752±0.003
RFF-200 0.710±0.004 0.752±0.006 0.759±0.005 0.765±0.005 0.767±0.003 0.770±0.002
RFF-300 0.716±0.005 0.757±0.006 0.765±0.005 0.771±0.004 0.774±0.003 0.777±0.003
RFF-400 0.717±0.005 0.759±0.006 0.767±0.002 0.773±0.003 0.776±0.004 0.781±0.003
RFF-500 0.715±0.004 0.760±0.007 0.770±0.005 0.775±0.004 0.778±0.004 0.782±0.003
RFF-600 0.715±0.003 0.761±0.007 0.772±0.005 0.777±0.004 0.780±0.002 0.784±0.001
RFF-700 0.714±0.003 0.761±0.007 0.772±0.006 0.777±0.004 0.780±0.003 0.785±0.001
VFF-1 0.682±0.011 0.691±0.004 0.692±0.004 0.693±0.003 0.692±0.002 0.692±0.000
VFF-5 0.720±0.009 0.740±0.011 0.744±0.005 0.746±0.002 0.747±0.010 0.740±0.003
VFF-10 0.693±0.012 0.750±0.002 0.760±0.004 0.761±0.007 0.762±0.007 0.758±0.009
VFF-30 0.700±0.020 0.749±0.004 0.768±0.009 0.777±0.003 0.778±0.003 0.780±0.004
VFF-50 0.681±0.014 0.747±0.004 0.770±0.003 0.776±0.002 0.780±0.002 0.785±0.001
VFF-70 0.688±0.008 0.745±0.010 0.769±0.009 0.772±0.006 0.781±0.004 0.787±0.002
VFF-90 0.675±0.012 0.743±0.008 0.767±0.010 0.778±0.005 0.781±0.004 0.785±0.005
VFF-110 0.688±0.004 0.744±0.004 0.767±0.005 0.770±0.006 0.779±0.005 0.788±0.002
VFF-130 0.694±0.010 0.740±0.008 0.761±0.004 0.769±0.009 0.775±0.005 0.787±0.004
VFF-150 0.695±0.006 0.741±0.011 0.767±0.005 0.767±0.005 0.778±0.003 0.790±0.003

Table A.1: Sphere dataset. Mean and standard deviation of test AUC (i.e. generalization
capability) over five independent runs, except for Rodrigues method. For each method, the
highest value is bolded.

N
100 500 1000 2500

Rodrigues 0.507±0.019 0.490±0.009 0.498±0.010 0.495±0.003

Table A.2: Sphere dataset. Mean and standard deviation of test AUC (i.e. generalization
capability) over five independent runs for Rodrigues. The highest value is bolded.

31

N
1000 5000 10000 15000 20000 28000

Raykar 13.0 ± 4.1 76.8 ± 8.2 103.9 ± 5.3 143.1 ± 7.0 199.9 ± 33.3 259.5 ± 48.5
Yan 425.4 ± 89.1 582.0 ± 114.4 695.0 ± 117.9 793.4 ± 121.8 746.8 ± 78.7 2609.0 ± 230.6

GP-MV 160.8 ± 18.2 9262.3 ± 1014.9 41953.7 ± 1725.8 124456.9 ± 3922.0 − −
VGPCR 201.7 ± 67.0 8853.4 ± 595.5 42144.1 ± 2894.0 115996.4 ± 6836.8 − −
RFF-10 10.9 ± 3.3 15.8 ± 4.6 19.6 ± 1.2 37.9 ± 17.5 43.5 ± 17.2 62.9 ± 28.6
RFF-50 15.5 ± 2.2 29.1 ± 4.1 53.2 ± 4.5 69.7 ± 7.0 95.8 ± 27.5 135.0 ± 62.4
RFF-100 25.3 ± 3.2 54.4 ± 4.3 112.6 ± 67.6 149.1 ± 46.7 132.5 ± 12.7 311.2 ± 185.2
RFF-200 42.1 ± 7.4 78.7 ± 3.7 154.6 ± 37.1 193.3 ± 9.6 262.2 ± 48.5 499.4 ± 158.9
RFF-300 56.2 ± 7.3 141.0 ± 31.5 264.6 ± 72.1 322.7 ± 18.5 449.0 ± 52.7 731.2 ± 193.5
RFF-400 89.0 ± 10.5 186.6 ± 8.1 344.5 ± 15.9 496.2 ± 39.0 602.3 ± 53.7 874.6 ± 166.6
RFF-500 111.0 ± 17.5 270.7 ± 11.8 548.4 ± 91.1 670.6 ± 33.3 866.9 ± 109.3 1857.0 ± 950.5
RFF-600 144.5 ± 23.6 348.6 ± 16.1 625.8 ± 4.0 1085.2 ± 349.2 1226.1 ± 189.1 1545.5 ± 137.8
RFF-700 184.0 ± 28.0 427.5 ± 31.6 866.6 ± 184.0 1198.5 ± 72.5 2079.3 ± 750.7 2171.6 ± 279.6
VFF-1 0.9 ± 0.3 7.5 ± 1.3 36.8 ± 7.6 50.0 ± 16.7 47.4 ± 15.4 52.5 ± 8.1
VFF-5 6.3 ± 1.7 44.9 ± 16.5 219.0 ± 62.1 322.9 ± 94.1 310.3 ± 64.2 277.1 ± 33.7
VFF-10 20.4 ± 5.6 105.5 ± 21.9 568.1 ± 171.9 642.3 ± 219.9 801.4 ± 170.3 922.8 ± 373.4
VFF-30 35.2 ± 3.7 337.0 ± 52.4 2478.7 ± 843.6 3596.8 ± 501.3 3418.9 ± 781.6 4187.2 ± 1159.9
VFF-50 47.3 ± 3.0 591.3 ± 71.3 4582.3 ± 1115.0 5862.0 ± 545.2 9075.0 ± 2773.2 9383.2 ± 1194.1
VFF-70 52.2 ± 4.8 815.4 ± 146.0 6786.7 ± 2407.5 9589.2 ± 1262.4 11574.1 ± 3645.6 14535.1 ± 2575.1
VFF-90 62.1 ± 2.5 1012.5 ± 165.2 9984.4 ± 2053.7 11908.1 ± 1549.2 15682.6 ± 3789.9 23716.8 ± 3709.6
VFF-110 75.8 ± 15.1 1320.9 ± 275.5 10240.8 ± 1503.8 14653.5 ± 4986.6 16443.2 ± 2009.3 29169.3 ± 6151.4
VFF-130 81.7 ± 7.0 1883.8 ± 442.7 13186.8 ± 2328.1 16614.2 ± 2184.3 22481.6 ± 4992.3 31939.8 ± 3517.6
VFF-150 80.1 ± 9.5 2027.5 ± 420.0 14133.8 ± 4156.4 17888.4 ± 2623.9 22889.4 ± 1343.3 33984.3 ± 1992.8

Table A.3: Sphere dataset. Mean and standard deviation of CPU train time over five inde-
pendent runs, except for Rodrigues method.

N
100 500 1000 2500

Rodrigues 163.6±79.7 11285.1±7749.3 40609.9±13363.6 757778.4±455399.7

Table A.4: Sphere dataset. Mean and standard deviation of CPU train time over five inde-
pendent runs for Rodrigues.

32

N
1000 5000 10000 15000 20000 28000

Raykar 0.006 ± 0.005 0.008 ± 0.004 0.002 ± 0.004 0.006 ± 0.008 0.004 ± 0.005 0.006 ± 0.008
Yan 0.008 ± 0.012 0.006 ± 0.005 0.010 ± 0.006 0.012 ± 0.010 0.006 ± 0.005 0.020 ± 0.011

GP-MV 6.322 ± 3.403 58.286 ± 11.929 160.682 ± 14.796 370.072 ± 33.214 − −
VGPCR 3.412 ± 2.055 57.636 ± 13.149 156.912 ± 10.616 359.774 ± 7.491 − −
RFF-10 0.210 ± 0.250 0.082 ± 0.016 0.068 ± 0.012 0.096 ± 0.026 0.080 ± 0.020 0.076 ± 0.010
RFF-50 0.138 ± 0.054 0.134 ± 0.023 0.120 ± 0.021 0.120 ± 0.015 0.134 ± 0.027 0.128 ± 0.015
RFF-100 0.152 ± 0.040 0.148 ± 0.015 0.146 ± 0.016 0.146 ± 0.019 0.160 ± 0.011 0.174 ± 0.019
RFF-200 0.258 ± 0.064 0.230 ± 0.020 0.234 ± 0.014 0.234 ± 0.027 0.248 ± 0.012 0.236 ± 0.019
RFF-300 0.300 ± 0.023 0.306 ± 0.010 0.328 ± 0.031 0.328 ± 0.044 0.336 ± 0.024 0.344 ± 0.031
RFF-400 0.414 ± 0.034 0.412 ± 0.024 0.420 ± 0.028 0.416 ± 0.024 0.422 ± 0.030 0.416 ± 0.021
RFF-500 0.522 ± 0.034 0.558 ± 0.051 0.556 ± 0.053 0.542 ± 0.053 0.532 ± 0.032 0.544 ± 0.036
RFF-600 0.642 ± 0.052 0.660 ± 0.043 0.648 ± 0.026 0.664 ± 0.051 0.644 ± 0.012 0.668 ± 0.024
RFF-700 0.806 ± 0.031 0.796 ± 0.047 0.802 ± 0.037 0.906 ± 0.114 0.834 ± 0.030 0.838 ± 0.031
VFF-1 0.038 ± 0.004 0.052 ± 0.031 0.030 ± 0.006 0.050 ± 0.045 0.030 ± 0.006 0.042 ± 0.020
VFF-5 0.092 ± 0.029 0.066 ± 0.016 0.060 ± 0.011 0.062 ± 0.015 0.070 ± 0.011 0.076 ± 0.036
VFF-10 0.088 ± 0.015 0.086 ± 0.014 0.074 ± 0.010 0.090 ± 0.017 0.100 ± 0.025 0.068 ± 0.007
VFF-30 0.116 ± 0.008 0.116 ± 0.014 0.116 ± 0.024 0.114 ± 0.008 0.104 ± 0.014 0.090 ± 0.009
VFF-50 0.144 ± 0.005 0.130 ± 0.014 0.118 ± 0.017 0.128 ± 0.019 0.128 ± 0.021 0.132 ± 0.017
VFF-70 0.160 ± 0.013 0.146 ± 0.030 0.134 ± 0.008 0.136 ± 0.012 0.128 ± 0.016 0.150 ± 0.017
VFF-90 0.144 ± 0.008 0.156 ± 0.015 0.138 ± 0.022 0.136 ± 0.012 0.152 ± 0.019 0.194 ± 0.027
VFF-110 0.178 ± 0.017 0.154 ± 0.015 0.166 ± 0.024 0.168 ± 0.019 0.164 ± 0.017 0.166 ± 0.015
VFF-130 0.178 ± 0.019 0.170 ± 0.024 0.178 ± 0.019 0.280 ± 0.177 0.164 ± 0.017 0.194 ± 0.015
VFF-150 0.198 ± 0.013 0.178 ± 0.007 0.176 ± 0.023 0.214 ± 0.020 0.194 ± 0.030 0.214 ± 0.019

Table A.5: Sphere dataset. Mean and standard deviation of CPU test time (i.e. production
time) over five independent runs, except for Rodrigues method.

N
100 500 1000 2500

Rodrigues 0.444±0.153 1.112±0.576 1.806±0.428 5.788±0.396

Table A.6: Sphere dataset. Mean and standard deviation of CPU test time (i.e. production
time) over five independent runs for Rodrigues.

33

N
1000 5000 10000 15000 50000 100000

Raykar 0.501±0.001 0.501±0.001 0.501±0.002 0.501±0.002 0.501±0.001 0.499±0.000
Yan 0.500±0.002 0.501±0.002 0.501±0.002 0.501±0.002 0.501±0.001 0.501±0.000

GP-MV 0.489±0.004 0.493±0.001 0.631±0.031 0.670±0.010 - -
VGPCR 0.616±0.031 0.670±0.009 0.694±0.002 0.704±0.001 - -
RFF-10 0.501±0.038 0.491±0.040 0.484±0.050 0.563±0.005 0.556±0.009 0.547±0.012
RFF-50 0.519±0.075 0.548±0.061 0.598±0.014 0.607±0.019 0.617±0.021 0.620±0.020
RFF-100 0.518±0.041 0.617±0.014 0.644±0.014 0.655±0.014 0.675±0.013 0.679±0.013
RFF-200 0.521±0.045 0.644±0.010 0.675±0.004 0.687±0.003 0.707±0.001 0.712±0.001
RFF-300 0.518±0.079 0.652±0.010 0.682±0.003 0.692±0.002 0.709±0.000 0.713±0.000
RFF-400 0.520±0.081 0.655±0.008 0.684±0.002 0.694±0.002 0.709±0.000 0.713±0.000
RFF-500 0.521±0.079 0.659±0.008 0.686±0.002 0.695±0.002 0.709±0.001 0.713±0.000
RFF-600 0.521±0.079 0.661±0.007 0.687±0.002 0.695±0.002 0.709±0.000 0.713±0.000
RFF-700 0.520±0.080 0.662±0.007 0.688±0.002 0.696±0.002 0.709±0.000 0.713±0.000
VFF-1 0.502±0.009 0.501±0.001 0.501±0.002 0.501±0.002 0.501±0.001 0.499±0.000
VFF-5 0.512±0.005 0.552±0.008 0.581±0.007 0.589±0.004 0.602±0.003 0.606±0.002
VFF-10 0.521±0.011 0.574±0.009 0.608±0.013 0.632±0.007 0.658±0.003 0.664±0.001
VFF-30 0.520±0.009 0.590±0.012 0.637±0.007 0.655±0.007 0.697±0.002 0.711±0.004
VFF-50 0.519±0.004 0.582±0.007 0.626±0.008 0.640±0.002 0.714±0.014 0.728±0.010
VFF-70 0.519±0.009 0.587±0.012 0.617±0.005 0.635±0.004 0.717±0.013 0.759±0.011
VFF-90 0.525±0.008 0.584±0.005 0.616±0.006 0.622±0.008 0.706±0.017 0.785±0.011
VFF-110 0.529±0.010 0.579±0.011 0.611±0.005 0.622±0.003 0.677±0.007 0.788±0.014
VFF-130 0.522±0.006 0.576±0.004 0.606±0.003 0.619±0.002 0.683±0.014 0.742±0.021
VFF-150 0.524±0.008 0.575±0.009 0.602±0.008 0.614±0.004 0.696±0.010 0.745±0.032

Table A.7: Mean and standard deviation of test AUC (i.e. generalization capability) over
five independent runs, except for Rodrigues method. For each method, the highest value is
bolded. Dataset: cubes.

N
100 500 1000 2500

Rodrigues 0.501±0.003 0.528±0.006 0.544±0.011 0.568±0.011

Table A.8: Mean and standard deviation of test AUC (i.e. generalization capability) over five
independent runs for Rodrigues. The highest value is bolded. Dataset: cubes

34

N
1000 5000 10000 15000 50000 100000

Raykar 9.7 ± 1.3 79.7 ± 8.9 113.1 ± 10.3 143.2 ± 11.0 245.5 ± 15.1 376.4 ± 7.8
Yan 29.4 ± 11.9 72.1 ± 10.3 80.9 ± 7.3 89.0 ± 2.7 174.5 ± 1.7 351.6 ± 6.3

GP-MV 293.6 ± 306.5 9662.4 ± 6025.3 13738.3 ± 3357.0 34390.9 ± 503.5 − −
VGPCR 639.4 ± 601.4 5390.8 ± 256.0 67373.8 ± 11094.2 146773.5 ± 31379.0 − −
RFF-10 11.5 ± 5.2 34.3 ± 10.1 55.6 ± 17.6 61.8 ± 19.0 114.4 ± 11.8 162.7 ± 32.0
RFF-50 31.2 ± 15.8 20.2 ± 20.5 31.2 ± 21.2 31.8 ± 9.4 58.0 ± 3.1 109.3 ± 6.8
RFF-100 22.2 ± 21.4 19.3 ± 4.3 30.0 ± 4.7 39.0 ± 7.7 90.7 ± 6.0 163.7 ± 13.0
RFF-200 32.4 ± 28.8 22.9 ± 2.3 43.4 ± 2.9 59.0 ± 4.4 169.3 ± 3.9 327.3 ± 8.8
RFF-300 71.9 ± 51.6 37.5 ± 6.2 64.1 ± 3.2 87.5 ± 7.6 298.4 ± 13.3 564.2 ± 9.2
RFF-400 122.8 ± 83.0 56.2 ± 10.0 96.3 ± 9.2 137.1 ± 17.5 426.5 ± 35.3 839.5 ± 12.4
RFF-500 195.7 ± 157.4 96.8 ± 29.2 153.3 ± 27.6 215.9 ± 33.1 613.0 ± 42.5 1233.3 ± 30.2
RFF-600 277.5 ± 202.9 130.5 ± 34.9 210.8 ± 41.7 284.1 ± 53.1 813.6 ± 87.2 1661.3 ± 48.9
RFF-700 399.1 ± 304.0 167.1 ± 59.4 260.4 ± 52.9 402.0 ± 38.3 1127.6 ± 83.1 2234.7 ± 30.9
VFF-1 3.0 ± 1.2 14.4 ± 3.0 116.2 ± 34.1 124.4 ± 33.4 184.9 ± 27.6 229.2 ± 37.5
VFF-5 8.7 ± 1.1 130.6 ± 35.2 791.1 ± 497.6 608.5 ± 150.7 893.3 ± 298.6 1092.7 ± 389.3
VFF-10 21.0 ± 5.1 173.1 ± 25.3 1480.2 ± 273.7 1460.6 ± 488.5 1726.8 ± 288.2 2160.9 ± 583.5
VFF-30 48.7 ± 11.4 399.2 ± 53.2 5039.8 ± 1208.3 6020.8 ± 1427.5 7832.2 ± 2032.4 10261.9 ± 3239.3
VFF-50 61.5 ± 11.2 638.8 ± 117.8 7388.7 ± 2115.0 8720.7 ± 2936.3 27493.7 ± 15726.5 28411.7 ± 11184.2
VFF-70 70.1 ± 12.3 809.5 ± 59.5 11065.6 ± 3504.0 12704.8 ± 4026.7 32159.1 ± 11781.5 52529.9 ± 13354.0
VFF-90 77.3 ± 15.2 1292.3 ± 247.0 12141.8 ± 3080.7 17052.8 ± 4579.0 33085.1 ± 8452.8 81205.7 ± 11555.1
VFF-110 86.6 ± 18.5 1662.5 ± 383.0 19402.3 ± 5435.1 21365.0 ± 5921.8 27909.0 ± 6329.1 94428.9 ± 33174.8
VFF-130 101.7 ± 31.5 2207.8 ± 404.7 20206.9 ± 5174.2 20747.1 ± 4638.8 46683.2 ± 24627.5 71927.6 ± 18965.0
VFF-150 110.1 ± 28.5 1837.7 ± 331.1 22362.4 ± 6844.6 24831.1 ± 6319.1 49974.3 ± 16474.8 70633.5 ± 32070.8

Table A.9: Mean and standard deviation of CPU train time over five independent runs, except
for Rodrigues method. Dataset: cubes

N
100 500 1000 2500

Rodrigues 67.0±23.2 3646.7±919.1 21471.2±1611.1 340339.7±48419.3

Table A.10: Mean and standard deviation of CPU train time over five independent runs for
Rodrigues. Dataset: cubes

35

N
1000 5000 10000 15000 50000 100000

Raykar 0.052 ± 0.007 0.042 ± 0.010 0.040 ± 0.011 0.022 ± 0.004 0.038 ± 0.007 0.042 ± 0.004
Yan 0.042 ± 0.004 0.040 ± 0.009 0.036 ± 0.005 0.096 ± 0.117 0.042 ± 0.004 0.048 ± 0.012

GP-MV 108.418 ± 2.068 2572.136 ± 72.938 9325.962 ± 27.316 19895.748 ± 661.243 − −
VGPCR 118.398 ± 2.023 2489.040 ± 103.969 9407.908 ± 230.540 12019.232 ± 3653.075 − −
RFF-10 1.118 ± 0.121 1.102 ± 0.172 1.010 ± 0.171 1.148 ± 0.146 1.118 ± 0.137 1.276 ± 0.176
RFF-50 2.332 ± 0.359 2.294 ± 0.177 2.436 ± 0.257 2.478 ± 0.103 2.388 ± 0.165 2.360 ± 0.119
RFF-100 3.900 ± 0.336 4.228 ± 0.334 4.460 ± 0.332 4.322 ± 0.223 4.288 ± 0.221 4.396 ± 0.274
RFF-200 7.976 ± 0.290 8.298 ± 0.218 8.360 ± 0.433 8.656 ± 0.450 8.898 ± 0.282 9.068 ± 0.286
RFF-300 13.738 ± 1.553 13.958 ± 0.416 14.048 ± 0.755 13.818 ± 0.405 14.314 ± 0.617 14.252 ± 0.339
RFF-400 19.826 ± 1.940 19.732 ± 0.838 20.694 ± 0.913 20.406 ± 0.746 21.114 ± 0.701 20.890 ± 0.302
RFF-500 27.160 ± 2.920 27.116 ± 2.087 27.178 ± 0.520 27.354 ± 2.912 29.026 ± 1.834 28.456 ± 0.630
RFF-600 34.788 ± 3.241 35.050 ± 3.523 35.674 ± 1.310 37.036 ± 1.893 37.512 ± 0.362 36.772 ± 1.957
RFF-700 43.928 ± 3.407 44.634 ± 1.275 45.790 ± 2.873 44.960 ± 2.203 46.230 ± 0.872 46.236 ± 2.113
VFF-1 0.744 ± 0.066 0.852 ± 0.180 0.744 ± 0.108 0.688 ± 0.106 0.572 ± 0.097 0.570 ± 0.061
VFF-5 0.824 ± 0.125 0.872 ± 0.122 0.942 ± 0.188 0.744 ± 0.082 0.770 ± 0.119 0.758 ± 0.068
VFF-10 1.092 ± 0.106 1.154 ± 0.159 1.102 ± 0.115 0.908 ± 0.101 0.840 ± 0.117 1.016 ± 0.300
VFF-30 1.804 ± 0.100 1.662 ± 0.156 1.694 ± 0.051 1.712 ± 0.118 1.554 ± 0.083 1.634 ± 0.122
VFF-50 2.362 ± 0.076 2.254 ± 0.088 2.326 ± 0.092 2.442 ± 0.184 2.214 ± 0.152 2.160 ± 0.189
VFF-70 2.842 ± 0.107 2.760 ± 0.154 2.974 ± 0.065 2.992 ± 0.151 3.004 ± 0.079 2.956 ± 0.190
VFF-90 3.576 ± 0.132 3.504 ± 0.259 3.552 ± 0.130 3.688 ± 0.279 3.872 ± 0.352 3.622 ± 0.178
VFF-110 4.206 ± 0.175 4.062 ± 0.213 4.264 ± 0.181 4.556 ± 0.443 4.514 ± 0.313 4.284 ± 0.174
VFF-130 5.072 ± 0.430 4.868 ± 0.306 5.030 ± 0.237 5.008 ± 0.158 5.332 ± 0.166 5.240 ± 0.293
VFF-150 5.770 ± 0.321 5.716 ± 0.122 5.892 ± 0.281 5.850 ± 0.267 6.290 ± 0.915 5.878 ± 0.425

Table A.11: Mean and standard deviation of CPU test time (i.e. production time) over five
independent runs, except for Rodrigues method. Dataset: cubes

N
100 500 1000 2500

Rodrigues 8.294±4.201 48.528±34.869 69.630±31.114 114.842±88.935

Table A.12: Mean and standard deviation of CPU test time (i.e. production time) over five
independent runs for Rodrigues. Dataset: cubes

36

	Introduction
	Probabilistic modelling
	Fourier features
	The proposed models

	Variational Bayes inference
	The predictive distribution
	Experiments
	The sphere dataset
	The cubes dataset
	Music genre dataset
	Sentence polarity dataset

	Conclusions and future work
	Tables of results

