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Summary Abadie et al. (2010) derive bounds on the bias of the Synthetic Control
estimator under a perfect balance assumption on both observed covariates and pre-
treatment outcomes. In the absence of a perfect balance on covariates, we show that
it is still possible to derive such bounds, but at the expense of relying on stronger
assumptions on the effects of observed and unobserved covariates, and of generating
looser bounds. We also show that a perfect balance on pre-treatment outcomes does
not generally imply an approximate balance for all covariates, even when they are
all relevant. Our results have important implications for the implementation of the
method.

Keywords: Synthetic controls, Covariates, Perfect balance.

1. INTRODUCTION

Social scientists are often interested in evaluating the effect of a policy or a treatment on
an outcome of interest. To perform such an analysis, it is necessary to construct a coun-
terfactual outcome for the treated unit in case there were no treatment. In the absence of
randomized experiments, however, it is often difficult to find a suitable comparison unit
to construct such counterfactual. The synthetic control (SC) method, developed in a se-
ries of papers by Abadie et al. (2010), Abadie et al. (2015), and Abadie and Gardeazabal
(2003), allows practitioners to construct a counterfactual outcome for the treated unit
from a set of potential control units. The method uses a data-driven weighted average
of the selected control units to construct a synthetic control unit that is more similar to
the treated unit than any of the individual control units. Since its inception, this method
has been widely used in social sciences, becoming an important part of the toolbox used
in the policy evaluation literature (see Athey and Imbens, 2017).

When potential outcomes follow a linear factor model, Abadie et al. (2010) show that
existence of weights that achieve a perfect balance for the treated unit on both pre-
treatment outcomes and observed covariates implies that it is possible to derive bounds
on the bias of the SC estimator, using those weights to construct the SC unit.1 Such
bounds are valid when the number of pre-treatment periods is fixed, and they become
smaller as the number of pre-treatment periods increases. This result helped popularize
the SC method. It shows that, in this setting, the SC method allows for substantially

1In this context, a perfect balance on pre-treatment outcomes and covariates means that there is a set
of weights such that, for each of these variables, the value of the treated unit is equal to a weighted
average of the control units using those weights.
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2 Botosaru and Ferman

more flexibility in the treatment assignment mechanism relative to alternative methods,
such as difference in differences, provided that a good balance in pre-treatment outcomes
and observed covariates is achieved. In line with this result, Abadie et al. (2010, 2015)
recommend estimating weights to construct a SC unit that provides a good balance in
terms of both pre-treatment outcomes and observed covariates. Moreover, they recom-
mend that the SC method should only be used if the SC unit provides a good fit in terms
of these variables.

Recent work, however, has placed more emphasis on the importance of matching on
pre-treatment outcomes rather than on observed covariates.2 This focus seems to be
at odds with the recommendation of Abadie et al. (2010, 2015) to only use the SC
method when covariates are also well-balanced. In this paper, we consider the role that
observed covariates play in the SC method, by characterizing the bias properties of the
SC estimator without imposing a perfect balance assumption on observed covariates, but
maintaining a perfect balance on pre-treatment outcomes.

Our analysis has two main contributions. Our first contribution is to show that it is still
possible to derive bounds on the bias of the SC estimator when we relax the assumption
of perfect balance in terms of covariates. However, relaxing this assumption comes at
some costs. In the absence of a perfect balance on covariates, we show that we require
stronger assumptions on the effects of both observed and unobserved covariates so that
it is still possible to derive bounds on the bias of the SC estimator.3 This implies that
we will generally require a larger number of pre-treatment periods so that it is possible
to derive such bounds. Moreover, we also show that the bounds obtained in this case
are looser than when a perfect balance on covariates is also imposed, clarifying the role
played by the observed covariates in the derivation of bounds on the bias of the SC
estimator.

Our second contribution is to show that, contrary to the accepted intuition in the
SC literature, a perfect balance on pre-treatment outcomes does not necessarily imply
that the treated and SC units are alike in terms of observed and unobserved covariates,
even when sufficient conditions to derive bounds on the bias of the SC estimator are
satisfied. This can be the case even for covariates that are relevant in determining the
potential outcomes. This result is somewhat surprising in light of the argument outlined
by Abadie et al. (2015), where it is argued that matching on pre-intervention outcomes
would control for unobserved factors and for the heterogeneity of the effect of the observed
and unobserved factors on the outcome of interest. The authors intuit that only units
that are alike in terms of both observed and unobserved determinants of the outcome
variable would also be alike in terms of trajectories of the outcome variable over extended
periods of time. Although our results partially support this argument, we show that a
perfect balance on lagged outcomes does not imply an approximate balance for covariates
such that their effects on the potential outcomes are multicollinear with the effects of

2For example, Doudchenko and Imbens (2016) suggest that, in terms of predictive power, lagged out-
comes tend to be substantially more important than other covariates, which implies that covariates
should play, in practice, a relatively minor role, while Gobillon and Magnac (2016) analyze the case in
which all pre-treatment outcomes are included as predictors.
3Under only a perfect balance in the pre-treatment outcomes, we have to assume that the effects of

both observed and unobserved covariates in the pre-treatment periods are linearly independent, so that
it is possible to derive bounds on the bias of the SC estimator. In contrast, under a perfect balance on
both pre-treatment outcomes and covariates, such condition is only required for the effects of unobserved
covariates.
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Covariates in the Synthetic Control Method 3

the other observed and unobserved covariates.4 We also show that a perfect balance
on lagged outcomes fails to imply an approximate balance on relevant covariates if the
covariates have nonlinear effects on the potential outcomes. Therefore, we show that it
is still possible to derive bounds on the bias of the SC estimator, even when there is no
approximate balance for observed covariates.

Our results have important implications for researchers applying the SC method.
First, we show that the existence of a good balance in terms of both covariates and
pre-treatment outcomes implies tighter bounds on the bias of the SC estimator relative
to when a good balance is achieved only in terms of pre-treatment outcomes. However, it
may not always be possible to have a good balance on both covariates and pre-treatment
outcomes, either because there are no weights that provide a good fit on both, or be-
cause covariates that are considered relevant in determining the potential outcomes are
not observed. Our results show that, even in these cases, it may still be possible to bound
the bias of the SC estimator. Therefore, a lack of a perfect or approximate balance on
covariates should not necessarily be interpreted as evidence against the use of the SC
method, as long as there is a good balance in terms of lagged outcomes over an extended
period of time prior to the treatment. An important caveat, however, is that these re-
sults rely on stronger assumptions on the effects of observed and unobserved covariates,
in comparison to the assumptions considered by Abadie et al. (2010).

Second, our results provide new insights on the trade-offs involved in the choice of
predictors in the implementation of the SC estimator. A common practice in the imple-
mentation of the SC method is to include all pre-treatment outcomes as predictors which,
as explained by Kaul et al. (2018), implies that the optimization method used to estimate
the SC weights will render irrelevant all other covariates used as predictors.5 On the one
hand, our results show that, even if the estimation procedure does not directly attempt
to match on the covariates, this does not mean that the estimator will necessarily be
biased, even if those covariates are relevant in determining the potential outcomes. On
the other hand, achieving a good balance in terms of covariates has the advantage of
providing tighter bounds, so using information from covariates to construct weights that
provide a better balance in terms of covariates may be warranted. In this case, given
that we also show that there are cases in which balance on pre-treatment outcomes does
not imply approximate balance on covariates, our results also highlight the importance
of using a data-driven procedure to determine the relative importance of each predictor
used in the estimation procedure. This guarantees that only covariates that should be
balanced are considered in the estimation process.

The remainder of this paper is organized as follows. In Section 2 we set up the model
and briefly review the results of Abadie et al. (2010), while in Section 3 we present the
new results. In Section 4 we discuss the implication of our results to the implementation

4We refer to “approximate balance” for a covariate as the difference between the covariate for the
treated unit and for the SC unit being bounded by a function that goes to zero with the number of
pre-treatment periods.
5A non-exhaustive list of papers that applied the SC method using all pre-treatment outcomes as

predictors include Bilgel and Galle (2015), Billmeier and Nannicini (2013), Bohn et al. (2014), Cavallo
et al. (2013), Hinrichs (2012), Kreif et al. (2015), and Liu (2015). The result derived by Kaul et al. (2018)
is valid when all pre-treatment outcomes used in the “outer optimization problem” are also included
in the “inner optimization problem” in the estimation procedure proposed by Abadie and Gardeazabal
(2003) and Abadie et al. (2010). This may not necessarily be the case if we consider the use of cross-
validation, as proposed by Abadie et al. (2015).

c© Royal Economic Society 2018



4 Botosaru and Ferman

of the SC method. In Section 5 we illustrate our results by revisiting the application
studied by Abadie et al. (2015). Section 6 concludes. All proofs are in the Appendix.

2. BASELINE SYNTHETIC CONTROL MODEL

Let Yit (1) and Yit (0) be potential outcomes in the presence and in the absence of a
treatment, respectively, for unit i at time t. Consider the model:{

Yit(0) = δt + θtZi + λtµi + εit

Yit(1) = αit + Yit(0)
(2.1)

where δt is an unknown common factor with constant factor loadings across units; λt is a
(1×F ) vector of common factors; µi is a (F ×1) vector of unknown factor loadings; θt is
a (1× r) vector of unknown parameter; Zi is a (r× 1) vector of observed covariates (not
affected by the intervention), and the error terms εit are unobserved transitory shocks.6

As in Abadie et al. (2010), we treat θt and λt as parameters. We say that a covariate
Zki, for 1 ≤ k ≤ r, is relevant if its associated coefficient θkt 6= 0 for some t, and we refer
to µi as an unobserved covariate. The observed outcomes are given by

Yit = DitYit(1) + (1−Dit)Yit(0), (2.2)

where Dit = 1 if unit i is treated at time t.
Suppose that only unit 1 is treated, and that we observe the outcomes of the treated

unit and of J control units for T0 pre-intervention periods, and for T1 post-intervention
periods. We label the time periods as −T0 + 1, ..., 0, 1, ..., T1. Therefore, we have that
Dit = 1 if i = 1 and t > 0, and Dit = 0 otherwise.

The main goal of the SC method is to estimate the treatment effect for unit 1 at each
time t > 0, that is, α1t.

7 Since Y1t (0) for t > 0 is not observed, the main idea of the SC
method is to consider a weighted average of the control units to construct a proxy for
this counterfactual. That is, for a given set of weights,

w ∈ {(w2, ..., wJ+1)|
J+1∑
j=2

wj = 1 and wj ≥ 0}, (2.3)

we consider an estimator of the form

α̂1t(w) = Y1t −
∑
j 6=1

wjYjt, (2.4)

for t > 0.
Abadie et al. (2010) assume existence of w∗ ∈ RJ that satisfies (2.3), and such that

Y1t =
∑
j 6=1

w∗jYjt, for all t such that − T0 + 1 ≤ t ≤ 0, (2.5)

Z1 =
∑
j 6=1

w∗jZj , (2.6)

where (2.5) is the assumption of a perfect balance on pre-treatment outcomes, and (2.6)

6For example, Abadie and Gardeazabal (2003) consider as covariates Zi gross total investment/GDP
(average for 1964-1969), population density (in 1969), economic sectoral shares (average for 1961-1968),
and human capital distribution (average for 1964-1969).
7We treat α1t as given once the sample is drawn, as do Abadie et al. (2010) and Xu (2017).

c© Royal Economic Society 2018
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is the assumption of a perfect balance on observed covariates. Given (2.5) and (2.6),
Abadie et al. (2010) consider a SC estimator using w∗ as weights, that is,

α̂∗1t = Y1t −
∑
j 6=1

w∗jYjt. (2.7)

Under additional assumptions, they show that the bias of α̂∗1t is bounded by a function
that depends on T0 and on the scale of the transitory shocks (defined in (3.1) below), such
that this function goes to zero as T0 increases.8 As discussed by Abadie et al. (2010), the
interpretation of this result is that the potential bias of the SC estimator is small when
T0 is large relative to the scale of the transitory shocks. The main intuition for this result
is that conditions (2.5) and (2.6) can only be satisfied for a long set of pre-treatment
periods if we also have that µ1 ≈

∑
j 6=1 w

∗
jµj . This result relies on the assumption of

perfect balance in terms of lagged outcomes and covariates, so it should be thought of
as a property of the SC estimator using w∗, conditional on a realization of the data
satisfying the conditions for existence of w∗. This is an important result, as it justifies,
in a linear factor model setting, the procedure suggested in the original SC papers to
estimate the SC weights, by choosing weights that minimize the distance between the
treated and the SC units in terms of pre-treatment outcomes and observed covariates.
While conditions (2.5) and (2.6) are generally not exactly satisfied for a given realization
of the data, these results should be considered as a good approximation when these
conditions are approximately valid.9 Indeed, Abadie et al. (2010, 2015) argue that the
method should not be used if there is a poor balance in terms of pre-treatment outcomes
and/or covariates.

3. THE ROLE OF COVARIATES IN THE SYNTHETIC CONTROL METHOD

We first derive conditions under which it is still possible to derive bounds on the bias of
the SC estimator when (2.5) is assumed, but (2.6) is not. We also derive conditions under
which assuming (2.5) implies that (2.6) holds approximately. The main idea of our proof
is to treat observed covariates (Zi) as factor loadings and their associated time-varying
effects (θt) as common factors.

Consider the following assumptions on the transitory shocks, which are similar to those
considered by Abadie et al. (2010).

Assumption 3.1. (a) εit are inid; (b) E[εit|Zi, µi] = 0; (c) for some even integer p ≥ 2,
E (|εit|p) <∞, for all t = −T0 + 1, ..., 0 and i = 2, ..., J + 1.

We define the 1× (r+ F ) row vector γt ≡ (θt, λt), which is the vector of the effects of
observed and unobserved covariates on the potential outcomes. Additionally, denote by
ξ(T0) the smallest eigenvalue of 1

T0

∑0
t=−T0+1 γ

′
tγt.

Assumption 3.2. ξ(T0) > 0.

ξ(T0) is a measure of the degree of linear independence of the effects of observed and
unobserved covariates in the T0 pre-treatment periods. If, for example, T0 < r+F , then

8See Abadie et al. (2010), page 504.
9See Ferman and Pinto (2018) for the implications of relaxing the perfect balance assumption on pre-

treatment outcomes.

c© Royal Economic Society 2018



6 Botosaru and Ferman

the effects of observed and unobserved covariates in the T0 pre-treatment periods must
be multicollinear, and ξ(T0) = 0. Assumption 3.2 implies that the effects of observed and
unobserved covariates in the T0 pre-treatment periods are linearly independent.

We also define

mp(T0) ≡ max
i=2,...,J+1

(
1

T0

0∑
s=−T0+1

E |εis|p
)
, (3.1)

for the even integer p defined in Assumption 3.1.(c). Following Abadie et al. (2010), we
refer to mp(T0) as a measure of the scale of the transitory shocks, εjt. Finally, let

γ̄(T0) ≡ max
t=−T0+1,...,0,1,...,T1;s=1,...,r+F

|γts| . (3.2)

Proposition 3.1. Suppose that Yit, i = 1, ..., J + 1, t = −T0 + 1, ..., 0, 1, ..., T1, are
observed and given by (2.1) and (2.2). Let there be weights w∗ ∈ RJ such that (2.3) and
(2.5) hold, and let Assumptions 3.1 and 3.2 hold. Then, for any t > 0, k = 1, ..., r, and
l = 1, ..., F ,

|E (α̂∗1t)− α1t| ≤
Cαγ̄(T0)2

ξ(T0)
max

{
mp(T0)1/p

T
1−1/p
0

,
m2(T0)1/2

T
1/2
0

}
, (3.3)

∣∣∣∣∣∣E
Zk1 − J+1∑

j=2

w∗jZkj

∣∣∣∣∣∣ ≤ CZ,k max{γ̄(T0)2, 1}
ξ(T0)

max

{
mp(T0)1/p

T
1−1/p
0

,
m2(T0)1/2

T
1/2
0

}
,(3.4)

∣∣∣∣∣∣E
µl1 − J+1∑

j=2

w∗jµlj

∣∣∣∣∣∣ ≤ Cµ,l max{γ̄(T0)2, 1}
ξ(T0)

max

{
mp(T0)1/p

T
1−1/p
0

,
m2(T0)1/2

T
1/2
0

}
. (3.5)

where Cα, CZ,k, and Cµ,l are constants that do not depend on T0 and which are defined
in the proof.

Proof. We provide the proof of Proposition 3.1 in Appendix A.1.

Proposition 3.1 shows that, when the effects of observed and unobserved covariates in
the T0 pre-treatment periods are linearly independent (Assumption 3.2), then a perfect
balance in terms of pre-treatment outcomes implies that we can bound the degree of
imbalance in terms of observed and unobserved covariates, which also make it possible to
derive bounds on the bias of the SC estimator. The bound on the bias of the SC estimator
is increasing with the scale of the transitory shocks, and decreasing with T0. This bound
is also decreasing in ξ(T0). In particular, when ξ(T0) = 0, the effects of the covariates in
the pre-treatment periods would be multicollinear, and it would not be possible to derive
bounds on the imbalance of observed and unobserved covariates under a perfect balance
on pre-treatment outcomes. Therefore, a necessary condition for Assumption 3.2 is that
T0 ≥ r + F . We show below that it is still possible to derive bounds on the bias of the
SC estimator when we relax Assumption 3.2.

If m̄p(T0) and γ̄(T0) are bounded, and there are positive constants ξ and T̄ such that

ξ(T0) ≥ ξ for all T0 > T̄ , then the function that bounds the bias of the SC estimator

c© Royal Economic Society 2018



Covariates in the Synthetic Control Method 7

goes to zero as T0 increases.10 The intuition of this result is that, when observed and
unobserved covariates have linearly independent effects on the potential outcomes, then
it would only be possible to have a good balance in terms of pre-treatment outcomes, for
a long set of pre-treatment periods, if we also have a good balance in terms of observed
and unobserved covariates. While, under these conditions, the bias of the SC estimator
would go to zero when T0 →∞, note that the bounds derived in Proposition 3.1 are valid
for finite T0. As in Abadie et al. (2010), result (3.3) should be understood as the bias
of the SC estimator being small when T0 is large relative to the scale of the transitory
shocks.

While Proposition 3.1 shows that it is still possible to derive bounds on the bias of the
SC estimator even when (2.6) is not assumed, it comes at a cost of requiring stronger
conditions on the effects of observed and unobserved covariates than those required for
the bounds derived by Abadie et al. (2010), who assume both (2.5) and (2.6). When
both (2.5) and (2.6) are assumed, then Assumption 3.2 can be replaced by ξ̇(T0) > 0,

where ξ̇(T0) is the smallest eigenvalue of 1
T0

∑0
t=−T0+1 λ

′
tλt. Since λt is a subvector of γt,

ξ(T0) > 0 implies that ξ̇(T0) > 0. However, the converse may not be true. Therefore, in
some settings, it may be possible to construct bounds based on (2.5) and (2.6), while it
would not be possible to construct bounds in the absence of (2.6). In particular, while a
necessary condition for ξ(T0) > 0 is that T0 ≥ r+F , a necessary condition for ξ̇(T0) > 0
is that T0 ≥ F . Therefore, in general, we require a larger T0 to derive bounds on the bias
of the SC estimator when (2.6) is relaxed.

For a given T0, we also have that the bounds assuming both (2.5) and (2.6) are tighter
than those assuming only (2.5).11 The intuition is that assuming (2.6) eliminates the bias
due to imbalance in observed covariates. Also, assuming both (2.5) and (2.6) provides
tighter bounds on the degree of imbalance in terms of unobserved covariates relative to
when only (2.5) is assumed, providing another reason why the bound on the bias of the
SC estimator is tighter in this case. Therefore, while Proposition 3.1 shows that perfect
balance in terms of covariates is not a necessary condition to derive bounds on the bias
of the SC estimator, our results also highlight potential advantages of using covariates,
one of which is that the bounds on the bias are tighter. Given this, we do not intend
to argue that practitioners should not directly attempt to match on covariates. In fact,
weights that satisfy both (2.5) and (2.6) should be preferred to weights that satisfy only
(2.5). In other words, weights that also provide a good balance on covariates should be
preferred, not only because this obtains tighter bounds on the bias, but also because it
circumvents imposing stronger assumptions for the existence of bounds on the bias of
the SC estimator.

The importance of considering the properties of the SC estimator when a perfect
balance in terms of covariates is not assumed comes from the fact that, in empirical
applications, covariates that are thought to be relevant in determining the potential out-
comes may not all be observed. Moreover, even if all relevant covariates are observed,
there may not be weights that provide a good balance in terms of both pre-treatment
outcomes and such covariates. Proposition 3.1 shows that, when potential outcomes are
given by (2.1), and observed and unobserved covariates have linearly independent effects

10Those are sufficient, but not necessary, conditions so that the bounds asymptote to zero with T0 →∞.

If, for example, m̄p(T0) is unbounded, but it increases at a rate lower than T
1/2
0 , then the bounds would

still asymptote to zero.
11See details in Appendix A.2.

c© Royal Economic Society 2018



8 Botosaru and Ferman

on the potential outcomes, then an approximate balance on observed covariates follows
when there is a perfect balance on pre-treatment outcomes. However, we now show dif-
ferent settings in which it is possible to derive bounds based on a perfect balance in
pre-treatment outcomes, even when there is no approximate balance on observed covari-
ates. This can be the case when covariates are irrelevant in determining the potential
outcomes, when the effects of observed and unobserved covariates are multicollinear, or
when observed covariates have non-linear effects on the potential outcomes. We discuss
each case below.

We consider first the case in which some covariates are irrelevant or have effects that
are multicollinear with the effects of other observed and unobserved covariates. That is,
we allow for γtb = 0 for all t for some b ∈ Rr+F \{0}.12 If we were considering a setting
with only unobserved covariates, then we would always be able to redefine the unob-
served covariates so that we have an observationally equivalent model with no irrelevant
covariates, and such that the effects of the covariates were linearly independent. However,
this is not the case if we have observed covariates. Let 1 ≤ d ≤ r + F be the dimension
of the space {b ∈ Rr+F \{0}|γtb = 0 ∀ t}. Therefore, for any T0, 1

T0

∑0
t=−T0+1 γ

′
tγt has

at least d eigenvalues equal to zero, so ξ(T0) = 0 and it is not possible to directly apply
Proposition 3.1.

Without loss of generality, suppose that the first r̃ observed covariates are relevant and
have effects that are not multicollinear with the effects of other observed and unobserved
covariates. Let θ̃t be a 1 × r̃ vector with the first r̃ components of θt and Z̃i be a r̃ × 1
vector with the first r̃ components of Zi. Also, let ã be the dimension of the complement
of the space {b ∈ Rr+F \{0}|γtb = 0 ∀ t}. Then we can always find a 1 × ã vector γ̃t
with first r̃ components equal to θ̃t such that, for any b ∈ Rr+F , there will be a b̃ ∈ Rã
such that γtb = γ̃tb̃ for all t. Moreover, the first r̃ components of b are the same as the
first r̃ components of b̃. Therefore, for any Xi = (Zi, µi)

′
, we can find a ã× 1 vector X̃i

such that model (2.1) can be rewritten as

Yit(0) = δt + γ̃tX̃i + εit, (3.6)

where the first r̃ components of X̃i are equal to Z̃i.
Assuming that the smallest eigenvalue of 1

T0

∑0
t=−T0+1 γ̃

′
tγ̃t is greater than zero allows

us to apply Proposition 3.1 to the rewritten model (3.6). Therefore, bounds on the
bias of the SC estimator can be achieved under weaker conditions than those stated in
Proposition 3.1. However, in this case, Proposition 3.1 only guarantees an approximate
balance for the components of X̃i, so it is not possible to guarantee an approximate
balance for all observed covariates if r > r̃. There are two reasons for this. First, some
covariates may be irrelevant in determining the potential outcomes. In this case, it is
clear that a perfect balance on pre-treatment outcomes may be achieved even in the
presence of imbalance in such covariates. More interestingly, there may be imbalance
even for covariates that are relevant. For example, imagine that there is a time-invariant
common factor λ1t = 1 with associated factor loading µ1i, and a covariate Z1i with
time-invariant effects θ1t = θ1. In this case, we would guarantee an approximate balance
for (µ1i + Z1iθ1), but we would not be able to guarantee an approximate balance for
µ1i and for Z1i separately. Intuitively, this multicollinearity implies that there would be
weighted averages of the control units that may provide a good balance for the treated

12For example, this allows for irrelevant covariates or for two or more covariates with time-invariant
effects.

c© Royal Economic Society 2018



Covariates in the Synthetic Control Method 9

unit in terms of pre-treatment outcomes even if there is imbalance in relevant observed
covariates. In other words, if we consider the model (2.1), then we are only able to
guarantee approximate balance for covariates whose effects are linearly independent of the
effects of other observed and unobserved covariates. In this setting, our previous results
that we need stronger assumptions to derive bounds on the bias of the SC estimator, and
that the bounds are looser when a perfect balance on covariates is not assumed, are still
valid.13

Another setting in which perfect balance in terms of pre-treatment outcomes may
not imply approximate balance in terms of covariates is when Zi enters non-linearly
in the potential outcomes equation. In this case, it may be possible to derive bounds
on the bias of the SC estimator, without an approximate balance on covariates, even
when the effects of covariates are not multicollinear. Suppose, for example, that Yit(0) =
δt+θtg(Zi)+λtµi+εit. Then, if ξ(T0) > 0, a perfect balance on pre-treatment outcomes
would imply bounds on the bias of the SC estimator, and approximate balance for g(Z1).
However, in general, we would not have approximate balance for Z1, unless g() is linear.
The same reasoning would apply if we consider a more general model, in which potential
outcomes follow a linear factor model, where factor loadings are functions of observed
and unobserved covariates, i.e., Yit(0) = ωth(Zi, µi) + εit. Interestingly, when we relax
the functional form of model (2.1) in this way, we should not expect to find weights
that provide a good balance in terms of both pre-treatment outcomes and covariates.
However, it is still possible to provide bounds on the bias of the SC estimator when we
only have perfect balance in terms of pre-treatment outcomes.

Taken together, these results show that there are advantages in considering weights
that provide a good balance in terms of both pre-treatment outcomes and covariates.
However, there may be empirical applications in which covariates thought to be relevant
are not observed, and/or there are no weights that provide a good balance in terms of
observed covariates. In such cases, we show that it is still possible to derive bounds on the
bias of the SC estimator, provided that there are weights that provide a perfect balance
in terms of pre-treatment outcomes.

4. IMPLICATIONS FOR ESTIMATION OF THE SC WEIGHTS

Given a realization of the data, in general, there will not be weights that perfectly satisfy
conditions (2.3), (2.5), and (2.6). Therefore, the original SC papers suggest an optimiza-
tion procedure to estimate the SC weights, aiming at satisfying these conditions as close
as possible. They define a set of K predictors, where X1 is a (K × 1) vector contain-
ing the predictors for the treated unit, and X0 is a (K × J) matrix of predictors for
the control units. Predictors can be, for example, linear combinations of pre-intervention
values of the outcome variable, and observed covariates. The SC weights are estimated
by minimizing ||X1−X0w||V subject to

∑J+1
i=2 wj = 1 and wj ≥ 0, where V is a (K×K)

positive semidefinite matrix. Abadie and Gardeazabal (2003) and Abadie et al. (2010)
discuss different possibilities for choosing the matrix V , including a data-driven process

13If the smallest eigenvalue of 1
T0

∑0
t=−T0+1 γ̃

′
tγ̃t is greater than zero, then ξ̇(T0) > 0. Therefore, in this

case, the sufficient conditions that allow us to derive the bounds on the bias of the SC estimator when
(2.6) is not assumed are still stronger than the sufficient conditions when (2.6) is assumed. In this case,

a necessary condition for the smallest eigenvalue of 1
T0

∑0
t=−T0+1 γ̃

′
tγ̃t being greater than zero is that

T0 ≥ ã ≥ F . We also still have that the bounds derived when (2.6) is assumed are tighter than bounds
derived when (2.6) is not assumed.
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where V is chosen such that the solution to the ||X1 − X0w||V optimization problem
minimizes the pre-intervention squared prediction error.

If there is a w∗ such that conditions (2.3), (2.5), and (2.6) are satisfied, then w∗ would
trivially be a solution to this optimization problem.14 Therefore, since the theoretical
results presented by Abadie et al. (2010) rely on the existence of such w∗, these results
are not directly derived based on the optimization procedure suggested to estimate the SC
weights. Rather, these results provide a theoretical justification for estimation methods
that aim at achieving a good balance in terms of pre-treatment outcomes and covariates.
The idea is that, if a close-to-perfect balance is achieved (that is, conditions (2.3) and
(2.5) are approximately satisfied), then these theoretical results should be approximately
valid. In fact, Abadie et al. (2010, 2015) recommend that the method should not be used
if the pre-treatment fit is bad. In light of that, our results have important implications
for the implementation of the SC method.

First, our results provide new insights on the trade-offs involved in the choice of pre-
dictors in the implementation of the SC estimator. For example, it is not clear whether
one should include all pre-treatment outcome lags as predictors. While this is a common
procedure in SC applications, Kaul et al. (2018) show that including all pre-treatment
outcome lags as predictors renders all other covariates irrelevant in the optimization pro-
cedure suggested by Abadie and Gardeazabal (2003) and Abadie et al. (2010). While
this may appear a problem at first sight, as the optimization procedure will not directly
attempt to match on observed covariates, we show that the bias of the SC estimator can
still be bounded even if we have good balance only for pre-treatment outcomes. This is
true even if those covariates are relevant. On the one hand, based on our results, focusing
on weights that also provide a good balance in covariates may impose unnecessary con-
straints in the search for weights that provide a good balance in terms of pre-treatment
outcomes. For example, if X1 includes only covariates Z1, then the solution to the opti-
mization problem suggested by Abadie and Gardeazabal (2003) and Abadie et al. (2010)
may be a ŵ such that Y1t 6=

∑
j 6=1 ŵjYjt for some t ≤ 0, even when condition (2.5) is

satisfied. This suggests that at least some pre-treatment outcome lags should be included
as predictors. On the other hand, achieving a good balance in terms of covariates may
provide a better control for the effects of those observed covariates if the number of
pre-treatment periods is small, as suggested by Kaul et al. (2018).

Interestingly, note that the inclusion of covariates as predictors when the model is
non-linear in covariates should not necessarily be a problem if one uses the data-driven
procedure suggested by Abadie and Gardeazabal (2003) and Abadie et al. (2010) to
determine the matrix V . In this case, if pre-treatment outcome lags are also included
as predictors, then the importance given to such covariates would be relatively small,
and the estimation procedure will not attempt to match on covariates that should not
be matched on. In contrast, if a researcher uses an ad-hoc matrix V (e.g., the identity
matrix), then weights would be chosen to provide balance on covariates that should not
be balanced. Therefore, our results also highlight the importance of using a procedure to
chose the matrix V as the one suggested by Abadie and Gardeazabal (2003) and Abadie
et al. (2010).

We also show that it is still possible to derive bounds on the bias of the SC estimator
when observed covariates are imbalanced, even if such covariates are relevant in deter-
mining potential outcomes. Therefore, imbalance in terms of observed covariates should

14This is true regardless of how the matrix V is chosen.
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not necessarily be taken as evidence that the SC method should not be used, as long as
we have a good balance in terms of pre-treatment outcomes. This expands the possibil-
ities of empirical applications in which the SC method may be considered, as observed
covariates of the treated unit may not be in the convex hull of the observed covariates
of the control units, while it may still be possible to find weights that provide a good
balance in terms of pre-treatment outcomes. Our results also show that the SC method
can be used even when covariates that are thought to be crucial determinants of the
potential outcomes are not observed.

We focused so far on the implementation of the SC method as suggested in the orig-
inal SC papers (Abadie and Gardeazabal (2003), and Abadie et al. (2010, 2015)). In
particular, we focused on the setting considered by Abadie et al. (2010), in which J is
fixed, and we rely on perfect balance assumptions in order to derive bounds on the bias
of the SC estimator. In this setting, we analyze the importance of assuming balance on
covariates to derive such bounds, and the role of considering balance on covariates as a
diagnostic for the method. Recent papers, such as Xu (2017) and Athey et al. (2018),
propose generalizations of the SC method. Xu (2017) separately estimates λt and µi,
and then construct the counterfactual for the treated unit in the post-treatment periods
using these estimators, while Athey et al. (2018) consider matrix completion methods
to construct the counterfactuals. These papers rely on both J and T0 going to infinity
so that the bias of their estimators goes to zero. By doing so, they are able to relax the
assumptions of perfect balance on pre-treatment outcomes and covariates, so, in contrast
to the original SC papers, they do not consider balance on covariates as a diagnostic for
whether their proposed methods should be used. Therefore, our results that imbalance
on covariates should not be taken as evidence against the use of the SC method are more
relevant when J is not large, which is the setting considered in the original SC papers.
Analyzing further the role of covariates in these generalizations of the SC method is an
interesting area for future research.

5. EMPIRICAL ILLUSTRATION: THE ECONOMIC COST OF THE 1990 GERMAN
REUNIFICATION

Abadie et al. (2015) use the SC method to estimate the economic impact of the 1990
German reunification on West Germany. They construct the SC weights using average
GDP per capita, trade openness, inflation rate, industry share, schooling, and investment
rate as predictor variables, which implies that the optimization problem would choose
the weights aiming at achieving a good balance in terms of those variables. Table 1 shows
that the synthetic West Germany is much closer to the actual West Germany in terms
of these covariates than a population-weighted average for the 16 OECD countries in the
donor pool. This is not particularly striking, given that the optimization procedure to
estimate the SC weights they considered aims at achieving such balance.

We take advantage that there is a sizable number of pre-treatment periods in this appli-
cation, and consider an alternative SC specification, where we include all pre-treatment
outcome lags (from 1960 to 1990) as predictor variables. Using this alternative procedure
to estimate the SC weights, the synthetic West Germany is still, in general, much closer
to the actual West Germany in terms of the observed covariates than the average of the
OECD countries (Table 1, column 4). Although the balance in terms of these covariates
is not as good as in the specification considered by Abadie et al. (2015), we emphasize
that the optimization procedure we used to estimate these SC weights does not directly
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attempt to achieve balance in terms of these covariates, while Abadie et al. (2015) chose
the weights directly attempting to do so. In light of Proposition 3.1, this suggests that
some of these covariates are relevant and have independent effects on the potential out-
comes, so that the optimization procedure provides an approximate balance for them,
even though it does not directly attempt to provide such balance. Finally, Figure 1 shows
that the two alternative specifications to estimate the SC weights provide very similar
counterfactuals for West Germany after the reunification.

Overall, the results from this empirical illustration corroborate one of the main mes-
sages of our paper. In this application, the SC control method focusing on matching only
on the pre-treatment outcomes leads to a SC unit that also approximates the treated unit
in terms of many of the covariates. As a consequence the counterfactual estimated using
only pre-treatment outcomes is very close to the original one, that directly attempted
to match on these covariates. Given that we show in Section 3 that the bounds when
both pre-treatment outcomes and covariates are perfectly balanced are tighter than those
when we have perfect balance only on pre-treatment outcomes, it is not clear that ignor-
ing the covariates would be a better alternative in this case, as information on covariates
can be important to reduce the bias of the estimator (for a given T0). Still these results
suggest that, in this application, it would be possible to construct a counterfactual for
the treated unit even if there were no information on relevant covariates.

Table 1. Balance in Observed Covariates - Abadie et al. (2015) Application.

Synthetic West Synthetic West
OECD West Germany Germany Germany

(Abadie et al. (2015)) (no covariates)
(1) (2) (3) (4)

GDP per capita 8021.1 15808.9 15802.2 15841.9
Trade openness 31.9 56.8 56.9 56.9
Inflation rate 7.4 2.6 3.5 4.8
Industry share 34.2 34.5 34.4 34.0
Schooling 44.1 55.5 55.2 53.2
Investment rate 25.9 27.0 27.0 25.0

Note: this table presents covariate values for a population-weighted average for the 16 OECD coun-
tries in the donor pool (column 1), West Germany (column 2), the synthetic West Germany using the
specification considered by Abadie et al. (2015) (column 3), and the synthetic West Germany using all
pre-treatment outcomes as predictors, with no covariates (column 4). GDP per capita, inflation rate,
trade openness, and industry share are averaged for the 1981-90 period. Investment rate and schooling
are averaged for the 1980-85 period.

6. CONCLUSION

We revisit the role of observed covariates in the SC method. We formally derive two
set of results. First, we provide conditions under which the result derived by Abadie
et al. (2010), regarding the bias of the SC estimator, remains valid when we relax the
assumption of perfect balance on covariates, and assume only a perfect balance on pre-
treatment outcomes. We show that it remains possible to derive bounds on the bias of
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Figure 1. Trends in per Capita GDP: West Germany versus Synthetic West Germany.

Note: this figure presents the per capital GDP for West Germany and for two alternative synthetic
control units, one computed using the SC specification outlined in Abadie et al. (2015), and another one
computed using all pre-treatment outcome lags as predictors, with no covariates.

the SC estimator when a perfect balance on covariates is not assumed, but this relies
on stronger assumptions and generates looser bounds. Second, we provide conditions
under which a perfect balance on pre-treatment outcomes implies an approximate balance
for the covariates. We show that an approximate balance for covariates may not be
achieved even when the bias of the SC estimator is bounded. This may be the case
even for relevant covariates. Taken together, our results show that, while there may be
advantages in balancing on covariates to construct the SC estimator, a perfect balance
on covariates should not be required for the SC method, as long as there is a perfect
balance on a long set of pre-treatment outcomes. Our results have direct implications
on how applied researchers should implement the SC method, and on how they should
assess the applicability of the method.
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APPENDIX A: PROOFS OF RESULTS

A.1. Proof of Proposition 3.1:

The proof follows closely Abadie et al. (2010). We first prove result (3.3) of Proposition
3.1. First, notice that

Y1t (0)−
J+1∑
i=2

wiYit (0) = γt

(
X1 −

J+1∑
i=1

wiXi

)
+

J+1∑
i=2

wi (ε1t − εit) , for any t, (A.1)

where Xi = (Zi, µi)
′

is a (r + F )× 1 vector.
Stacking pre-treatment variables, i.e. Y Pi ≡ (Yi1, ..., YiT0

)
′
, we have that:

Y P1 −
J+1∑
i=2

wiY
P
i = ΓP

(
X1 −

J+1∑
i=1

wiXi

)
+

J+1∑
i=2

wi
(
εP1 − εPi

)
(A.2)

where Y Pi and εPi are T0 × 1 vectors, and ΓP =
[
γ′1, ..., γ

′
T0

]′
is a T0 × (r + F ) matrix.

Under Assumption 3.2, ΓP
′
ΓP is invertible, so we can solve (A.2) for

(
X1 −

∑J+1
i=1 wiXi

)
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to obtain(
X1 −

J+1∑
i=1

wiXi

)
=
(

ΓP
′
ΓP
)−1

ΓP
′
(
Y P1 −

J+1∑
i=2

wiY
P
i

)
−
(

ΓP
′
ΓP
)−1

ΓP
′
J+1∑
i=2

wi
(
εP1 − εPi

)
(A.3)

Plugging this into (A.1) obtains, for any t > 0,

Y1t (0)−
J+1∑
i=2

wiYit (0) = γt

(
ΓP
′
ΓP
)−1

ΓP
′
(
Y P1 −

J+1∑
i=2

wiY
P
i

)

−γt
(

ΓP
′
ΓP
)−1

ΓP
′
J+1∑
i=2

wi
(
εP1 − εPi

)
(A.4)

+

J+1∑
i=2

wi (ε1t − εit) .

Using (2.3) and (2.5) obtains, for any t > 0,

Y1t (0)−
J+1∑
i=2

w∗i Yit (0) (A.5)

= γt

(
ΓP
′
ΓP
)−1

ΓP
′
J+1∑
i=2

w∗i ε
P
i (A.6)

−γt
(

ΓP
′
ΓP
)−1

ΓP
′
εP1 (A.7)

+

J+1∑
i=2

w∗i (ε1t − εit) . (A.8)

Importantly, note that w∗i is a function of εit for t ≤ 0, but it is independent of εit for t >

0 due to Assumption 3.1.(a) . Therefore, due to Assumption 3.1.(b), E
[
γt

(
ΓP
′
ΓP
)−1

ΓP
′
εP1

]
=

0 and E
[∑J+1

i=2 w
∗
i (ε1t − εit)

]
= 0. However, we cannot guarantee that E

[
γt

(
ΓP
′
ΓP
)−1

ΓP
′∑J+1

i=2 w
∗
i ε
P
i

]
=

0, because w∗i is a random variable that is a function of εPi .

Noting that the (r + F )× (r + F ) matrix ΓP
′
ΓP =

∑0
j=−T0+1 γ

′
jγj , we write the right

hand side of (A.6) as:

γt

(
ΓP
′
ΓP
)−1

ΓP
′
J+1∑
i=2

w∗i ε
P
i =

J+1∑
i=2

w∗i γt

 0∑
j=−T0+1

γ′jγj

−1 0∑
s=−T0+1

γ′sεis

=

J+1∑
i=2

w∗i

0∑
s=−T0+1

ψtsεis (A.9)

where

ψts ≡ γt

 0∑
j=−T0+1

γ′jγj

−1 γ′s (A.10)
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Therefore, taking expectations on both sides of (A.5) and using expression (A.9) ob-
tains for any t > 0:

E

(
Y1t (0)−

J+1∑
i=2

w∗i Yit (0)

)
= E

(
J+1∑
i=2

w∗i

0∑
s=−T0+1

ψtsεis

)
(A.11)

We now derive bounds for expression (A.11). First, consider the following string of
inequalities:

ψ2
ts ≤ ψttψss ≤

(
(r + F ) γ(T0)2

T0ξ(T0)

)2

(A.12)

where the first inequality follows by the Cauchy Schwarz inequality and by the fact that∑T0

j=1 γ
′
jγj is positive definite and symmetric, while the second inequality follows since(

1
T0

∑0
j=−T0+1 γ

′
jγj

)−1
is symmetric positive definite with its largest eigenvalue given by

ξ(T0)−1. Then

ψtt ≤
γtγ
′
t

T0ξ(T0)
=

∑r+F
m=1 γ

2
tm

T0ξ
≤ (r + F ) γ(T0)2

T0ξ(T0)
(A.13)

and, similarly,

ψss ≤
(r + F ) γ(T0)2

T0ξ(T0)
. (A.14)

Define

εit ≡
0∑

s=−T0+1

ψtsεis, i = 2, ..., J + 1 (A.15)

and consider ∣∣∣∣∣
J+1∑
i=2

w∗i εit

∣∣∣∣∣ ≤
J+1∑
i=2

w∗i |εit|

≤

(
J+1∑
i=2

(w∗i )
q

)1/q (J+1∑
i=2

|εit|p
)1/p

(A.16)

≤

(
J+1∑
i=2

|εit|p
)1/p

(A.17)

where (A.16) follows by Holder’s inequality with p, q > 1 and 1
p + 1

q = 1 and (A.17)

follows by norm monotonicity and (2.3). Hence, applying Holder’s again obtains:

E

(
J+1∑
i=2

w∗i |εit|

)
≤

[
E

(
J+1∑
i=2

|εit|p
)]1/p

(A.18)

Applying Rosenthal’s inequality to

E (|εit|p) = E

(∣∣∣∣∣
0∑

s=−T0+1

ψtsεis

∣∣∣∣∣
p)

(A.19)
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obtains

E

(∣∣∣∣∣
0∑

s=−T0+1

ψtsεis

∣∣∣∣∣
p)
≤ C (p) max


(

(r+F )γ(T0)
2

T0ξ(T0)

)p∑0
s=−T0+1 E |εis|

p
,(

(r+F )γ(T0)
2

T0ξ(T0)

)p (∑0
s=−T0+1 E (εis)

2
)p/2

 (A.20)

= C (p)

(
(r + F ) γ(T0)2

ξ(T0)

)p
max


1
Tp
0

∑0
s=−T0+1 E |εis|

p
,(

1
T 2
0

∑0
s=−T0+1 E (εis)

2
)p/2


where the constant C (p) = E[θ−1]p, where θ is a Poisson random variable with parameter
1, which is the best constant as shown by Ibragimov and Sharakhmetov (2002). The
inequality in A.20 follows since

0∑
s=−T0+1

E |ψtsεis|p =

0∑
s=−T0+1

|ψts|p E (|εis|p) (A.21)

≤
(

(r + F ) γ(T0)2

T0ξ(T0)

)p 0∑
s=−T0+1

E |εis|p (A.22)

0∑
s=−T0+1

E |ψtsεis|2 =

0∑
s=−T0+1

(ψts)
2 E (εis)

2
(A.23)

≤
(

(r + F ) γ(T0)2

T0ξ(T0)

)2 0∑
s=−T0+1

E (εis)
2

(A.24)

Finally, for any t > 0,

|E (α̂∗1t)− α1t| ≤ E

(
J+1∑
i=2

w∗i |εit|

)

≤

[
E

(
J+1∑
i=2

|εit|p
)]1/p

≤

[
J+1∑
i=2

E

(∣∣∣∣∣
0∑

s=−T0+1

ψtsεis

∣∣∣∣∣
p)]1/p

≤ C1/p (p)

(
(r + F ) γ(T0)2

ξ(T0)

)J+1∑
i=2

max

 1

T p0

0∑
s=−T0+1

E |εis|p ,

(
1

T 2
0

0∑
s=−T0+1

E (εis)
2

)p/2
1/p

≤ (J × C (p))
1/p

(
(r + F ) γ(T0)2

ξ(T0)

)
max

{
mp(T0)1/p

T
1−1/p
0

,
m2(T0)1/2

T
1/2
0

}
. (A.25)

The proof for results (3.4) and (3.5) follow by similar arguments. First, define the
1× (r + F ) vector ρk ≡ [0, 0, ..., 1, ..., 0] where only the kth element equals to 1. Consider
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k such that 1 ≤ k ≤ r. From equation (A.3), we have that:(
Zk,1 −

J+1∑
i=1

wiZk,i

)
= ρk

(
X1 −

J+1∑
i=1

wiXi

)
(A.26)

= ρk

(
ΓP
′
ΓP
)−1

ΓP
′
(
Y P1 −

J+1∑
i=2

wiY
P
i

)
(A.27)

−ρk
(

ΓP
′
ΓP
)−1

ΓP
′
J+1∑
i=2

wi
(
εP1 − εPi

)
(A.28)

If we define γ̄′(T0) = max{γ̄(T0), 1} > 0, then the proof of result (3.4) follows exactly
the same steps as the proof of result (3.3) if we use γ̄′(T0) instead of γ̄(T0), so we have

bounds for
∣∣∣E(Zk1 −∑J+1

i=2 w
∗
iZki

)∣∣∣. Similarly, if we consider l > r we have bounds for∣∣∣E(µl1 −∑J+1
i=2 w

∗
i µli

)∣∣∣.
A.2. Contrasting the bounds with and without condition (2.6):

Denote by ξ̇(T0) the smallest eigenvalue of 1
T0

∑0
t=−T0+1 λ

′
tλt. Since λt is a subvector of

γt, then ξ̇(T0) ≥ ξ(T0) for all T0. Also, define

λ̄(T0) ≡ max
t=−T0+1,...,0,1,...,T1;s=1,...,F

|λts| , (A.29)

so that λ̄(T0) ≤ γ̄(T0).
Under Assumption 3.1, and assuming that ξ̇(T0) > 0 and that conditions (2.5) and

(2.6) hold, it follows that

|E (α̂∗1t)− α1t| ≤ (J × C (p))
1/p

(
Fλ̄(T0)

2

ξ̇(T0)

)
max

{
mp(T0)1/p

T
1−1/p
0

,
m2(T0)1/2

T
1/2
0

}
(A.30)

Since r > 0, λ̄(T0) ≤ γ̄(T0), and ξ̇(T0) ≥ ξ(T0), it follows that the bounds derived
under conditions (2.5) and (2.6) (equation A.30) are tighter than the bounds derived
under condition (2.5) only (equation A.25).
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