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ABSTRACT  
Group work, where students work on projects to overcome challenges together, has 
numerous advantages, including learning of important transferable skills, better 
learning experience and increased motivation. However, in many academic systems 
the advantages of group projects clash with the need to assign individualised marks 
to students. A number of different schemes have been proposed to individualise 
group project marks, these include marking of individual reflexive accounts of the 
group work and peer assessment. Here we explore a number of these schemes in 
computational experiments with an artificial student population. Our analysis high-
lights the advantages and disadvantages of each scheme and particularly reveals 
the power of a new scheme proposed here that we call pseudoinverse marking. 
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Introduction 

Group projects, where a small group of students tackles a challenge, can enhance 
the learning experience (Abelson and Babcock 1986; Hmelo-Silver 2004). This 
form of teaching encourages students help each other and learn to overcome 
problems together. This is beneficial as it not only allows students to develop 
technical skills but also transferable skills in project management and leadership 
(Hmelo-Silver 2004; Davies 2009). 

To an assessor, group projects can present a considerable challenge (Fellenz 
2006; Davies 2009). Many academic systems require the assessor to assign an 
individualised mark to each student participating in the course. These marks must 
be fair and unbiased. However, marks should also take the transferable skills that 
the student acquired into account (Jackel et al. 2017). While the technical progress 
made by a group is generally easy to assess, e.g. on the basis of a project report, it 
is more difficult to judge the technical and collaborative skills of individual members 
of a group. In a typical setting, each student works on several shorter projects with 
different groups. The challenge is then to compute a student's individualised mark 
from the set of group marks received. 
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A simple approach is to assign to each student the average of the marks of the 

groups in which the student participated. As we show below, this has the 

undesirable effect of reducing the variance of the marks, producing a cluster 

around the mean. However, several alternatives exist. The assessors can 

individualise marks based on their own supervision of the project or they can ask 

the students to write reflexive accounts detailing the individuals contribution to the 

project, which can then be taken into account in the marking (Dyment and 

O'Connell 2011). 

A recent review of group marking (Dijkstra et al. 2016) noted that the most 

common approach to individualised marking is peer assessment. Students are 

asked to mark the other members of the groups they participated in, by assigning 

actual marks, e.g. (Abelson and Babcock 1986; Fellenz 2006), or grouping them in 

categories, e.g. (Lejk and Wyvill 2001). It has been noted that peer marking is an 

effective tool if used appropriately, but there can be some flaws when dealing with 

students who are either particularly generous or harsh with their marking style 

(Goldfinch 1994). 

Other options include self-assessment, where you ask the student within the 
group to perform an additional piece of work and assign a portion of their mark 
based on that. It is noted that, while self-assessment is a simple approach, it often 
deviates from the markers assessment significantly, partly due to factors beyond 
the scope of the project (Sharp 2006; Suñol et al. 2016). 

An interesting scheme proposed in (Ko 2014) reveals another alternative, here 
called Iterated Individual Weighting Factor (IWF-it). This method involves peer 
assessment as above, but then adjusting the weighting of each group member's 
opinion depending on how close to the true group mark they predicted for their 
group. This approach does attempt to discount potential bias in the peer 
assessments by inaccurate individuals, but is computationally expensive. 

There has been an attempt to simplify the process of marking group projects by 
the Australian Learning and Teaching Council. This resulted in a software package 
called SPARKPLUS (Self and Peer Assessment Resource Kit) (Freeman and 
McKenzie 2002). This software has been tested in a university-level engineering 
setting (Wu, Chanda, and Willison 2014). The test showed that, while the idea was 
sound, a high proportion of the test subjects were dissatisfied with the program's 
attempt to distribute the group marks. 

Here, we consider the effectiveness of different approaches through quantitative 
analysis of fairness. Our analysis highlights two promising approaches. First, a 
particular peer assessment method in which each group member is asked to 
assess the value of each member of the group, in order to then fairly divide the 
marks between them. While there is a risk with this approach that marks can be 
manipulated by coordinated responses, it otherwise yields fair results from a 
transparent and easily understood procedure. Second, pseudoinverse marking can 
be implemented to eliminate the need for peer assessment. This approach uses the 
marks of each individual student for a series of projects. Then the best estimate of 
the mark the student should receive is computed. This approach avoids the risk of 
strategic coalitions and the administrative effort of peer assessment at the cost of 
transparency. 

Methods 

In the following, we test various marking schemes by applying them to a virtual 
student population. We numerically generate populations of 𝑁  students. Each 
individual 𝑖 is assigned a number which represents their `ideal mark' 𝑞𝑖 , i.e. the 
mark that they should be awarded. We draw the ideal marks from a Gaussian 



 3  

distribution with mean mark of 60 and standard deviation of 12. This mimics the UK 
academic system. 

After the virtual population has been created, we assume that each student 
undertakes 𝑝 projects in groups of size 𝑚 over the course of the unit. The overall 
mark for each student is then found from the marks of the groups the student 
participated in, and potentially some other information, such as peer assessment. 

Without much analysis, it is intuitive that having larger groups (greater 𝑚) makes 
it harder to determine accurate individualised marks, whereas having more group 
marks for each student (greater 𝑝) makes it easier. We verified the former is valid 
for most schemes considered. As the number of projects increases, the individual 
mark predictably leads to an averaging, with the exception of the final scheme. For 
the analysis presented here, we vary group size and number of projects per student 
together, considering specifically the case 𝑚 = 𝑝 . Hence, the results can be 
presented more concisely. 

In our virtual population simulation, we assume that the group mark 𝑤𝑗 for group 

𝑗 is the mean of the ideal marks of the group's participants. Mathematically, the 
mean is expressed as 

 𝜔𝑗 =
∑ 𝑀𝑖𝑗𝑞𝑖𝑖

𝑛𝑗
 (1) 

where 𝑛𝑗 = ∑ 𝑀𝑖𝑗𝑖  is the number of participants of project 𝑗 , and 𝑴  is the 
participation matrix which is defined by 

 𝑀𝑗𝑖 = {
1 if student 𝑖 participated in project 𝑗

0 if student 𝑖 did not participate in project 𝑗
  (2) 

 
For illustration, consider the matrix 

 𝑴 =  (

1 1
0 0

0 0
1 1

1 0
0 1

1 0
0 1

) (3) 

This matrix describes the partitioning of 4 students into 4 groups, such that student 
1 and student 2 participate in group 1 (first row), student 3 and student 4 participate 
in group 2 (second row), student 1 and student 3 participate in group 3 (third row) 
and student 2 and student 4 participate in group 4 (fourth row). 

Once the group marks have been determined, we apply a set of different marking 
schemes (explained below) to assign individualised marks 𝑥𝑖 to the students. We 
analyse the accuracy of the marking schemes first by considering their 
performance in a scenario where the size of the population 𝑁 =  52 and group size 
𝑚 =  4. For this scenario, we can draw scatter plots showing the individualised 
mark 𝑥𝑖  of a student against their ideal mark 𝑞𝑖 . Furthermore, we study the 
accuracy as a function of the variables 𝑛 and 𝑚. For this comparison, we quantify 
the accuracy in terms of the maximal absolute error 

 𝐸𝑚𝑎𝑥 =  𝑚𝑎𝑥𝑖|𝑞𝑖 − 𝑥𝑖| (4) 

the mean absolute error 

 𝐸𝑚𝑒𝑎𝑛 =  ∑
|𝑞𝑖−𝑥𝑖|

𝑁𝑖  (5) 

and the root mean square error 

 𝐸𝑟𝑚𝑠 =  √∑
(𝑞𝑖−𝑥𝑖)2

𝑁2𝑖  (6) 
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Among these, the mean absolute error provided a measure of the overall accuracy, 
whereas the maximum error provides an estimate of `unfairness' by focussing on 
the most unfair case. The mean square error is an intermediate between these two 
extremes, averaging over the population but assigning a higher weight to individual 
marks that deviate strongly. 

Results 

We now compare six different schemes for generating individualising marks. 
Starting from the simplest and building up to the most mathematically complex. The 
first is simply to assign the group mark to all the group members (Sec. 3.1), which 
provides a baseline or null-model against which other methods can be judged. We 
then consider using additional information such as reflexive accounts (Sec. 3.2), 
before proposing an improvement on this scheme that we call mark-adjusted 
reflexive accounts (Sec. 3.3). Subsequently, we consider two methods for peer 
marking, normalised peer assessment (Sec. 3.4) and peer ranking (Sec. 3.5). Peer 
ranking is a scheme we introduce based on an approach that has been proposed 
for sports rankings (Park and Newman 2005; Motegi and Masuda 2012). Finally, 
we propose a mathematical method that aggregates results from different projects 
to infer individualised marks using the Moore-Penrose pseudoinverse (Sec. 3.6). 

 Self-organised peer pressure (SOPP) 

In our simplest scheme, the final mark for a student is the average of the marks of 
the groups that the students participated in, expressed as 

 𝑥𝑖 =  ∑
𝑀𝑖𝑗𝑤𝑗

𝑛𝑖
𝑗  (7) 

where 𝑛𝑖 =  ∑ 𝑀𝑖𝑗𝑗  is the number of students in each group. We call this scheme the 

self-organised peer pressure (SOPP) method because every student has a direct 
interest in the success of their groups. Other marking schemes might create secondary 
objectives such as to improve standing within the group (possibly at a cost to other 
group members or group success) to optimise outcomes from peer assessment. 

We note that even the very simple SOPP method leads to individualised marks 
unless multiple students participate in exactly the same groups. 

The disadvantage of this method is that it leads to a `regression to the mean'-
type of effect, where each student is assigned a mark close to the class average. 
This can be seen in (fig. 1) by plotting the expected assigned mark versus the ideal 
mark for a group of students. The best students receive on average less than their 
ideal mark whereas weaker students receive more than their ideal mark. This result 
is intuitive as, under this scheme, good students suffer from being grouped with 
students that are on average weaker than themselves. Conversely, weak students 
benefit from being groups with better students. 

Considering the effect of students participating in more, larger projects (fig. 2) 

shows that average errors saturate. However, this saturation occurs at a relatively 

high level where the root mean square error reaches almost 10 percentage points, 

which corresponds to a whole degree classification in the British academic system. 

Perhaps more worrying is that the maximum error is high and keeps increasing, 

indicating that SOPP is increasingly unfair to some individual students. 

In summary, the advantage of the SOPP scheme is that it is very easy and 
intuitive. This makes the scheme easy to apply and marks are found by a highly 
transparent procedure. Furthermore, it creates incentives that are well aligned with 
the spirit of project work. For each student, the only way to improve their marks is 
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to improve the mark of the groups they participate in. This mimics a typical 
workplace situation where ultimately the success of a project matters, rather than 
the contributions of individual team members. 

The good alignment of the assigned mark and project goals is undermined by the 
large error in the marks, which is approximately the difference between a grade 
classification. One may be tempted to rescale the marks to address the regression-
to-the-mean, resulting in a narrow distribution of marks. However, such a rescaling 
would exacerbate the individual errors to levels that could be judged unacceptable. 

 Reflexive accounts (RA) 

A common approach to individualise marks is to pair group projects with individual 

assignments such as reflexive accounts on the project. Here we assume that for every 

group project a student participates in, they also carry out an individual assignment. We 

assume that the assessor does not arrive at the student's ideal mark when marking the 

individualised component. This represents the student performing better or worse for a 

reflexive report than in their group report, and possible subjectivities in the assessors 

marking. The assessor instead arrives at the students ideal mark with an error, drawn 

from an uniform distribution with a range of ±16. 
 

In the simplest case, considered in this section, the mark that the student 

receives in a given project is then found as a linear combination of the group mark 

and the mark for the individual assignment. Based on personal experience and 

some preliminary trials, we focus on the case where the group mark (𝑤𝑗) enters 

with weight 𝛼 = 0.7 and the individualised component (𝑦𝑖𝑗) enters with weight 1 −

𝛼 = 0.3. This means that, taking multiple projects into account, the final mark of a 

student is computed as 

 𝑥𝑖 =  
1

𝑛𝑖
∑ 𝛼 𝑤𝑗𝑀𝑖𝑗 + (1 − 𝛼)𝑦𝑖𝑗𝑗 =

0.7 ∙ ∑ 𝑀𝑖𝑗𝑤𝑗 𝑗 + 0.3∙∑ 𝑦𝑖𝑗𝑗

𝑛𝑖
 (8) 

where 𝑦𝑖𝑗(𝑞𝑖)  represents the mark assigned to student 𝑖  on project 𝑗  for the 

reflexive piece of work, depending on their ideal mark 𝑞𝑖. As the final mark is to a 

significant proportion based on the ideal mark, we expect better overall 

performance of this scheme. The `regression to the mean' that we identified as the 

major problem of the SOPP method is ameliorated but not eliminated (fig. 1). Also 

considering the participation in larger groups shows a quantitatively better, but 

qualitatively similar picture to the SOPP method. 

In summary, the RA approach offers few surprises. It uses a linear combination 

of the SOPP method with the ideal result and hence produces results that 

interpolate between the SOPP outcome and the ideal outcome. The advantage of 

the RA scheme is that we can somewhat ameliorate the poor performance of the 

SOPP scheme, while largely maintaining transparency and mathematical simplicity. 

However, the improvement comes at the cost of abandoning the spirit of project 

work to some extent as the project outcome is supplemented by a secondary 

objective which is an individual written assignment. We thus lose some of the 

beneficial alignment of the project with real-life workplace scenarios and introduce 

significant non-project workload for both the student and the assessor. 
 

Changing the weighting of group and individualised components in the marking 
gives some control over the balance between the advantages of project work and 
marking fairness. What makes this scheme somewhat unsatisfactory is that the 
trade-off remains linear. Introducing a small individualised component only 
marginally improves mark accuracy. To significantly improve accuracy requires 
sacrificing most of the advantages of project-based assessment. 
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 Mark-adjusted reflexive accounts (MRA) 

We now explore an alternative use of reflexive accounts, where the reflexive account is 
instead used to judge the individual's contribution to the project. We make the same 

assumptions as previously. We then estimate the contribution of student 𝑖 to project 𝑗 
by 

 𝑐𝑖𝑗 =  
𝑦𝑖

∑ 𝑦𝑘𝑀𝑘𝑗𝑘
 . (9) 

The total number of mark points 𝑡𝑗  that we can distribute for project 𝑗  is the 

project mark 𝑤𝑗 times the number of students involved in the project 𝑛𝑗, i.e. 

 𝑡𝑗 =  𝑤𝑗𝑛𝑗  . (10) 

Instead of distributing these points equally we now partition them according to 
the estimated contribution to the project, such that student 𝑖 receives for project 𝑗 
their contribution multiplied by the marks available. Combining this yields 

 𝑟𝑖𝑗 = 𝑐𝑖𝑗𝑡𝑗 =
𝑤𝑗𝑦𝑖 ∑ 𝑀𝑘𝑗𝑘

∑ 𝑦𝑘𝑀𝑘𝑗𝑘
 . (11) 

The final mark for the student after participating in multiple projects is then the 
mean of their mark for each project 

 𝑥𝑖 =
∑ 𝑀𝑖𝑗𝑟𝑖𝑗𝑗

𝑛𝑖
 . (12) 

[Figure 1 about here.] 
 

[Figure 2 about here.] 
 

Considering the outcomes of the computational experiment we see that good 

students still receive marks that are systematically less than their ideal mark (fig. 1). 

Compared to the simpler RA scheme, the performance of MRA is almost identical. 

This is also confirmed when considering different group sizes and project iterations 

(fig. 2). A small difference exists for very small group sizes, but this is mostly 

cosmetic. Consider that, under the MRA scheme, the reflexive account does not 

affect the marking at all. Thus any error made in the marking of the reflexive 

account does not affect the student's mark. So this difference between the 

schemes appears due to specific assumptions of the computation experiment and 

is of little practical relevance. 

Perhaps more significant is another advantage of the MRA scheme that is not 
considered in the computational experiment. This is the case where one student in 
an otherwise well-performing group does not engage with the project at all.  

Consider the (somewhat extreme but not unheard of) example where a student 
in a group of 4 does not do any work for the project or the reflexive account. 
Regardless, the project still achieves 60. Under the assumptions made in this 
report the average ideal mark for the other 3 students on the project would have to 
be 80 to compensate for the work not done by the defecting student. Assuming that 
the 3 engaged students achieve on average the same level of marks in their 
reflexive accounts, their mark under the RA scheme would be 

 0.7 ∙ 60 + 0.3 ∙ 80 = 42 + 24 = 68 . (13) 

while the defecting student receives 

 0.7 ∙ 60 + 0.3 ∙ 0 = 42 . (14) 

In the British system, the defecting student still passes while the very strong, 

engaged students only receive a disheartening second class mark. By contrast, in 
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the MRA scheme the engaged students would receive on average their ideal mark 

of 80, a solid first class result. The defecting student receives the zero mark they 

deserve.  
Even if the defecting student decides to invest effort in the reflexive account, but 

not the project, the student would need to achieve a mark of 51 in the reflexive 
account to receive the same mark of 42 that would be assigned under the RA 
scheme. We note that the MRA scheme can mean that students can fail although 
both their reflexive account and their overall group mark are sufficient to pass. 
However, this is unlikely to happen unless a student only participates in groups 
where all others receive vastly higher marks on the reflexive accounts.  

In summary, the MRA scheme is slightly more complex than the RA scheme, but 
the calculations are still simple enough to be carried out very quickly with pen and 
paper, a calculator or a simple spreadsheet. On average, the improvement of 
performance over the RA scheme does not seem to justify the extra complexity of 
the MRA. However, MRA is superior in the extreme case where students do not 
engage with the project at all. Because the scheme is still quite transparent, this 
means that MRA can create strong incentives for the students to engage with the 
projects. We caution it is prudent to be conservative in marking reflexive accounts 
using this scheme and to avoid extreme marks unless they are clearly indicated. 

 Normalised peer assessment (NPA) 

In peer assessment, the students assess the performance of each member of their 
group. The immediate advantage of this method is that information on the relative 
contributions to the project is sourced directly from the students involved. The 
obvious drawback is that the students are given a way to influence their mark other 
than delivering a good project outcome. Thus; there is a risk that students use peer 
assessment strategically to maximise their own marks rather than to provide 
genuine information about project contributions.  

A variety of different peer assessment schemes have been proposed to address 
these advantages and disadvantages (Spatar et al. 2014). To gain insights into the 
student's ability to manipulate their marks, one can distinguish between strategies 
that students can implement for themselves and those that require the formation of 
coalitions with other students. An individual strategy would be a student giving 
themself a high mark and/or all other group members a low mark to maximise their 
outcome. Alternatively, a coalition of three members of a group of four could 
conspire to increase their marks at the expense of the fourth student. 

The topic of coalition formation in groups is very complex and subject of active 
research. However, a simple argument extending the coalition example above can 
be made to show that peer assessment can fail if multiple students conspire to 
mark others strategically. In the not very far-fetched case above, the three 
conspirators could mark each other highly while assigning a zero mark to the fourth 
student. In the absence of any other sources of information, this situation is 
indistinguishable from a scenario in which one of the students did not engage with 
the project at all. Thus, no peer marking scheme can deliver a satisfactory outcome 
in both of these scenarios at the same time. 

Here, we particularly consider a normalised peer marking scheme (Spatar et al. 
2014). In this scheme, every member of a group marks all other members, but not 
themselves. Not allowing students to mark themselves prevents inflating their own 
mark, the most direct form of mark manipulation. 
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In the next step the marks assigned by each student are normalised. For 
example, let 𝑆𝑘𝑖  be the mark that student 𝑘  assigned to student 𝑖 . The mark is 
normalised by dividing all marks by the total marks student 𝑘  assigned to their 
group members. The normalised marks, 

 𝑠𝑘𝑖 =
𝑆𝑘𝑖

∑ 𝑆𝑘𝑖𝑖
 . (15) 

are in the range [0,1] and reflect the student 𝑘 's opinion of the proportional 
contribution of the other group members. Taking only these normalised marks into 
account prevents students from inflating their own contribution by marking all others 
contributions lowly.  

To determine the mark 𝑟𝑖𝑗 that each student 𝑖 receives for a project 𝑗, we first 

compute the total mark points 𝑡𝑗 as in the MRA scheme above (Eq. 10). Then these 

points are distributed proportionally to the normalised marks a student has 
received. This mark is calculated by 

 𝑟𝑖𝑗 =
𝑡𝑗 ∑ 𝑠𝑘𝑗𝑘

𝑛𝑗
 . (16) 

which includes normalising the mark using the number of students in the group, 
𝑛𝑗. 

In numerical simulations, each student is assumed to rank another student based 
on their ideal mark with some random error. This random error represents students 
not accurately judging the ability of other group members. As with similar errors for 
other schemes, a uniform distribution with a range of ±16 was used. Under these 
assumptions, the method achieves good results, particularly as there is no 
systematic bias against stronger students (fig. 1). Unlike all other schemes in this 
report, the error of this method decreases when group size is increased. This is 
intuitive as the assigned mark is computed from a larger number of observations, 
and thus profits from a `Wisdom of the Crowd' effect (Crosscombe and Lawry 
2017). Additionally, larger groups make effective coalitions harder to form. 

While the performance of this method in our test is very good, the clear drawback 
is a vulnerability to manipulation by coalition formation. One could argue that this 
can be somewhat mitigated by adjusting the mark if indications of a coalition 
formation within a group exists (e.g. from observation of the group work). However, 
allowing for such adjustments to some extent defeats the purpose of having a 
transparent procedure. We therefore recommend this method particularly for 
projects with large group sizes; where the method performs particularly well and 
with reduced impact of small coalitions. 

 Peer ranking (PR) 

We now turn to two unusual methods. For sports rankings, network-based 
approaches have recently received attention (Park and Newman 2005; Motegi and 
Masuda 2012). A similar approach can be taken for peer marking. Instead of 
marking each group member with a precise mark, students rank the other members 
of their group. The ranking consists of a pairwise comparison of the perceived 
contribution of every pair of other members. We can interpret each such ranking as 
a link in the network leading from the weaker to the stronger student. Figure 3 
shows a complete example, detailing each pairwise comparison. 

 
[Figure 3 about here.] 
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Network structures can be encoded in matrices. Here we use a modified 
adjacency matrix 𝑨, defined by 

 𝐴𝑖𝑘 = 𝑛𝑎𝑎 +  𝑛𝑏𝑏 . (17) 

where 𝑛𝑎 is the number of times that student 𝑖 was ranked lower than student 𝑘, 𝑛𝑏 
is the number of times that student 𝑖 was ranked higher than student 𝑘. Finally, 𝑎 
and 𝑏 are constant parameters such that 𝑏 < 𝑎 so greater importance is placed on 
being ranked higher. Figure 3 also shows the adjacency matrix, 𝑨, for the previous 
example.  

The advantage of the matrix notation is marks can be generated using a spectral 
approach, similar to the famous PageRank algorithm (Page et al. 1999). We 
compute the leading eigenvector 𝑣 of 𝑨 and normalise it such that the elements 
sum to the group size so ∑ 𝑣𝑛 = 𝑛𝑗.  

After the normalisation, the entries of the eigenvector are in the range [0, 𝑛𝑗] with 

a mean of one. This mean of one constrains the average of the individual assigned 
marks being equal to the group mark. The 𝑛-th entry 𝑣𝑛 is a proxy for the relative 
contribution for student 𝑛 in the group.  

We then use the eigenvector entries to personalise the marks such that the final 
mark that student 𝑖 receives for the project 𝑗 is 

 𝑟𝑖𝑗 = 𝑤𝑗(𝛼 + (1 − 𝛼)𝑣𝑛) , (18) 

where 𝑛 = 𝑛(𝑖, 𝑗)  is index assigned to student 𝑖  within group 𝑗  and 𝛼  is another 
scalar parameter used to control the weight attributed to the peer ranking.  

Based on preliminary tests, we used the parameters 𝑎 = 0.25, 𝑏 = 1  and 𝛼 =
0.65. We assumed that students rank each other student in order of a perceived 
mark, which is the ideal mark and a random error. Like for the normalised peer 
assessment method (Sec. 3.4), this random error is drawn from a uniform 
distribution with range ±16. These perceived marks are used to rank each other 
student, and then only the set of ranked lists from each student is used. 

The results of our computational experiment show that these choices of 
parameters receive a relatively low absolute error, but has a slight systematic bias 
favouring weaker students. This bias could be reduced by reducing 𝛼, albeit at the 
cost of increasing non-systematic error. Individual error appears primarily in groups 
of equal or almost equal strength where the ranking method amplifies the small 
differences. One may suspect that this is a lesser problem in reality where students 
are not able to rank each other perfectly based on tiny differences. However, a 
detailed investigation of this point would likely require a study of ranking behaviour 
of real students, which is beyond the scope of the present paper. 

In summary, the peer ranking scheme performs slightly worse than the NPA 
method (particularly in case of large group sizes). It is also considerably less 
transparent. We therefore judge that the NPA method will be superior in most 
cases. However, this method is in its infancy and so presents a promising area for 
further improvements. 

 Pseudoinverse Marking (PiM) 

All methods considered so far were applied to one project group at a time. 
However, in a setting where students participate in multiple projects, additional 
information can be gained by considering how they perform in groups of different 
compositions. 
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We continue working on the assumption that the mark of a project report reflects 
the average ideal mark of the participants in the project, i.e. 

 𝑤𝑗 =
∑ 𝑀𝑖𝑗𝑞𝑖𝑖

𝑛𝑗
 . (19) 

In vector notation, this can be written as 

 𝒘 = 𝑸 𝒒 . (20) 

where the matrix 𝑸 is defined by 𝑄𝑖𝑗  =  𝑀𝑖𝑗 𝑛𝑗⁄ . In marking, we have determined the 

project marks 𝒘 , and we know the 𝑸  matrix as it follows from the partitioning of 
students into groups. Our aim is to compute the ideal marks 𝒒 that the students should 
receive. 

Formally, we can compute 𝒒 by multiplying by 𝑸−1 (the inverse of 𝑸) which yields 

 𝒒 = 𝑸−1𝒘 . (21) 

If students were partitioned into groups such that 𝑸 is invertible, this relationship 
should yield the desired marks exactly.  

In typical cases, another slight complication arises because common ways of 
dividing students into groups lead to singular matrices 𝑸 such that an inverse does 
not formally exist. In this case, the method can still be applied if we replace the 
inverse with the Moore-Penrose pseudoinverse (Barata and Hussein 2012). If each 
student participates in only a single project, then calculating the pseudoinverse of 𝑸 
corresponds to implementing the SOPP method (Sec. 3.1). Clearly, this is 
undesirable so the number of projects each student participates in should be at 
least the number of students in the group. In an ideal case, every student 
completes multiple projects and interacts with a completely different set of people 
every time. In all cases, Eq. (21) can be used to deconvolute the contributions and 
recover the ideal mark using the pseudoinverse. 

In our numerical experiment, we consider such a case where every student 
contributes to four projects and interacts with 4 ∙ 3 =  12 distinct other students in 

the process. The assignment resulted in a singular 𝑸. The results (fig. 1) show that 
the estimated ideal mark computed with the Moore-Penrose pseudoinverse are in 
excellent agreement with the ideal marks. This method produces the smallest 
errors of all considered here.  

One could criticise that the accuracy of the method relies on our assumption that 
the project marks achieved are the mean of the ideal marks of the project 
participants. However, this is actually not so much an assumption as a definition of 
what is meant by the ideal mark.  

Apart from the high accuracy, this method has many other advantages. For 
example, it does not require any additional information (peer marking, ranking, 
accounts). Thus, the additional workload for both students and assessors is 
eliminated. Moreover, the method is robust and could be easily implemented, as 
the Pseudoinverse is supported by libraries in several programming languages. 

 

[Figure 4 about here.] 
 

Another advantage is that, unlike for any other method, the measured errors all 

decrease as the population size increases (fig. 4). Intuitively, as the algorithm can 

draw on more information, the accuracy of the assigned marks should increase. 

Additionally, for larger populations, more combinations of students for groups are 

possible, allowing a better assignment of groups with fewer repeated student 

interactions.  
A drawback is that the final marks are only available after all projects have been 

completed. Also, students and assessors may find the method intransparent. 
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Perhaps the main disadvantage is that there is a minimum number of projects in 
which a student needs to participate. This de-facto limits the applicability of the 
method to projects that are carried out in small groups. 

Conclusion 

In this paper, we explore several schemes for individualising group project marks. 
The most suitable scheme depends on the specific circumstances, including the 
number of students and the number of projects each student participates in. An 
overview of the errors for a typical setting is shown in Table 1. 

 

[Table 1 about here.] 
 

The simplest scheme (SOPP), where students receive the average of the group 

marks for the projects that they participated in, systematically favours weaker 

students. Advantageously, no additional workload is generated and this scheme 

represents a real life workplace situation. Marking of reflexive accounts (RA) did not 

fully remove the systematic bias from the marks and has the disadvantage of 

generating significant additional workload. Among the two RA marking schemes, 

the mark-adjusted reflexive accounts (MRA) proposed here provides stronger 

incentive to engage with the project. 

Normalised Peer Assessment (NPA) resulted in very accurate marks, particularly 

for projects with many members, but entails the risk of mark manipulation by 

coalition formation. A peer ranking scheme (PR) introduced here performed 

similarly but is significantly less transparent. Finally, the new pseudo-inverse 

marking (PiM) posed here achieves very accurate results without the risk of mark 

manipulation or additional workload. Contrarily, this scheme requires that the 

number of projects to which a student contributes is at least as large as the group 

size in the projects. 

In absence of factors favouring a certain approach, our analysis highlights 

normalised peer assessment as the best scheme for projects with large group 

sizes. However, pseudoinverse marking is highlighted as the best scheme for 

marking a series of projects carried out by small groups. 

This paper also illustrated how agent based computational models can be used 

to explore the fairness and accuracy of marking schemes. Here we have used only 

a very simple model, and plenty of opportunities for improvements and refinements 

still exist. For example, one could allow the students to allocate their time 

investment into the project strategically or build in social dynamics. These 

extensions are beyond the scope of the current paper. We hope that in the future 

more of this analysis will be carried out to yield deeper insights into the 

mathematical properties of group marking schemes. 
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Table 1. Overview of the errors of various methods for a typical scenario. In a group of 52 
students each student undertakes 4 projects in groups of 4 people. 
  
Method Name Average Absolute Error Maximum Error 
Self Organised Peer Pressure 5.5 13.8 

Reflexive Accounts 3.7 10.6 

Mark-Adjusted Reflexive Accounts 3.5 11.3 

Scaled Peer Assessment 1.7 4.5 

Ranked Peer Assessment 3.3 12.3 

Inverse Problem Approach 1.3 1.9 
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Figure 1. Scatter plot of assigned mark against ideal mark for various marking schemes. 

Shown are results for Self organised peer assessment (SOPP - top left), Reflexive accounts 

(RA - top right), Mark-adjusted reflexive accounts (MRA - middle left), Normalised peer 

assessment (NPA - middle right), Peer ranking (PR - bottom left) and Pseudoinverse 

marking (PiM - bottom right). Diagonal lines indicate the ideal distribution of assigned 

marks. Pseudoinverse marking is the best distribution of marks. (𝑁 =  52, 𝑚 =  4, and 𝑝 =
 4 ).
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Figure 2. Plot of the different measures of error against different group sizes 𝑚 for various 

marking schemes. Shown are results for Self organised peer assessment (SOPP - top left), 

Reflexive accounts (RA - top right), Mark-adjusted reflexive accounts (MRA - middle left), 

Normalised peer assessment (NPA - middle right), Peer ranking (PR - bottom left) and 

Pseudoinverse marking (PiM - bottom right). Normalised peer assessment and 

Pseudoinverse marking show interesting trends as using larger group sizes reduces all 

three errors. 
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𝑨 =  (

0 2𝑎
2𝑏 0

𝑎 + 𝑏 2𝑏
2𝑏 2𝑏

𝑎 + 𝑏 2𝑎
2𝑎 2𝑎

0 2𝑏
2𝑎 0

) 

Student A: 𝐵 > 𝐶 > 𝐷  

Student B: 𝐶 > 𝐴 > 𝐷 

Student C: 𝐵 > 𝐴 > 𝐷 

Student D: 𝐵 > 𝐴 > 𝐶 

 

Figure 3. Example of peer ranking. In a set of four students each student forms an opinion 

about the relative contributions of the other three students (Bottom right). This information 

can be represented as a directed graph (left), which can be in turn represented as a matrix 

(top right). The leading eigenvector of this matrix provides an aggregated measure for the 

relative contributions.  
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Figure 4. Plot of the different measures of error against different population sizes 𝑁. Shown 

are results for Normalised peer assessment (NPA - left) and Pseudoinverse marking (PiM - 

right). Results for other methods are similar to NPA and hence have been omitted. Unlike 

the other methods, Pseudoinverse marking decreases all three measures of error as the 

population size increases. (𝑚 =  4, and 𝑝 =  4) 
 


