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A Pragmatic Approach to Clear Channel
Assessment Threshold Adaptation and

Transmission Power Control For Performance
Gain in CSMA/CA WLANs

William Jones, Student Member, IEEE , R Eddie Wilson, Angela Doufexi, Member, IEEE , Mahesh
Sooriyabandara, Member, IEEE

Abstract—We propose practical sets of rules for adapting Clear Channel Assessment (CCA) and Transmit Power (TP) parameters by
simulating ensembles of randomly generated wireless networks and collecting throughput statistics. The rules’ performances depend
strongly on network topology, with increases in throughput in many cases. However, networks with a high clustering coefficient are
often adversely effected by the adaptations. But simulations of small-scale networks show that apparently adverse adaptations may still
yield benefits for uneven demand combinations. Finally, we have found that throughput is not usually correlated with the number of
hidden or exposed nodes in any non-trivial network set-up.

Index Terms—Network, Capacity Region, Clear Channel Assessment Threshold, Transmission Power Control.

F

1 INTRODUCTION

THE densification of carrier sense multiple access with
collision avoidance (CSMA/CA) wireless local area net-

works (WLANs) has helped improve coverage, however,
it has also increased interference and led to poor spatial
reuse [1]. One idea, to avoid simultaneous transmissions
in neighboring cells being suppressed unnecessarily, is to
adapt the clear channel assessment (CCA) threshold.

The opportunity is best explained by the simple example
of Fig. 1 consisting of four nodes, two Clients (C1,2) and two
Access Points (AP1,2). Cell 1 (C1 and AP1) is adjacent to Cell
2 (C2 and AP2). C1 and C2 sense each others’ transmissions
and will not transmit simultaneously even though their
signals as received at the APs would not interfere with each
other (exposed nodes [2]). If the Clients were to adjust their
CCA threshold sensitivity from the legacy [3] (i.e., fixed
original value before any adaptation of the parameter may
take place - black solid circles in Fig. 1) to a higher threshold
(less sensitive value, green dashed circles in Fig. 1) they
would be deaf to each others transmissions and thus could
transmit simultaneously.

Alternatively, parallel transmissions can be achieved by
adapting the transmission power (TP) of the clients (main-
taining legacy CCA threshold). Again considering Fig. 1, if
C1 and C2 modify their TP from the legacy (now represented
by the black solid circles) to a reduced value (the green
dashed circles) the transmissions are too quiet for the clients
to sense each other but the APs can still receive them.

William Jones is a PhD student supported by the University of Bristol EPSRC
funded Industrial Doctorate Centre in Systems (Grant EP/G037353/1) in
collaboration with Toshiba Research Europe Limited (wj14134@bristol.ac.uk).
R Eddie Wilson is Professor of Intelligent Transport Systems at the University
of Bristol.
Angela Doufexi is Professor in Wireless Networks at the University of Bristol.
Mahesh Sooriyabandara is Associate Managing Director of Toshiba Research
Europe Limited in Bristol, UK.


� 
�
�� 
��
Fig. 1. Basic CCA threshold and TP adaptation. Large black solid circles
surrounding each node represent legacy CCA threshold or TP. Blue
and green dashed circles represent reduced CCA sensitivity/TP for
APs and Clients respectively. The diagram illustrates the opportunity to
prevent suppression of transmissions in adjacent cells by reducing CCA
sensitivity or TP.

An extensive survey by Thorpe [4] summarizes the
CCA literature. Similarly, Chiang’s book [5] provides a
comprehensive review of TP control research. Much of the
work discussed in [4] and [5] focuses on finding the best
possible solution for one particular fixed network topology.
Uncoordinated optimization of the CCA and TP parameters
across a high number of nodes is unlikely to ever reach a
true system optimum throughput: with all nodes aiming
to maximize their own throughput, a select number will
dominate the channel at the expense of others. Rather, we
define and investigate a set of heuristic rules for adapting
CCA threshold and TP and we evaluate their efficiency by
collecting throughput statistics.

This paper is organized around a simulation study in
two parts as follows. In Part A we propose a set of rules
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to adapt the CCA threshold, the TP or a combination of
the two, and we study an ensemble of randomly generated
networks at legacy CCA and TP compared with each of the
rules applied, at saturated traffic conditions (Sec. 2). We an-
alyze the results (Sec. 2.1) and show that adapting TP alone
typically results in the most significant throughput gain
and often improves the fairness [6] of the network. Further,
we observe that networks with a low clustering coefficient
are most likely to achieve a throughput gain (Sec. 2.2). We
show that the average throughput gain, for some rules, is
higher when only applied to networks with a low clustering
coefficient [7], [8]. To better understand these observations
and the impact of the proposed rules, in Part B we study two
simple networks of five nodes (Sec. 3) applying similar CCA
and TP rules as proposed in Part A (outlined in Sec. 3.1).
Due to the reduced number of nodes we are able to explore
a larger parameter space: instead of focusing on equal
saturated demands, we investigate vectors of demand that
can be met by the system (Sec. 3.2), and present our results in
terms of the capacity region [9] (Sec. 3.3). This metric allows
us to analyze our findings (Sec. 3.4) and identify gains in
performance at asymmetric demand combinations. Further,
it provides an improved understanding of the relationship
between throughput performance and fairness, and how the
rules impact these.

The key outputs of this paper (discussed in Sec. 4) are
an evaluation of the performance of the proposed rules, and
an improved understanding of the capability of CCA and TP
adaptation, in terms of their ability to reduce cross cell inter-
ference, improve spatial reuse and increase system through-
put. Our work highlights that adapting CCA threshold or
TP can impact nodes’ ability to carrier sense each other,
thus improving spatial reuse. By adapting TP, simultaneous
transmissions are enabled which would previously not have
been possible due to interference at receivers. In networks
with large numbers of nodes, uncoordinated adaptation of
the CCA and TP parameters is unlikely to reach a true
system optimal throughput. However, we have shown that
simple heuristic rules can bring some performance gains.
We discuss how the approach may be implemented in
dynamic networks.

2 PART A: RANDOMLY GENERATED NETWORKS

We consider a physical set-up where the nodes (clients
and access points) are positioned within a square sub-
set [0, L] × [0, L] of the (x, y) plane. Firstly, clients Ci,
with i = 1, 2, . . . , n, are uniformly randomly distributed
across the square, which is divided into cells organized
around four access points APj , j = 1, 2, 3, 4, positioned
at (1/2, 1/2) ± (1/4, 0) ± (0, 1/4) + ej , where the ej are
independently drawn random variables from the uniform
distribution on [−L/10,+L/10]× [−L/10,+L/10] (see Fig.
2). The idea is that the APs are (roughly) symmetrically
positioned, but the clients might be spread quite unevenly.

Clients i and APs j are then allocated default values
for their CCA and TP. The simplified approach that we
follow (see [10], [11]) is to model CCA sensitivity and TP as
separate distance thresholds, rather than as a single power
density threshold experienced by the receiver. Specifically,
we suppose that a node NA (client or AP) is assumed able
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Fig. 2. Example of a randomly generated network, the subset
[0, L]x[0, L] of the (x, y) horizontal plane (large black box). The rectan-
gle is divided into four cells organized around AP1,2,3,4 (blue triangles)
at [L/4, L/4] ± e, [3L/4, L/4] ± e, [L/4, 3L/4] ± e, [3L/4, 3L/4] ± e,
where e is in each case an independently drawn random variable from
the uniform distribution on [−L/10,+L/10] × [−L/10,+L/10] (small
dashed boxes). C1,2,...,5 (small red circles) are randomly distributed
across the rectangle and four cells. Each client and AP is at the center
of a circle representing its CCA threshold and TP. To preserve clarity
the legacy CCA and TP of the APs (blue dashed and blue solid circles
respectively centering at each AP) and the legacy CCA and TP of just
C1 (large red dashed and large red solid circles respectively centering
at C1) are shown. It is clear C1 could be heard by both AP1 and AP2 at
legacy conditions.

to transmit to, or interfere with, another node (client or AP)
NB if

‖xNA
− xNB

‖ < TPNA
,CCANB

(1)

i.e., the receiver must be within ‘transmission range’ of the
transmitter, and the transmitter must be within an ‘audible
range’ of the receiver. In fact, (1) simplifies the true state of
affairs, which in these terms is

‖xNA
− xNB

‖2 < TPNA
CCANB

. (2)

This is because power density at the receiver scales with
transmit power TPNA

and the inverse square of the sepa-
ration ‖xNA

− xNB
‖ of the transmitter and receiver. Note

further that CCA sensitivity measured as a distance should
scale reciprocally with CCA measured as a power density
threshold. The difficulty is that (1) and (2) are not equivalent
in situations where both TPNA

and CCANB
are varied,

because (1) implies (2) but not vice versa. However, the ap-
proximate formulation (1) enables an intuitive graphical un-
derstanding of range that (1) does not, that proves especially
useful in Sec. 3. In addition, we have tested the accuracy of
this simplification in terms of the similarity of the binary
collision matrices they generate for our systems and found
that over 99% of the matrices agree. Our simplified approach
is thus to proceed with (1) as an exact model.

For simplicity, we consider a fixed legacy CCA sensi-
tivity range of 4L/10 for all nodes and we suppose the
legacy TP value is drawn from the uniform distribution on
[3L/10, 4L/10].
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Client Ci then associates to the closest access point APj

with
j = argmin

k
‖xAPk

− xCi
‖ (3)

such that

‖xAPk
− xCi

‖ < TPCi
,CCACi

,TPAPk
,CCAAPk

, (4)

so that the access point and client can hear each others’
transmissions bi-directionally. In the case where there is no
access point in range, the client is randomly re-positioned
and the association considered again. We speak of a ‘link’ or
an ‘edge’ (in graph theory language) being formed between
Ci and APj along which transmissions occur.

The study area dimensions and CCA/TP values are
selected to model a four cell network, where cell borders
overlap and hence are likely to be subject to the detrimental
effects of cross cell interference. For example, by considering
the example network of five clients shown in Fig. 2, it is clear
that C1 will be audible to both AP1 and AP2 at legacy CCA
and TP.

If two clients attempt to transmit to the same AP simul-
taneously, a collision will occur and one or both transmis-
sions will fail. Further, if the received interference from a
transmitter in a neighboring cell is too great at an AP, a
transmission may fail. Thus we use a n by n collision matrix
E of edges to describe each operational scenario, with entries
Eij , 1 ≤ i, j ≤ n. If Eij = 1, then edge i is incompatible
(cannot transmit simultaneously) with j, whereas if Eij = 0
then edge i is compatible (can transmit simultaneously) with
j. In our examples, interference (and hence the collision
matrix) is not always symmetric: that is, if edge i collides
with edge j, in some cases only one edge transmission may
fail, i.e., Eij = 1 but Eji = 0.

If C1 (say) could hear C2 (say) transmitting, C1 would
wait for C2 to finish before transmitting itself. C1 could hear
C2 if ‖xC1

− xC2
‖ < TPC2

,CCAC1
. Transmitters do not

have a global knowledge of the network and therefore are
not necessarily aware of transmissions on other edges with
which they may collide (hidden node problem [2]) or edge
transmissions which suppress them from transmitting, with
which they could successfully transmit in parallel (exposed
nodes [2]). The ’knowledge of the network’ edge matrix
F is an n by n edge matrix that we use to describe each
edge’s awareness of the network around it, with entries
Fij , 1 ≤ i, j ≤ n. If Fij = 1, then edge i is aware
of j and incompatible (cannot transmit simultaneously),
whereas if Fij = 0 then edge i is either compatible (can
transmit simultaneously) or unaware of j (cannot hear edge
j′s transmissions). As with the collision matrices in our
examples, the network topologies (and hence the matrix F)
are not symmetric: that is, if edge i has knowledge of edge
j, then edge j does not necessarily have knowledge of edge
i i.e., Fij = 1 but Fji = 0.

We propose five different adaptation rules as follows
which we apply in turn:

R1 All nodes of all cells have legacy CCA threshold
value and legacy TP.

R2 All nodes of all cells reduce their CCA sensitivity
(increasing threshold) to the minimum value at
which they can still carrier sense all nodes of their

cell that they were able to at legacy CCA value. A
5% margin is added. Legacy TP for all nodes.

R3 All nodes of all cells reduce their TP to the minimum
value at which they can still transmit to, and be
carrier sensed by, all nodes of their cell they were
able to at legacy TP. A 5% margin is added. Legacy
CCA for all nodes.

R4 All nodes of all cells reduce their CCA sensitivity by
half the potential difference to the minimum value
at which they can still carrier sense all nodes of their
cell which they were able to at legacy CCA value.
Simultaneously, all nodes of all cells reduce their
TP by half the potential difference to the minimum
value at which they can still transmit to, and be
carrier sensed by, all nodes of their cell which they
were able to at legacy TP. A 5% margin is added to
both parameters.

R5 At random, cells choose to reduce their CCA sensi-
tivity (as R2) or reduce their TP (as R3).

We generate 10, 000 networks of n clients with legacy
TP and CCA threshold values (i.e., R1). We consider
n = 5, 10, ..., 50, hence ten network densities and therefore
100, 000 networks each defining a pair of matrices E and
F. Using the simplified CSMA/CA Medium Access Control
(MAC) model described and used in our previous work [12],
we simulate data traffic to each of these networks and collect
throughput statistics. Further developing each of the legacy
networks, we, in turn, apply the described CCA threshold
and TP adaptations (R2-R5) generating four further E and
F matrices pairs to capture them. Again, we simulate data
traffic to each of these. In total this produces 500, 000 pairs
of matrices E and F (i.e., 500, 000 individual simulations).
Matrices E and F are fixed for each individual simulations.

The CSMA/CA MAC protocol [13] requires completion
of a two-way handshake in order for one transmission to
be successful. We are interested in understanding the extent
of hidden node [2] issues when multiple clients unable to
carrier sense each other attempt to transmit to the same AP.
Similarly, we seek to gain insight into the impact of exposed
nodes [2] when clients in neighboring cells suppress each
other’s transmissions. In our particular topological setup
where AP positions are restricted, down-link transmissions
are less prone to these issues. Hence we focus our study and
consider only up-link demand, that is APs do not transmit
data to clients, just clarification that the client is clear to send
(CTS) and acknowledgement (ACK) of received packets.
The general findings are however applicable to both up and
down-link. We suppose that there is no routing and that
each packet has a journey that consists of a single hop. It
follows that we may prescribe demand (number of packets
per unit time) on our network in terms of requested flows
d1, d2, ..., dn for each edge respectively. Thus each client
is assumed to have a single queue of packets awaiting
transmission, with Poisson arrivals. For each simulation,
demand to all transmitters is set at dsat, i.e., the maximum
transmission rate of a single transmitter transmitting alone
in a clear channel. The duration of each simulation is set
at 100, 000/dsat (i.e., the time needed to transmit 100, 000
packets without collisions).

Each network and the five rules under which that net-
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work is simulated are compared relative to each other. We
measure the total number of packets successfully transmit-
ted and the fairness (based on Jain’s fairness index [6])
under each of those five rules for the same (saturated) traffic
demand and time period. The results that follow (Sec. 2.1)
are based on comparisons between rules R1-R5 applied in
turn to each of the 10, 000 networks for n clients.

2.1 Randomly Generated Networks Results and Analy-
sis
For each network, we explore the impact on throughput of
each adaptation relative to the legacy condition (i.e., R2-R5
relative to R1 described earlier). Fig. 3 illustrates this, plot-
ting four bars for each n clients indicating the percentage
of adaptations to the 10, 000 legacy networks simulated that
resulted in an increased or decreased throughput change.
The colored section of the bar indicates throughput change
greater than 10%.

Considering Fig. 3, CCA threshold adaptation (as R2)
is shown to have an approximately even probability of
generating an increase or decrease in throughput and only
a small number of the increases or decreases achieve greater
than 10% change. Adapting TP (as R3) showed a higher
probability of a throughput gain than loss in all cases,
most significantly at five & ten clients. A correlation for
the proportion of TP results showing an improvement in
throughput decreasing with increasing network density can
clearly be seen. A similar correlation can be seen when
combining CCA and TP as (R4). This combination only
realized higher probability of a throughput gain for five and
ten clients, whereas greater numbers of clients saw a higher
probability of a loss. Applying CCA and TP adaptation
randomly to different cells (as R5) caused an increase in
throughput in more cases than it caused a decrease relative
to the legacy for all network densities tested, however,
the improvement was only marginal. The most significant
improvements occurred at five clients and between thirty to
forty-five clients.

Fig 4 plots the change in fairness [6] and throughput
for each of the adaptations (R2-R5) relative to the 10, 000
legacy (R1) networks of thirty clients. The example is typical
for any number of clients. When the applied adaptations
produce a throughput performance improvement, fairness
often decreased, and when fairness increased the network
throughput often decreased. The implication is that the
adaptation is helping some clients achieve a better through-
put, potentially at the expense of others.

The range of impact of each particular adaptation rel-
ative to the legacy is visible in Fig. 4. The CCA threshold
adaptation results are concentrated, showing the smallest
range of throughput and fairness change. The result of CCA
and TP adaptation randomly applied to different cells show
an increased range from CCA alone, but both the TP and
CCA/TP combined adaptations show much greater varia-
tion, with the potential for significant gains in throughput
(≈ 1400% increase is the most extreme example). Fig. 4 re-
flects the indications of Fig. 3 which shows CCA adaptation
leading to an increase in throughput on an almost equal
number of occasions as it led to a decrease. The figure shows
TP adaptation to achieve the biggest change in throughput
and the same can be shown for all numbers of clients.

Fig. 5 illustrates for each number of clients the percent-
age of adaptations to the 10, 000 legacy networks simulated
that resulted in an increased or decreased fairness change
(R2-R5 relative to R1). The colored section of the bar in-
dicates a change greater than 10%. As with throughput,
CCA adaptation alone was shown to have an approximately
equal probability of achieving a fairness gain or loss. All
other adaptations typically led to a fairness improvement
on more occasions than a loss, with TP achieving improved
fairness most frequently up to thirty-five clients. For forty
and forty-five clients TP and combined CCA/TP achieve a
fairness improvement on an approximately equal number
of occasions. At fifty clients combined CCA/TP most fre-
quently achieved a fairness improvement.

A small number of simulations show very extreme
changes from the legacy when an adaptation is applied (see
Fig. 4). Fig. 6 shows the 80th percentile range of throughput
changes as a result of the applied adaptations and indicates
the mean and median. CCA adaptation shows a small range
(≈ 15%) of variations equally distributed positively and
negatively either side of zero performance change, reflecting
the indications of Fig. 3. The TP adaptation shows the
potentially highest increase in throughput in Fig. 6 for all
numbers of clients. The two methodologies that combine
CCA and TP adaptation have a similar range of impacts.
However, Fig. 3 illustrates how differently they perform
with combined CCA/TP in each cell achieving a throughput
loss on more occasions than that of randomly applying CCA
or TP adaptation to different cells. TP is shown to be the
most beneficial adaptation for all networks with the most
significant throughput improvement at lower density.

Fig. 7 shows the total reduction in CCA and TP as a result
of the applied adaptations. This figure should be considered
in parallel with Figs. 3, 5 and 6. The percentage reduction
equates to the cumulative amount by which the radius
of the two circles surrounding each node in the model,
defining their CCA sensitivity and TP, are reduced from the
legacy values. The average change shows a decrease for each
adaptation, tending to zero with increasing client density.
The figure illustrates the limited change these adaptations
are able to achieve as network density is increased, however
Figs. 3 and 6 indicate that this small adaptation can make a
significant impact.

2.2 Analysis of Matrix Characteristics

The matrices (E and F) underlying each simulation, for
all numbers of clients, were analyzed to identify network
characteristics contributing to the performance impact of
the applied adaptations (R2-R5 relative to R1 in Sec. 2).
The matrices (represented in Fig. 8) were ordered by their
associated AP. The four square clusters visible along the
diagonal represent the clients associated with the four access
points. The size of each cluster indicates the number of
clients associated with that access point. Marked points
away from the diagonal indicate clients on the border of
two cells. Asymmetry, number of hidden nodes, number of
suppressed transmitters, clustering coefficient [7], [8] and
other measures were considered.

For all E matrices, prior to any adaptation being applied
(legacy conditions (R1)), the mean local clustering coefficient



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, DECEMBER 2017 5

5 10 15 20 25 30 35 40 45 50
-80

-60

-40

-20

0

20

40

60

80

Number of Clients

Ti
m

es
 M

od
ifi

ca
tio

n 
Sh

ow
ed

 N
et

w
or

k 
Th

ro
ug

hp
ut

 P
er

fo
rm

an
ce

 C
ha

ng
e 

R
el

at
iv

e 
to

 L
eg

ac
y 

Va
lu

e 
/ %

 

CCA Threshold Adaptation 
TP Adaptation
Combined CCA/TP Within Cell 
CCA or TP Randomly to Cell

Fig. 3. Performance impact of applied modifications. Bars indicate the number of occasions (%) that the modification led to an increase or decrease
in throughput. The colored sections of the bars indicate a change greater than 10%. For all numbers of clients, TP adaptation is shown to be most
likely to give a performance improvement. Combined CCA/TP within a cell is shown to become increasingly likely to result in a performance loss
with increasing numbers of clients. Other scenarios show roughly equal chance of a gain or loss for all client numbers.
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Fig. 4. Impact of adaptation on throughput and fairness relative to legacy
for 30 Clients

was calculated [7], [8]. For each of the four adaptations (R2-
R5) the throughput change achieved after the adaptation
was ordered from highest to lowest. These were then di-
vided into ten equal-sized groups i.e., the top 10% of perfor-
mance improvements to the lowest 10% in intervals of 10%.
For each of these ten groups the mean cluster coefficient
(of the legacy networks) and mean throughput performance
improvement were plotted against each other (see Figs. 2.2
and 2.2). A correlation shows the percentage change in
throughput decreases with increasing clustering coefficient.
We can approximately identify a clustering coefficient value
for each adaptation and network density above which the

application of each adaptation (R2-R5) has a negative effect
on throughput from the legacy (R1). This same trend can be
identified by comparison of throughput change with E or
F. For reference we further show the relationship between
density of matrix E, i.e., proportion of the collision matrix
filled with 1’s, against throughput change (Figs. 2.2 and
9d) to demonstrate there is no clear trend, confirming the
clustering coefficient is not simply a factor of the collision
matrix density. The same correlation we show, for twenty-
five and forty-five clients, can be shown similarly in the
other size networks investigated. Similar processes were
conducted comparing the number of hidden or exposed
nodes in each network with the throughput improvement,
however, no trend could be identified.

The identified relationship between clustering coefficient
and throughput change (Fig. 9) now allows us to better
benefit from TP and CCA adaptations. We re-analyze our
set of 100, 000 randomly generated legacy networks (R1)
(generated as described in Sec. 2) only implementing the
adaptation (R2-R5) for a particular number of clients if the
cluster coefficient is below a defined threshold, estimated
from Figs. 2.2 and 2.2 (and equivalent figures for other
numbers of clients) as the clustering coefficient where the
plotted (assumed linear correlation) change in throughput
values approximately equals zero. Above that threshold, we
maintain legacy conditions and therefore the number of sim-
ulations to which the adaptation was applied was reduced.
Of those to which the adaptation was applied, for twenty
to fifty clients an improvement in accuracy was observed
(i.e., the proportion of times the implementation led to an
improvement in throughput relative to the legacy when
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Fig. 8. An example plot of F and E matrix for 50 edge topology. Blue dots
represent a one, no dot represents a zero.

implementing was improved from that shown in Fig. 3). No
improvement could be shown for five, ten or fifteen clients.
For twenty to fifty clients, the mean performance change of
TP and the two combined CCA and TP adaptations were
improved, most significantly at higher numbers of clients.
The revised performance change range, mean and median
are added to Fig. 6, and the improvement is clearly visible
with the number of wrong implementations reduced and
the average performance changes improved.

3 PART B: SIMPLE TOPOLOGY NETWORKS

To better understand the effects observed in some of the
large-scale randomly generated networks, the impact of
CCA threshold and TP adaptation are further investigated
on two highly simplified networks (see Figs. 10 and 11).
The two networks are similar to those considered in [1]
consisting of two APs and three Clients. The only difference
between the two is as follows. In Fig. 11, C1 is positioned
slightly further away from AP1 and C2 than in Fig. 10. This
makes no difference to the clients association with APs,
but the change impacts on C1 and AP1’s ability to adapt
their CCA threshold or TP. For both networks (Figs. 10 and
11) we investigate, as with the larger network examples,
the application of CCA threshold and TP adaptation and a

combination of the two. The study that follows highlights
the topological constraints of the interference management
techniques and helps us to understand the results presented
in the previous sections.

We make some basic assumptions about both networks:

• C1 and C2 are associated with AP1. These three
nodes make up Cell 1. C3 is associated with AP2.
These two nodes make up Cell 2.

• As for the random network examples, we consider
only up-link demand from Clients to APs. APs do
not transmit data to clients, just CTS and ACK. Thus,
the network topologies can be captured by a series
of three edges; connecting C1 to AP1, C2 to AP1 and
C3 to AP2. Again we consider no routing and we
suppose that each packet has a journey that consists
of a single hop. Thus, we may prescribe demand dA,
dB , dC for each of the three edges respectively.
Hence, as for the random network example, we use
a collision matrix E (see Fig. 12) and knowledge of
the network matrix F (see Fig. 13) to describe each
operational scenario, and these are now just three-
by-three in size.

• At legacy CCA threshold and TP values, C1 can
carrier sense transmissions from AP1 and C2; C2 can
carrier sense transmissions from C1 and C3 and AP1

and AP2; C3 can carrier sense transmissions from C2,
AP1 and AP2; AP1 can carrier sense transmissions
from C1, C2 and C3; AP2 can carrier sense transmis-
sions from C2 and C3.

• C1 and C2 transmitting simultaneously, at legacy
conditions, will result in a collision causing both
transmissions to fail. A collision will occur as both
clients have the same destination AP which is only
capable of receiving one transmission at any one
time. Due to the received signal strength from both
clients at the AP being similar, both mutually cause
interference too great to allow the other transmission
to be heard.

• C2 and C3 transmitting simultaneously, at legacy
conditions, will result in a collision causing both
transmissions to fail. Despite the destinations of C2

and C3 transmissions being different (AP1 and AP2

respectively) the interference received at each AP
(say AP1) from the client whose destination is not
that AP (C2) is roughly similar to the received signal
from the client whose intended destination is that AP
(C1) resulting in a signal to interference noise ratio
(SINR) of the transmission intended for that AP with
too high an interference level for the AP to interpret
the message.

• Prior to any optimization, due to the position of
C1 and C3 on opposite sides of AP1 out of carrier
sensing range of each other, a hidden node issue
exists [14] at AP1. C1 and C3 transmitting simulta-
neously, at legacy conditions, will result in a collision
causing the transmission from C1 only to fail. Despite
the destination of C1 and C3 transmissions being
different (AP1 and AP2 respectively) the interference
received at AP1 from C3 is roughly similar to the
received signal from the C1. This results in a SINR
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Fig. 9. The mean clustering coefficient and density of E matrices compared to mean throughput performance improvement for the top 10% of
performing networks to the lowest 10% of performing networks in intervals of 10%.

ratio at AP1 where the interference of C3 is too high
for C1’s transmission to be received. AP2 cannot hear
the transmissions of C1 and so the transmissions of
C3 are not interrupted. This asymmetry is reflected
in matrix E in Fig. 12a, i.e., E13 = 1 but E31 = 0 .
The hidden node effect is captured by the difference
in the matrices E and F (legacy CCA values) of Figs.
12a and 13a respectively showing that edges do not
have awareness of a potential collision, i.e., E13 = 1
but F13 = 0.

• Clients and APs would not knowingly attempt to
reduce their CCA sensitivity to become deaf to other
nodes in their cell as this would create a hidden
node issue [14] which is known to have a negative
impact on performance. Similarly, when optimizing
transmission power, nodes would not reduce their
transmission power such that others in their cell
could not hear them, as this too would lead to a
hidden node issue.

We apply the same adaptation techniques we applied to
the randomly generated networks to the simple smaller net-
works. The operational scenarios are described in table 3.1
with matrices E and F show in Figs. 12 and 13 respectively.


� 
� 

��� ���
Fig. 10. Simple topology 1 with CCA threshold adaptation. Large black
solid circles surrounding each node represent legacy CCA threshold or
TP. Blue and green dashed circles represent reduced CCA/TP for APs
and clients respectively.

3.1 Simple Topology Operational Scenarios

We identify all possible optimizations using CCA threshold,
TP adaptation or a combination of the two capable of
impacting the link structure of our simple networks (Figs.
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Fig. 11. Simple topology 2 with CCA threshold adaptation. Large black
solid circles surrounding each node represent legacy CCA threshold or
TP. Blue and green dashed circles represent reduced CCA/TP for APs
and clients respectively. C1 is slightly further away from AP1 than in Fig.
10, therefore reducing Cell 1’s ability to adapt CCA/TP.

10 and 11), i.e., adaptations that will change the edge in-
terference and/or edge carrier sensing ability from those of
the legacy CCA threshold and TP. Table 3.1 summarizes the
legacy and then eight possible combinations of optimization
using CCA threshold and TP adaptation. The table explains
if and how these can be captured in terms of matrices E and
F shown in Figs. 12 and 13 respectively.

When applying adaptation techniques (CCA, TP or com-
bine), in some instances the resultant E and F matrix are
the same for both of the simple network topologies (i.e.,
No.1, No.4 and No.7 in table 3.1). For others, it is only
possible to apply the optimization to one topology (i.e.,
No.3, No.6, No.8 and No.9 in table 3.1). In other cases,
applying different optimization methods result in the same
E and F (i.e., No.4 topology 1 & 2 and No.2 topology 2,
No.2 topology 1 and No.5 topology 1, No.5 topology 2 and
No.7 topology 1 & 2 in table 3.1). Only eight possible unique
combinations of E and F (in Figs. 12 and 13) exist, capturing
all possible optimization combinations described in Sec. 3
and summarized in table 3.1. These are labeled (S1-S8) in
table 3.1.

3.2 Simple Topology Simulation Methodology

Our investigation simulates each of the Scenarios S1-S8
(see table 3.1) using the simplified MAC model as Sec. 2
and our previous work [12]. Due to the simple examples’
significantly reduced parameter space, for each three-edge
scenario, rather than focus on fixed equal demands, we per-
form a large ensemble of simulations, each with a different
demand vector (dA, dB , dC ). Specifically, as before, we let
dsat be the maximum transmission rate of a single client
transmitting alone in a clear channel. Each of the demands
dA, dB and dC is varied independently from 0 to dsat in 40
equal increments, resulting in 413 = 68, 921 simulations for
each of the eight scenarios. The duration of each simulation
is set at 10, 000/dsat (i.e., the time needed to transmit 10, 000
packets without collisions).

For each individual simulation, we gather statistics on
the total number of packets successfully transmitted, the
time evolution of queues, and the average latency per
packet. These statistics are post-processed with various
heuristics to decide whether each simulation is within the
capacity region, meaning the network and protocol can
meet the prescribed demand; or outside the capacity region,
meaning that in the large time limit, latency and at least one
queue grows without bound.

The results that follow (Sec. 3.3) are based on compar-
isons between Scenarios S1-S8. The proportion of simulated
demand vectors that are within the capacity region and
asymmetry of those vectors provide interesting insight.

3.3 Simple Topology Results

For each of the eight scenarios, the simulation results can be
presented in the form of a three-dimensional scatter plot,
see Fig. 14, where red markers indicate combinations of
demand that are within the capacity region. In this plot
δA := dA/dsat, δB := dB/dsat and δC := dC/dsat denote
non-dimensional demand intensities that range from 0 to 1.
The concavity of the capacity region (the volume covered
by red dots) is apparent from such plots and represents
the loss of efficiency in the channel due to competition
between transmitters and the resulting collisions. However,
we require numerical measures that can be derived from
these plots in order to compare the scenarios.

Firstly, we define total demand intensity δ := δA +
δB + δC . Then sections δ = const. describe triangular
cross sections through Fig. 14. One may then count (as a
function of δ) the proportion of the corresponding triangular
area that is within the capacity region, and we denote this
quantity S. The dependence of S on δ may then be studied
and compared across the eight scenarios: see Fig. 15a.

Secondly, we may consider the line δA = δB = δC along
which the demands are equal. We may then identify the
maximum value δcap (of δA = δB = δC ) which is within
the capacity region, and compare across scenarios. See the
caption under each sub figure in Fig. 14.

Further, we may measure the proportion of the simu-
lations that are within the capacity region — that is, the
proportion of the volume (V ) [0, 1] × [0, 1] × [0, 1] that is
within the capacity region — and compare across scenarios.
See the caption under each sub figure in Fig. 14.

We consider the demand combination δA = δB = δC =
δsat and identify the proportion of that demand met by each
of the three respective edges δmet. See the caption under
each sub figure in Fig. 14.

For selected scenarios, we examine the ratio of satisfied
demand to failed transmissions (on the line δA = δB = δC ).
See Fig. 15b. From this figure the demand (δ) at which each
edge reaches saturation is apparent. Further insights into the
competition for limited channel access between the edges
can be observed.

The point of the various measures is that they allow
one to distinguish whether capacity is added by enhancing
throughput in symmetric demand situations, or by allowing
fresh combinations of highly asymmetric flows.
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Fig. 12. Collision matrices E
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Fig. 13. Knowledge of the network matrices F

Table 3.1 Operational Scenarios
No. Description Topology 1 (Fig. 10) Topology 2 (Fig. 11)
1 Legacy CCA

Legacy Transmission Power
E = Fig. 12a
F = Fig. 13a (S1)

E = Fig. 12a
F = Fig. 13a (S1)

2 Max allowable Reduced CCA Sensitivity all nodes
Legacy Transmission Power

E = Fig. 12a
F = Fig. 13b (S2)

E = Fig. 12a
F = Fig. 13c (S4)

3 Reduced CCA Sensitivity C1, C2 and AP1 only
Legacy Transmission Power

E = Fig. 12a
F = Fig. 13d (S3)

C2/AP1 cannot reduce CCA and still
hear all nodes in its cell

4 Reduced CCA Sensitivity C3 and AP2 only
Legacy Transmission Power

E = Fig. 12a
F = Fig. 13c (S4)

E = Fig. 12a
F = Fig. 13c (S4)

5 Legacy CCA
Max allowable Reduced Transmission Power all nodes

E = Fig. 12a
F = Fig. 13b (S2)

E = Fig. 12b
F = Fig. 13d (S6)

6 Legacy CCA
Reduced Transmission Power C1, C2 and AP1 only

E = Fig. 12c
F = Fig. 13c (S5)

C2 cannot reduce transmission power
and still be heard by all nodes in its cell

7 Legacy CCA
Reduced Transmission Power C3 and AP2 only

E = Fig. 12b
F = Fig. 13d (S6)

E = Fig. 12b
F = Fig. 13d (S6)

8 Reduced CCA Sensitivity C1, C2 and AP1 only
Reduced Transmission Power C3 and AP2 only

E = Fig. 12b
F = Fig. 13b (S7)

C2/AP1 cannot reduce CCA and still here
all nodes in its cell

9 Reduced CCA Sensitivity C3 and AP2 only
Reduced Transmission Power C1, C2 and AP1 only

E = Fig. 12c
F = Fig. 13d (S8)

C2 cannot reduce transmission power
and still be heard by all nodes in its cell

3.4 Simple Topology Analysis

S5 and S8 were the only scenarios simulated to show any
gain in capacity region volume (V ) from S1 with legacy CCA
threshold and TP. Both of these scenarios are defined by the
same E matrix in Fig. 12c and their F matrices are shown
in Figs. 13c and 13d respectively, both containing a hidden
node. Due to the adaptation to the TP and CCA threshold
in both S5 and S8, the edge connecting AP2 with C3 has a
reduced risk of failure due to collision, because the TP in the
neighboring cell has been reduced such that a transmission
from C3 to AP2 (or vice-versa) will always be heard over
other interference from the network. Scenario S5 showed
the greatest increase in V improving from V = 0.182 for
S1 to V = 0.318 for S5, narrowly ahead of V = 0.313 for
S8. Notably for S5, δcap showed a slight decrease from S1’s
δcap = 0.34 to δcap = 0.32 whereas S8 was the same as S1.

CCA and TP adaptation can be beneficial and allow
simultaneous transmissions that previously would have
been prevented as illustrated in Fig. 1. In the networks we
investigate in (Figs. 10 and 11) a further problem becomes
apparent that adjusting nodes’ ability to hear each other
can increase hidden node effects. It is expected that hidden
nodes have a significant negative impact to a networks’
throughput [2], [14]. We have explored the impact of hidden
nodes on simple networks in our previous work [12]. The
asymmetry of the network and the number of hidden nodes
(i.e., where the corresponding position in matrix E shows

a ‘1’ but F shows a ‘0’) however does not directly impact
on the volume of the capacity region or δmet, rather the
position and asymmetry of the hidden node within the
network has a far greater significance. Scenarios S2, S3, S4,
S6 and S7 all showed a reduction in V and δcap. In S5 and S8
the reduced TP to Cell 1 creates a hidden node effect in that
Cell 2 can now not hear the transmissions of Cell 1 but Cell
1 cannot hear Cell 2. This, however, increases the overall
capacity region volume, by eliminating any competition
for channel access for the edge in Cell 2, facilitating it in
meeting its demand vector at certain asymmetric demand
combinations. There is no correlation between the number
of hidden nodes or asymmetry of the network and total
capacity achieved.

It is apparent that δmet does not necessarily increase
with V (see Fig. 14). Most notably, although showing similar
gains in V , scenarios S5 and S8 achieve very different δmet
with the total of S8 approximately half that of S5 and a
significant reduction from S1. S5 was the only scenario to
show an increased total δmet from S1. Fig. 15b provides in-
sight into the competition between edges considering equal
demands. For the three scenarios displayed, the legacy (S1)
and two scenarios that showed an increase in V (S5 and S8);
the plot shows how the edges behave for equal demands.
S8 (red markers Fig. 15b) shows the error rate increases with
increased demand to the three edges. The clustering of three
plotted red shapes representing the three edges shows how
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(h) S8, V = 0.313, δcap = 0.34,
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Fig. 14. Capacity region plots for S1-S8. Red dots indicate a point is inside the capacity region. Here V is the volume of the capacity region and
δcap is its extent along the line δA = δB = δC . Further δmet identifies the proportion of the demand combination δA = δB = δC = δsat met by
each edge respectively. ∆E and ∆F are the reduction in the total number of unit entries relative to legacy S1 in matrices E and F respectively i.e.,
colliding edge combinations and suppressed transmissions respectively. S5 & S1 result in maximum achievable V for topologies 1 & 2 respectively.

all edges saturate at similar ratios of demand to error. S1 and
S5 show a different trend. Initially, as S8, the error rate of S1
and S5 edges increases with demand, however, both reach
a point where as further demand is added, the error rates
for edges A and C decrease. Beyond the same point, the
ability for edge B to meet its demand decreases and further
its error rate also decreases. This indicates that the edge has
a lower probability of accessing the channel, loosing out in
competition for the limited resource to the other two edges.
This starvation effect [2], [15] can be explained by edge B’s
position between the other two edges in the topology. The
difference between S5 and S8 can be identified as due to
the difference between their knowledge of the network, i.e.,
Fig. 13c and 13d respectively. The matrices contain the same
number of 1s, however, the positioning indicates nodes’
different knowledge of the network surrounding them and
this results in a significantly higher total δmet for S5.

4 DISCUSSION

The results of this study relating to CCA adaptation support
existing work and are comparable in terms of the magni-
tude of performance gain. Paper [16] found CCA adapta-
tion could achieve up to ≈ 20% throughput improvement
if implemented appropriately and further could improve
fairness. As with our study [16] recognizes the potential
improvement to be highly dependent on topology. The TP
adaptation results are comparable to a study [17] carried out
using the OPNET [18] simulator. The authors of the study
were able to show significant improvements in throughput
of several hundred percent in certain situations.

Through further examining modified CCA thresholds in
simple networks, we were able to identify specific changes
to performance stemming from the underlying ‘knowledge
of the network’ matrix F in our model. Considering the
topology in Fig. 10, Cell 1 nodes (C1 and C2 along with
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Fig. 15. (a) Proportions S of triangular cross section within the capacity region, as a function of total demand intensity δ = δA +δB +δC , compared
across eight scenarios. (b) A plot of demand (δ) per client against (εδ) for scenarios S1 (legacy CCA and TP), S5 (legacy CCA and reduced TP to
C1, C2 and AP1 only) and S8 (reduced CCA to C3 and AP2 only and reduced TP to C1, C2 and AP1 only). Here ε is the failure rate i.e., the number
of failed transmissions per successful transmission, along the line δA = δB = δC . The triangle, square and star shapes represent edges A, B and
C respectively. The colors indicate the scenario (S1) black, (S5) blue (S8) red.

AP1) can all reduce their CCA sensitivity such that they can
only hear each other and are deaf to the transmissions of
Cell 2 nodes (C3 and AP2). Similarly Cell 2 nodes can do
the same making themselves deaf to the transmissions of
C1, C2 and AP1. Consider the topology in Fig. 11; because
of the slight change of position of C1, in order for Cell 1
nodes to all hear each others’ transmissions, they cannot
adapt their CCA threshold by a significant margin. This
simultaneously has the effect of preventing AP1 and C2

reducing CCA sensitivity to become deaf to C3. Cell 2’s
nodes are unaffected by the position of C1 and so can reduce
their CCA sensitivity to become deaf to the other three
nodes in the network. This results in the matrix F becoming
asymmetric when CCA sensitivity is reduced, such that C2

and AP1 can hear nodes in their neighboring cell (i.e., AP2

and C3) but C3 and AP2 are deaf to their neighbors.
Adapting the TP for any number of clients showed the

largest range of performance change, potentially leading to
the greatest throughput gain or the most significant loss. It
was the adaptation that most consistently led to an increase
in throughput performance. Whereas modifying the CCA
threshold can only enable pairs of edges to simultaneous
transmit that would previously have been silenced (i.e.,
change matrix F), modifying the TP additionally has the
potential to enable pairs of edges that would have pre-
viously collided to transmit simultaneously (i.e., changing
matrix E also). When all clients reduced their TP by the
same proportion, the SINR at the access points remains the
same and therefore matrix E stayed the same. In this case,
reducing the volume of transmission from all nodes has
much the same effect as reducing the CCA sensitivity at all
nodes changing matrix F. More significant changes occurred
when the transmission power is adjusted asymmetrically.

Adaptation of TP is subject to similar topological con-
straints as discussed with CCA adaptation. In the first
simple network (Fig. 10) it is possible for Cell 1 to reduce
TP where Cell 2 cannot hear (but still the nodes in Cell
1 can hear each other). However, in the second (Fig. 11),
C2 cannot reduce TP to a level where Cell 2 nodes cannot
hear whilst still being heard by all nodes in its cell. When

C2 reduces its TP, the SINR ratio at AP2 changes such
that when C2 and C3 transmit simultaneously the louder
transmission from C3 is always heard over C2 (i.e.,E32 = 0).
There is still of course interference at AP1, such that in the
case of C2 and C3 transmitting simultaneously, AP1 cannot
interpret its signal from C2 and the transmission fails. The
case where Cell 2 only reduces TP to the minimum value
required for AP2 to hear C3 and vice-versa removed the
risk of a potential collision between C3 and C1 at AP1 (i.e.,
E13 = 0). Further, now the SINR ratio at AP1, when C2 and
C3 transmit simultaneously, is modified such that the louder
transmission from C2 is heard over C3 (i.e., E23 = 0). Of
course interference at AP2 occurred such that when C2 and
C3 transmit simultaneously, AP2 was unable to receive from
C3.

Reducing the TP at one node effectively generated the
same impact as reducing the CCA sensitivity of surrounding
nodes in terms of allowing simultaneous transmission that
previously would have been silenced (i.e., by changing F).
When C3 reduced its TP such that only AP2 can just hear
him, AP1 and C2 could not hear him with their fixed CCA
legacy threshold. Hence matrix F changed to reflect this (Fig.
13d). Likewise when C2 reduced its TP (first topology only
Fig. 10) such that only AP1 and C1 could just hear him,
AP2 and C3 could no longer hear him with their fixed CCA
legacy threshold. Hence matrix F changed to reflect this (Fig.
13c). Because of its capability to impact both matrices E
and F, adapting TP has a far more significant impact than
adapting CCA threshold.

We tested randomly applying CCA or TP adaptation
to cells in our randomly generated network or combining
both within each cell. Random deployment is representa-
tive of networks where there is no co-ordination between
separately deployed cells. As the results of the randomly
generated networks demonstrated (Fig. 3), this generally
provided a performance improvement, however only slight.
In the simple examples, both methods impacted on the cells’
ability to hear each other, changing matrix F, and collisions,
changing matrix E. The results in Fig. 14g and 14h, however,
show very different impacts on the capacity of the network
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depending on which cell reduced CCA sensitivity or TP.
This highlights the sensitivity of the adaptation’s impact to
topology.

In our simple networks (Fig. 10 and 11) the options for
combining the CCA and TP adaptation are very limited.
Simultaneously reducing CCA sensitivity of the receiver
and TP of the sender risks breaking the connection between
the two nodes. Of course in some situations, a balance
could be reached where both transmitter and receiver are
able to reduce the TP and CCA sensitivity by a margin
and still maintain a connection. One might expect this may
minimize their aggregate interference on the surrounding
network. Our simulation of this on the randomly generated
networks (i.e., R4) showed such an adaptation to increase
mean throughput performance, however, the change led to
a loss on a higher number of occasions than a gain. This
indicates the mean is raised by a few outlier networks even
though for the majority of networks, the adaptation results
in a slight throughput loss.

Each node, when adjusting parameters in accordance
with our prescribed rules, sets its TP and/or CCA value
such that they can still carrier sense, or be carrier sensed
by, the same nodes of their cell as at legacy values. In
practice, this adjustment might be achieved by each node
monitoring the received signal strength indication (RSSI) of
all of its associated nodes, and by choosing the RSSI of the
farthest and setting CCA and TP accordingly [3]. However,
In a dynamically changing network, the challenge is more
difficult. If a new client joins and associates with an AP,
other clients in the same cell, with reduced CCA, might
not carrier sense the new client and the new client may
not carrier sense those existing clients with reduced TP. All
clients associated with a particular cell receives a beacon
frame from their respective AP at every beacon interval
(typically ≈ 100ms) [16]. Beacons inform of configuration
changes notifying existing clients of new arrivals to the cell.
Hence, if a client who has reduced CCA cannot carrier sense
the new client, it may return to legacy settings and re-apply
the rule. Alternatively, if a client of reduced TP is made
aware of a new client it may alter its TP to incorporate the
new arrival in accordance with the rule.

Other authors have explored individual nodes dynam-
ically optimizing CCA and TP parameters [3], [4], [5],
[16] observing 5-20% throughput improvements. In any
non-trivial network it is unlikely a true system optimal
throughput will be reached by such an approach. Even
if nodes cooperated, searching the vast parameter space
for an optimal solution will likely not be computationally
tractable. Further, these approaches often result in poor
fairness. The advantage of the simple rules we propose is
that they restrict the parameter space, reducing the required
computation, and hence might be applicable to dynamic
networks. Additionally, we have identified a relationship
between the clustering coefficient and the likely throughput:
the potential performance improvement that adaptations
can provide decreases with increasing clustering coefficient.
This relationship can be explained as follows. A higher
clustering coefficient indicates that the clients are grouped
together tightly around the APs with fewer clients falling
on the border between cells. When there are few or no
clients on the border between cells, cross cell interference

cannot be improved by adapting the CCA threshold or TP.
We used the clustering coefficient to determine when we
should apply an adaptation and showed this to reduce the
number of implementations leading to a loss in throughput,
and thus to an increase in the mean throughput change. If
a network’s topology can be monitored and the clustering
coefficient computed in real time, rules could be imple-
mented accordingly to achieve maximum gain. Exploring
different combinations of parameters from the five rules we
propose and better use of the clustering coefficient and other
network characteristics as a measure to predict if and when
to apply them, are topics for future research.

As many other studies in related areas do, we used
Jain’s Fairness Index [6] which rates the fairness of a set
of n nodes’ throughput values where xi is the throughput
for the ith connection. The metric ranges from a minimum
of 1/n to a maximum of 1 (when all users receive the
same allocation). This index is k/n when k users equally
share the resource, and the other n − k users receive zero
allocation. The fairness impact from our simulations on
randomly generated networks was reported in Fig. 5. In our
simple examples, the shape of the capacity regions (Figs.
14) indicates how some highly asymmetric demand combi-
nations, and therefore asymmetric (i.e., unfair) throughput
combinations, can be met by the system where even demand
combinations, of equivalent total throughput, cannot. The
change in result from scenarios S1 to S5 and S8, which both
showed an increase in overall volume of the capacity region,
show a significant change in fairness. In these two scenarios,
the edge connecting C3 and AP2 has a higher chance of
transmitting, after the adaptation, than the other two edges.
This change in fairness, however, is slightly misleading as
only the ability to meet the capacity of one edge is changed.
The probability of the edges connecting the two clients to
AP1 transmitting successfully remains the same for all three
scenarios, the third edge’s probability of successful trans-
mission is increased without impacting on these. The two
scenarios S5 and S8 that show growth in the capacity region
to the legacy S1 do so by enabling additional asymmetric
demand combinations to be met by the system. Comparing
S1, S5 and S8 at δsat, S8 achieves the fairest throughput
with similar values of δmet to all clients, however it also
achieves the lowest total δmet. Fairness, although still a
useful measure, must be considered carefully. If a network
of three transmitting edges, each achieving equal channel
access (i.e., fair) is adapted, via TP or CCA adaptation, such
that two of those edges achieve the same throughput as
before but one achieves greater, the system is now less fair
although the only impact to throughput has been positive.

5 CONCLUSION

We explored CCA threshold and TP adaptation considering
practical methods by which they could be implemented. The
study contributes to knowledge by (1) presenting a model-
ing methodology for investigating CCA/TP adaptation; (2)
demonstrating CCA and TP adaptation methods that result
in performance improvements; (3) identifying that network
throughput does not correlate with the number of hidden or
exposed nodes when the network contains more than one
cell and explaining how asymmetrically suppressing part of
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a network can remove competition for channel access and
lead to overall network throughput improvement; (4) identi-
fying a relationship between throughput improvement and
network clustering coefficient and thus network conditions
under which CCA and TP adaptations are most likely to
realize throughput improvements.

CCA, TP and combined CCA/TP adaptation are all ca-
pable of generating a performance improvement in WLANs,
however, the impact of the adaptation is highly dependent
on topology. TP adaptation provides the best chance of a
performance improvement. When applied only to networks
with low clustering coefficient, the probability of achieving
a performance gain from TP adaptation is increased.
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