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he is now with the Visual Information Laboratory, University of Bristol, Bristol BS8 1TH, U.K.

February 11, 2019

Abstract

Synthetic aperture radar (SAR) and ultrasound (US) are
two important active imaging techniques for remote sens-
ing, both of which are subject to speckle noise caused by
coherent summation of back-scattered waves and sub-
sequent nonlinear envelope transformations. Estimat-
ing the characteristics of this multiplicative noise is cru-
cial to develop denoising methods and to improve sta-
tistical inference from remote sensing images. In this
study, reversible jump Markov chain Monte Carlo (RJM-
CMC) algorithm has been used with a wider interpreta-
tion and a recently proposed RJMCMC based Bayesian
approach, trans-space RJMCMC, has been utilized. The
proposed method provides an automatic model class se-
lection mechanism for remote sensing images of SAR and
US where the model class space consists of popular en-
velope distribution families. The proposed method es-
timates the correct distribution family, as well as the
shape and the scale parameters, avoiding performing an
exhaustive search. For the experimental analysis, differ-
ent SAR images of urban, forest and agricultural scenes
and two different US images of a human heart have been
used. Simulation results show the efficiency of the pro-
posed method in finding statistical models for speckle.
Keywords Reversible jump MCMC, Speckle noise mod-
elling, SAR imagery, Ultrasound imagery, Envelope dis-
tributions, Generalized (heavy-tailed) Rayleigh distribu-
tion.

1 Introduction

Remote sensing imaging is a commonly used imaging
method in real life applications where the object of in-
terest is observed without interaction or a direct contact.
Remote sensing systems can be divided into two groups,
which are passive and active. Passive systems, e.g. air-

borne photography, utilize the natural source of energy,
such as sun light, to gather information from the en-
vironment. In contrast, active remote sensing systems
have their own energy source and gather information by
sending waves and receiving the reflected ones from the
surface [1]. The object of interest may be as small-scale
as a human heart, or sometimes as large-scale as the
earth’s surface. Examples of remote sensing imaging in-
clude radar, sonar, ultrasound imaging.

Synthetic aperture radar (SAR) is one of the active
remote sensing imaging methods and has become popu-
lar over the last decades due to its applicability in en-
vironmental/agricultural monitoring, map making, mine
detection, etc. [2]. Additionally, SAR imagery is not af-
fected by weather conditions and it can penetrate soil,
clouds and forest canopy [3]. SAR is capable of pro-
ducing high quality images even under severe conditions
compared to other imaging methods such as optical and
infrared while avoiding the limitations of these methods,
e.g. night-time or cloud-covers.

Ultrasound (US) imaging is also an active remote sens-
ing method which has been utilized both for medical
and industrial applications. In standard ultrasound sys-
tems, there are three types of measured data, which
are radio frequency (RF) signals, envelope-detected sig-
nals/images and B-mode images [4]. The resulting dis-
play ultrasound image is obtained after several opera-
tions: firstly measuring multiple RF signals and con-
verting all these RF signals into an envelope image.
Then, this envelope image is log-compressed and post-
processed in order to obtain an ultrasound image.

Both SAR and US images are obtained via wave re-
flection and thus, have very similar characteristics. A
common and important problem degrading statistical in-
ference from both SAR and US imagery is the presence of
multiplicative speckle noise. The received back-scattered
signals sum up coherently and then undergo nonlinear
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transformations. This in turn causes a granular look
in the resulted images, which is referred to as speckle
noise [3, 5].

Speckle noise may lead to loss of crucial details in both
SAR and US images and cause problems in processing of
these images such as in feature detection, segmentation
or classification. The first step in dealing with speckle
noise, is to determine its statistical characteristics pre-
cisely. In both SAR and US imaging, general practice in
the early applications in the literature, has been to uti-
lize Rayleigh distribution as the amplitude distribution
model, due to its analytical simplicity and central limit
theorem, assuming both the real and imaginary parts
of the back-scattered wave follow a Gaussian distribu-
tion [6, 7].

Despite its popularity in practice, Rayleigh distribu-
tion has not been successful in modelling some types
of SAR and US images and using other distributions,
which exhibit more impulsive behaviour, has been more
successful in coping with the speckle noise effects. Par-
ticularly, high resolution urban SAR images [3, 8] and
tissue sections of the US images [9–11] exhibit impulsive
characteristics. Various distributions have been stud-
ied in order to represent the impulsive and heavy-tailed
behaviour of SAR images. Examples can be listed as
K-distribution for composite terrains [12], land and sea
clutters [13], log-normal distribution for high-resolution
sea clutter [14], Weibull for weather and sea clutters [15]
and for target detection in background radar clutter [16].
Moreover, in US imaging, examples can be listed as: K-
distribution [17] for tissue modelling, Nakagami [7] for
classification of breast masses and Gamma based distri-
butions [5] in industrial ceramic US images.

There are other types of studies which aim to pro-
vide a global distribution family for all kind of SAR im-
ages or generate a mixture of distributions to obtain the
best matching distribution for a given image. In [18],
authors proposed a mimicking approach which is based
on two popular and flexible distributions, namely Fisher
and generalized gamma distributions. The main purpose
is to use one of these distributions to mimic statistical
characteristics of the high-resolution SAR images. It was
shown that these two distributions are good selections
for a mimicking purpose and high potentials were pro-
posed. In [19], authors proposed an enhanced dictionary
based statistical modelling study of amplitude distribu-
tions of very high-resolution SAR images. In that study,
eight popular distributions (Nakagami, Weibull, gener-
alized Gamma, etc.) were utilized in the dictionary and
an amplitude SAR image was modelled with a mixture
pdf of K components of these distributions.

Reversible jump Markov chain Monte Carlo (RJM-
CMC) algorithm is an extended version of the classical
Metropolis-Hastings algorithm and was first introduced
by Peter Green [20] as a model selection method. Unlike
the Metropolis-Hastings algorithm, the model space di-

mension has been also defined as a variable, and thus a
general method which provides transitions between dif-
ferent dimensional spaces has been proposed. Although
Green’s formulation is very general, to the best of our
knowledge the general usage of the algorithm has been
limited to model dimension selection studies of the same
classes of models, particularly in model estimation, in
analyzing mixture processes. However, the original for-
mulation of RJMCMC exhibits a great potential in ex-
ploring different classes of models rather than just being
trans-dimensional.

In our recent study [21], we have proposed a gen-
eralized framework, trans-space RJMCMC, in order to
explore different classes of models where moment-based
RJMCMC transitions enable the transfer of the informa-
tion learned in the most recent model class to another
and that interpretation donated RJMCMC with the ca-
pability of choosing the most suitable model among dif-
ferent (one-dimensional) impulsive distribution families.
The methodology proposed in [21] is highly flexible and
can be adjusted to various applications by utilizing dif-
ferent types of moments, such as fractional lower orders,
negative orders. In this study, we propose utilizing this
methodology (trans-space RJMCMC [21]) in generalized
model class selection for remote sensing images of SAR
and US. This study is dealing with modelling of the am-
plitudes of the bivariate distributions, i.e. this modelling
is related to 2D phenomena.

We utilize a model class space which includes various
frequently used envelope distribution families in order
to represent the statistical characteristics of the images
containing speckle noise. For the experimental analy-
sis, different SAR images of urban, forest and agricul-
tural scenes and US images of a human heart have been
used. We would like to underline that unlike other stud-
ies which restrict their attention to a single family of dis-
tributions at a time, our methodology is able to choose
from various distribution classes, the library of which can
be extended or reduced depending on the needs of the
user. Thus, users can develop applications by using the
method in this paper, avoiding performing exhaustive
searches to estimate the most suitable statistical distri-
bution.

On the other hand, please note that the purpose of this
paper is not to propose a universal distribution family for
remote sensing images as in [18], or not to demonstrate a
mixture modelling of the relevant distributions for SAR
images as in [19]. We would like to propose, with this
paper, an RJMCMC based Bayesian automatic statisti-
cal modelling scheme for remote sensing images of SAR
and US. Contrary to the important studies [18,19], gen-
erating a mixture process or proposing a universal dis-
tribution for remote sensing images are not in the scope
of this paper.

The rest of the paper is organized as follows: trans-
space RJMCMC is discussed in Section 2. The utilized
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envelope distribution families and the trans-space RJM-
CMC methodology are given in Section 3. Experimental
studies and results are provided in Section 4 and Section
5 concludes the paper with a brief summary.

2 Trans-space RJMCMC

The general practice is to use RJMCMC in model es-
timation problems such as autoregressive (AR) [22] and
autoregressive integrated moving average (ARIMA) [23].
Another popular application of RJMCMC is to analyze
the mixtures of distributions such as Gaussian [24] and
symmetric α-stable (SαS) mixtures [25].

In the classical “trans-dimensional” RJMCMC ap-
proach, we first assume that a transition from a Markov
chain x to x′ with a RJMCMC move, m, with probability
of pm is proposed. This transition will be accomplished
with a relation (or namely a reversible function), h, be-
tween the parameter vectors of states x and x′, which
are θ and θ′. Since the dimension matching between the
parameter spaces is satisfied, this transition is accepted
with a probability of:

(1)A(x→ x′) = min

{
1,
π(x′)pmR

χ(u′)

π(x)pmχ(u)

∣∣∣∣∂h(θ,u)

∂(θ,u)

∣∣∣∣} ,
where π(·) refers to the target distribution of interest,
χ(·) are the distributions for the auxiliary variable vec-
tors u and u′, respectively which are required to provide
dimension matching for the moves m and its reversible

move mR. The term
∣∣∣∂h(θ,u)∂(θ,u)

∣∣∣ is the magnitude of the

Jacobian.

Despite having various application areas, all the stud-
ies mentioned above have utilized RJMCMC in a lim-
ited perspective, particularly, within the same classes of
models and trans-dimensional cases. However, the orig-
inal formulation of Green lends itself to a much wider
interpretation than just exploring spaces of different di-
mensions. In our previous studies (e.g. [26]), we have uti-
lized RJMCMC in exploring linear and nonlinear model
spaces of nonlinear time series models, polynomial AR
(PAR), polynomial MA (PMA) and polynomial ARMA
(PARMA). In addition, a Volterra system identification
study has been performed in [27].

The recently proposed “trans-space” RJMCMC in [21]
lets us to explore different generic model classes instead
of focusing on the parameter dimension. Defining transi-
tions over a “common feature” such as moment of differ-
ent model spaces in the trans-space approach is a manda-
tory choice for the algorithm not to start the search
from the scratch in the jumped model space. The ap-
proach in [21] utilizes fractional lower ordered moments
(FLOMs) as common feature and perform transitions
between spaces of different probability distribution fam-
ilies, namely impulsive distributions. In this paper, a

trans-space RJMCMC approach with first order nega-
tive moment-based transitions which explores spaces of
envelope (or amplitude) distribution families, has been
used. The original acceptance ratio expression in (1)
is still valid and is adapted according to the RJMCMC
moves proposed in this study.

3 Trans-space RJMCMC for
Speckle Noise Modelling

3.1 Envelope Distribution Families

Envelope distribution [28] families are continuous dis-
tribution families which are supported on the interval,
(0,∞). Due to the nature of active remote sensing sys-
tems, the amplitude distributions occur via coherent ad-
dition of the reflected waves, and hence, the speckle noise
of SAR and ultrasound images has been modelled by us-
ing distributions of this type. In this paper, five different
envelope distributions, which are widely used in mod-
elling speckle noise of SAR and US images from various
environments, have been investigated. These are Nak-
agami, K, Weibull, Gamma and generalized Rayleigh
distributions.

3.1.1 Nakagami Distribution Family

For remote sensing applications, Nakagami distribution
has been utilized in classification/characterization [29]
and speckle suppression of US images [30] and speckle
modelling of agricultural and mountain scene SAR im-
ages [31]. The univariate Nakagami distribution pdf can
be defined as [32]:

f(x) =
2αα

Γ(α)γα
x2α−1 exp

(
−α
γ
x2
)

(2)

where Γ(·) is the gamma function, α ≥ 0.5 refers to
the shape parameter and γ > 0 represents the scale
parameter of the Nakagami distribution family. One-
sided Gaussian distribution and Rayleigh distribution
are the special members of Nakagami distribution family
for shape parameters of 0.5 and 1, respectively. The pth
order moment of the Nakagami distribution is [33]:

E(xp) =
Γ
(
α+ p

2

)
Γ(α)

(γ
α

)p/2
. (3)

3.1.2 K-Distribution Family

For remote sensing applications, K-distribution has been
utilized in modelling composite terrain SAR images [12],
land and sea radar clutters [13], and US imagery [9].
K-distribution is a distribution family which arises by

compounding two gamma distributions. Assume a ran-
dom variable x is Gamma distributed with mean m and
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Figure 1: Pdf of envelope distribution families for different values of the shape parameter α. For all the families the scale
parameter, γ = 1.

shape L, the mean m of which is also a Gamma dis-
tributed random variable. Thus, x is K-distributed. Ad-
ditionally, K-distribution is also a product distribution.
Particularly, it is the distribution of a random variable
which is the product of two independent Gamma random
variables. The pdf of a univariate K-distribution can be
defined as [34]:

f(x) =
2

γΓ(α+ 1)

(
x

2γ

)α+1

Kα

(
x

γ

)
(4)

where Kα refers to the modified Bessel function of order
α and α and γ > 0 represent the shape and the scale
parameters, respectively. The pth order moment of the
K-distribution is [34]:

E(xp) =
2pΓ

(
p
2 + 1

)
Γ
(
α+ 1 + p

2

)
Γ(α+ 1)

γp. (5)

3.1.3 Weibull Distribution Family

For remote sensing applications, Weibull distribution has
been used to model land (forest, rocky mountains), sea
and sea ice radar clutters [15] and cardiac US images [35].
A univariate Weibull distribution pdf can be defined as
[36]:

f(x) =
α

γ

(
x

γ

)α−1
exp

(
−
(
x

γ

)α)
(6)

where α is the shape and γ > 0 is the scale parame-
ter. Weibull distribution family has special members for

α = 1 and α = 2, which are the well-known exponential
and Rayleigh distributions, respectively. The pth order
moment of the Weibull distribution is [36]:

E(xp) = Γ
(

1 +
p

α

)
γp. (7)

3.1.4 Gamma Distribution Family

In remote sensing applications, Gamma distribution has
been used to model sea [37] and land [8] SAR images,
and ultrasound speckle noise [5]. The univariate gamma
distribution pdf can be expressed as [36]:

f(x) =
xα−1

γαΓ(α)
exp

(
−x
γ

)
(8)

where α refers to the shape parameter and γ > 0 is
the scale parameter. The well-known exponential and
chi-squared distributions are special members of the
gamma distribution family. The pth order moment of
the Gamma distribution is [36]:

E(xp) =
Γ (α+ p)

Γ(α)
γp. (9)

3.1.5 Generalized Rayleigh Distribution

Generalized (heavy tailed) Rayleigh distribution [3] has
been proposed in order to model urban scenes SAR im-
ages with a better performance than the classical enve-
lope distributions Rayleigh, Weibull and K. The classi-
cal Rayleigh distribution represents the distribution of
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a random variable which is the magnitude of a 2 di-
mensional vector, components of which are zero mean,
equal variance Gaussian random variables. Generalized
Rayleigh distribution represents the distribution of a
random variable which is again a 2-dimensional vector.
However this time, the components of the vector are zero
location equal dispersion SαS random variables. Gener-
alized Rayleigh distribution has a pdf expression in in-
tegral form as [3]:

f(x) = x

∫ ∞
0

s exp (−γsα) J0(sx)ds (10)

where γ > 0 is the scale parameter, 0 < α ≤ 2 is the
shape parameter and J0(·) refers to the zeroth order
Bessel function of the first kind. Rayleigh distribution is
the special member of generalized Rayleigh distribution
with α = 2. The pth order moment of the generalized
Rayleigh distribution, for −1.5 < p < −0.5, is as fol-
lows [3]:

E(xp) =
2p+1Γ

(
p
2 + 1

)
Γ
(−p
α

)
αΓ
(−p

2

) γp/α. (11)

In Figure 1, densities for Nakagami, K, Weibull,
Gamma and generalized Rayleigh distributions are
shown, respectively. For Nakagami densities increasing
the shape parameter α makes the densities peaky and
heavy tailed relative to the ones with smaller α. Weibull
distribution also follows very similar characteristics to
Nakagami distribution. For K and Gamma distributions,
decreasing the shape parameter makes them more peaky
and heavy tailed than the ones with larger α. For gener-
alized Rayleigh distributions, tail probabilities decrease
as order of α values increases, whereas peak values are
very similar for all the α values. Generalized Rayleigh,
K and Gamma distributions are distinguished from Nak-
agami and Weibull due to heavier tails. Generally, Nak-
agami and Weibull distributions are less heavy tailed en-
velope distributions and densities diminish towards zero
faster than the other distributions.

3.2 Implementation of Trans-Space
RJMCMC

The parameter space for RJMCMC contains the shape
and the scale parameters of the distributions and also
the family identifier parameter which represent the fam-
ilies. Particularly, the parameter space is formed as:
θ = {k, α, γ} where the family identifier k refers to Nak-
agami, K, Weibull, generalized Rayleigh and Gamma for
values between 1 and 5, respectively.

The joint posterior density, or namely RJMCMC tar-
get distribution of interest, f(θ|x), can be written from
Bayes Theorem as:

f(θ|x) ∝ f(x|k, α, γ)f(α|k)f(k)f(γ) (12)

where f(x|k, α, γ) is the likelihood and corresponds to
Nakagami, K, Weibull, generalized Rayleigh and Gamma
pdfs for values of k, 1, 2, 3, 4 and 5, respectively.

Priors are selected as the following:

f(γ) = 1/γ (13)

f(k) = 1/5, ∀k, (14)

f(α|k) = U(B
(k)
low, B

(k)
up ) ∀k, (15)

where U(·) represent a uniform distribution, B
(k)
low is the

lower bound and equals to 0.5, 0.5, 1, 0.5, 1 for values of k

from 1 to 5, respectively. Additionally, B
(k)
up refers to the

upper bound and equal to 2, 10, 5, 2, 6. Please note that
this selection for the bounds is not unique and both of
the bounds are selected intuitively in order to cover lots
of distributions in the families. Increasing upper bounds
does not have any meaningful effect on the results for this
study. Interested users can use different upper bounds
for different data sets. Since it is not possible to de-
fine a common conjugate prior for the scale parameter
of all candidate distributions, we choose a noninforma-
tive (Jeffrey’s) prior distribution for γ in this study. In
addition, all possible distribution families are selected as
equiprobable each of which has a probability of 1/5.

3.2.1 Model Moves

In this study, two main RJMCMC moves are defined to
perform transitions between different probability distri-
bution families, which are life and switch moves. The
life move performs the classical MH algorithm and is
used to update the scale parameter, γ, while the al-
gorithm remains in the same family and at the same
shape parameter (k′ = k and α′ = α). Two different
switch moves are defined and utilized for RJMCMC tran-
sitions, which are within the same family and between
different families. These two different switch moves [21]
are named as intra-class-switch and inter-class-switch.
Intra-class-switch move is performed within the same
family (k′ = k) whereas the inter-class-switch move per-
forms switching to a different family (k′ 6= k).

For both of the switch moves, model transitions must
be handled carefully. In statistics, moments are very
important in having an idea about a probability dis-
tribution such as its mean and variance. Moment-
based parameter estimation methods (namely Method-
of-Moments (MoM)) have been widely used for the can-
didate distribution classes in this study, which can be
listed as for Weibull [38], Nakagami [39], Gamma [40],
K-distribution [34] and generalized Rayleigh [3]. Since
the pth order moments are well defined with some con-
straints for all the candidate distribution families, using
it as the “common feature” between distributions is a
very convenient option for our purpose. This feature can
be thought of as being a super parameter defined for ev-
ery class boiling individual different parameters of each

5



class into a common one. Please note that using pth or-
der moments in the proposed method is not a unique
choice. Interested readers can utilize other statistics,
such as log-moments. On the other hand, please also
note that one can create a setup with blind proposals
between different classes avoiding using MoM based ap-
proach in this paper. However, using a common parame-
ter like moments, implements a highly efficient proposal
mechanism for RJMCMC and provides faster conver-
gence of the algorithm reducing the possibility of having
local traps during the Markov chains.

The logic behind the moment-based transitions, is to
hold the pth order moment fixed for both the most recent
and the candidate distributions during a switch move.
For example, given data x, for an inter-class-switch move
from distribution family k with parameters α and γ to
family k′, the candidate distribution’s shape parameter
α′ is proposed from a proposal distribution and the scale
parameter γ′ is calculated, providing the following ex-
pression:

Ek(xp) = Ek′(x
p). (16)

Thus, the information learned in the most recent dis-
tribution is transferred to the new distribution. For
intra-class-switch move, it is straightforward to show
that both sides of the expression in (16) belong to the
same family with different shape parameters.

Up to this point we have discussed the motivation for
why and how the moment based transitions should be
performed. Another important point is the choice of the
moment degree “p”. Examining the moment definitions
of the families in Section 3.1, we can clearly see that the
generalized Rayleigh family only has moments for p val-
ues between -1.5 and -0.5. This constraint forces using
negative moments for all the distributions, and common-
feature based transitions are performed over negative or-
der moments. In order to eliminate some possible degra-
dations that may arise from using fractional moments,
p = −1 is the best choice and have been used in this
study. Existence of the first negative moment has been
tested according to the study in [41] and this selection
(p = −1) is valid for generalized Rayleigh and K without
any constraint on selection of the shape and the scale
parameters. Weibull and Gamma have a constraint of
α > 1 and Nakagami has first order negative moments
for α > 0.5. All these constraints are satisfied with a
bounded selection for shape parameters in (15).

Figure 2 depicts the flow diagram of the proposed us-
age of RJMCMC in speckle noise modelling of remote
sensing images. Details of the RJMCMC moves are given
in the sequel.

3.2.2 Proposal Distributions for Moves

As stated above, life move updates only the scale param-
eter, γ where k and α remain fixed. For this purpose,

we decided to use a proposal distribution for life move
as follows:

q(γ′|γ) = T N (γ, ξscale) for interval (0,∞) (17)

where T N (γ, ξscale) refers to a Gaussian distribution
where its mean γ is the most recent value of the scale pa-
rameter, and its variance is ξscale. This Gaussian distri-
bution is truncated to lie within the interval of (0,∞) af-
terwards by rejecting samples outside this interval. This
truncation procedure aims to satisfy the condition γ > 0.

For both of the switch moves, the sampling of α is
performed firstly. The range of α is discretized by incre-
ments of 0.05 in order to avoid numerical errors during
the simulations. A discretized Laplace (DL(·)) and a uni-
form distribution are selected as proposal distributions
for intra and inter-class switch moves, respectively. The
reason for a DL(·) selection for intra-class-switch is to
make the samples come from a distribution that is sym-
metrical around the most recent value and heavier tailed
than a Gaussian. On the other hand, during a transition
between different families, we have limited prior infor-
mation for the shape parameter, α. Hence, all α values
belonging to the new family are assumed as equiprob-
able and a uniform proposal distribution is selected for
inter-class-switch move.

Scale parameter γ transitions is performed via the mo-
ment based method which is mentioned above via func-
tions g(·) and w(·) for intra and inter-class-switch moves,
respectively. These functions are obtained provided that
the equality in (16) holds. An example derivation for
a transition from Weibull distribution (k = 3, γ, α) to
Gamma (k = 5, γ′, α′) is given below

E3(x−1) = E5(x−1) (18)

Γ

(
1− 1

α

)
γ−1 =

Γ(α′ − 1)

Γ(α′)
(γ′)−1 (19)

γ′ = w(α, α′, γ) = γ
Γ(α′ − 1)

Γ(α′)Γ
(
1− 1

α

) . (20)

It is straightforward to derive all other expressions for
g(·) and w(·) functions.

Consequently, proposals for intra-class-switch move
and for inter-class-switch move are:

α′ ∼ DL(α, 0.5), (21)

γ′ = g(α, α′, γ), (22)

and

α′ ∼ U(B
(k′)
low , B

(k′)
up ), (23)

γ′ = w(α, α′, γ), (24)

respectively.
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Figure 2: Flow Diagram for the Proposed method.

3.2.3 Acceptance Ratio for the Moves

The acceptance ratio expressions obtained for life, intra-
class-switch and inter-class-switch moves are as follows:

Alife = min

{
1,
f(x|k′, α′, γ′)
f(x|k, α, γ)

f(γ′)

f(γ)

q(γ|γ′)
q(γ′|γ)

}
(25)

Aintra-cl-sw = min

{
1,
f(x|k′, α′, γ′)
f(x|k, α, γ)

f(γ′)

f(γ)
|J |
}
, (26)

Ainter-cl-sw = min

{
1,
f(x|k′, α′, γ′)
f(x|k, α, γ)

f(γ′)

f(γ)

f(α|k)

f(α′|k′)
|J |
}

(27)

where |J | is the magnitude of the Jacobian.

4 Experimental Study

Experimental studies in this paper consist of two dif-
ferent simulations which are synthetically generated and
real data simulations. Results are demonstrated in fig-
ures and tables for both simulation scenarios. RJM-
CMC has been run for 3000 and 10000 iterations for
synthetical and real data simulations, respectively. Dur-
ing the parameter estimation stage, only the last half
of the iterations (1500 and 5000) have been used and
the first half of the iterations are discarded as burn-
in period. The initial distribution of the algorithm is

a Rayleigh distribution (k(0) = 3 and α(0) = 2). All
three RJMCMC moves are assumed to be equiprobable
providing Plife + Pintra-cl-sw + Pinter-cl-sw = 1. Perfor-
mance of the fitted distributions to the given data sets
has been measured by using two popular statistical sig-
nificance tests, namely Kullback-Leibler (KL) divergence
and Kolmogorov-Smirnov (KS) statistics. KL divergence
has been used to test the performance by considering the
estimated and empirical pdfs, whereas KS statistics and
its corresponding p-values have been calculated by using
the estimated and the empirical CDFs.

4.1 Synthetically Generated Data Simu-
lations

In synthetically generated data simulations, five differ-
ent distributions from each candidate family has been
selected. For each selected distribution, 20 different data
sets with 1000 samples have been generated and the pro-
posed method have been run to estimate distributions
given the data. Selected distributions and their estima-
tion results are given in Table 1. Please note that the
estimated parameters (α̂ and γ̂) and statistical measures
are averages over 20 repetitions.

Examining the results in Table 1, all families have been
estimated without error via the proposed method. Esti-
mated distribution parameters are also very close to the
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correct values. These successful estimation results are
statistically supported with the KL and KS measures.
Examining the measures presented in the table, it can
be easily seen that all the distribution estimates are sta-
tistically significant for given data sets with p-values of
1.0000.

4.1.1 Parallel MCMCs vs. Trans-Space RJM-
CMC

In this section, the proposed method has been compared
to the exhaustive search of using separate MCMCs for
each family in order to evaluate its computational gain in
terms of simulation time. The reference method utilizes
the proposed method without inter-class-switch moves.
For each given data, the reference method performs es-
timation for each candidate family. Then, the statistical
significance measures are calculated for each estimation
and the one with minimum measures are selected as the
best fitting distribution. All the time cost simulations
have been run on a computer with Intel dual core i5-
2410M 2.30 GHz processor and 4GB of RAM.

For the simulations, distributions utilized in the previ-
ous part (Table 1 first column) are utilized again. Please
note that, for time cost simulations, only one data set
has been generated from each family. Simulations run
3000 iterations. The first half of the simulations are dis-
carded as burn-in period in parameter estimation step.
For the reference method, move probabilities are se-
lected as equiprobable (Plife = Pintra-cl-sw = 0.5, where
Pinter-cl-sw = 0).

Time cost simulation results are presented in Table
2. Other than the case of generalized Rayleigh data,
the proposed method offers significant time gain com-
pared to separate MCMCs. Actually, the time cost of
the MCMCs for the considered distributions are com-
parable with the exception of the generalized Rayleigh
distribution which is significantly more expensive due to
the requirement of performing numerical integration for
its pdf (given in (10)). This in turn makes the total cost
of the reference method, on the order of the cost for the
MCMC with generalized Rayleigh data. However, the
proposed method avoids most of those time costly visits
since it jumps to the states other than the asymptotic
distribution of the Markov chain only occasionally after
the burn in period [21]. The exception is the case when
the data is generalized Rayleigh as shown in the fourth
row of Table 2. Essentially, the time cost of the pro-
posed method is comparable to a single MCMC and one
can expect increased superiority of the proposed method
for a set-up including lots (more than five) of candidate
models.

Examining the model estimation results and statisti-
cal significance measures in Table 2, it can be easily seen
that, the reference method and the proposed method
perform nearly the same and estimate the same distri-
butions for each of the given data sets. Combining these

estimation results with the total simulation times, the
proposed method’s success can be easily pointed out.

4.2 Real Data Simulations

In this study seven different SAR images from urban,
forest, agricultural and mixed scenes have been utilized
in order to show the statistical differences according to
the environment. For each scene, two (one for mixed
scene) images have been used which are measured in dif-
ferent frequency bands, X, L and UHF. All the figures are
in intensity format and their sizes are 715 × 800 except
Agricultural-L the size of which is 150 × 300. Particu-
larly, X-band SAR images have been generally used in
airborne systems and for terrain mapping. Its frequency
range is 8-12 GHz with a wavelength range of 2.5-3.75
cm. L-band SAR images have been utilized in Amer-
ican and Japanese satellites and NASA airborne. Its
frequency range is lower than X-band (1-2GHz with a
wavelength range of 15-30 cm). UHF band, also known
as P-band, has been used especially for extraterrestrial
targets and has the lowest frequency band compared to
X an L bands which is 300 MHz-1 GHz [42]. All the
SAR images in this study are downloaded from [43] and
are shown in Figure 3. For the simulation issues, in or-
der to reduce the computational load and removing the
effects of the homogenous areas on the images, all the
SAR images are down-sampled with a factor of 5. Orig-
inally, the image in Figure 3 (d) is colored, however it is
transformed into a gray-scale image before simulations
by averaging its red, green and blue components.

US images used in this study, are plane-wave imaging
challenge in medical ultrasound (PICMUS) data sets [44]
containing two measurements from a volunteer, which is
recorded on the carotid artery. A 75 plane-wave sequence
was recorded with a Verasonics Vantage 256 research
scanner and an L11 probe (Verasonics Inc., Redmond,
WA). The difference between the two images are their
sections of interest, one of them is cross-sectional, the
other one is longitudinal (For the details of the data and
the PICMUS challenge please see [44]). For both of the
images, two rectangular speckle patches are extracted
from the envelope image, belonging to tissue and blood
pool sections. Each extracted section comprises around
2000 samples. Please note that all the analysis for these
sections has been performed on raw data (before down-
sampling and log-compression). In Figure 3(h)-(i), the
two aforementioned US images of cross and longitudinal
sections are shown, respectively. Rectangles with solid
and dashed lines refer to the extracted blood and tissue
sections, respectively.

For all the SAR and US data sets, simulations have
been repeated 20 times and averages over these repeti-
tions have been presented in the tables. In real data
simulations, in order to show the effectiveness of the
proposed method, we have also performed a maximum
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Table 1: Modelling results and statistical significance of the estimates for synthetically generated data sets
Family(α, γ) Est. Est. Est. KL Div. KS KS

Family Shape (α̂) Scale (γ̂) Score p-value
Nakagami(1.5, 10) Nakagami 1.5093 9.9836 0.0314 0.0248 1.0000
K(1.2, 5) K 1.3948 4.8747 0.0291 0.0231 1.0000
Weibull(4, 0.2) Weibull 3.9407 0.1983 0.0324 0.0235 1.0000
GenRayl(1.7, 1) GenRayl 1.6996 1.0512 0.0160 0.0532 1.0000
Gamma(3.8, 0.2) Gamma 3.6504 0.1925 0.0292 0.0235 1.0000

Table 2: Parallel MCMC vs. RJMCMC. Comparison for simulation time and accuracy.
The reference method The proposed method

Total time Est. Est. Est. KL Div. KS KS Total time Est. Est. Est. KL Div. KS KS Simulation time
Family((α, γ) T1 (sec) Family Shape (α̂) Scale (γ̂) Score p-value T2 (sec) Family Shape (α̂) Scale (γ̂) Score p-value gain (T1/T2)

Nakagami(1.5, 10) 5720.54 Nakagami 1.5125 9.7605 0.0240 0.0126 1.0000 346.84 Nakagami 1.5468 9.7756 0.0235 0.0142 1.0000 16.49
K(1.2, 5) 6240.30 K 1.7526 4.5215 0.0183 0.0104 1.0000 465.36 K 1.8553 4.4349 0.0181 0.0121 1.0000 13.41
Weibull(4, 0.2) 7170.83 Weibull 4.0893 0.1983 0.0236 0.0125 1.0000 558.63 Weibull 4.0214 0.1978 0.0252 0.0188 1.0000 12.84
GenRayl(1.7, 1) 6563.70 GenRayl 1.6995 1.0357 0.0165 0.0275 1.0000 5244.45 GenRayl 1.6996 1.0192 0.0171 0.0313 1.0000 1.25
Gamma(3.8, 0.2) 6112.07 Gamma 3.9354 0.2077 0.0261 0.0262 1.0000 462.01 Gamma 3.9599 0.2090 0.0260 0.0268 1.0000 13.23

likelihood (ML) based parameter estimation method for
all the families. The ML estimated distribution for a
given data set is the one that has the minimum KL and
KS measures compared to the others. These results are
shown in several sub-figures in Figures 4 and 5.

4.2.1 SAR Image Modelling

In Table 3, the estimated distribution families and the
resulting scale and shape parameters are shown for all
seven SAR images. In addition, Table 3 presents the
KL and KS significance test results for each SAR image.
For urban images, both of the images follow generalized
Rayleigh distribution with p-values of at least 0.9994.
These results provide further empirical evidence to the
results of [3] and [2] which suggest generalized Rayleigh
distribution to model urban scene SAR images.

Examining the forest scene SAR image results in Ta-
ble 3, we can state that forest images for both of the fre-
quency bands have lighter tails than urban scenes, and
the resulting distributions are K and Gamma. Please
note that K and Gamma distribution families gener-
ally contain similar member distributions since K distri-
bution is a compound/product distribution of Gamma.
Both of the agricultural SAR images have similar his-
tograms, whereas UHF-band forest scene SAR image has
slightly fatter tails than that of X-band. For this type
of histograms, due to having fatter tails than a K dis-
tribution, estimating Gamma distribution for UHF-band
forest SAR image fulfills our prior expectations.

Analysing the agricultural scene SAR image results in
Table 3, first, we can state that two images have charac-
teristically different histograms and estimating different
distributions for each has not been surprising. Thus, for
the X-band agricultural SAR image, the resulting dis-
tribution is a Weibull the shape parameter of which is
higher than 3. This result shows that this image has
nearly centralized intensity histogram. For a histogram
of this type, estimating Weibull distribution provides ev-
idence to a study in [15]. On the other hand, L-band agri-

cultural scene SAR image seems to have a Rayleigh-type
non-symmetrical distribution and the most suitable fit-
ted distribution is a Gamma. For both forest and agricul-
tural images, statistical significance results demonstrate
remarkable fitting performance of the proposed method,
all of which achieve a p-value of 1.

Mixed scene image histogram is very similar to
Forrest-UHF and Agricultural-L histograms with heavier
tails. Since those images are modelled with the Gamma
distribution, the estimated distribution family for the
mixed scene image is also Gamma. Statistical signif-
icance values are very low and the estimation perfor-
mance is also reasonable.

In Figure 4 estimated pdfs in both linear and loga-
rithmic scales are shown for all seven SAR images. Log-
arithmic scales for each pdfs have been used to show
the behaviour of data for low probability regions. All
sub-figures provide visual verification to the numerical
results discussed above for Table 3. Examining the fig-
ures, heavy-tailed characteristics of urban images are
clear in the histograms. In addition, estimated gener-
alized Rayleigh distributions generally follow the data
histogram well. For both of the forest images, estima-
tion performance is remarkable and estimated pdfs fit
the data histogram for both low and high probability
data ranges. Due to its nearly-centralized histogram, es-
timated distribution has slightly lower performance for
the data histogram intensity values over 160. However,
for the lower intensities of Agricultural-X images and all
intensities of Agricultural-L image, it is clearly seen that
the estimated distributions fit the data histograms suc-
cessfully.

Additionally, examining the Mixed-X estimation re-
sults in Figure 4(m)-(n), it can be seen that the es-
timated distribution models the intensities around the
peak of the histogram better rather than its tails. Dur-
ing the simulations, in a couple of 20 repetitions for
mixed scene image, we have experienced that the pro-
posed method estimates generalized Rayleigh distribu-
tion instead of Gamma. These trials model the tails of
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(a) SAR-Urban-X (b) SAR-Urban-L (c) SAR-Forest-X

(d) SAR-Forest-UHF (e) SAR-Agricultural-X (f) SAR-Mixed-X

(g) SAR-Agricultural-L (h) US-Cross (i) US-Long

Figure 3: SAR and US images. For US images, sections inside solid lines refer to blood sections, whereas sections inside
dashed lines refer to tissue sections.

this image better rather than the intensities around the
peaks resulting in higher KL and KS values than that
of 0.0234 and 0.0306, respectively. However, generally,
in most of the repetitions, Gamma distribution has been
estimated as the best matching distribution family.

4.2.2 Ultrasound Image Modelling

For US speckle modelling, we have studied four cases
which are two US images and blood and tissue sections
for each image. In Table 4, we show the estimation re-
sults for all four cases and their KL and KS test re-

sults, respectively. Examining the blood sections for
both of the images, estimated pdfs are both K distribu-
tion. Both of the blood sections demonstrate Rayleigh-
like (but sub-Rayleigh) distribution characteristics and
the proposed method estimates the most suitable dis-
tribution for blood sections. In addition, analysing the
tissue sections for both images, estimated pdfs are gener-
alized Rayleigh for both of the images. Estimated distri-
butions for all four cases have fulfilled the expectations
and provide empirical evidence in support of the results
of [5, 9–11] that tissue sections have heavier tails than
blood sections. In addition, generalized Rayleigh has
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Figure 4: SAR image distribution modelling results. Sub-figures on the left column refer to the estimated pdfs in linear
scale, whereas the ones on the right column are in logarithmic scale.
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Table 3: Modelling results and statistical significance of the estimates for SAR images
Image Est. Est. Est. KL Div. KS KS

Family Shape (α̂) Scale (γ̂) Score p-value
Urban-X GenRayl 1.6472 231.6267 0.0231 0.0280 1.0000
Urban-L GenRayl 1.4488 94.9702 0.1020 0.0704 0.9994
Forest-X K 7.8682 10.7058 0.0167 0.0163 1.0000
Forest-UHF Gamma 2.1276 0.0313 0.0173 0.0247 1.0000
Agricultural-X Weibull 3.3410 78.2370 0.0300 0.0363 1.0000
Agricultural-L Gamma 5.5857 0.0780 0.0152 0.0317 1.0000
Mixed-X Gamma 4.0309 0.0674 0.0234 0.0306 1.0000

shown better performance compared to Gamma and K
distributions which are generally preferred distributions
in the literature in modelling the heavy tailed character-
istics of US images resulting from the speckle noise. For
all the cases, statistical significance test results demon-
strate the remarkable fitting performance of the pro-
posed method by achieving p-values of at least 0.9771.
Results obtained from tissue section modelling provide
further evidence to previous studies [10, 11] which pro-
pose generalized Rayleigh distribution for modelling of
tissue sections.

The visual results for US speckle modelling in terms
of linear and log-scale pdfs are shown in Figure 5. Ex-
amining all the sub-figures, we can say that all the fit-
ted distributions follow the data histograms well both
for higher and lower probability ranges. Figure 5 pro-
vides visual support to the numerical results in Table 4.
Particularly, Rayleigh-type characteristics of blood sec-
tions for both cross and longitudinal sections, has been
clearly seen from the Figure 5-(a) and (c). The esti-
mated distribution for these sections are K distribution
and its performance is remarkable for both of the images
and for all data range. Examining the tissue section re-
sults in Figure 5-(b), (d), (f) and (h), we can clearly see
the heavy tailed characteristics of these sections. The
lower probabilities are around 10−3 even for the max-
imum values. Estimated generalized Rayleigh distribu-
tions achieve great fitting performance for all data ranges
of the tissue sections.

5 Conclusion

In this study, we have proposed a generalized Bayesian
model selection approach for remote sensing images
based on trans-space RJMCMC in [21]. The proposed
method in this paper, is an automatic statistical model
class selection method among remote sensing images.
Our method is clearly distinguished from other meth-
ods in the literature that focus on a single family at a
time, since it is able to choose from various distribution
classes. Moreover, the model class space can be easily
adjusted according to the needs of the users, and thus
the proposed method provides a very flexible use in var-
ious applications.

Particularly, the proposed method estimated gener-

alized Rayleigh distribution for urban SAR and tissue
section US images. These results are in good agreement
with the studies in the literature and confirm the es-
timation performance of the proposed method. In ad-
dition, applicability of Gamma and K distributions for
remote sensing images, land scenes of forest and agri-
cultural SAR and blood pool sections of US images has
been clearly demonstrated. In land scene SAR images
with nearly-centralized histograms, Weibull distribution
has been found as the suitable distribution model, and
empirical evidence was provided to the studies in the
literature.

During the simulations, we have experienced some
similarities and differences between distribution fami-
lies for different data sets. Particularly, for heavy tailed
data sets such as Urban SAR and tissue US generalized
Rayleigh is selected by RJMCMC and generally, intra-
class-switch moves are accepted. This shows the suc-
cess of the generalized Rayleigh distribution in modelling
heavy tailed data sets. Additionally, for data sets which
have lighter tails than mentioned images above (Forest
SAR and Blood US), the proposed method has generally
chosen Gamma or K distributions. Since K distribution
is a compound and product distribution of the Gamma
distribution, this result is expected and the algorithm
frequently accepts inter-class-switch moves between K
and Gamma distribution. During examining Rayleigh-
like distributions, the proposed method is more likely to
accept inter-class-switch move between all the families,
since Rayleigh is a common distribution for the most
of the families. Because of this fact, selecting Rayleigh
as the initial distribution, gives flexibility to the algo-
rithm and speeds up the convergence. For the data sets
which are less-skewed than a Rayleigh distribution (e.g.
Agricultural-X), the proposed method often performs
inter-class-switch moves between Weibull and Nakagami
distributions rather than Gamma and K distributions.

Another success of the proposed approach for proposal
distributions appears when there are lots of distributions
whose statistical characteristics are very similar. The
proposed usage can easily adjust itself for a transition
between distributions the shape and scale parameters of
which have extremely different values. In other words,
matching the norms to calculate the parameters, offers to
switch distributions the parameters of which are strictly
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Table 4: Modelling results and statistical significance of the estimates for US images. (B) and (T) refer to blood and tissue
sections, respectively

Est. Est. Est. KL Div. KS KS
Family Shape (α̂) Scale (γ̂) Score p-value

Long (B) K 3.4342 0.1609 0.0112 0.0154 1.0000
Long (T) GenRayl 1.1477 16.3052 0.0169 0.0470 1.0000
Cross (B) K 1.8020 0.1818 0.0218 0.0335 1.0000
Cross (T) GenRayl 0.9863 18.2985 0.0643 0.0926 0.9771
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Figure 5: US image distribution modelling results. (a)-(d): Estimated pdfs in linear scale, (e)-(h): Estimated pdfs in
logarithmic scale.

different. This capability of the proposed method in-
creases the number of model switches between similar
distributions in presence of mimic phenomena. We have
experienced this, especially between Gamma and K dis-
tributions. These two families are able to cover most of
the members of each other. However, since the switched
candidate distributions in each family have nearly the
same statistical characteristics, this does not change the
aim of this paper which is modelling the given data with
the best (the most suitable) distribution. For further
studies, this approach has possibility to open research
directions to perform simulation studies about the mim-
icking capabilities of a distribution to another.

The presented approach can be used in a completely
automated method for noise removal applications in re-
mote sensing imaging methods. It can also be described
as a method that can determine statistical models for
remote sensing images other than the SAR and US. We
would like to underline that the trans-space RJMCMC
approach is not limited only to sampling across differ-
ent distribution families but also can be extended to any
class of models.

13



References

[1] J. Eastman, “Introduction to remote sensing and im-
age processing,” Idrisi for Windows User’s Guide. Cap,
vol. 3, 2001.

[2] A. Achim, E. E. Kuruoglu, and J. Zerubia, “SAR im-
age filtering based on the heavy-tailed Rayleigh model,”
IEEE Transactions on Image Processing, vol. 15, no. 9,
pp. 2686–2693, 2006.

[3] E. E. Kuruoglu and J. Zerubia, “Modeling SAR im-
ages with a generalization of the Rayleigh distribution,”
IEEE Transactions on Image Processing, vol. 13, no. 4,
pp. 527–533, 2004.

[4] J. A. Noble, “Ultrasound image segmentation and tissue
characterization,” Proceedings of the Institution of Me-
chanical Engineers, Part H: Journal of Engineering in
Medicine, vol. 224, no. 2, pp. 307–316, 2010.

[5] A. Osman and V. Kaftandjian, “Characterization of
speckle noise in three dimensional ultrasound data of
material components,” AIMS Materials Science, vol. 4,
no. 4, pp. 920–938, 2017.

[6] C. B. Burckhardt, “Speckle in ultrasound B-mode
scans,” IEEE Transactions on sonics and ultrasonics,
vol. 25, no. 1, pp. 1–6, 1978.

[7] P. Shankar, V. A. Dumane, T. George, C. W. Piccoli,
J. M. Reid, F. Forsberg, and B. B. Goldberg, “Classifi-
cation of breast masses in ultrasonic B scans using Nak-
agami and K distributions,” Physics in Medicine and
Biology, vol. 48, no. 14, p. 2229, 2003.

[8] G. Lampropoulos, A. Drosopoulos, N. Rey et al., “High
resolution radar clutter statistics,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 35, no. 1, pp.
43–60, 1999.

[9] M. Alessandrini, M. De Craene, O. Bernard, S. Giffard-
Roisin, P. Allain, I. Waechter-Stehle, J. Weese, E. Sa-
loux, H. Delingette, M. Sermesant et al., “A pipeline
for the generation of realistic 3D synthetic echocar-
diographic sequences: methodology and open-access
database,” IEEE transactions on medical imaging,
vol. 34, no. 7, pp. 1436–1451, 2015.

[10] M. Pereyra and H. Batatia, “Modeling ultrasound
echoes in skin tissues using symmetric α-stable pro-
cesses,” IEEE transactions on ultrasonics, ferroelectrics,
and frequency control, vol. 59, no. 1, 2012.

[11] M. Pereyra, N. Dobigeon, H. Batatia, and J.-Y.
Tourneret, “Segmentation of skin lesions in 2-D and 3-D
ultrasound images using a spatially coherent generalized
Rayleigh mixture model,” IEEE transactions on medical
imaging, vol. 31, no. 8, pp. 1509–1520, 2012.

[12] J. Jao, “Amplitude distribution of composite terrain
radar clutter and the κ-distribution,” IEEE Transac-
tions on Antennas and Propagation, vol. 32, no. 10, pp.
1049–1062, 1984.

[13] A. Lopes, E. Nezry, R. Touzi, and H. Laur, “Struc-
ture detection and statistical adaptive speckle filtering in
SAR images,” International Journal of Remote Sensing,
vol. 14, no. 9, pp. 1735–1758, 1993.

[14] L. Gagnon and A. Jouan, “Speckle filtering of SAR
images-A comparative study between complex-wavelet-
based and standard filters,” in proc. SPIE, vol. 3169,
1997, pp. 80–91.

[15] M. Sekine and Y. Mao, Weibull radar clutter. IET,
1990, no. 3.

[16] S. Kuttikkad and R. Chellappa, “Non-Gaussian CFAR
techniques for target detection in high resolution SAR
images,” in Image Processing, 1994. Proceedings. ICIP-
94., IEEE International Conference, vol. 1. IEEE, 1994,
pp. 910–914.

[17] B. Gambin and E. Kruglenko, “Temperature mea-
surement by statistical parameters of ultrasound sig-
nal backscattered from tissue samples,” Acta Physica
Polonica A, vol. 128, no. 1A, 2015.

[18] H. Sportouche, J.-M. Nicolas, and F. Tupin, “Mimic Ca-
pacity Of Fisher And Generalized Gamma Distributions
For High-Resolution SAR Image Statistical Modeling,”
IEEE Journal of Selected Topics in Applied Earth Obser-
vations and Remote Sensing, vol. 10, no. 12, pp. 5695–
5711, 2017.

[19] V. A. Krylov, G. Moser, S. B. Serpico, and J. Zeru-
bia, “Enhanced dictionary-based SAR amplitude dis-
tribution estimation and its validation with very high-
resolution data,” IEEE Geoscience and Remote Sensing
Letters, vol. 8, no. 1, pp. 148–152, 2011.

[20] P. J. Green, “Reversible jump Markov chain Monte
Carlo computation and Bayesian model determination,”
Biometrika, vol. 82, no. 4, pp. 711–732, 1995. [Online].
Available: http://biomet.oxfordjournals.org/content/
82/4/711.abstract
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