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Extended summary 18 

Introduction.  Bladder exstrophy is a congenital anomaly involving fetal exposure and protrusion of 19 

the open bladder through an incomplete lower abdominal wall.  Techniques to surgically correct 20 

exstrophy after birth have greatly improved, but it still presents a major challenge to achieving 21 

continence and a good quality of life for patients and their families as the pathophysiology of 22 

bladder dysfunction is unknown. 23 

Objectives. A multimodal approach was used to characterise the histological and biomechanical 24 

properties of exstrophy detrusor.  These were correlated with myocyte responses to agonists and 25 

an evaluation of developmental signalling pathways to evaluate the cause of bladder dysfunction in 26 

exstrophy. 27 

Study design.  Detrusor muscle specimens were obtained during corrective surgery from four 28 

exstrophy groups: neonatal (1-3 days, n=8), younger children (7months-5 years, n=13) and older 29 

children (8-14 years, n=11) undergoing secondary procedures and cloacal exstrophy (16 days-9 30 

years, n=9); control specimens were obtained from children (3 months-9 years, n=14) undergoing 31 

surgery for other pathologies but with normal bladder function. Five lines of experiments were 32 

undertaken: measurement of connective tissue to detrusor muscle ratio, contractile responses to 33 

electrical and agonist stimulation; in vitro biomechanical stiffness, intracellular Ca2+ responses to 34 

contractile agonists and immunohistochemistry for proteins (MMP-7, cyclinD1, ß-catenin and c-35 

myc) involved in fibrosis generation. Exstrophy data were compared to those from the control 36 

group. 37 

Results.  Exstrophy tissue demonstrated reduced smooth muscle compared to connective tissue, 38 

reduced contractile responses and greater mechanical stiffness. However, intracellular Ca2+ 39 

responses to agonists were maintained.  These changes were greatest in neonatal and cloacal 40 

exstrophy samples and least in those from older paediatric bladders.  Immunolabelled MMP-7, ß-41 

catenin and c-myc were reduced in exstrophy samples. 42 
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Discussion.  These results highlight the reality that newborns with exstrophy have significantly 43 

reduced compliance and bladder underactivity, which may persist or return to normal values with 44 

surgery and age. The primary cause of underactivity is increased connective tissue in relation to 45 

detrusor muscle, however detrusor myocyte function remains normal. Finally, the increase of 46 

smooth muscle content in the paediatric bladder group indicates a remodelling response of the 47 

bladder to surgical correction and time. Excess gestational fibrosis is associated with changed 48 

expression of key proteins in the Wnt-signalling pathway, a potential aetiological factor and 49 

therapeutic target. 50 

Conclusion. Results point to connective tissue deposition as the primary pathological process that 51 

determines bladder function with normal myocyte function. Future research that reduces 52 

connective tissue deposition may lead to improvement in outcomes for these children. 53 

 54 

Keywords:  human detrusor, exstrophy, contractile function, intracellular [Ca2+], detrusor stiffness  55 
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Introduction 56 

Bladder exstrophy is part of the exstrophy-epispadias complex whereby developmental failure of 57 

the lower abdominal wall in utero leads to a bladder that remains pathologically open and 58 

protruding: the prevalence is 3 per 100,000 live births [1].  After neonatal closure, further 59 

reconstructive surgery achieves continence, and functional and cosmetically acceptable genitalia. 60 

The Kelly procedure [2] is performed at Great Ormond Street Hospital for Children, but in other 61 

specialist centres, single and staged-repair techniques are used.  Despite successful reconstruction 62 

many patients continue with low-capacity bladders with insufficient contractile function [3,4], 63 

although a retrospective review of 13 patients following complete primary repair showed good 64 

functional recovery [5]. 65 

Characteristic of bladder exstrophy [6,7] is increased bladder wall collagen and denervation [8].  66 

Increased collagen results from transformation of several cell types, particularly fibroblasts and 67 

epithelia, into myofibroblasts [9]; as well as reduced matrix metalloproteinase (MMP) expression 68 

and enhanced expression of tissue inhibitor of metalloproteinases (TIMP) [10].  These processes are 69 

controlled by transforming growth factor-β (TGF-β) and augmented by release of Wnt-ligand 70 

proteins to promote myofibroblast differentiation [11], mediated by transcription factors such as β-71 

catenin, c-myc and cyclin-D1.  Massive parallel sequencing identified coding changes in 50% of 72 

exstrophy patients in 19 different Wnt genes [12].  However, functional characterisation to support 73 

histological and genetic changes is sparse. In this study, we measured contractile and biomechanical 74 

properties of detrusor smooth muscle from human exstrophy bladders and characterised changes 75 

to the Wnt-signalling pathway to identify potential pathways that may be therapeutic targets to 76 

reverse associated fibrosis.  We tested the hypothesis that more connective tissue at the expense 77 

of smooth muscle in the exstrophy bladder is associated with reduced contractile performance and 78 

greater biomechanical stiffness, and if the former was associated with functional denervation and 79 
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smooth muscle failure.  We carried out experiments in vitro with isolated detrusor samples to 80 

measure: smooth muscle and connective tissue content; active force generation; passive stiffness 81 

and intracellular Ca2+ responses to contractile agonists.  We also performed preliminary 82 

observations regarding the molecular basis of increased connective tissue deposition by measuring 83 

any changes to the Wnt-signalling pathway.  84 

85 
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Methods 86 

Tissue samples, ethics and preparations.  Bladder biopsy samples came from five patient groups.  A 87 

control group (n=14; 10 male (M), 4 female (F); 3 months-9 years) with normal bladder function 88 

undergoing open bladder surgery (ureteric reimplantation, urachal cyst excision, localised tumour 89 

excision).  Four exstrophy groups: i) neonatal exstrophy at time of primary bladder closure (n=8; 6M, 90 

2F; age 1-3 days); ii) cloacal exstrophy (n=9; 3M, 6F; 16 days-9 years); iii) young children receiving 91 

secondary procedures (n=13; 8M, 5F; 7months-5 years): a Kelly soft tissue reconstruction (n=10), 92 

redo bladder neck repair with augmentation (n=1), bladder neck closure with augmentation (n=1) 93 

and bladder and abdominal wall closure for covered variant exstrophy (n=1); iv) older children 94 

receiving secondary procedures (n=11; 8M, 3F; 8-14 years) by Kelly repair (n=3), bladder neck repair 95 

with augmentation (n=6) or bladder neck closure (n=2).  96 

All samples were from the lateral wall of the bladder dome, with no evidence of adjacent metaplasia 97 

in the one case of tumour excision. After ethical approval, the study was accepted by the R&D 98 

department, Great Ormond Street Hospital, London, UK.  Parents or guardians were given an 99 

information sheet and consent obtained at least 24 hours later. Samples were carried in Ca2+-free 100 

solution, within 1-2 hours, to the laboratory for immediate use.  Serosa and mucosa were removed 101 

by blunt dissection, and detrusor strips (1 mm diam; 4-5 mm length) dissected. 102 

Solutions.  Functional experiments (36°C) in Tyrode’s solution (mM): NaCl, 118; NaHCO3, 24; KCl, 103 

4.0; MgCl2, 1.0; NaH2PO4, 0.4; CaCl2, 1.8; glucose, 6.1; Na pyruvate, 5.0; pH 7.4, 5%CO2,95% O2.  104 

Ca2+-free solution was (mM): NaCl, 132; KCl, 4.0; NaH2PO4, 0.4; glucose, 6.1; Na pyruvate, 5.0; 105 

HEPES, 10.0, pH 7.4 with 1M NaOH.  High-K Tyrode’s contained 80 mM KCl, with no osmolality 106 

correction. Drugs were diluted from aqueous stocks.  Cell isolation used Ca2+-free solution plus 107 

(mg/ml): Worthington Type-II collagenase, 20; hyaluronidase-IS, 0.5; hyaluronidase-III, 0.5; 108 

antitrypsin-IIS, 0.9; bovine albumin, 5.0 [13].  All chemicals were from Sigma UK. 109 
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Active tension recording.  Muscle strips were tied in a horizontal superfusion trough between an 110 

isometric force transducer and a fixed hook. Nerve-mediated contractions were elicited by electrical 111 

field stimulation (3-s trains, width 0.1ms, frequency 1-40Hz); abolished by 1µM tetrodotoxin. 112 

Contractions generated by direct muscle stimulation were elicited by the muscarinic agonist 113 

carbachol (0.1-30µM) or the purinergic agonist α,β−methylene ATP (ABMA, 10 µM). The peak 114 

increase from baseline tension was recorded and normalised to cross-section area, a. 115 

Biomechanical experiments.  Muscle strips were tied between the force transducer and the central 116 

pole of a rotary solenoid.  Application of a step voltage to the solenoid rotated it to stretch the 117 

muscle by up to 1 mm (20% resting length, L, i.e. ∆L/L=0.2) for 50 s before returning to the original 118 

length.  Stretches were in triplicate at 5-min intervals and average values used.  Upon stretch 119 

tension, T, increased followed by partial relaxation (magnitude T2, time constant τ), to a new steady-120 

state value, T1 (figure 3A).  The elastic modulus, E, was calculated from E=T1/(a*∆L/L); units 121 

megapascal, MPa=1N.mm-2).  Tension (and hence elastic modulus) immediately after a stretch was 122 

greater, the component dissipated by viscoelastic relaxation was calculated by E2=T2/(a*∆L/L). 123 

Measurement of intracellular Ca2+, [Ca2+]i.  Small (1 mm3) biopsy pieces were gently triturated for 124 

up to 20 min in 1ml of cell isolation solution, gently centrifuged, the supernatant decanted and 125 

replaced with Tyrode’s solution.  The Ca2+ fluorochrome Fura-2 (5 µM) was added for 20-30 minutes.  126 

Myocytes were identified by a spindle-shaped appearance and samples fixed in 4% formalin solution 127 

and labelled for smooth-muscle myosin for confirmation.  A drop of cell suspension was placed in a 128 

heated (36°C) superfusion chamber and [Ca2+]i measured by alternate (32 Hz) excitation at 340 and 129 

380 nm; fluorescent light was collected between 410 and 510 nm.  The magnitude of the 130 

fluorescence ratio measured at 340 and 380nm excitation, R340/380, was a function of [Ca2+]i. The 131 

system was calibrated as described previously [13]. 132 
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Histology.  Portions of the biopsy were placed in 10 % formaldehyde and stored at 4°C. Samples 133 

were dehydrated in alcohol, then xylene and paraffin.  Sections (5 µm) on TESPA-coated glass slides 134 

were stained with Elastin van Gieson (collagen, red; elastin, black; muscle yellow/orange).  The 135 

proportion of muscle to connective tissue (collagen and elastin) was measured using colour filters 136 

on Image-J. Three separate regions (50x50 µm) per section were measured, distant from mucosa or 137 

any obvious areas absent of tissue, and the average recorded. 138 

Multi-channel immunofluorescence labelling and quantitative image intensity analyses.  Antibodies 139 

for MMP7 (Abcam), cyclin-D1 (Santa Cruz), ß-catenin and c-myc (Novacastra/Leica) were optimised 140 

for concentration, pH-dependence and antigen retrieval.  A Bond maX™ automated system (Leica 141 

BioSystems) was used for labelling [14], the researcher was blind to the antibodies used.  Antibodies 142 

were incubated simultaneously on each section and labelled with secondary fluorescent antibodies; 143 

Cy3 (514/565 nm), Cy5 (633/671 nm), FITC (488/517 nm), Cy3.5 (561/617 nm) respectively, as well 144 

as the nuclear counter-stain DAPI (405/429 nm).  Each section was imaged with a TCS SP8 confocal 145 

system (Leica) at 20x (dry objective) and 40x (1.3 NA, oil objective) with a 6x digital zoom and a z-146 

step of 0.17µm.  High magnification (x63) images were taken from three, randomly selected, areas 147 

of each section and analysed using Huygens professional image deconvolution software (Scientific 148 

Volume Imaging, Hilversum, NL) [14] using a macro compiled to measure individual intensities.  149 

Data presentation and analysis.  Data are mean±SEM, N;n=number of biopsies;preparations. 150 

Immunofluorescence data are medians [25,75% interquartiles] as sets were not normally 151 

distributed. Significances between multiple data sets used parametric or non-parametric ANOVA, 152 

followed by appropriate post hoc tests; the null hypothesis was rejected at *p<0.05, **p<0.01, 153 

***p<0.001. Dose-response or force-frequency curves were fitted to: T=(Tmax.xm)/(xm+km); where 154 

Tmax is the maximum response at high stimulation frequency (f) or agonist concentration (S); x is the 155 

different values of f or S; km is the value of x required to achieve Tmax/2; m is a constant.  A Spearman 156 
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correlation coefficient, r, tested associations between two variables, for subsequent estimation of 157 

a p-value. 158 

159 
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Results 160 

Histology measurements.  Figure 1A shows sample sections of detrusor from control and young 161 

paediatric exstrophy patients, the latter shows mucosa on the left edge which was avoided for 162 

analysis. The ratio of smooth muscle to connective tissue (SM/CT) was measured for all five groups. 163 

In all exstrophy cohorts, except the older paediatric cohort, the SM/CT ratio was significantly lower 164 

compared to the normal cohort (Table 1). Moreover, there was a progressive and significant decline 165 

of the ratio from the control and older paediatric exstrophy groups, through to younger paediatric 166 

exstrophy, neonatal and cloacal exstrophy groups (figure 1B).  167 

Contractile responses to nerve-mediated and agonist-induced activation. The frequency-168 

dependence of nerve-mediated contractions from normal and exstrophy bladders was used to 169 

determine: maximum tension at high frequencies, Tmax,n-m, and f1/2, the frequency that generates 170 

Tmax,n-m/2 (figure 2A).  Tmax, n-m was reduced in both paediatric, neonatal and cloacal exstrophy 171 

groups compared to control; f1/2 values were similar in all groups (Table 1).  Atropine-resistance, the 172 

percentage residual tension after 1µM atropine, was present in all groups (Table 1, not determined 173 

in cloacal exstrophy); percentage values were highly variable, with no significant differences 174 

between the cohorts, but in all the data were significantly different from zero. 175 

Dose-response curves to the muscarinic agonist, carbachol showed that the maximum response 176 

(Tmax,carb) was lower in all four exstrophy groups.  However, carbachol potency was greater in both 177 

paediatric and the neonatal exstrophy groups, as seen by larger pEC50 values (Table 1), statistical 178 

analyses were not performed for agonist data from the cloacal exstrophy group, due to the small 179 

sample number.  A similar pattern was observed in the magnitude of responses to a single 180 

concentration (10 µM) of ABMA. Finally, the ratio of the maximum responses to nerve-mediated 181 

stimulation and carbachol (Tmax,n-m/Tmax,carb) was calculated: a smaller ratio is interpreted as reduced 182 

functional innervation; values were similar in all five groups (Table 1). The relationships between 183 
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maximum response to nerve-mediated stimulation (closed circles) or carbachol (open circles) as a 184 

function of the SM/CT ratio are shown in figure 2B; contraction magnitude diminished as smooth 185 

muscle content decreased. 186 

Passive biomechanical properties.  The transient and steady-state passive tensile properties of 187 

detrusor muscle strips were measured during a 50s stretch by 20% of the resting length (∆L/L=0.2). 188 

Three variables were measured: steady-state tension (T1, N.mm-2); magnitude of viscoelastic 189 

relaxation (T2, N.mm-2) and the time constant of viscoelastic relaxation (τ, s; figure 3A, Table 2).   190 

Three stretches, five minutes apart, were applied; T1 and T2 values were significantly greater during 191 

the second and third stretches and similar in value to each other; values of τ were similar for all 192 

three stretches.  Average values from the second and third stretches for each variable are quoted. 193 

Measurements from detrusor samples of control, paediatric exstrophy and neonatal exstrophy 194 

bladders were made.  Data from the older and young paediatric exstrophy groups were combined 195 

due to the relatively small number of biopsy samples tested.  No data were available for cloacal 196 

exstrophy bladders as the biopsy samples were too small.   197 

The value of elastic modulus, E, a steady-state measure of tissue stiffness, was calculated from T1 198 

values (see Methods).  Values of T1, for the control, paediatric and neonatal exstrophy groups are 199 

shown in figure 3B.  Exstrophy data were significantly greater than compared to the normal group.  200 

T2 values were smaller than T  1 in all samples, but a similar trend was measured as for T 1 in the 201 

three groups: values of τ were similar in all groups. The relationship between the elastic modulus, E 202 

and SM/CT ratio (figure 3C) for these groups shows that stiffness increased as the proportion of 203 

connective tissue also increased, note the CT/SM ratio is inverted compared to figure 2B.   204 

Intracellular Ca2+ regulation.  It is unclear from the contractile data if reduction of contractile 205 

function from exstrophy patients was in part due to reduced contractile function of individual 206 
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myocytes, as well as reduced smooth muscle content.  Altered detrusor function was tested by 207 

measuring the change of intracellular calcium ([Ca2+]i), in isolated myocytes from normal and 208 

exstrophy bladders in response to contractile agonists.  [Ca2+]i was measured in myocytes from 209 

cloacal exstrophy bladders, but the small number of cells precluded statistical comparison, but data 210 

are shown for comparison.  Data from the two paediatric exstrophy groups have been combined as 211 

myocytes were isolated from a total of only seven samples (n=3, 4 from young and older paediatric 212 

exstrophy groups).  The resting [Ca2+]i was similar in myocytes from the remaining groups (Table 2).  213 

The changes of [Ca2+]i, ∆[Ca2+]i, in response to four contractile interventions were recorded: 214 

carbachol for muscarinic receptor activation; ABMA for purinergic receptor activation; 80 mM 215 

extracellular KCl to depolarise the cell and activate Ca2+ channels; caffeine to release Ca2+ from 216 

intracellular stores.  With cells from control bladder samples the rise of [Ca2+]i, ∆[Ca2+]i, was not 217 

significantly different for all interventions.  Moreover, ∆[Ca2+]i for each intervention was similar in 218 

myocytes from paediatric and neonatal exstrophy bladders (Table 2).  219 

Quantitative image intensity analysis.  Multichannel immunofluorescence labelling of a normal and 220 

paediatric exstrophy samples (figure 4A, parts a, c), along with higher power regions (parts b, d) 221 

presented as deconvoluted images, were used for quantitative analysis.  Data from nine normal 222 

bladder samples and seven exstrophy (five paediatric and two neonatal exstrophy) are shown 223 

(figure 4B).  The intensity measurements of the different immunolabels demonstrated a reduction 224 

of MMP-7 signal (p=0.045), and more significant reductions of β−catenin (p=0.0037) and c-myc 225 

(p<0.001) in the exstrophy samples; there was no change to cyclin-D1 labelling.  226 
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Discussion 227 

Exstrophy and detrusor function.  Reduction of the SM/CT ratio in human exstrophy detrusor 228 

correlates with similar previous findings [7,8].  The reduced ratio was greatest in neonates with 229 

bladder and cloacal exstrophy, with evidence of recovery in older children of the two paediatric 230 

exstrophy groups. Recovery of smooth muscle relates either to the closure procedure and/or ageing 231 

itself.  As the SM/CT ratio reduced, the greater was reduced contractile function, whether elicited 232 

by smooth muscle agonists or electrical stimulation of embedded motor nerves. The ratio of force 233 

generated either by nerve-mediated stimulation or carbachol exposure was similar in normal and 234 

exstrophy cohorts, suggesting detrusor muscle motor innervation itself was not affected by 235 

exstrophy.  Moreover, there is no detriment to intracellular signalling pathways that regulate 236 

intracellular [Ca2+] between the normal and exstrophy groups, as tested by receptor agonists, cell 237 

depolarisation (high-K) or intracellular Ca2+ release (caffeine).  These data confirm previous 238 

observations of exstrophy myocytes responding to carbachol and high-K solutions [15], although the 239 

reduced basal [Ca2+] in their exstrophy myocytes was not observed here.  Thus, in combination with 240 

the histological differences in SM/CT content, replacement of smooth muscle with connective tissue 241 

is the most likely reason for reduced active force development.  Maintained myocyte function with 242 

exstrophy is also indicated by similar motility and proliferation in response to growth factors [16]. 243 

Another consequence of the increased connective tissue content in exstrophy bladder samples was 244 

greater passive stiffness; the SM/CT ratio showed an inverse relationship to passive stiffness.  We 245 

did not determine the collagen subtype, which is a major component of connective tissue.  However, 246 

previous work with adult bladder samples has shown that excessive collagen deposition and poorly 247 

compliant bladders is associated with a shift from type-I to type-III collagen [17].  The in vitro change 248 

to a stiffer, less contractile phenotype is consistent with some clinical studies [18].  Moreover, 249 

attempts to improve bladder contractile performance with inotropic agents would be less successful 250 
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as residual muscle properties are unaltered.  Increased connective tissue, associated with reduced 251 

metalloproteinase expression and increased expression of tissue inhibitors of metalloproteinases 252 

(TIMP) is associated with adult bladder outlet obstruction [19,20], or even raised intravesicular 253 

pressures [21].  This suggests decreased expression of enzymes that degrade collagen may 254 

contribute to a similar situation in bladder exstrophy.  Treatment of post-radiation fibrotic bladders 255 

with relaxin reduced connective tissue deposition and recovered cystometric function [22] and this 256 

may offer a similar treatment option with bladder exstrophy. 257 

Pathways influencing connective tissue deposition.  The Wnt pathway, with intracellular Ca2+ and 258 

transcription factor co-activators as signal transducers, are key in tissue and organ development 259 

[23-25].  In particular, Wnt-signalling pathways are important in the terminal differentiation of 260 

fibroblasts, smooth muscle cells and epithelial cells to collagen-secreting myofibroblasts.   There is 261 

little work concerned with human neonatal bladder disorders, but genome expression and genome-262 

wide expression studies have implicated changes to Wnt signalling pathways in exstrophy [26,27].  263 

Quantitative image intensity analysis showed reduced labelling for β-catenin and c-myc, with 264 

reduction of the matrix-metalloproteinase, MMP-7.  However, expression of cyclin-D1, another 265 

target of β-catenin transcription was not significantly altered in exstrophy samples.  Little is known 266 

about the particular Wnt-proteins that regulate normal human bladder development and 267 

generation of fibrosis, but down-regulation of Wnt11 is associated with fibrosis in patients with 268 

bladder pain syndrome [28].  Overall, downregulation of a Wnt-related pathway in a congenital 269 

bladder anomaly is a novel observation [29] and may result in increased differentiation into 270 

fibroblasts rather than a smooth muscle lineage.  Future work targetting molecular signalling 271 

pathways such as Wnt and TGF-β, which likely underpin this developmental disease, has the 272 

potential to develop prognostic and therapeutic targets. 273 



 15 

Limitations.  Sample availability was limited by the rarity of these conditions and complexity of 274 

surgical procedures and statistical analyses were not always possible, especially with the cloacal 275 

exstrophy group.  It would have been preferable to perform histological, biomechanical and 276 

functional studies on each preparation, but in most cases this was not possible. All samples were 277 

given an anonymising study code, but researchers were unblinded for functional experiments, as 278 

they also retrieved samples. However, histology and immunohistochemistry experiments were 279 

undertaken later with researchers now blinded; the code and diagnosis was revealed only after data 280 

collection. 281 

Conclusion 282 

This study highlights the critical importance of raised connective tissue content in bladder 283 

exstrophy. Exstrophy management has dramatically improved and surgery now provides continence 284 

and urethral voiding for many. However, some still fail to achieve continence and the development 285 

of therapies is important. Reduced detrusor contractile function with exstrophy is highly correlated 286 

with the SM/CT ratio, alongside normal myocyte function. We suggest a molecular explanation for 287 

increased CT in terms of reduced Wnt-pathway function. 288 
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Figure legends 362 

Figure 1.  Smooth muscle and connective tissue in normal and exstrophy bladders.  A: van Gieson 363 

stain of detrusor samples from normal (upper) and paediatric exstrophy (lower) bladders: orange 364 

smooth muscle; red connective tissue.  B: The smooth muscle:connective tissue (SM/CT) ratio of the 365 

detrusor layer from normal, and the four exstrophy cohorts, ***p<0.001 366 

Figure 2.  Active contractile properties of detrusor from normal and exstrophy bladders.  A: Force-367 

frequency curves of nerve-mediated contractions from control and young and old paediatric (paed), 368 

neonatal (neo) and cloacal (cloa) exstrophy bladders.  Estimation of Tmax,n-m and f1/2 values are 369 

shown for the control bladder curve.  B.  The association between the SM/CT ratio and either the 370 

Tmax for nerve-mediated contractions (Tmax,n-m, open circles) or for maximum carbachol contractions 371 

(Tmax,carb, closed circles). 372 

Figure 3.  Biomechanical characteristics of detrusor from normal and exstrophy bladders.  A:  373 

Tracing of isometric force for a stretch of 1 mm for 50 s, resting muscle length 5 mm.  B: values of 374 

elastic modulus, E, for samples from normal, paediatric exstrophy and neonatal exstrophy bladders.  375 

***p<0.001 vs normal, ### p<0.001 paediatric vs neonatal exstrophy.  C: the association between 376 

the CT/SM ratio and elastic modulus, E, for samples from control, paediatric exstrophy and neonatal 377 

exstrophy bladders.  Note logarithmic axes in parts B and C.   378 

Figure 4.  Quantitative analysis of wnt-related proteins.  A:  Representative images (x63) of normal 379 

(left) and paediatric exstrophy (right) detrusor.  Images a and c: composite overlay of four 380 

fluorphores: Cy3 (yellow) for MMP-7; Cy5 (purple) for cyclin-D1; FITC (green) for β-catenin; Cy3.5 381 

(red) for c-myc; DAPI nuclear label (blue).  Images b,d: higher magnification regions sections to show 382 

more clearly individual colour labels  B: Quantitative analysis of expression of the four epitopes 383 

carried out on grey constructs of images filtered for the four fluorochromes.  Median data [25,75% 384 

interquartiles], *p<0.05, **p<0.01, ***p<0.001, (N=9;7: control; exstrophy). 385 
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Table 1.  Smooth muscle (SM): connective tissue (CT) ratios and contractile characteristics in detrusor muscle from normal and exstrophy 

bladders.  The paediatric exstrophy data is shown as two sets; from older and younger children (see Methods).  Mean data ±SEM (N biopsy 

samples).  *p<0.05; **p<0.01; ***p<0.001 vs normal. 

 Normal 
Older 

Paediatric 
exstrophy 

Young 
Paediatric 
exstrophy 

Neonatal 
exstrophy Cloacal exstrophy 

Histology      
SM/CT ratio 3.03±0.56 (11 ) 2.56±0.26 (6 ) 0.42±0.19 (10)*** 0.19±0.042 (5)*** 0.086±0.018 ( )*** 
Contractile data      
Tmax,n-m, mN.mm-2 6.80±0.86 (10) 2.93±0.75 (6)* 1.19±0.60 (11)** 0.93±0.25 (5)*** 0.24±0.12 (7)*** 

f1/2, Hz 13.2±2.1 (10) 14.2±3.6 (6) 19.4±3.5 (11) 17.2±3.9 (5) 15.6±1.0 (7) 

Atropine resist 60.0±28.3 (7) 51.2±14.1 (6) 26.1±8.7 (7) 26.7±17.5 (5) ND 

Tmax,carb mN.mm-2 30.8±6.68 (10) 11.0±1.01 (6) ** 5.98±2.40 (10)*** 5.41±1.63 (5)*** 4.25, 1.06 (2) 

Carb pEC50 5.51±0.04 (10) 6.28±0.12 (6)** 5.99±0.12 (10)** 5.75±0.64 [(5)* 5.67, 5.70 (2) 

TABMA, mN.mm-2 11.2±2.68 (7) 2.02±0.54 (6)*** 1.69±0.50 (11)*** 0.94±0.22 (5)*** 0.05±0.01 (3) 

Tmax,n-m/T  max,carb 0.44±0.11 (10) 0.24±0.04 (6) 0.34±0.10 (10) 0.20±0.08 (5) ND 

 
 

 

  



Table 2.  Biomechanics and intracellular [Ca2+] data in detrusor muscle from normal and exstrophy bladders.  The 

paediatric exstrophy data are shown as one data set.  Mean data ±SEM (n preparations from N biopsy samples).  *p<0.05. 

E, elastic modulus is used as a measure of detrusor stiffness.  E2 is the viscoelastic component of instantaneous stiffness – 

see Methods for details. 

 
 Normal Paediatric exstrophy Neonatal exstrophy Cloacal exstrophy 

Biomechanics data     

E, MPa (elastic modulus) 20.0±6.20 (9) 86.5±28.1 (6)* 259±61.5 (4)*  

E2, MPa 6.75±3.60 (9) 20.2±6.60 (6)* 96.0±62.1 (4)*  

τ, seconds 9.6±1.4 (9) 10.8±0.6 (6) 10.4±0.5 (4)  

Intracell [Ca2+] data     

Resting [Ca2+]i, nM 75±16 (9) 111±23 (7) 116±20 (4) 83±9 (3) 

∆[Ca2+]i carb, nM 416±100 (9) 432±128 (7) 413±125 (4) 70±12 (3) 

∆[Ca2+]i ABMA, nM 361±101 (9) 561±150 (7) 401±65 (4) 118±52 (3) 

∆[Ca2+]i KCl, nM 322±94 (9) 419±109 (7) 337±123 (4) 106±37 (3) 

∆[Ca2+]i caff, nM 401±120 (4) 469±102 (6) 394±119 (4) 91,171 (2) 
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