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A B S T R A C T

Aims: Epigenetic mechanisms regulate gene expression and may influence the pathogene-

sis of type 2 diabetes through the loss of insulin sensitivity. The aims of this study were to

measure variation in DNA methylation at the type 2 diabetes locus KCNQ1 and assess its

relationship with metabolic measures and with genotype.

Methods: DNA methylation from whole blood DNAwas quantified using pyrosequencing at

5 CpG sites at the KCNQ1 locus in 510 individuals without diabetes from the ‘Relationship

between Insulin Sensitivity and Cardiovascular disease’ (RISC) cohort. Genotype data was

analysed at the same locus in 1119 individuals in the same cohort. Insulin sensitivity

was assessed by euglycaemic-hyperinsulinaemic clamp.

Results: DNAmethylation at the KCNQ1 locuswas inversely associatedwith insulin sensitiv-

ity and serum adiponectin. This association was driven by a methylation-altering Single

Nucleotide Polymorphism (SNP) (rs231840) which ablated a methylation site and reduced

methylation levels. A second SNP (rs231357), in weak Linkage Disequilibrium (LD) with

rs231840, was also associated with insulin sensitivity and DNA methylation. These SNPs

have not been previously reported to be associated with type 2 diabetes risk or insulin sen-

sitivity.

Conclusion: Evidence indicates that genetic and epigenetic determinants at the KCNQ1 locus

influence insulin sensitivity.
� 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Decreased insulin sensitivity is associated with a wide range

of common disorders including type 2 diabetes, obesity,

hypertension and cardiovascular disease. Genome-wide asso-

ciation studies (GWAS) have identified over 100 type 2 dia-

betes susceptibility loci [1]. However, many appear to impact

upon b-cell function and insulin secretion rather than insulin

sensitivity [1,2] leading to the potential importance of non-

genetic factors such as epigenetic modifications.

Epigenetic variation has recently become the focus of con-

siderable interest in the domain of common complex dis-

eases, due to the role of epigenetic mechanisms in gene

regulation. DNA methylation is most commonly studied, lar-

gely due to its covalent stability and ease of measurement.

A detailed overview of the current literature linking type 2

diabetes and DNA methylation has been recently published

[3]. DNAmethylation has been associatedwith type 2 diabetes

in a number of case-control studies, conducted on both gen-

ome wide and locus specific methylation data in various tis-

sues [4–7]. DNA methylation has also been identified as a

predictor of incident disease [8]. In addition to its association

with type 2 diabetes, evidence also suggests DNAmethylation

is associated with insulin sensitivity measured by HOMA-IR

[9,10].

In this study we explore locus-specific DNA methylation

patterns in the gene KCNQ1, which has established links to

type 2 diabetes aetiology [7]. A number of SNPs at the 11p15

locus (which includes KCNQ1) have recently been implicated

in type 2 diabetes in both European and Asian populations

[1,11]. DNA methylation in a differentially methylated region

�769 kb distal to KCNQ1 has previously been associated with

the genotype of one these SNPs, rs2334499 [12], suggesting

that methylation at the 11p15 locus could be important in

the aetiology of type 2 diabetes or its associated traits. We tar-

geted an intronic region within the KCNQ1 gene itself, as lim-

ited previous evidence suggested that inter-individual

variation in DNA methylation existed in this region [13].

The primary aim was to assess the relationship between

DNA methylation at the KCNQ1 locus and measures of insulin

sensitivity and b-cell function in a cohort of healthy individu-

als without diabetes. Individuals without diabetes were stud-

ied in order to remove the potentially confounding effects of

the disease state (e.g. hyperglycaemia and dyslipidaemia) on

the measures of interest. Here we describe the DNA

methylation-phenotype relationship at this locus and con-

sider the role of the underlying genetic architecture on the

determination of DNA methylation and in turn the potential

influence of these factors on phenotype in this healthy

population.

2. Subjects, material and methods

2.1. Study cohort

Samples were derived from the Relationship between Insulin

Sensitivity and Cardiovascular disease (RISC) cohort. This is a
collection of individuals aged between 30 and 60 years

recruited from 19 centres in 14 countries across Europe. The

recruitment methods of the study have been described previ-

ously [14].

Data collected as part of this study were generated

between September 2010 and June 2011 at Newcastle Univer-

sity, UK.

DNA was extracted from whole blood using a Nucleon

BACC2 kit (Tepnel Life Sciences, UK) according to manufac-

turer’s instructions. All individuals with DNA samples who

had undertaken metabolic analysis were considered for selec-

tion (n = 1319). Methylation data were generated in 510 indi-

viduals randomly selected from the overall group (n = 1319)

who had undertaken a euglycaemic-hyperinsulinaemic

clamp and had fasting glucose levels of �7 mmol/L measured

by clamp or oral glucose tolerance test. 459 of 510 individuals

assayed for KCNQ1 methylation had genotyping, methylation

and metabolic data. Further investigation of genotype against

insulin sensitivity was conducted in 1119 of 1319 individuals

who had both genotype and metabolic data. Additional geno-

typing of rs231840 was undertaken (see Section 2.4).

Local ethics committee approval was obtained by each

recruitment centre (see supplementary appendix). Written

consent was obtained from all participants.

2.2. Metabolic measures

A number of insulin sensitivity and b-cell function measures

were investigated. M value is a measure of insulin sensitivity,

and represents the amount of glucose infused during

euglycaemic-hyperinsulinaemic clamp per minute per kg of

lean body mass, as determined by bioimpedance (Tanita

International division, Yiewsley, UK) [14]. Fasting plasma glu-

cose and serum insulin measured were assayed in the fasting

stage of an oral glucose tolerance test (OGTT) [14]. Two hour

plasma glucose was also assayed during OGTT. Pancreatic b-

cell function was assessed by measuring b-cell glucose sensi-

tivity using a model described previously [15,16]. Homeostasis

model assessment-insulin resistance (HOMA-IR) was calcu-

lated as (fasting plasma glucose (mmol/L) � fasting serum

insulin (mU/L))/22.5. Leptin and adiponectin were measured

in fasting serum samples as described previously [17].

2.3. Methylation measures

Percentage DNA methylation at five CpG sites in the KCNQ1

locus was determined in a sub-group of 510 RISC individuals

using Pyrosequencing�. CpG sites were numbered 1–5 and

are shown in Fig. 1. PCR primers spanning the 246 base pair

region chr11:2680639-2680884 (50 Biotin-TGG TTA GGA AGG

ATA GTT30 and 50CAA CCT CAC ATA CTT CTC30) and a

sequencing primer (50AAT AAA AAC ACA CAA CAA AT30,

chr11:2680741-2680760) were designed using Qiagen PSQ

assay design software, v.1.0.6 (Fig. 1).

One mg of genomic DNA was bisulphite modified using an

EZ DNA Methylation kit (Zymo Research, Irvine, USA) accord-

ing to the manufacturer’s instructions. A PCR reaction tar-



Fig. 1 – Chromosome 11p15 locus. A: Black bar represents the amplicon generated for Pyrosequencing�. CpG sites analysed

are numbered and shown as black triangles. The grey bar represents the location of the Pyrosequencing� primer. Location of

rs231840 is shown. B: Topography of region of interest. Gene annotations were taken from the University of California Santa

Cruz genome browser (http://genome.ucsc.edu/). C: Linkage disequilibrium plot created from Haploview v4.2. Values

indicated are D0 (1 = complete linkage disequilibrium). Colour scheme represents r2 values: r2 = 0, white; 0 < r2 < 1, shades of

grey; r2 = 1, black. Grey squares around SNP identifiers indicate the blocks as defined by solid spine linkage disequilibrium

(SSLD) or singleton SNPs. Type 2 diabetes associated SNPs are shown at top of the panel (rs2334499, rs231362, rs2237892).
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geted to the region of interest was then performed containing

40 ng of modified DNA. EpiTECT methylated/unmethylated

DNA was used in control reactions (Qiagen, Crawley, UK). In

addition to DNA, 2x Q buffer (Qiagen, Crawley, UK), 0.5 mM

of each oligonucleotide and HotStar Master Mix (Qiagen,

Crawley, UK) were added, to a final volume of 20 mL. Amplifi-

cation was initiated by denaturation at 95 �C for 15 min, fol-

lowed by 50 cycles of denaturation at 95 �C for 15 s,

annealing at 50.5 �C for 30 s, and extension at 72 �C for 15 s.

Finally, there was a further extension at 72 �C for 5 min before

the samples were cooled to 4 �C. Five mL of amplicons were

utilised for downstream single strand preparation and

hybridisation of 0.4 mM sequencing primer using a Qiagen

vacuum prep tool and workstation according to manufac-

turer’s instructions. Pyrosequencing� analysis was con-
ducted on a PyroMark MD system on each sample in

duplicate. Assay success rate was 98.2%. The intra-plate co-

efficient of variation was 2.2% and inter-plate co-efficient of

variation was 3.7%.

2.4. Genotyping

One of the CpG sites measured harboured a C > T single

nucleotide polymorphism (SNP), rs231840 (CpG 4, see Fig. 1).

HapMap data indicated that rs231840 lay towards the 30 end

of a linkage disequilibrium (LD) block spanning approxi-

mately 95 kb between chr11:2600454 and chr11:2695235

(NCBI, build 36). SNP data were previously generated on the

RISC cohort using an Affymetrix Genome-wide Human SNP

Array 6.0 (Affymetrix, Santa Clara, USA). Genotype data from

http://genome.ucsc.edu/
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the SNPs lying within this LD block were extracted from the

RISC GWAS dataset (a total of 26 SNPs).

In addition, we imputed genotypes for KCNQ1 SNPs

recently found to be associated with type 2 diabetes that were

not present on the array, using MaCH. SNPs rs2334499 [12],

rs231362 [2] and rs2237892 [18,19] were imputed in 1004 RISC

individuals.

SNP rs231840 is not present on the Affymetrix Genome-

wide Human SNP Array 6.0 and could not be imputed from

the available data since it was not present in the HapMap ref-

erence panel. Genotyping of rs231840 was therefore com-

pleted by KBioscience (www.kbioscience.co.uk) using their

proprietary KASPar allele specific genotyping technology.

1058 RISC individuals were genotyped successfully (509 from

the subgroup of 510 individuals with methylation data and

549 from the remaining cohort of 1319. Duplicates (n = 99)

were tested and concordance was 100%. Furthermore, two

samples from each genotype were also genotyped using

Pyrosequencing�. Methods are available from the authors

on request. This quality control established that the KASPar

technology was not influenced by methylation which could

have biased genotype calls. Concordance between the meth-

ods was 100% indicating this was not the case. Genotypes

were coded as 0, 1 or 2, reflecting the number of copies of

the minor allele individuals had.

2.5. Statistical analysis

Linear regression analysis was conducted to investigate the

relationship between methylation, metabolic measures and

genotype. Outcome variables were normalised using Log10
transformation. Where appropriate, adjustment for potential

confounders (age, sex, study centre and BMI) was carried out

as described in the results. Adjustment for study centre was

included to help account for any major population stratifica-

tion across Europe. Regression analysis outcomes are pre-

sented as: (exponentiate of regression coefficient (95%

confidence interval), p-value).
Table 1 – RISC cohort characteristics.

Characteristic Sub-group median (IQR) Re

N 510 80
Age (years) 45 (38–51) 43
Men (%)* 44.9 44
BMI (kg/m2) 24.8 (23.0–27.7) 25
Fasting glucose (mmol/l)† 5.2 (4.8–5.5) 5.
2 h glucose (mmol/l)† 5.7 (4.9–6.7) 5.
Fasting Insulin (mU/L) 4.5 (2.8–6.2) 4.
M value (lmol/min/kgffm) 53.3 (39.6–66.8) 51
Adiponectin (lg/ml) 7.7 (5.6–10.0) 7.
Leptin (ng/ml) 9.5 (2.7–16.3) 10
Β-cell glucose sensitivity
(pmol/min/m2/(mmol/l)

112.6 (76.5–154.8) 11

HOMA-IR 1.0 (0.6–1.4) 1.
* Fishers exact test.

† Measured by Oral Glucose Tolerance Test. IQR: Inter-quartile range. Sub-g

Remaining cohort represents remaining samples from the study populatio
Mann-Whitney tests and Fishers exact tests were used to

compare sample groups in Table 1.

In total, 30 SNPs were analysed. These comprised of GWAS

SNPs, imputed SNPs and genotyped SNP rs231840. SNPs with

minor allele frequency of <5% (n = 5) and those which were

not in Hardy-Weinberg equilibrium (p < 0.05) (n = 6) were

removed from the analysis (combined n = 10).

Where multiple SNPs were analysed, multiple testing

was addressed using a Bonferroni correction of unadjusted

p-values. The Bonferroni denominator was determined as

the sum of the LD blocks plus the number of SNPs not allo-

cated to a block. The Solid Spine of LD (SSLD) method as uti-

lised in the program HAPLOVIEW to define blocks. SNPs

that had contiguous pairwise D0 values of �0.8 were

included in a block. The SNPs considered in our analysis

formed six blocks with three additional singleton SNPs

(Fig. 1). Consequently, the Bonferroni denominator for cor-

rection was n = 9.

Where multiple methylation values were analysed, a Bon-

ferroni correction was considered too conservative given the

varying degrees of correlation observed between the methyla-

tion levels at the 5 CpG sites (rho = 0.23 to 0.89, see results).

Hence, given the lack of independence between variables,

no correction was applied. Likewise, we did not apply correc-

tion to associations tested with metabolic measures due to

varying degrees of correlation between them (see Supplemen-

tary Table 1).

Statistical analysis was conducted using STATA 11 (STATA

corporation, Texas, USA) and R version 3.4.1. The following R

packages were used: base, stats, xlsx, Biobase, GEOquery, for-

eign, meffil.

3. Results

3.1. Descriptive statistics

Median values for the metabolic parameters listed in the

metabolic measures section were within the normal range
maining cohort median (IQR) P value (Mann-Whitney)

9
(36–49) 1.420e�04
.2 0.806
.1 (22.6–27.8) 0.788
0 (4.7–5.4) 1.565e�06
7 (4.6–6.6) 0.033
5 (3.0–6.5) 0.895
.8 (38.7–64.7) 0.206
8 (5.5–10.7) 0.388
.0 (4.7–17.9) 0.716
3.5 (79.2–162.1) 0.665

0 (0.6–1.5) 0.448

roup represents samples for which methylation data was generated.

n (total n = 1319) ffm, fat-free mass.

http://www.kbioscience.co.uk
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expected for a population without diabetes. Median values for

metabolic measures for both the sub-group (n = 510) and

selected cohort (n = 1319) are summarised in Table 1. The

sub-group for the methylation study had slightly higher fast-

ing and 2 h glucose in comparison to the rest of the RISC

cohort.

Although methylation at rs231840 demonstrated evidence

of correlation with average methylation at the other four sites

tested (Spearman’s average rho = 0.40, p = 5.16e�07) it was

notably weaker than the correlation between the other four

sites themselves (Spearman’s average rho = 0.63,

p = 1.97e�26). Methylation at rs231840 was therefore analysed

separately and average methylation for the other four CpG

sites was calculated (Fig. 1, CpG sites 1, 2, 3 and 5).

3.2. SNP rs231840 is strongly predictive of rs231840
methylation

Unadjusted regression analysis in the sub-group (n = 510)

identified genotype as a strong predictor of methylation at

rs231840 (0.447 (0.436, 0.459) p = 2.14e�235).

This is expected, since presence of the minor allele

removes the CpG site at rs231840 and therefore also the pos-

sibility of methylation occurring. DNA methylation measured

at CpG 4 is therefore a proxy for genetic variation at rs231840.

A plot of mean methylation grouped by genotype is shown in

Fig. 2. The minor allele frequency of rs231840 in the RISC pop-

ulation was 0.30.

3.3. Methylation at rs231840 is associated with M-value
and serum adiponectin

Regression analysis of rs231840 methylation and metabolic

measures (n = 510) showed that methylation predicted

M-value (1.002 (1.001, 1.003), p = 0.031) and serum adiponectin
Fig. 2 – Methylation vs genotype at rs231840. Boxplot

showing the relationship between percentage methylation

and genotype. Boxes show the median and interquartile

range, whiskers represent the minimum and maximum.

Closed circles and star are possible outliers.
(1.002 (1.000, 1.003), p = 0.032). Methylation was not associated

with any other metabolic measure. Methylation was not asso-

ciatedwith M-value or serum adiponectin in rs231840 C:C car-

riers. Adjustment for confounders did not alter estimates

appreciably.

Regression analysis also showed that methylation at CpG1,

2, 3 or 5 did not predict any metabolic measure tested.

3.4. SNP rs231840 in KCNQ1 is associated with M-value

Genotyping of rs231840 was completed in 1058/1319 RISC

individuals (see Section 2.4). Regression analysis of genotype

and metabolic measures showed that genotype predicted M

(0.95 (0.91, 0.98) p = 0.004). Genotype was not associated with

any other metabolic measure (see Supplementary Table 2).

Adjustment for confounders attenuated the observed associ-

ation; M (0.97 (0.94, 1.00), p = 0.076).

3.5. SNP rs231840 is associated with local CpG
methylation

rs231840 genotype adjusted for confounders also predicted

average methylation at the local CpG sites analysed, n = 509,

(0.990 (0.986, 0.993), p = 1.128e�08). DNA methylation grouped

by genotype is shown in Fig. 3. The direct effect of genotype,

calculated from r2 values, suggested that rs231840 genotype

accounted for 6.01% of the variance in methylation at the four

local CpG sites. When looking at these CpG sites separately, it

was noted that rs231840 elicited the largest effect on CpG 5

(location shown in Fig. 1). Genotype at rs231840 adjusted for

confounders predicted methylation at CpG5, (0.970 (0.966,

0.973), p = 4.262e�49). The direct effect on variance was

34.67%. However, local CpG methylation or CpG methylation

at any one local CpG site did not robustly predict any other

metabolic measures tested.
Fig. 3 – Average methylation at adjacent 4 CpG sites vs

genotype at rs231840. Boxplot showing relationship

between percentage methylation and genotype. Boxes show

the median and interquartile range, whiskers represent the

minimum and maximum. Closed circles are possible

outliers.
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3.6. Cis KCNQ1 SNPs

An LD plot of SNPs neighbouring rs231840 is shown in Fig. 1.

These SNPs were analysed to establish if any other cis-SNPs

showed evidence of an association with M or adiponectin.

Results of regression analyses are shown in Table 2. SNPs

immediately adjacent to rs231840 did not support an associa-

tion with M-value or serum adiponectin. However, distal SNPs

were also associated with these metabolic measures. SNP

rs231357 had the strongest association with M-value and

serum adiponectin (see Table 2). Analyses at rs231357

adjusted for confounders were still associated after Bonfer-

roni correction, assuming an initial cut-off for association of

p < 0.05. The direct effect of genotype at rs231357, calculated

from r2 values, suggested that rs231357 genotype accounted

for 0.57% and 0.58% of the variance in M-value and serum adi-

ponectin respectively. This is compared to the direct effect of

genotype at rs231840, which suggested that rs231840 geno-

type accounted for 0.22% and 0.18% of the variance in M-

value and serum adiponectin respectively.

SNP rs231357 was correlated with methylation at rs231840

(0.64 (0.61, 0.68), p = 1.786e�48). SNP rs231357 was also associ-

ated with methylation at the local CpG sites adjacent to

rs231840 adjusted for confounders (1.00 (0.99, 1.00),

p = 0.013). However, the direct effect of genotype indicated

that only 1.32% of the variance in methylation at rs231840

was attributable to rs231357 genotype, compared to 6.01%

variance attributable to rs231840 genotype. The association

between rs231357 and methylation at rs231840 remained fol-

lowing Bonferroni correction. However, the association

between this SNP and average methylation at the local CpG

sites did not remain after correction.

SNP rs231357 has a minor allele frequency of 0.48 in the

RISC population; presence of the minor allele created a CpG

site that had the potential to become methylated. SNPs

rs231840 and rs231357 were not in LD with any of the SNPs

in this region previously associated with type 2 diabetes

(rs2334499, rs231362, rs2237892), with the exception of

rs231362 which was in weak LD (see Fig. 1). We did not

observe a strong association between rs231362 and either M

or adiponectin in this study.

3.7. DNA methylation in KCNQ1 is correlated between
tissues using publically available data

Since DNA methylation in this study was measured in

blood we sought to identify how methylation measured

within the KCNQ1 gene varied between tissue types. We

evaluated all CpG sites annotated to KCNQ1 in subset of

data from the Gene Expression Omnibus data entry

GSE48472. This dataset included data from blood and a

range of other tissues, including pancreas, fat, and muscle

[20]. Although sample numbers were small, mean methyla-

tion in blood versus other tissues showed high levels of cor-

relation with Pearson correlation coefficients of between

0.71 and 0.98 (see Fig. 4). This data suggests that measure-

ment of DNA methylation in blood may be representative of

other tissues at this locus.
4. Discussion

Investigation of DNA methylation at the KCNQ1 locus demon-

strated an association betweenmethylation levels and insulin

sensitivity in a healthy cohort. Differential methylation at

rs231840 was driven by a polymorphic substitution of a cyto-

sine residue within a CpG site (rs231840), creating an obliga-

tory change in methylation. This obligatory alteration

appeared to have a localised influence on surrounding methy-

lation of CpG sites whose methylation levels were corre-

spondingly lowered in the presence of the variant allele at

rs231840. It is unknown whether the mechanism for this

observation is SNP dependent or due to effects of co-

methylation whereby reduced methylation of CpG site at

rs231840 affects nearby methylation rather than as an effect

of the SNP itself.

We did not observe an association between DNA methyla-

tion and insulin sensitivity at rs231840 when restricting anal-

yses to C:C carriers. However, it is difficult to determine the

relative importance of genotype and methylation status

amongst this subgroup as the sample size in this analysis

was small and the variance in DNA methylation was also

low (see Fig. 2).

It was noted that CpG 5 (Fig. 1) was the CpG site most

strongly influenced by rs231840 genotype. This may have

occurred because it is the CpG site closest to rs231840, or

because rs231840 influences methylation preferentially in

the upstream direction.

It was observed that alleles contributing to reduced insulin

sensitivity and adiponectin levels also contributed to reduced

methylation at rs231840 and adjacent CpG sites. Methylation

may indicate one mechanism whereby sequence variation

influences a type 2 diabetes-related trait, i.e. the SNP influ-

ences the epigenetic regulation of expression, or tags a vari-

ant with a functional effect. One further potential

explanation may be pleiotropic influences of rs231840 which

may act through both epigenetic regulatory pathways and

through its influence on protein function. Although publicly

available data indicated methylation measured in blood was

similar in other tissue types we were not able to directly mea-

sure this in our cohort at the CpG sites reported in this study.

Exploration of local genetic variation identified a second

SNP, rs231357, which was associated with both methylation

and insulin sensitivity. The association between genotype

and metabolic measure was stronger than the effect seen

for rs231840. This suggests rs231357 could either be causal,

or be more closely tagging a causal variant than rs231840.

SNP rs231357 was also associated withmethylation surround-

ing rs231840. Both rs231840 and rs231357 alter the possibility

of methylation occurring when the minor allele is present;

rs231840 ablates a CpG site, and rs231357 introduces one. Fur-

ther study investigating these SNPs as haplotypes is

warranted.

The influence of site specific methylation on insulin sensi-

tivity and adiponectin in this study is very modest (<1%).

However, this is compatible with single SNP associations with

traits such as height, where multiple SNPs of small effect can

act to collectively exert a substantial difference on phenotype



Table 2 – SNP regression analysis.

Unadjusted Adjusted
Measure SNP r2 value for LD between

SNP and rs231840
Coefficient
(95% confidence interval)

p value Coefficient
(95% confidence interval)

p value

M value (lmol/min/kgffm) rs2334499 0.00 1.02 (0.98, 1.06) 0.341 1.01 (0.98, 1.05) 0.398
rs3817198 0.00 1.03 (1.00, 1.07) 0.086 1.02 (0.99, 1.06) 0.145
rs231362 0.18 0.97 (0.93, 1.00) 0.048 0.98 (0.95, 1.01) 0.228
rs7105073 0.02 0.98 (0.91, 1.05) 0.560 1.01 (0.95, 1.07) 0.694
rs7128926 0.06 0.99 (0.94, 1.03) 0.504 1.00 (0.96, 1.04) 0.979
rs7941377 0.03 1.02 (0.95, 1.10) 0.619 1.01 (0.95, 1.08) 0.673
rs231357 0.41 0.94 (0.91, 0.97) 3.841 e�04 0.96 (0.93, 0.99) 0.004
rs11023793 0.05 0.98 (0.94, 1.02) 0.317 0.99 (0.95, 1.02) 0.444
rs16928561 0.02 0.92 (0.86, 0.99) 0.033 0.97 (0.91, 1.03) 0.303
rs7927129 0.05 0.98 (0.93, 1.02) 0.319 0.99 (0.95, 1.03) 0.655
rs11023831 0.02 0.96 (0.89, 1.03) 0.275 0.99 (0.93, 1.06) 0.759
rs462402 0.38 1.06 (1.02, 1.09) 0.001 1.04 (1.01, 1.07) 0.013
rs463924 0.89 0.95 (0.92, 0.99) 0.014 0.97 (0.93, 1.00) 0.035
rs231841 0.77 0.95 (0.91, 0.98) 0.002 0.97 (0.94, 1.00) 0.025
rs231840 – 0.95 (0.91, 0.98) 0.004 0.97 (0.94, 1.00) 0.076
rs2283197 0.79 0.95 (0.92, 0.99) 0.011 0.97 (0.94, 1.00) 0.086
rs2283200 0.03 1.03 (0.95, 1.10) 0.502 1.02 (0.95, 1.08) 0.618
rs231901 0.02 0.96 (0.91, 1.01) 0.154 0.98 (0.93, 1.03) 0.369
rs4930149 0.03 0.98 (0.92, 1.04) 0.506 0.99 (0.94, 1.04) 0.616
rs2237892 0.00 0.95 (0.89, 1.02) 0.147 0.94 (0.89, 0.99) 0.031

Adiponectin (lg/ml) rs2334499 0.00 1.00 (0.97, 1.04) 0.818 1.01 (0.98, 1.04) 0.685
rs3817198 0.00 1.00 (0.96, 1.04) 0.887 1.00 (0.96, 1.03) 0.784
rs231362 0.18 0.97 (0.94, 1.01) 0.129 0.97 (0.94, 1.00) 0.064
rs7105073 0.02 0.96 (0.89, 1.03) 0.265 0.99 (0.93, 1.05) 0.685
rs7128926 0.06 0.97 (0.93, 1.02) 0.258 0.99 (0.95, 1.03) 0.578
rs7941377 0.03 0.96 (0.89, 0.04) 0.302 0.97 (0.91, 1.04) 0.410
rs231357 0.41 0.95 (0.92, 0.99) 0.007 0.96 (0.93, 0.98) 0.002
rs11023793 0.05 0.99 (0.95, 1.04) 0.721 1.00 (0.96, 1.04) 0.976
rs16928561 0.02 0.93 (0.86, 1.00) 0.055 0.98 (0.92, 1.04) 0.502
rs7927129 0.05 0.97 (0.92, 1.01) 0.170 0.99 (0.95, 1.03) 0.755
rs11023831 0.02 0.95 (0.88, 1.03) 0.209 0.97 (0.91, 1.04) 0.396
rs462402 0.38 1.04 (1.00, 1.08) 0.033 1.04 (1.01, 1.07) 0.017
rs463924 0.89 0.98 (0.94, 1.02) 0.363 0.97 (0.94, 1.00) 0.070
rs231841 0.77 0.98 (0.95, 1.02) 0.379 0.98 (0.95, 1.01) 0.164
rs231840 – 0.97 (0.93, 1.01) 0.175 0.97 (0.94, 1.01) 0.096
rs2283197 0.79 0.97 (0.94, 1.01) 0.130 0.97 (0.94, 1.00) 0.076
rs2283200 0.03 0.95 (0.88, 1.02) 0.186 0.96 (0.90, 1.02) 0.146
rs231901 0.02 0.96 (0.91, 1.02) 0.178 0.99 (0.94, 1.03) 0.540
rs4930149 0.03 0.98 (0.93, 1.05) 0.603 0.99 (0.94, 1.05) 0.816
rs2237892 0.00 0.98 (0.92, 1.05) 0.621 0.98 (0.92, 1.04) 0.448

Regression analysis of neighbouring SNP genotypes predicting metabolic measures M and adiponectin for the genotyped RISC cohort (n = 1119). Table shows unadjusted analyses and adjusted for

confounders. Regression analysis outcomes are presented as: (exponent of regression coefficient (95% confidence interval), p-value). ffm, fat-free mass.
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Fig. 4 – Pairwise comparisons of KCNQ1 CpGs between blood and other tissues using publicly available array data. Six tissue

types are shown (blood: n = 11; muscle, omentum, and subcutaneous fat: n = 6; liver: n = 5; pancreas: n = 4). The upper panel

shows the Pearson correlation coefficient and P values; the lower panel shows the pairwise scatterplot (trend line shown in

red). Data are a subset of Gene Expression Omnibus data entry GSE48472 [20]. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
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[21]. This scenario may also apply in the context of DNA

methylation variation.

4.1. Potential mechanisms of action

In this study, differential methylation is partly determined by

genotype, representing a primary genetic driver of epigenetic

variation. However, it is inconclusive from these data whether

rs231840 and rs231357 are exerting their influence via methy-

lation mediated changes in gene expression or through

another mechanism. A recent study suggested that methyla-

tion was on the causal pathway between genetic variation in

KCNQ1 and type 2 diabetes in later life [22] which supports the
former hypothesis. A further study has shown that genotype

influences both methylation and gene expression throughout

the genome [23]. It is thought that the frequency at which

SNPs affect local methylation is somewhere between 4.0%

and 8.6% [24,25]. Although relatively uncommon, it is plausi-

ble that certain haplotypes may lead to altered methylation

profiles due to their underlying genetic architecture.

4.2. Potential role of KCNQ1 mediating insulin sensitivity
and beta cell function

Common variation in KCNQ1 has been shown to increase sus-

ceptibility to type 2 diabetes across populations of different
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ethnic backgrounds [1,11]. The evidence to date suggests that

this is mediated via altered insulin secretion [26,27] although

this was not confirmed in the most recent type 2 diabetes

GWAS where the postulated mechanism of action for KCNQ1

was designated unclassified [1]. In this study we identify an

association between variation in KCNQ1 and whole-body

insulin sensitivity determined using the gold-standard

euglycaemic-hyperinsulinaemic clamp. This association

between methylation levels and insulin sensitivity does not

overlap with those variants at the KCNQ1 locus previously

linked to type 2 diabetes risk via insulin secretion impair-

ment. Although genetic association studies have primarily

identified associations between SNPs and insulin secretion

defects, more recently a number of these genes have also

been associated with insulin sensitivity including PPARG,

KLF14, IRS1 and GCKR [28].

The majority of studies linking KCNQ1 with insulin secre-

tion defects and type 2 diabetes risk have focused upon

patients with type 2 diabetes. Two previous studies have

examined KCNQ1 variants (rs2283228 and rs2237895) in indi-

viduals without diabetes but found no relationship with an

OGTT derived measure (Matsuda ISI) of insulin sensitivity

[26,29]. HapMap data suggests that genotypes of these vari-

ants are not correlated with rs231840 or rs231357. However,

decreased KCNQ1 expression has been reported in a knockout

mouse model leading to increased whole body insulin sensi-

tivity and increased insulin mediated glucose uptake in liver

and muscle [30]. The mechanisms by which altered KCNQ1

expression impacted upon insulin action were not defined,

but these observations are in keeping with our findings that

variation in KCNQ1 is linked to whole body insulin sensitivity.

Our data shows a lack of corroboration of whole-body

insulin sensitivity measures (clamp) and fasting-based mea-

sures of insulin resistance (HOMA-IR, fasting glucose and

insulin measures) with regard to association with genotype

or methylation. However, HOMA-IR and insulin sensitivity

ascertained by euglycaemic-hyperinsulinaemic clamp are

only moderately genetically correlated (r = �0.53), in keeping

with differing aetiological pathways [31].

4.3. Limitations

One of the main limitations of this study was the inability to

investigate parent-of-origin effects in our cohort. This is of

interest, since KCNQ1 is an imprinted gene and the region of

KCNQ1 investigated lies within an imprinting control region,

responsible for regulating parent-of-origin specific expression

of a number of genes in the region [32]. Additionally, upstream

of the KCNQ1 region examined in this paper is the noncoding

RNA KCNQ1 overlapping transcript 1 (KCNQ1OT1). The possible

role of KCNQ1OT1 expression in the pathogenesis of type 2 dia-

betes and its parent-of-origin effect has been reported in mice

[33]. This avenue could be further explored in a second cohort,

where parental samples are available.

We were also unable to assess the effect of rs231840 on

mRNA-quantified expression data in this cohort, since no

expression data has been collected. The largest publicly avail-

able dataset reporting eQTMs (expression quantitative trait

methylation) we could identify reports methylation associa-

tions with gene expression in cis using approximately 2000
whole blood samples [34]. From their results several CpG sites

in the KCNQ1 gene region appear to correlate with expression

of other genes in cis (including TSPAN32, C11orf21, CD81 and

CDKN1C) and it appears that the network of associations

between gene expression and methylation is complex. For

KCNQ1 there is the additional complicating factor that

methylation-expression relationships may have a parent-of-

origin effect which we are unable to address either using

our data or that of publicly available sources.

Whole blood contains a variety of cell types and conse-

quently differences in cellular composition could confound

analyses conducted on heterogeneous sample types.

Although we do not predict that cell composition would vary

by metabolic status we were unable to address this possibility

since cell counts were not measured and could not be compu-

tationally estimated within our dataset.

A further potential limitation is that of the relatively young

age of the RISC cohort since it is possible that the metabolic

measures obtained may not be an accurate reflection of the

genetic risk. Finally, although sample size was as large as pos-

sible, some statistical tests may have had limited power.
4.4. Conclusions

This important work highlights an emerging field of analysis,

investigating the association between CpG methylation

(known to influence gene expression) and underlying genetic

architecture.

We report an association between KCNQ1 SNP rs231357

and insulin sensitivity. This SNP is not in substantial LD with

any KCNQ1 SNPs previously associated with type 2 diabetes or

any other diabetes related metabolic measures.

Further work is needed to confirm the association between

KCNQ1 SNPs and insulin sensitivity, and to test any associa-

tion between genotype and overt type 2 diabetes in other

study populations. We hypothesise that methylation may

play a role in the mechanism of action of these genetic alter-

ations and there may be a parent-of-origin dependent effect.
5. Authors’ contributions

UJS did data generation, data analysis and revised the manu-

script. WX did imputation of genotypes and reviewed earlier

manuscript versions. AF participated in study design, ana-

lyzed adiponectin and reviewed manuscript. JJN contributed

to the design, recruitment and conduct of the clinical and

physiological studies. KH contributed to the conception and

design of the main RISC study, recruitment and examination

of the study participants, interpretation of the results and

review of manuscript. MW and CLR designed study, inter-

preted data and reviewed manuscript. HRE designed study,

analyzed data, interpreted data and wrote the manuscript.

Detailed phenotyping of RISC cohort was obtained from RISC

consortium.

Acknowledgments

The RISC Study was partly supported by EU grant QLG1-CT-

2001-01252. Additional support for the RISC Study has been



198 d i a b e t e s r e s e a r c h a n d c l i n i c a l p r a c t i c e 1 4 8 ( 2 0 1 9 ) 1 8 9 –1 9 9
provided by AstraZeneca (Sweden). The EGIR Group was sup-

ported by Merck Santé (France).
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