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Abstract:

Phylogenetics uses alignments of molecular sequence data to learn about evolution-
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ary trees relating species. Along branches, sequence evolution is modelled using

a continuous-time Markov process characterised by an instantaneous rate matrix.

Early models assumed the same rate matrix governed substitutions at all sites of the

alignment, ignoring variation in evolutionary pressures. Substantial improvements

in phylogenetic inference and model fit were achieved by augmenting these models

with multiplicative random effects that describe the result of variation in selective

constraints and allow sites to evolve at different rates which linearly scale a baseline

rate matrix. Motivated by this pioneering work, we consider an extension using a

quadratic, rather than linear, transformation. The resulting models allow for vari-

ation in the selective coefficients of different types of point mutation at a site in

addition to variation in selective constraints.

We derive properties of the extended models. For certain non-stationary processes,

the extension gives a model that allows variation in sequence composition both across

sites and taxa. We adopt a Bayesian approach, describe an MCMC algorithm for pos-

terior inference and provide software. Our quadratic models are applied to alignments

spanning the tree of life and compared with site-homogeneous and linear models.

Key words: across-site rate heterogeneity; compositional heterogeneity; multiplica-

tive random effects; phylogenetics; selective coefficients; tree of life

1 Introduction

In statistical phylogenetics, the goal is to learn about the evolutionary relationships

amongst a collection of species, generally using DNA or protein sequence data. These
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relationships are represented through a rooted, bifurcating tree called a phylogeny.

Substitutions in the molecular sequence alignment are typically modelled using con-

tinuous time Markov processes, parameterised through an instantaneous rate matrix.

Early phylogenetic models were simplistic, generally assuming that the evolution-

ary process was in its stationary distribution and that substitutions at each site of

the alignment could be described by the same underlying rate matrix. Under these

models, the probability of change from one character state to another was therefore

independent of both organismal lineage and the biochemical function of the nucleotide

or amino acid in question. These simplifying assumptions were known to be false, but

were made for the sake of mathematical convenience and computational tractability,

given the limited computing power for model fitting available at the time. In partic-

ular, it was already clear to early molecular evolutionists that rates of evolution vary

according to functional or structural pressures acting at a site: important sites are

subject to high selective constraints and evolve slowly because most mutations that

arise at those sites are eliminated from the population by negative selection (Fitch and

Markowitz, 1970). Uzzell and Zorbin (1971) showed that the numbers of substitutions

occurring at different sites could be modelled using a negative binomial distribution.

Later, Yang (1993) incorporated the idea into statistical phylogenetics by allowing

different sites to evolve at different rates. These rate parameters scaled the underly-

ing Markov process rate matrix and were modelled as multiplicative random effects,

with unit mean gamma distribution.

Incorporation of across-site rate variation into standard, stationary substitution mod-

els has led to major improvements in model fit and to the accuracy of phylogenetic

inference (Yang, 1996). But there are other, pervasive features of molecular sequence

data that these models do not accommodate. In particular, nucleotide composition
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is believed to vary across both sites of the alignment and branches of the phyloge-

netic tree. For example, the GC-content of ribosomal DNA genes varies from 45-74%

across the known diversity of cellular life (Cox et al., 2008), implying that the prob-

abilities of each of the four nucleotides can change over time. These compositional

shifts might reflect changing biases in DNA repair enzymes (Sueoka, 1988) or, at

least for genes encoding structural RNAs, adaptation to different growth tempera-

tures (Galtier and Lobry, 1997). As well as variation in sequence composition across

taxa, there is also compositional variation observed among the different sites within

an individual protein-coding sequence: due to functional constraints, most sites can

tolerate only a limited, and typically biochemically homogeneous, subset of the twenty

amino acids (Fitch and Markowitz, 1970). The result is that, in addition to varying

in evolutionary rate, sites can also differ in sequence composition. As with hetero-

geneity in evolutionary rates, failure to account for variation in composition can lead

to model misspecification and, therefore, serious phylogenetic error, as demonstrated

by a number of empirical studies (Embley et al., 1993; Foster, 2004; Lartillot et al.,

2007; Philippe et al., 2011). The phylogenetic literature includes a number of mod-

els designed to capture one type of compositional heterogeneity, or the other, that

is, either heterogeneity across sites or heterogeneity across branches. In the former

case, this is often achieved using mixture models which classify sites into groups, each

of which has a different stationary distribution; see, for example, Pagel et al. (2004)

or Lartillot and Philippe (2004). To allow heterogeneity across branches, a number

of models have been developed which drive the Markov process towards a different

stationary distribution at different points on the tree, typically by allowing evolution

on different branches to be governed by different instantaneous rate matrices; see,

for example, Yang and Roberts (1995), Blanquart and Lartillot (2006), Dutheil and
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Boussau (2008) or Heaps et al. (2014). Despite the large body of literature focused

on modelling compositional heterogeneity of one type or the other, there have been

very few attempts to model both jointly. Such efforts are typically based on mecha-

nistic models which allow different rate matrices to govern the evolutionary process

on different (site, branch) pairs; see, for example Blanquart and Lartillot (2008) or

Jayaswal et al. (2014). Unfortunately, use of these models has been limited due to

computational difficulties with model-fitting.

In a simple phylogenetic model, evolution at all sites is controlled by a single instan-

taneous rate matrix. The across-site rate variation model offers greater flexibility by

allowing site-specific linear transformations of the baseline rate matrix, with varia-

tion amongst scaling factors dependent on a single-parameter gamma distribution.

Owing to the success of this simple modification, the across-site rate variation model

has been extended in a number of ways. For example, covarion models (Tuffley and

Steel, 1998; Huelsenbeck, 2002; Galtier, 2001) allow the site-specific (linear) scaling

factors to vary from branch to branch. This is intended to capture the variation over

time in selective constraints that arise as a consequence of earlier substitutions at

other sites. In this paper we consider a different generalisation of the across-site rate

variation model, applying site-specific quadratic, rather than linear, transformations

of a baseline matrix. This gives a more flexible model which is dependent on an

additional unknown parameter. It has the effect of allowing variation in the selective

coefficients – that is, the strength of selection – for different types of point mutation

at a site, in addition to heterogeneity in the overall selective constraints across sites.

We thereby obtain a more biologically plausible model. Further, we demonstrate

that when linear or quadratic across-site transformations are combined with a class

of non-stationary Markov processes, we obtain computationally tractable models that
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allow sequence composition to vary across both branches of the tree and sites of the

alignment, addressing the clear need in the literature for models of this type.

The remainder of this paper is organised as follows. Section 2 introduces phylogenetic

models of sequence evolution and the incorporation of multiplicative random effects

to allow rate variation across sites. Section 3 describes our quadratic generalisation

and its properties. In Section 4 we combine across-site linear and quadratic transfor-

mations with a general class of non-stationary substitution models and describe the

properties of the resulting Markov processes. Section 5 addresses the issue of infer-

ence for models incorporating our quadratic transformation. Specifically, working in

a Bayesian framework, we describe the posterior distribution of interest and details

of our numerical approach to model-fitting via Markov chain Monte Carlo sampling.

In Section 6 we consider analyses of two biological data sets; the first involving a

stationary model and the second, a non-stationary model. In each case we compare

the performance of a site-homogeneous model with analogous models incorporating

linear and quadratic across-site transformations of the baseline rate matrix. Finally,

we summarise our conclusions in Section 7.

2 Phylogenetic models of sequence evolution

Denote by y = (yi,j) an alignment of molecular sequence data where yi,j ∈ ΩK is

the character at the j-th site for taxon i and ΩK is an alphabet with K characters,

for example, the DNA alphabet with Ω4 = {A, G, C, T}. Denote the number of sites

(columns) by M and the number of taxa (rows) by N and let yj = (y1,j, . . . , yN,j)
T

be the j-th column in the alignment. Consider a rooted, bifurcating tree τ , with
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branch lengths `, representing the evolutionary relationships amongst this collection

of N taxa. For every site, phylogenetic models typically assume that evolution along

each branch of the tree can be modelled using a continuous time Markov process

Y (t), characterised by an instantaneous rate matrix Q = (qu,v) which has positive off-

diagonal elements and rows that sum to zero. This matrix controls the dynamics of the

substitution process through the matrix equation P (`) = {pu,v(`)} = exp(`Q′), where

Q′ = Q/(−
∑

u quuπu) and π = (π1, . . . , πK) ∈ SK is the stationary distribution of

the process. The notation SK = {(x1, . . . , xK) : xi ≥ 0 ∀ i,
∑
xi = 1} denotes the

K-dimensional simplex. This rescaling of the rate matrixQ allows the branch lengths

` to be in interpreted as the expected number of substitutions per site. The (u, v)-th

element in the transition matrix pu,v(`) = Pr(Y (`) = v|Y (0) = u) for u, v = 1, . . . , K

is the probability of transitioning from character u to character v along a branch of

length `.

Standard phylogenetic models assume that the underlying continuous time Markov

process is time reversible and in its stationary distribution π. Reversibility implies

that πupu,v(`) = πvpv,u(`) for all u, v and allows the rate matrix to be represented

in the form Q = SΠ, where Π = diag(π), and S is a symmetric matrix whose off-

diagonal elements, ρu,v with ρu,v = ρv,u, are termed exchangeability parameters. The

latter determine the general propensity for change between the different pairs of char-

acters. We define a rate matrix as reversible if it permits a parameterisation of this

form. The most general reversible rate matrix, with K(K − 1)/2 distinct exchange-

abilities, characterises the general time-reversible (GTR) model. Other commonly

used substitution models are special cases. For example, the TN93 model is a special

case for nucleotide data where ρC,T = ρT,C = ρ1, ρG,A = ρA,G = ρ2 and all other

ρu,v are equal to β. This simplification reduces the number of exchangeabilities from
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six to three but retains biological realism by allowing transversions (substitutions

between a pyrimidine and a purine) and the two types of transitions (substitutions

between pyrimidines and between purines) to occur at different rates, here β, ρ1 and

ρ2 respectively.

Classically, the sites of the alignment y are assumed to evolve independently of each

other and so the likelihood is given by

p(y|Q, τ, `) =
M∏
j=1

Pr(Y j = yj|Q, τ, `).

In order to prevent arbitrary rescaling of the rate matrix Q in the transition matrix

P (`) = exp(`Q′), where Q′ = Q/(−
∑

u quuπu), it is common to impose an identifia-

bility constraint, for example by assuming that the exchangeability parameters sum

to one or by fixing one of the exchangeability parameters ρu,v, u 6= v, to be equal to

one (Zwickl and Holder, 2004). For instance, one can fix β = 1 in the TN93 model.

This allows the remaining exchangeability parameters to be interpreted as relative

rates of change. We take the latter approach in this paper. Henceforth, we drop the

prime on the normalised rate matrix Q′ for notational brevity.

2.1 Modelling rate heterogeneity across sites

It has long been recognised that selective pressures vary across sites due to their

differing roles in the structure and function of the molecular sequence (Yang, 1996;

Simon et al., 1996). This feature is typically captured by a simple modelling device

that allows each site j to evolve at its own rate cj > 0 which scales the normalised

rate matrix Q linearly. To enable information to be shared between sites, the rates

c = (c1, . . . , cM)T are generally assumed to follow a gamma distribution with unit
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mean. Defining

Qj = cjQ, (2.1)

the likelihood can then be represented as

p(y|Q, τ, `, α) =
M∏
j=1

∫ ∞
0

p(cj|α) Pr(Y j = yj|Qj, τ, `) dcj,

where p(cj|α) is the Gam(α, α) density function evaluated at cj. The single param-

eter α determines the manner and extent to which the scaling factors differ across

sites. We refer to models in which a baseline rate matrix is transformed according

to (2.1) as linear across-site heterogeneity (LASH) models. In order to simplify com-

putation, the (continuous) gamma density p(cj|α) is typically replaced by a discrete

approximation with Kc categories, most often Kc = 4 (Yang, 1994). In a Bayesian

setting, this numerical integration strategy may seem less natural than using data

augmentation during MCMC and sampling the cj. However, the discretisation allows

much more caching of intermediate likelihood calculations which can substantially

speed up computational inference.

In this model, the rate matrix at each site is simply a linearly scaled version of

some underlying normalised baseline Q. The transformation does not affect the

theoretical stationary distribution, defined as the solution of πQ = 0T, or, in the class

of reversible models, the ratios of the exchangeability parameters. In the following

section we generalise this model to allow the rate matrix at each site to be a more

flexible quadratic function of the base matrix, which depends on the values of two

parameters. This transformation preserves the stationary distribution but allows the

rankings of the instantaneous rates of change to vary between sites. The resulting

model can be interpreted biologically as one which allows variation in the selective

coefficients of different types of point mutation at a site, in addition to variation in
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the overall selective constraints across sites.

3 Quadratic across-site heterogeneity models

Consider a baseline normalised rate matrix Q. At site j, the instantaneous rate

matrix Qj = (qj,u,v) is given by

Qj = cjQ− cjdjQ2 (3.1)

where cj ∈ (0,∞) and dj ∈ (l(Q), u(Q)), which reduces to the simple LASH model

when dj = 0. We call any model in which a baseline rate matrix is transformed in this

way a quadratic across-site heterogeneity (QuASH) model. The limits l(Q) and u(Q)

depend on Q and ensure that Qj is a valid rate matrix, that is (i) all off-diagonal

elements are positive: qj,u,v > 0, ∀u 6= v; (ii) all row sums are zero:
∑

v qj,u,v = 0 ∀u.

Property (ii) is automatically satisfied for any dj ∈ R. The proof is as follows. The

(u, v)-th element of Qj is given by

qj,u,v = cj

(
qu,v − dj

∑
w

qu,wqw,v

)
.

Therefore the sum of the elements on row u of Qj,
∑

v qj,u,v, is given by

cj

(∑
v

qu,v − dj
∑
v

∑
w

qu,wqw,v

)
= cj

(
0− dj

∑
w

qu,w
∑
v

qw,v

)
= cj(0− dj × 0) = 0

for any dj ∈ R.

For property (i) to be satisfied we need

l(Q) = max{L(Q)}, L(Q) =

{
qu,v∑

w qu,wqw,v
: u 6= v and

∑
w

qu,wqw,v < 0

}
(3.2)
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and

u(Q) = min{{∞}∩U(Q)}, U(Q) =

{
qu,v∑

w qu,wqw,v
: u 6= v and

∑
w

qu,wqw,v > 0

}
.

(3.3)

By definition, l(Q) ≤ 0 and u(Q) ≥ 0. Note that the set L(Q) cannot be empty,

L(Q) 6= ∅. To prove this, suppose qa,b is the largest off-diagonal element in Q. Now

∑
w

qa,wqw,b = qa,aqa,b + qa,bqb,b +
∑
w 6=a,b

qa,wqw,b

= −qa,b
∑
w 6=a

qa,w + qa,bqb,b +
∑
w 6=a,b

qa,wqw,b

= −qa,b
∑
w 6=a,b

qa,w − q2a,b + qa,bqb,b +
∑
w 6=a,b

qa,wqw,b.

However, qw,b < qa,b for all w 6= a and so

∑
w 6=a,b

qa,wqw,b < qa,b
∑
w 6=a,b

qa,w.

Because −q2a,b and qa,bqb,b are strictly negative it follows that

∑
w

qa,wqw,b = −qa,b
∑
w 6=a,b

qa,w +
∑
w 6=a,b

qa,wqw,b − q2a,b + qa,bqb,b < 0.

In contrast, the set U(Q) can be empty. Consider, for example, the normalised rate

matrix of the Jukes Cantor model, all of whose off-diagonal elements are equal to

1/3. In this case,
∑

w qu,wqw,v = −4/9 < 0 for all pairs (u, v) with u 6= v. Therefore

l(Q) = −3/4 whilst the upper limit u(Q) is infinite.

To allow information to be shared between sites, we continue to assume that the co-

efficients c = (c1, . . . , cM)T of the linear term are conditionally independent and iden-

tically distributed (i.i.d.) with cj|α ∼ Gam(α, α) for some unknown hyperparameter

α. In an analogous fashion, we assume that the coefficients d = (d1, . . . , dM)T of the

second order term are independent of c and conditionally i.i.d. with dj|Q, β ∼ F(β)
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for some unknown β, where the form of the distribution F will be discussed in Sec-

tion 3.3. The likelihood can then be represented as

p(y|Q, τ, `, α, β) =
M∏
j=1

∫ ∞
0

∫ u(Q)

l(Q)

p(cj|α)p(dj|Q, β) Pr(Y j = yj|Qj, τ, `) dcj ddj

where Qj was defined in (3.1). As with the simpler LASH model, substantial gains

in computational efficiency can be achieved by replacing the continuous densities

p(cj|α) and p(dj|Q, β) by discrete approximations with Kc and Kd categories, re-

spectively. We choose to place point masses of probability 1/(KcKd) at locations

{zc,a(α), zd,a′(Q, β)} for a = 1, . . . , Kc, a
′ = 1, . . . , Kd where zc,a(α) is the (a−0.5)/Kc

quantile in the distribution of cj|α and zd,a′(Q, β) is the (a′− 0.5)/Kd quantile in the

distribution of dj|Q, β. The likelihood then simplifies to

p(y|Q, τ, `, α, β) ' 1

KcKd

M∏
j=1

Kc∑
a=1

Kd∑
a′=1

Pr
[
Y j = yj|Qj {zc,a(α), zd,a′(Q, β),Q} , τ, `

]
.

(3.4)

3.1 Properties of QuASH Models

It can easily be shown that the stationary distribution of Qj = cjQ − cjdjQ
2 is

the same as that of Q; see Section ?? of our Online Supplementary Materials for a

proof. Of course the same is also true under the simple linear scaling, Qj = cjQ,

which we recover when dj = 0. In the latter case, the linear mapping can simply be

regarded as a site-specific scaling of the branch lengths. In contrast, our quadratic

transformation does not preserve the ratios of the instantaneous rates of change in

the baseline rate matrix, allowing different patterns of substitution at different sites.

This idea is most readily exemplified in the context of reversible models where the

transformation results in a site-heterogeneous model in which the exchangeability

parameters vary across sites. Elucidating further, it is straightforward to show that if
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Q is reversible, then so is Qj; see Section ?? of our Online Supplementary Materials

for a proof. It follows that the set of GTR rate matrices is closed under our quadratic

transformation. This is also true for some special cases of the GTR rate matrix

including the TN93 rate matrix which was introduced in Section 2. In this case,

suppose that β, ρ1 and ρ2 are the transversion and transition rates in the baseline

rate matrix and that π = (πA, πG, πC , πT ) is the associated stationary distribution.

After applying the quadratic transformation (3.1), it follows from (??) in Section ??

of our Online Supplementary Materials that the transversion and transition rates in

the rate matrix for site j are βj = cjβ(1 + djβ), ρ1,j = cj[ρ1 + dj{ρ21 − (ρ1 − β)2πR}],

ρ2,j = cj[ρ2 + dj{ρ22 − (ρ2 − β)2πY }], where πR = πA + πG and πY = πC + πT .

If we take the distribution at the root of the tree to be the vector π satisfying πQ = 0T

then the resulting Markov process is stationary and the term Pr(Y j = yj|Qj, τ, `) in

the likelihood (3.4) is given by

Pr(Y j = yj|Qj, τ, `) =
∑
X

πX(0)

∏
edges b=(v,w)

pj,X(v),X(w)(`b). (3.5)

Here v and w are the vertices (nodes) at the two ends of edge b with length `b, X(u)

is the character at vertex u, u = 0 denotes the root vertex and Pj(`) = {pj,u,u′(`)}

is the transition matrix associated with an edge of length ` at site j. The sum is

over all functions X from the vertices to ΩK such that X(u) matches the data yj(u)

for all leaf vertices u. It can be computed efficiently using a post-order traversal of

the tree called Felsenstein’s pruning algorithm (Felsenstein, 1973) or the sum-product

algorithm in the context of Bayesian networks.
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3.2 Biological interpretation

A biological interpretation for LASH and QuASH models can be obtained by consid-

ering how the substitution process in each case might result from the combination of

a process of point mutation and a process of selection, where point mutations become

fixed in a population.

The fixation rates of point mutations vary across sites according to differences in their

structural or functional importance. As a consequence, sites under high selective

constraints typically admit fewer substitutions of any type. At a more granular level,

different types of mutations at any particular site, that is, mutations between different

pairs of nucleotides, may have different selective coefficients. These measure the

relative fitness of a particular allele (point mutation), with larger numbers indicating

stronger selection for (or against) the allele and hence higher selective pressure.

Interpretations of the Markov process arising from the LASH and QuASH transfor-

mations are best explained through their representation as jump processes. To this

end, consider a baseline, stationary substitution process with rate matrix Q that rep-

resents the combined processes of point mutation and selection at a “typical” site. We

can characterise the behaviour along an edge of the tree with rate matrix Q as a jump

process, which spends an exponentially Exp(−qu,u) distributed time in nucleotide u

before transitioning to another nucleotide v 6= u with probability −qu,v/qu,u. The

LASH model applies the scaling Qj = cjQ at site j. The resulting jump process

retains the same jump probabilities as the “typical” site but the exponential dwell

time in nucleotide u now has rate parameter −cjqu,u. Biologically, we would expect

qualitatively equivalent behaviour if each site evolved according to a common process
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of point mutation, with a site-specific fixation rate that was shared by all mutations

at that site. In other words, we could regard the LASH model as allowing for differ-

ences in overall selective constraints across sites, but not for any heterogeneity in the

site-specific selective coefficients for different types of point mutation.

Under the QuASH transformation, Qj = cjQ−cjdjQ2, and so, like the LASH model,

the QuASH model has a site-specific parameter cj which allows for variation in the

overall rate of evolution across sites. However, as a result of the transformation,

the process at site j now spends an exponentially Exp(−cjqu,u + cjdjq
2
u,u + cjdjKu)

distributed time in nucleotide u, where Ku is the dot product of row u and column u

of Q with qu,u removed. Compared to the mean in the baseline process Q, the mean

dwell time could have gone up for some nucleotides, and down for others because,

given coefficients cj and dj, it is possible that

−cjqu,u + cjdjq
2
u,u + cjdjKu > −qu,u

for some u ∈ Ω4 whilst

−cjqv,v + cjdjq
2
v,v + cjdjKv < −qv,v

for other v ∈ Ω4 where v 6= u; see our Online Supplementary Materials for a nu-

merical example. Similarly, the probabilities of subsequent transition into nucleotide

v 6= u are no longer equal to −qu,v/qu,u. Of course, this is inevitable because the

stationary distribution of Qj is the same as that of Q. Therefore, when compared

to the process at a typical site, if dwell times at site j are longer for nucleotide u

and shorter for nucleotide v, this must be compensated by smaller jump probabilities

into nucleotide u and higher jump probabilities into nucleotide v. Biologically, we can

interpret the joint effect of the QuASH transformation on the dwell times and jump
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probabilities as representing the effects of heterogeneity in the selective coefficients

for different types of point mutation. Specifically, substitutions with high (advanta-

geous) selective coefficients are rare, but if they do occur, then they persist in the

population for a long time. This would be represented in the substitution process by

smaller jump probabilities into the advantageous nucleotide but longer dwell times.

In contrast, mutations with selective coefficients close to neutrality arise and are fixed

more frequently, but can quickly be replaced. This would be represented in the sub-

stitution process by larger jump probabilities into the nucleotide in question and then

short dwell times. Therefore, whilst we can interpret both the LASH and QuASH

models as allowing for across-site variation in the overall selective constraints, only

the QuASH model allows for across-site heterogeneity in selective behaviours.

3.3 Random Effect Distribution

We model the coefficients d = (d1, . . . , dM)T involved in the second order term of the

quadratic transformation (3.1) as conditionally i.i.d. with dj|Q, β ∼ F(β) for some

unknown hyperparameter β. As explained earlier in this section, the distribution F

has support on (l(Q), u(Q)) where l(Q) is nonpositive but assumed finite whilst u(Q)

is nonnegative but can be infinite. This means the interval (l(Q), u(Q)) can be finite

or semi-infinite. In order to handle the two cases in a consistent fashion, we construct

the distribution of dj through a shifted, piecewise power transformation of a Beta

random variable

dj =


l(Q) + w(Q)

(
1− b1/w(Q)

j

)
, if u(Q) is finite,

l(Q)− log bj, otherwise,
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where w(Q) = u(Q) − l(Q); bj|Q, β ∼ Beta[β + a(Q), β{b(Q) − 1} + 1]; and β >

0 is unknown. The terms a(Q) and b(Q) depend on the baseline rate matrix Q

through a(Q) = 1/w(Q) if u(Q) is finite and a(Q) = 0 otherwise, and b(Q) =

{w(Q)/u(Q)}w(Q) if u(Q) is finite and b(Q) = e−l(Q) otherwise. This choice ensures

that the mode of the distribution is zero, with finite probability density, and that

the density of dj decays smoothly to zero at its end points, except in the case where

l(Q) = 0 or u(Q) = 0. In the special case when l(Q) = 0 and u(Q) is infinite, the

conditional distribution of dj reduces to the Exp(β) distribution. By centering the

distribution on zero, we encourage shrinkage towards the nested LASH model with

all dj = 0. Although it may appear more natural to set the mean or median, rather

than the mode, to zero, since the lower or upper end points of the support can be

equal to zero, this is not possible in the general case.

The hyperparameter β can be assigned any prior with support on the positive real

line. The dependence of the marginal prior for dj on that for β and the parame-

ters of the baseline rate matrix Q is complex. However, closed form expressions for

the conditional expectation and variance of dj given β, and bounds l and u can be

computed and are given in our Online Supplementary Materials. For various values

of l and u spanning the range inferred in analyses of real data, Figure 1 plots the

conditional mean and standard deviation as a function of β. Clearly as β gets large,

the distribution of dj tends towards a point mass at zero and we recover a simple

LASH model. However, as β approaches zero, the mean and standard deviation both

become large. Therefore we can allow more heterogeneity across sites by giving β a

prior which assigns reasonable density around zero.
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Figure 1: Conditional mean and standard deviation of dj given β, and bounds l and

u, plotted with a log-scale on the y-axis.

4 Non-stationary models

The transformations characterising LASH and QuASH models allow across-site vari-

ation in the overall magnitude of the instantaneous rates of change and, for QuASH

models, their relative sizes. However, the models discussed so far have been homo-

geneous across branches, with a single baseline rate matrix Q applying to the whole

tree. Furthermore, the linear and quadratic transformations (2.1) and (3.1) preserve

the stationary distribution π ofQ. Therefore if the distribution at the root of the tree

π(0) is equal to π, then the resulting Markov process will assume the same stationary

distribution at all sites. These models cannot, therefore, explain the heterogeneities in

sequence composition that are commonly observed in experimental data, either across

taxa or across sites. As explained in Section 1, the resulting model misspecification

can lead to misleading phylogenetic inferences.
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Non-stationary models for sequence evolution can account for differences in composi-

tion across taxa by allowing the probability of being in each state (e.g. each nucleotide

for DNA data) to change over time. Typically this is achieved by permitting step

changes in the theoretical stationary distribution at different points on the tree. Al-

though these changes do not have to occur at speciation events (e.g. Blanquart and

Lartillot, 2006), this assumption is often made (e.g. Yang and Roberts, 1995; Foster,

2004; Heaps et al., 2014; Cherlin, 2016) and we retain it here for simplicity of notation.

In general, therefore, consider a rooted topology τ with B branches and a model that

assumes a distribution π(0) at the root of the tree, with the processes on the other

branches governed by normalised rate matrices Q(1), . . . ,Q(B), with associated the-

oretical stationary distributions π(1), . . . ,π(B). To achieve non-stationarity we need

π(b) 6= π(0) for at least one b ∈ {1, . . . , B}, however for some distinct branches (b, b′),

b 6= b′, we might fix π(b) to be equal to π(b′).

Extending the LASH and QuASH transformations to non-stationary models of this

form, the rate matrix for site j on branch b is given by

Qb,j = cjQ(b) − cjdjQ2
(b)

where cj ∈ (0,∞), whilst dj = 0 for LASH models and dj ∈ (l, u) for QuASH models.

In the latter case, the limits depend on all the Q(b), with l = max{l(Q(b)) : b =

1, . . . , B} and u = min{u(Q(b)) : b = 1, . . . , B}, where l(·) and u(·) are as in (3.2)

and (3.3) respectively. This ensures that all the resulting Qb,j are valid rate matrices.

The likelihood expressions (3.4) and (3.5) for stationary QuASH models can now be

modified to give

p(y|Q(1), . . . ,Q(B),π(0), τ, `, α, β) ' 1

KcKd

M∏
j=1

Kc∑
a=1

Kd∑
a′=1

Pr(Y j = yj|Q1,j, . . . ,QB,j,π(0), τ, `)

(4.1)
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where Qb,j is a function of
{
zc,a(α), zd,a′(Q(1), . . . ,Q(B), β),Q(b)

}
and

Pr(Y j = yj|Q1,j, . . . ,QB,j,π(0), τ, `) =
∑
X

π(0),X(0)

∏
edges b=(v,w)

pb,j,X(v),X(w)(`b)

(4.2)

in which Pb,j(`b) = {pb,j,h,i(`b)} = exp(`bQb,j) is the transition matrix associated with

edge b, of length `b, and site j.

By definition, non-stationary models can allow heterogeneities in sequence composi-

tion across taxa. Consider, for example, a simple non-stationary model which allows

a single step change in the stationary distribution at the root of the tree (e.g. Klopf-

stein et al., 2015; Cherlin, 2016, Chapter 4). In a site-homogeneous version of this

model, a single rate matrix Q(1), with associated stationary distribution π(1) 6≡ π(0),

applies to all branches of the tree. In this case, the marginal distributions at the

leaves depend on how long the process has had to move away from the distribution

π(0) at the root and converge towards π(1) before reaching the tips of the pendant

edges. In non-clock trees, where the leaf depths vary across taxa, this allows variation

in the corresponding marginal distribution. Similarly in more complex models where

there is more than one step change in the stationary distribution, the marginal dis-

tribution will vary due to differences in both the leaf depths (for non-clock trees) and

differences in the sets of Q(b) matrices on the evolutionary paths for different taxa.

Although more subtle, LASH and QuASH extensions of these non-stationary models

additionally allow heterogeneity between sites in the across-taxa variation. For in-

stance, consider the LASH or QuASH extension of the simple non-stationary model

described above, regarding Q(1) as the baseline rate matrix and denoting by Q1,j the

rate matrix associated with site j. If λ is an eigenvalue of Q(1), it follows immedi-

ately from (3.1) that cjλ − cjdjλ
2 is an eigenvalue of Q1,j, with dj = 0 for LASH
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models. Denote by λj,1, λj,2, . . . , λj,K the eigenvalues of Q1,j ordered such that λj,1 =

0 > Re(λj,2) ≥ Re(λj,3) ≥ · · · ≥ Re(λj,K), where Re(λ) denotes the real part of the

complex number λ. Under this model, it can be shown that P j(`) = 1π(1) +O(e−νj`)

as ` → ∞ where 1 is a length K column vector of 1s and νj = −Re(λj,2); see, for

example, Kijima (1997), Chapter 4. It follows that at sites for which νj is large, the

rate of convergence towards the stationary distribution π(1) associated with Q(1) will

be fast, giving rise to marginal distributions at the leaves of the tree that resemble

π(1), especially for those taxa whose leaf depth is large. In contrast, at sites for which

νj is small, the rate of convergence will be slow, leading to marginal distributions at

the leaves that are closer to the distribution at the root π(0). Again, this will be more

pronounced for taxa with a small associated leaf depth. Although LASH and QuASH

models both allow this kind of behaviour, in QuASH models it is managed more flex-

ibly by two parameters, rather than one. Further, as discussed in Sections 3.1 and

3.2, only the QuASH mapping allows the ratios of the instantaneous rates of change,

and hence transition patterns, to vary across sites.

In the application in Section 6.2, we focus on the HB model (Heaps et al., 2014) where

each branch of the tree has its own reversible rate matrix Q(b) which factorises into a

composition vector π(b) and a set of exchangeability parameters ρ that are assumed

constant across the tree. We use the formulation of the model from Williams et al.

(2015) in which the composition vector on the root edge of the underlying unrooted

topology is the same as that at the root of the tree π(0). To allow information to

be shared between branches, the composition vectors {π(b)} are positively correlated

a priori. Full details can be found in the description of Prior B in Heaps et al.

(2014) but, briefly, a greater exchange of information between neighbouring branches

is admitted by adopting a first order autoregressive structure in which the composition
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vector on branch b is conditionally independent of the composition vectors on all non-

descendant branches given its parent.

5 Posterior inference via MCMC

Let θ represent the parameters of the distribution at the root of the tree and the

set of baseline rate matrices. For a given tree τ and set of branch lengths `, these

parameters would be common to a site-homogeneous model and its LASH and QuASH

extensions. For example, θ = {π,ρ} for a simple, stationary QuASH model based on

a reversible rate matrix, or θ = {π(0), . . . ,π(B−2),ρ} for the HB variant. The joint

posterior distribution for all unknowns is then

p(θ, τ, `, α, β|y) ∝ p(y|θ, τ, `, α, β) p(θ, τ, `, α, β)

where the likelihood function p(y|θ, τ, `, α, β) was given in (3.4) and (3.5) for a simple,

stationary QuASH model, or in (4.1) and (4.2) for a non-stationary QuASH model.

Irrespective of the choice of prior distribution p(θ, τ, `, α, β), the posterior is analyti-

cally intractable. We therefore build up a numerical approximation using a Metropo-

lis within Gibbs sampling scheme which iterates through a series of updates for each

unknown. Real valued parameters, such as branch lengths `, can be updated using

standard proposal distributions, for example Gaussian random walks on the log-scale.

In QuASH models whose likelihood is invariant to the root position, τ represents an

unrooted topology which can be updated using standard topological moves such as

nearest neighbour interchange (NNI) and subtree prune and regraft (SPR); see, for

example, Ronquist and Huelsenbeck (2003). For QuASH models whose likelihood

depends on the root position, τ represents a rooted topology and so proposals which
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attempt to move the root are also required. In the applications in Section 6, for exam-

ple, we consider the QuASH variant of the HB model and employ the NNI, SPR and

root moves described in Heaps et al. (2014). These topological moves are complicated

by the step changes in the theoretical stationary distribution which characterise the

HB model. As there is a different composition vector associated with each branch

of the underlying unrooted topology, topological moves include modifications to the

composition vectors, as well as branch lengths, for the edges whose local interpreta-

tion changes under the proposed new topology. To generate such proposals, we can,

for example, propose the new composition vectors using a distribution centred at the

composition on a neighbouring branch; see Heaps et al. for full details. The MCMC

inferential procedures are programmed in Java. A software implementation can be

found in the Online Supplementary Material and through the web-page provided in

the Appendix.

6 Applications

A controversial issue in evolutionary biology is the deep structure of the tree of life,

including the relationships among Bacteria, Archaea and eukaryotes, the three main

cellular domains. The balance of evidence favours endosymbiotic hypotheses for the

origin of eukaryotes, involving symbiosis between a bacterial endosymbiont (the mi-

tochondrion) and some kind of host cell (Martin et al., 2015). Woese et al. (1990)

proposed that this host cell was part of an independently-branching third domain of

life, distinct from Archaea and Bacteria. This is often referred to as the three domains

hypothesis. On the basis of analyses involving previously unsequenced taxa and more
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sophisticated evolutionary models (Williams et al., 2013), an alternative view – the

eocyte hypothesis – has gained considerable support over recent years. According

to this conjecture, the host for the mitochondrial endosymbiont was a fully-fledged

Archaeon. In addition to uncertainty surrounding the unrooted topology of the tree

of life, opinion is also divided on the position of its root. Under the two leading

hypotheses, it is either placed on the bacterial branch (Gogarten et al., 1989; Iwabe

et al., 1989) or, with fewer proponents, within the Bacteria (Cavalier-Smith, 2006;

Lake et al., 2009).

In this section we consider applications to biological data sets that address these

controversial questions. In Section 6.1 we analyse a concatenated alignment of small

and large subunit ribosomal RNAs (SSU and LSU rRNAs) sampled from across the

tree of life. After alignment using MUSCLE (Edgar, 2004) and editing to remove

poorly-aligning regions, M = 1734 sites on N = 36 species remained. We consider

three models: (S1) a stationary, reversible TN93 model, (S2) the LASH-variant of

S1 and (S3) the QuASH-variant of S1. Models that are stationary and reversible

give rise to likelihood functions that are invariant to the position of the root, and

so these analyses only allow inference of the unrooted topology. In Section 6.2 we

therefore consider three non-stationary models which also allow us to learn about the

root position: (NS1) the HB model with TN93 exchangeability parameters; (NS2) the

LASH-variant of NS1 and (NS3) the QuASH-variant of NS1. Inference via MCMC

is substantially slower for the HB model and so, for computational tractability, we

consider a smaller data set with M = 1481 sites and only N = 16 taxa. Further

discussion on the scalability of our model-fitting procedures can be found in the

Appendix.
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In all analyses, mixing and convergence of the MCMC sampler was assessed by com-

paring the output from multiple chains, initialised at different starting points. In

phylogenetics, mixing in tree-space can be problematic due to the low acceptance

rates of topological moves. Therefore, in addition to considering the usual numerical

and graphical diagnostic checks for continuous parameters, we also examined graphs

based on relative cumulative split (Section 6.1) or clade (Section 6.2) frequencies of

the chains over the course of the MCMC runs; see Heaps et al. (2014) for full details

of these diagnostics. Here a split refers to a bipartition of the taxa at the leaves of

the tree into two disjoint sets, induced by cutting a branch. On a rooted tree, one of

the partition subsets of any split is a clade if all the taxa lie on the same side of the

root. In biological terms, this corresponds to an ancestor and all its descendants.

6.1 Stationary TN93 model

Based on our subjective assessments of the evolutionary process, for the parameters

of the S1 model we chose independent gamma Gam(1, 1) priors for the two transition

rates ρ1 and ρ2 and a flat Dirichlet D(1, 1, 1, 1) prior for the stationary distribution

π in the unnormalised rate matrix. In keeping with experiences from the literature,

our posterior inferences were robust against reasonable modifications to this prior

specification (Zwickl and Holder, 2004). We also specified independent exponential

Exp(10) priors for the branch lengths ` and a uniform prior over unrooted topologies

τ . This expresses the prior belief that a branch represents 0.1 substitutions per site,

on average, along with prior indifference with regards to the unrooted topology. In

models S2 and S3 we additionally assigned a gamma Gam(10, 10) prior to the shape

parameter α in the random effects distribution for the rates cj and, in model S3, a
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gamma Gam(1, 1) prior to the parameter β in the random effects distribution for the

quadratic coefficients dj of the QuASH model. The latter distribution, with mean

E(β) = 1 and coefficient of variation CV(β) = 1, was chosen to give reasonable

support to values of β near zero. As explained in Section 3.3, this choice makes

the prior for the dj reasonably diffuse. In order to check sensitivity to the prior

specification for β, we repeated the analysis with model S3 using priors that had the

same mean but different coefficients of variation and different behaviour near zero:

Gam(10, 10) (CV (β) = 0.316) and Gam(0.1, 0.1) (CV (β) = 3.16). The phylogenetic

and posterior predictive inferences reported in this section were robust against these

changes.

We refer to the output of each complete sweep through the Gibbs steps of our

Metropolis-within-Gibbs samplers as a single draw from the posterior. For each model

the MCMC algorithm outlined in Section 5 was used to generate at least 110K draws

from the posterior, after a burn-in of 100K samples, thinning the remaining output to

retain every 100-th iterate. The diagnostics checks described earlier gave no evidence

of any lack of convergence.

In phylogenetic inference, the majority-rule consensus tree is the most widely used

summary of the posterior distribution over tree space. As a summary of a sample of

trees, it includes only those splits which appear in over half of the samples (Bryant,

2003), here representing those with posterior probability greater than 0.5. For the

analyses under models S1–S3, the consensus trees are shown in Figure 2 in which

numerical labels represent the posterior probability of the associated split. To aid

comparison, the trees are all visualised with the root on the bacterial branch. The

consensus tree under S1 supports the three domains hypothesis, whilst models S2 and
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Figure 2: Majority rule consensus trees under models (a) S1, (b) S2 and (c) S3.

Numerical labels represent the posterior probability of the associated split. Branch

lengths can be interpreted as the expected number of substitutions per site. Trees

are unrooted but visualised with the root at the midpoint of the bacterial branch.

S3 yield eocyte trees, with eukaryotes emerging from within two archaeal clades: the

Euryarchaeota and the TACK Archaea. As expected, there is a marked difference in

our phylogenetic inferences as we move from the simple TN93 model (S1) to one which

incorporates across-site rate heterogeneity. However, there is very little difference in

the inferences obtained when extending the LASH model (S2) to the corresponding

QuASH model (S3). Comparing the prior and posterior density for β in Figure 3a,

the posterior seems to support larger values for β than the prior, which suggests a

distribution for the quadratic coefficients dj that is more concentrated around zero.

Indeed this effect is borne out in Figure 3c which shows that the prior predictive
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Figure 3: Top row: marginal prior and posterior densities for the unknown parameter

β in the random effect distribution for the quadratic coefficients dj under the (a)

stationary model S3 and (b) non-stationary model NS3. Bottom row: prior and

posterior predictive distributions for dj at an additional site j under the (c) stationary

model S3 and (d) non-stationary model NS3.

density for dj at an unobserved site j has a much longer tail on the right than

the corresponding posterior predictive density, all of whose mass is concentrated in a

small neighbourhood around zero. The data do not, therefore, provide much evidence

that the QuASH transformation is necessary given a model that already incorporates

across-site rate heterogeneity.
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In order to compare the fit of models S1, S2 and S3, we use the framework of posterior

predictive checks (Gelman et al., 2013) in which the basic idea is to measure the extent

to which a model captures some data summary of interest – a so-called test statistic

– by comparing its posterior predictive distribution to the value that was observed.

Typically the posterior predictive distribution is approximated numerically based on

an MCMC sample from the posterior of the unknowns in the model by simulating

replicated data sets in one-to-one correspondence with the posterior draws. If the

model is able to capture adequately the aspect of the data summarised through the

test statistic, the observed value should look plausible under its posterior predictive

distribution.

As explained in Section 1, functional and structural constraints acting on a particular

site can cause it to evolve very slowly. In such cases we are likely to see little or no

variation in the character state at that column of the alignment. Therefore in fitting

to the alignment-wide empirical compositions, models that do not allow variation in,

at least, the rate of the evolutionary process across sites tend to overestimate the

mean number of distinct nucleotides per column, and underestimate the associated

standard deviation. Figure 4a shows the posterior predictive distribution for these

test statistics obtained under models S1, S2 and S3, together with the observed values

calculated from the alignment. As expected, model S1 markedly overestimates the

number of distinct nucleotides per site and underestimates the associated standard

deviation. Whilst models S2 and S3 also overestimate the mean, the discrepancies

are much less marked, with the QuASH-variant of the TN93 model (S3) being most

compatible with the observed data. Interestingly, models S2 and S3 overestimate

the standard deviation of the number of distinct nucleotides per site. It is possible

that models allowing sequence composition to vary across sites would be required to
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Figure 4: Posterior predictive densities for the mean and standard deviation of the

number of distinct nucleotides per site in the analysis under the (a) stationary models

S1–S3 and (b) non-stationary models NS1–NS3. The observed values are indicated

by vertical lines.

adequately capture this feature.



32 Sarah E. Heaps et al.

6.2 Non-stationary HB model

For the analyses using the non-stationary models NS1, NS2 and NS3, we adopted the

prior distributions outlined in Section 6.1 for the two transition rates ρ1 and ρ2, the

branch lengths ` and the parameters α and β in the random effects distributions for

the linear and quadratic coefficients cj and dj. As the HB model yields a likelihood

function that depends on the position of the root, our topology τ is rooted. We

assigned τ a prior according to the biologically-motivated Yule model of speciation,

which generates a distribution in which near equal probability is assigned to root splits

of all sizes: 1 : (N−1), 2 : (N−2), and so on (Cherlin et al., 2015). For the composition

vectors πb, b = 0, . . . , B − 2, in the baseline rate matrix we used Prior B from Heaps

et al. (2014), choosing the hyperparameters representing the autoregressive coefficient

and conditional variance to be a = 0.94 and b = 0.31 respectively. This specification

was guided by simulations from the prior predictive distribution which suggested it led

to a biologically plausible degree of heterogeneity in empirical sequence composition.

For each model the MCMC algorithm was used to generate at least 510K draws from

the posterior, after a burn-in of 500K samples, thinning the remaining output to

retain every 100-th iterate. The diagnostics checks described earlier gave no evidence

of any lack of convergence.

The rooted majority-rule consensus trees for each model are shown in Figure 5. Our

conclusions are consistent with those from Section 6.1. Specifically, the model NS1

supports a three-domains tree whilst models NS2 and NS3 support very similar eocyte

trees with, in this case, the same rooted topology. Although the site-homogeneous

HB model (NS1) and the LASH and QuASH variants (NS2 and NS3) support dif-
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Figure 5: Rooted majority rule consensus trees under models (a) NS1, (b) NS2 and

(c) NS3. Numerical labels represent the posterior probability of the associated clade.

Branch lengths can be interpreted as the expected number of substitutions per site.

ferent conclusions about the unrooted topology, they both suggest a root within the

Bacteria. The marginal posterior distribution for root splits under the three models

is summarised in Table ?? of our Online Supplementary Materials. Again, the dif-
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ferences between inferences under NS1 and NS2 are much more marked than those

between NS2 and NS3. However, in all cases the posterior probability for a root

within the Bacteria is 1.0.

The LASH and QuASH variants of the HB model allow sequence composition, as well

as the overall rate of evolution, to vary across sites. Therefore we expect these models

to be better equipped to capture the number of distinct nucleotides per site. Poste-

rior predictive densities of the across-site mean and standard deviation are plotted in

Figure 4b. For the mean, all three models capture the observed statistic well, with

the site-homogeneous model (NS1) offering slightly more support to larger values,

as expected. As in the analysis from Section 6.1, the site-homogeneous model very

markedly underestimates the standard deviation. The posterior predictive densities

under the LASH (NS2) and QuASH (NS3) variants of the HB model are very sim-

ilar. Although both overestimate the standard deviation, the observed statistic is

more plausible than under the NS1 model, and the overestimation seems less marked

than the corresponding comparison from Section 6.1. The similarity in both phylo-

genetic and posterior predictive inferences under the LASH and QuASH models are

consistent with the implications of the comparison between the prior and posterior

in Figure 3. Figure 3b shows the prior and posterior densities for β, whilst Figure 3d

shows the prior and posterior predictive densities for the quadratic coefficient dj at

an unobserved site j. As in the analysis of the stationary models, the posterior sug-

gests a distribution for dj that is more concentrated around zero which suggests that

the QuASH transformation adds only a small amount to a model in which linear

across-site heterogeneity is already included.
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7 Discussion

The introduction of across-site rate heterogeneity into substitution models for se-

quence evolution led to substantial improvements in model fit and the credibility

of phylogenetic inferences. In practice, this feature was incorporated through a set

of site-specific rates, modelled as random effects with unit mean gamma distribu-

tion, that linearly transformed a baseline rate matrix. Motivated by the advance-

ment gained through this simple innovation, we considered a natural extension of the

LASH model based on the incorporation of two sets of random effects, allowing a

more flexible site-specific quadratic transformation of the baseline rate matrix. Bi-

ologically, this model makes fewer assumptions than the (nested) LASH model and

allows for the effects of variation in the selective coefficients of different types of point

mutation at a site, in addition to heterogeneity in overall selective constraints across

sites. We derived properties of QuASH-transformed rate matrices, showing that they

retain the stationary distribution of the underlying baseline matrix, and that the set

of reversible rate matrices is closed under our quadratic transformation. In the con-

text of a class of non-stationary models which permit step-changes in the theoretical

stationary distribution at one or more points on the tree, we demonstrated that both

the LASH and QuASH transformations lead to models which allow sequence com-

position to vary across sites as well as across taxa. This is due to different rates of

convergence towards the theoretical stationary distributions at different sites. The

QuASH-transformed, non-stationary models therefore provide a parsimonious means

of allowing heterogeneity in sequence composition across both alignment dimensions.

We utilised our model and inferential procedures in two biological applications con-

cerning the tree of life. In the first, we compared inferences under a stationary,
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reversible TN93 model, with those obtained under the LASH and QuASH exten-

sions. In the second, to make computational inference manageable, we considered a

smaller data set and compared inferences under a non-stationary HB model to those

obtained under the LASH and QuASH variants. In both applications we found that

the simpler site-homogeneous models supported the three domains hypothesis, with

the Archaea, Bacteria and eukaryotes appearing as monophyletic groups. Conversely

the more flexible LASH and QuASH models supported the eocyte hypothesis, with

eukaryotes emerging from within a paraphyletic Archaea. The non-stationary models

consistently placed the universal root within the Bacteria. The marked differences

between inferences obtained under the site-homogeneous and LASH models are sim-

ilar to other results reported in the literature (Yang, 1996). Both analyses suggested

that only a small gain was achieved through the quadratic transformation once a

linear mapping was in place. We have drawn similar conclusions from applications to

several other data sets not reported here.

Although our analyses have reinforced the importance of allowing heterogeneity in

the rate of evolution across sites, it appears that only a modest benefit can be found

by using a natural extension which exploits a quadratic transformation of the base

rate matrix. This may be because the implications of heterogeneity across sites in the

selective coefficients of different types of point mutation are difficult to detect from

alignments of sequence data. This might be particularly true of the ribosomal RNA

sequences we analysed here, which are under strong selective constraints imposed both

by the function of the molecule and by the physical interactions among sites that are

separated in the primary sequence. However, in the context of non-stationary models,

it is worth emphasising that even the LASH transformation generates models that

allow heterogeneity in sequence composition across sites as well as across taxa. To our
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knowledge, this is a property that has gone unnoticed in the literature. Whilst a few,

more mechanistic models have been proposed to offer this flexibility (e.g. Blanquart

and Lartillot, 2008; Jayaswal et al., 2014), their complexity has made model-fitting

computationally prohibitive. In contrast, non-stationary LASH and QuASH models

provide a more parsimonious, data-driven alternative for which computational infer-

ence is substantially more straightforward. Our software implementation, described

in the Appendix, provides a tool which allows practitioners to fit these models to

their biological data sets.

Appendix

A software implementation can be found in the Online Supplementary Material and

through the web-page

http://www.mas.ncl.ac.uk/~nseg4/QuASH/

The analyses in this paper were performed on a 2.40GHz Dell PowerEdge R410 server

with two six-core Intel Xeon E5645 CPUs and 32GB RAM. When fitting the S2 and

S3 models to the alignment from Section 6.1, generating 500K MCMC samples took

approximately 4 and 16 days, respectively. When fitting the more complex NS2 and

NS3 models to the alignment from Section 6.2, it took approximately 2.5 and 10

days, respectively, to generate 500K MCMC samples. In principle our software could

be used to analyse alignments with any number of taxa and any number of sites.

However, increasing the number of sites or the number of taxa increases run times.

For example, for both sets of analyses detailed above, doubling the number of sites or

the number of taxa roughly doubled the computational time. Clearly the size of the

http://www.mas.ncl.ac.uk/~nseg4/QuASH/
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data sets that we can feasibly analyse is limited due to the computational complexity

of the models considered. However, as demonstrated in Section 6 for the tree of life, by

fitting more complex, biologically plausible models, even to relatively small data sets,

we can challenge biological assumptions that would otherwise remain uncontested.
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