
                          Kreula, J. M., García-Álvarez, L., Lamata, L., Clark, S. R., Solano, E., &
Jaksch, D. (2016). Few-qubit quantum-classical simulation of strongly
correlated lattice fermions. EPJ Quantum Technology, 3, 11.
https://doi.org/10.1140/epjqt/s40507-016-0049-1

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1140/epjqt/s40507-016-0049-1

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Springer Link at
https://doi.org/10.1140/epjqt/s40507-016-0049-1 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.1140/epjqt/s40507-016-0049-1
https://doi.org/10.1140/epjqt/s40507-016-0049-1
https://research-information.bris.ac.uk/en/publications/fewqubit-quantumclassical-simulation-of-strongly-correlated-lattice-fermions(668a783b-4ea7-4f5e-85e4-b8abf157b414).html
https://research-information.bris.ac.uk/en/publications/fewqubit-quantumclassical-simulation-of-strongly-correlated-lattice-fermions(668a783b-4ea7-4f5e-85e4-b8abf157b414).html


Kreula et al. EPJ Quantum Technology  (2016) 3:11 
DOI 10.1140/epjqt/s40507-016-0049-1

R E S E A R C H Open Access

Few-qubit quantum-classical simulation
of strongly correlated lattice fermions
Juha M Kreula1*, Laura García-Álvarez2, Lucas Lamata2, Stephen R Clark3,4, Enrique Solano2,5 and
Dieter Jaksch1,6

*Correspondence:
j.kreula1@physics.ox.ac.uk
1Clarendon Laboratory, Department
of Physics, University of Oxford,
Parks Road, Oxford, OX1 3PU, UK
Full list of author information is
available at the end of the article

Abstract
We study a proof-of-principle example of the recently proposed hybrid
quantum-classical simulation of strongly correlated fermion models in the
thermodynamic limit. In a ‘two-site’ dynamical mean-field theory (DMFT) approach
we reduce the Hubbard model to an effective impurity model subject to
self-consistency conditions. The resulting minimal two-site representation of the
non-linear hybrid setup involves four qubits implementing the impurity problem,
plus an ancilla qubit on which all measurements are performed. We outline a possible
implementation with superconducting circuits feasible with near-future technology.

Keywords: quantum simulation; dynamical mean-field theory; superconducting
circuits

1 Introduction
Using highly controllable quantum devices to study other quantum systems, i.e., quan-
tum simulation [–], offers a means to tackle strongly correlated fermion models that are
intractable on classical computers. This is vital for understanding complex quantum mate-
rials [] with strong electronic correlations that exhibit a plethora of exciting physical phe-
nomena of immediate technological interest. Examples of such effects include the Mott
metal-insulator transition [, ], colossal magnetoresistance [], and high-temperature
superconductivity [, ].

Classical numerical methods have limited ability to study even significantly simplified
toy models of strongly correlated fermions. For instance, exact diagonalization faces ex-
ponential scaling with the system size, while quantum Monte Carlo methods [, ] are
often crippled by the infamous fermionic sign problem []. Tensor network methods [–
] are powerful in one spatial dimension where they track strong correlations accurately.
However, in higher dimensional systems, correlations tend to grow more quickly with sys-
tem size, making these methods computationally challenging.

Another well-established approach to the study of strongly correlated fermionic lattice
systems is dynamical mean-field theory (DMFT) []. It reduces the complexity of the
original problem, e.g., the Hubbard model [] in the thermodynamic limit, by mapping it
onto a simpler impurity problem that is subject to a self-consistency condition relating its
properties to those of the original model. Since an impurity problem is local, the mapping
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corresponds to neglecting spatial fluctuations. In the limit of infinite spatial dimensions
this mapping is exact, but for finite dimensions it is an approximation. Nonetheless for
lattice geometries with a large coordination number, self-consistently solving the impurity
problem can yield an accurate approximate solution to the original Hubbard problem.

The ‘impurity’ itself consists of a single lattice site taken from the original problem, and
so inherits on-site interactions from the Hubbard model. This impurity site is then im-
mersed into a time-dependent, self-consistent mean-field with which it can dynamically
exchange fermions. The mean-field thus attempts to model the rest of the lattice and by
being dynamical can describe retardation phenomena. Overall the impurity problem can
be represented by a Hamiltonian in which the interacting impurity site is coupled to a dis-
crete set of non-interacting ‘bath’ sites. The bath sites represent the mean-field and if there
is an infinite number of them then the self-consistency condition is guaranteed to be sat-
isfied. However, in practical implementations only a finite number of bath sites are used,
which restricts the frequency resolution of the bath so self-consistency condition can only
be fulfilled approximately. Nevertheless, many strongly-correlated features, e.g., the Mott
transition, are still be captured correctly []. For a study of different bath discretisation
strategies in DMFT, see [].

Although DMFT maps a Hubbard model to an impurity model this is still a non-trivial
quantum many-body problem to solve because of the interactions at the impurity site. It
is usually solved by classical numerical methods, e.g., specialised versions of those used
to tackle the original problem, which attempt to keep track of the quantum correlations
between impurity and bath sites. Again this limits the number of bath sites that can be
treated accurately.

Here, we consider an alternative approach where the impurity problem is solved with
a quantum simulator, thus avoiding many issues that are inherent to the classical meth-
ods. Quantum simulation of fermionic models has so far been mostly restricted to the
analogue paradigm, especially with ultracold atoms in optical lattices []. Digital simu-
lation approaches, akin to universal quantum simulators [], have started to emerge in
recent years, for example based on superconducting circuits [–]. Different quantum
simulation schemes for the Hubbard model have been proposed [–]. The number of
qubits in these digital simulators is, however, presently rather small. A direct implemen-
tation of the Hubbard model would suffer from severe finite size effects. It is nevertheless
still possible for a digital quantum simulator with a restricted number of qubits to de-
scribe fermionic models directly in the thermodynamic limit when the DMFT approach
is adopted.

To demonstrate this method we focus on the minimal incarnation of DMFT, the so-
called ‘two-site’ DMFT [], where the impurity model consists of one impurity site and
only one bath site, both with local Hilbert space dimension four, subjected to two specially
chosen self-consistency conditions. Since two-site DMFT considers only the smallest pos-
sible impurity model, the approach cannot match the accuracy of full DMFT, but it can still
give a qualitatively correct description of the infinite-dimensional Hubbard model, and its
simplicity makes it a good starting point before advancing to more accurate schemes. For
explicit details of two-site DMFT and its features compared to full DMFT we refer to Ref.
[].

The two-site system corresponds to four qubits, two for the impurity site and two for the
bath site, while a fifth, ancillary qubit is used for measurements. This number of qubits is
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readily available in current digital quantum simulator platforms, with IBM having made
a five-qubit quantum processor available to the public []. A nine-qubit processor has
already been demonstrated in superconducting circuits [, , ]. Trapped-ion tech-
nologies also allow for digital quantum simulations with up to six qubits [, ]. Being
commensurate with current state-of-the-art technology is a further justification for study-
ing this minimal model. Our scheme is readily generalisable to a larger number of qubits
allowing for more accurate simulations and potentially offering an exponential speed-up
over classical Hamiltonian-based DMFT methods []. For example, the number of mul-
tiqubit Mølmer-Sørensen gates scales only linearly with the number of bath sites, enabling
efficient simulations [, , , ].

The self-consistency conditions are taken care of iteratively in a classical feedback loop,
which thus completes the non-linear, hybrid quantum-classical device we introduce. Dy-
namical mean-field simulations have already been proposed for such hybrid devices [,
]. Quantum gates similar to the ones needed in the two-site scheme have been used
in demonstrating digital quantum simulation of fermionic models with superconducting
circuits [, ]. We thus focus on superconducting circuits as a candidate platform, al-
though, e.g., trapped ions [, , , ] could also be considered.

This paper is organised as follows. In Section , we further elucidate the framework
of DMFT applied to the Hubbard model in infinite dimensions. Section  introduces the
two-site DMFT scheme in detail. Section  discusses the implementation of this two-site
scheme with special attention to superconducting circuits. In Section , we show the re-
sults of our analysis. We end with a summary in Section  and give an outline of the single-
qubit interferometry measurement scheme in the Appendix.

2 Hubbard model in infinite dimensions and dynamical mean-field theory
A standard model to describe strongly correlated electron systems in thermodynamic
equilibrium is the Hubbard Hamiltonian

Ĥ = –t
∑

〈j,k〉σ

(
ĉ†

j,σ ĉk,σ + H.c.
)

+ U
∑

j

n̂j,↓n̂j,↑. ()

In this model, electrons with spin projections σ =↓,↑ ‘hop’ between adjacent lattice sites
with tunnelling energy t. This process is described in the first term, where 〈j, k〉 denotes the
sum over all nearest-neighbour sites j and k, and ĉ†

j,σ and ĉk,σ denote the fermionic creation
and annihilation operators, respectively. The electrons interact with on-site Coulomb re-
pulsion U > , described in the latter term by the product of the local number operators
n̂j,↓ = ĉ†

j,↓ĉj,↓ and n̂j,↑ = ĉ†
j,↑ĉj,↑.

Here, we consider the paramagnetic Hubbard model in an infinite-dimensional Bethe
lattice in the thermodynamic limit at zero temperature. This setup has very simple self-
consistency relations, which makes it an ideal test-bed for a proof-of-principle demon-
stration of a hybrid quantum-classical scheme.

The DMFT approach [] to solving this model consists in neglecting spatial fluctua-
tions around a single lattice site and replacing the rest of the many-body lattice in the
thermodynamic limit by a time-translation-invariant, self-consistent mean-field �(τ – τ ′)
(or �(ω) in the frequency domain), as illustrated in Figure (a). The isolated lattice site can
dynamically exchange fermions with the mean-field at time instants τ ′ and τ . This allows
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Figure 1 Dynamical mean-field theory. (a) DMFT
neglects spatial fluctuations around a single lattice
site j and replaces the rest of the lattice with an
effective mean-field �(τ – τ ′) with which the
isolated site dynamically exchanges fermions,
subject to the self-consistency condition GRimp(ω)

= GRlatt,jj(ω). Here, GRimp(ω) is the impurity Green

function and GRlatt,jj(ω) is the local part of the lattice
Green function. (b) In Hamiltonian-based DMFT
methods, one considers an impurity model which
describes the local part of the Hubbard model
directly and represents the mean-field as a set of
non-interacting bath sites that are connected to the central, interacting impurity site. (c) The minimal
representation of DMFT involves the impurity site, with on-site interaction U and chemical potential μ,
coupled via the hybridization energy V to only one bath site. The bath has on-site energy εc that corresponds
to the mean-field �(τ – τ ′) and is subject to two self-consistency conditions.

one to include retardation effects that are important in the presence of strong correlations.
In short, the dynamical mean-field approach reduces the complexity of the full Hubbard
model to an effective single-site system which is a slightly more benign many-body prob-
lem to solve. In infinite dimensions, DMFT becomes exact as the irreducible self-energy of
the lattice model becomes strictly local in space, �latt,jk(ω) = δjk�latt,jj(ω), and its skeleton
diagrams agree with those of a single-site, or impurity, model [].

The solution of the effective single-site, or impurity, problem also yields the solution of
the infinite-dimensional Hubbard model due to the self-consistency condition. This leads
to the retarded single-particle impurity Green function in the frequency domain being
given by

GR
imp(ω) =


ω + μ – �(ω) – �imp(ω)

, ()

where μ is the chemical potential, and �imp(ω) denotes the impurity self-energy. We set
� =  throughout the paper. The impurity Green function describes the response of the
many-body system after a localized removal or addition of a particle on the impurity site
and is defined in the time domain and at zero temperature as

iGR
imp(τ ) = θ (τ )

〈{
ĉσ (τ ), ĉ†

σ ()
}〉

, ()

where i is the imaginary unit, τ is real time, {·, ·} denotes the anticommutator, θ (τ ) is the
Heaviside step function, and the average is computed in the ground-state |GS〉 of the impu-
rity model. The fermionic creation and annihilation operators are given in the Heisenberg
picture. In the paramagnetic phase the Green function is spin symmetric and we therefore
only need to work out GR

imp(ω) for one spin configuration.
The initially unknown mean-field �(ω) has to be chosen such that GR

imp(ω) matches the
local part of the retarded lattice Green function GR

latt,jj(ω), i.e.,

GR
imp(ω) = GR

latt,jj(ω), ()

where j is the (arbitrarily chosen) lattice site from which the removal or addition of a par-
ticle occurs in the translationally invariant lattice model. The DMFT self-consistency con-
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dition Eq. () implies

�imp(ω) = �latt,jj(ω), ()

i.e., the impurity self-energy matches the local self-energy of the Hubbard model in the
infinite-dimensional Bethe lattice.

In the general case, the DMFT self-consistency loop is iterated as follows (see also
Ref. []). (i) First, guess the local self-energy �latt,jj(ω). (ii) The local lattice Green func-
tion can be computed as GR

latt,jj(ω) =
∫ ∞

–∞ dερ(ε)/[ω + μ – ε – �latt,jj(ω)], where ρ(ε) =√
t∗ – ε/π t∗ is the non-interacting density of states of a Bethe lattice. The constant t∗

emerges from the requirement that the Hubbard hopping needs to be scaled as t ∼ t∗/
√

z
to avoid a diverging kinetic energy per lattice site in the limit of infinite coordination,
z → ∞ []. (iii) With Eqs. () and (), we obtain �(ω) from Eq. () and the impurity
model is then defined. (iv) Compute the impurity Green function and obtain the impurity
self-energy �imp(ω). There are several means to do this []. (v) Set �new

latt,jj(ω) = �imp(ω).
(vi) Check if the self-energy has converged. If not, go to step (ii) and repeat.

Once self-consistent, the solution of the impurity problem then gives access to local
single-particle properties of the original lattice model. For example, the local lattice spec-
tral function is given by

Alatt,jj(ω) = – Im
[
GR

latt,jj(ω + iη)
]
/π = – Im

[
GR

imp(ω + iη)
]
/π ,

where η is a positive infinitesimal.
In Hamiltonian-based impurity solvers, one parameterizes �(ω) by a set of bath sites

(see Figure (b)). For any finite number of bath sites, the self-consistency condition ()
can only be approximately satisfied and in the extreme ‘two-site’ DMFT it turns out to
be more suitable to reformulate Eq. () in a manner specially focused on this minimal
representation [] (see Section ). Note that two-site DMFT is only able to provide a
qualitatively correct description of the Hubbard model even in infinite dimensions [].

3 Quantum simulator based on two-site DMFT
In terms of the single-impurity Anderson model (SIAM), the smallest impurity problem
involves one fermionic site corresponding to the impurity and only one fermionic site
corresponding to the entire mean-field as described in the previous section. Since two
qubits are needed to encode the local Hilbert space of a fermionic site, we only require
four physical qubits to implement this representation in the lab. The SIAM Hamiltonian
for only one bath site reads

ĤSIAM =Un̂↓n̂↑ – μ
∑

σ

n̂σ +
∑

σ

εcĉ†
σ ĉσ +

∑

σ

V
(
ĉ†

σ ĉσ + H.c.
)
. ()

Here, U is the Hubbard interaction at the impurity site , and μ is the chemical potential
that controls the electron filling in the grand canonical ensemble. Furthermore, εc and V
describe the on-site energy of the non-interacting bath site  and hybridization between
the impurity and the bath site, respectively, and give the mean-field as

�(ω) =
V 

ω – εc
. ()
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Figure 2 Non-linear hybrid quantum-classical scheme. A digital quantum simulator works in conjunction
with a classical feedback loop to perform a proof-of-principle demonstration of a two-site DMFT calculation.

See Figure (c) for illustration of the two-site SIAM. The parameters εc and V are ini-
tially unknown and they need to be determined iteratively such that two self-consistency
conditions are satisfied. For details of the derivation and motivation of these conditions
we refer to Ref. [].

The first condition is that the electron filling nimp of the impurity site and the filling
n = 〈nj↓〉 + 〈nj↑〉 of the lattice model match, i.e.,

nimp ≡ n. ()

The second self-consistency condition is given by

V  = ZM()
 = Z

∫ ∞

–∞
dεερ(ε) = Zt∗, ()

where quasiparticle weight reads

Z =
[

 –
d Re[�imp(ω + iη)]

dω

∣∣∣∣
ω=

]–

. ()

In Eq. (), M()
 is the second moment of the non-interacting density of states, and the final

equality follows from the semicircular density of states of the Bethe lattice.

3.1 Two-site DMFT protocol
The hybrid quantum-classical device implementing two-site DMFT consists of a few-
qubit digital quantum simulator in which the impurity Green function is measured and of
a classical feedback loop in which the parameters of the two-site SIAM are updated. The
two-site DMFT protocol is summarized in Figure  and proceeds as follows (see also Ref.
[]).

. First fix U and μ to the desired values in the SIAM and set the unknown
parameters εc and V equal to an initial guess.

. Measure the interacting Green function iGR
imp(τ ). This can be done using, e.g.,

single-qubit interferometry (see details in the Appendix).
. After Fourier-transforming the impurity Green function, the impurity self-energy is

obtained classically from the Dyson equation

�imp(ω) = GR()
imp (ω)– – GR

imp(ω)–. ()
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Here, the non-interacting impurity Green function is given by

GR()
imp (ω)– = ω + μ – �(ω). ()

From the derivative of the self-energy one obtains the quasiparticle weight Z
which directly yields the updated hopping parameter V via Eq. (). The update for
εc is found by minimizing the difference |nimp – n| [].

. Steps  and  need to be repeated until V and εc are self-consistent, and nimp = n.
The self-consistent Green function GR

imp(ω) and self-energy �imp(ω) thus obtained are
used to calculate approximations to local single-particle properties of the Hubbard model.
Note that for larger systems the two-site DMFT steps need to be replaced with the general
DMFT self-consistency loop outlined in Section .

4 Quantum algorithm for the single-impurity Anderson model with
superconducting circuits

Here, we consider the quantum gates of the digital quantum simulator part in Figure ,
with special focus on superconducting circuits as the platform of choice [, , ].

4.1 Jordan-Wigner transformation of the SIAM
To implement the two-site SIAM with qubits, the fermionic creation and annihilation
operators need to be mapped onto tensor products of spin operators which then act on
the qubits via quantum gates. In order to obtain as simple quantum gates as possible in
Section . and in the Appendix, we consider an ordering of the qubits where the first two
qubits encode the spin ↓ for both fermionic sites while the last two correspond to spin ↑.
This is achieved via the Jordan-Wigner transformation given explicitly as

ĉ†
↓ = σ̂ –

 =


(
σ̂ x

 – iσ̂ y

)
, ()

ĉ†
↓ = σ̂ z

 σ̂ –
 =



σ̂ z


(
σ̂ x

 – iσ̂ y

)
, ()

ĉ†
↑ = σ̂ z

 σ̂ z
 σ̂ –

 =


σ̂ z

 σ̂ z

(
σ̂ x

 – iσ̂ y

)
, ()

ĉ†
↑ = σ̂ z

 σ̂ z
 σ̂ z

 σ̂ –
 =



σ̂ z

 σ̂ z
 σ̂ z


(
σ̂ x

 – iσ̂ y

)
, ()

and ĉjσ = (ĉ†
jσ )†. Here, σ̂ x

l , σ̂
y
l , and σ̂ z

l are spin- 
 Pauli operators for qubit l. For larger

systems the use of the Jordan-Wigner transformation, e.g., ĉ†
j↓ = (

∏
p<j– σ̂ z

p )σ̂ –
j–, ĉ†

j↑ =
(
∏

p<j σ̂
z
p )σ̂ –

j , ĉjσ = (ĉ†
jσ )†, becomes important, as considered in Refs. [, ]. The hy-

bridization terms in the SIAM, which now involve many spins, can be implemented effi-
ciently and scalably with multiqubit Mølmer-Sørensen gates, the number of which scales
only linearly with the number of bath sites [, , , ].

With the mappings in Eqs. ()-(), the hybridization terms in the SIAM described in
Eq. () transform into

V
(
ĉ†

↓ĉ↓ + H.c.
)

=
V


(
σ̂ x

 σ̂ x
 + σ̂

y
 σ̂

y

)
, ()
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and

V
(
ĉ†

↑ĉ↑ + H.c.
)

=
V


(
σ̂ x

 σ̂ x
 + σ̂

y
 σ̂

y

)
. ()

The number operators become

n̂↓ =


(
Î – σ̂ z


)
, ()

n̂↓ =


(
Î – σ̂ z


)
, ()

n̂↑ =


(
Î – σ̂ z


)
, ()

n̂↑ =


(
Î – σ̂ z


)
, ()

and thus the interaction term can be written as

Un̂↓n̂↑ =
U


(
σ̂ z

 σ̂ z
 – σ̂ z

 – σ̂ z

)
, ()

up to a constant. The total Hamiltonian then reads

ĤSIAM =
U


(
σ̂ z

 σ̂ z
 – σ̂ z

 – σ̂ z

)

+
μ


(
σ̂ z

 + σ̂ z

)

–
εc


(
σ̂ z

 + σ̂ z

)

+
V


(
σ̂ x

 σ̂ x
 + σ̂

y
 σ̂

y
 + σ̂ x

 σ̂ x
 + σ̂

y
 σ̂

y

)
, ()

where we have dropped constant terms.

4.2 Quantum gates in superconducting circuits
We now consider how the Jordan-Wigner transformed SIAM in Eq. () can be imple-
mented in an experimental arrangement based on superconducting circuits. We present
two alternative approaches. The first one couples the qubits with a transmission line res-
onator, which leads to the so-called XY gate between the qubits. The second approach is
the Controlled-Zφ (CZφ) gate, which can be obtained via a capacitive coupling of nearest-
neighbour transmon qubits without using a resonator. These CZφ gates have been imple-
mented with high fidelities of above % for a variant of transmon qubits called ‘Xmon’
qubits [].

XY gates with resonators The basic Hamiltonian coupling a set of qubits to the resonator
has the form of a detuned Jaynes-Cummings model. By adiabatically eliminating the res-
onator one obtains, when the resonator is in the vacuum state, the well-known XY model
for a pair of qubits l and m as

ĤXY =
glgm

�

(
σ̂ x

l σ̂ x
m + σ̂

y
l σ̂ y

m
)
. ()

Here, � is the detuning between the qubit level-spacing and the resonator mode, and gl

is the coupling constant between qubit l and the resonator. The XY gate is universal for
quantum computation and simulation in combination with single qubit gates, and is the
natural interaction customarily employed in superconducting circuits.
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Figure 3 Quantum gates for one Trotter step. A single Trotter step is shown for (a) the XY method and (b)
the CZφ method. Here, B is the entangling gate B = exp(–i U4 σ̂ z

1 σ̂
z
3

τ
N ), A is a two-qubit gate given by

A = exp(–i V2 σ̂
z
l σ̂

z
m

τ
N ), acting on qubits l andm, and the quantum gates C and D are single qubit σ̂ z -gates,

given by C = exp[i( U4 – μ
2 )σ̂

z
l

τ
N ] and D = exp(i εc2 σ̂ z

l
τ
N ), acting on qubit l. Finally, Xφ and Yφ are φ-rotations

along the x and y axis, respectively.

CZφ gates with capacitive couplings To perform the CZφ gate, one qubit is kept at a
fixed frequency while the other carries out an adiabatic trajectory near an appropriate
resonance of the two-qubit states. By varying the amplitude of this trajectory one can tune
the conditional phase φ. The unitary for the CZφ is given by

CZφ =

⎛

⎜⎜⎜⎝

   
   
   
   eiφ

⎞

⎟⎟⎟⎠ . ()

4.3 Quantum gate decomposition of the time-evolution operator
In order to use quantum gates for time-evolution, we utilize a Trotter decomposition of
the time-evolution operator corresponding to ĤSIAM in Eq. (). The first order Trotter
expansion is given by

Û(τ ) = e–iĤSIAMτ ≈ (
e–i V

 (σ̂ x
 σ̂ x

 +σ̂
y
 σ̂

y
 ) τ

N e–i V
 (σ̂ x

 σ̂ x
 +σ̂

y
 σ̂

y
 ) τ

N e–i U
 σ̂ z

 σ̂ z


τ
N

× ei( U
 – μ

 )σ̂ z


τ
N ei( U

 – μ
 )σ̂ z


τ
N ei εc

 σ̂ z


τ
N ei εc

 σ̂ z


τ
N
)N . ()

Here, N is the number of Trotter (i.e., time) steps and τ
N is the size of the time step. In

what follows, we use the two alternative approaches for quantum gates outlined in Sec-
tion . to implement Eq. ().

XY gates As shown in Section ., the XY gate, given by the expression XY =
exp[–i V

 (σ̂ x
l σ̂ x

m + σ̂
y
l σ̂

y
m) τ

n ], naturally appears when considering the use of a resonator quan-
tum bus []. The quantum circuit for a single Trotter step with these gates is shown in
Figure (a).
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CZφ gates To be able to utilize the CZφ gates, we write the time-evolution operator in
Eq. () in terms of σ̂ z

l σ̂ z
m (ZZ) interactions, taking into account that

σ̂ x
l σ̂ x

m = R(l)
y

(
π

)
σ̂ z

l R(l)
y

(
– π


)
R(m)

y
(

π

)
σ̂ z

mR(m)
y

(
– π


)
, ()

and

σ̂
y
l σ̂ y

m = R(l)
x

(
– π


)
σ̂ z

l R(l)
x

(
π

)
R(m)

x
(
– π


)
σ̂ z

mR(m)
x

(
π

)
, ()

where R(l)
α (θ ) = exp(–i θ

 σ̂ α
l ) is the rotation along the α-axis of qubit l. Note that in the

computational basis, one can write, e.g.,

exp

(
–i

φ


σ̂ z

 σ̂ z


)
=

⎛

⎜⎜⎜⎝

   
 eiφ  
  eiφ 
   

⎞

⎟⎟⎟⎠ , ()

where we have neglected global phases. Thus, we have the decomposition

exp

(
–i

φ


σ̂ z

 σ̂ z


)
= R()

x (π )CZφR()
x (π )R()

x (π )CZφR()
x (π ), ()

where the tunable CZφ-gate is given by Eq. ().
The time-evolution operator in Eq. () in terms of ZZ interactions is given by

Û(τ ) = e–iĤSIAMτ ≈ (
R()

y
(

π

)
e–i V

 σ̂ z
 σ̂ z


τ
N e–i V

 σ̂ z
 σ̂ z


τ
N R()

y
(
– π


)

×R()
x

(
– π


)
e–i V

 σ̂ z
 σ̂ z


τ
N e–i V

 σ̂ z
 σ̂ z


τ
N R()

x
(

π

)

× e–i U
 σ̂ z

 σ̂ z


τ
N ei( U

 – μ
 )σ̂ z


τ
N ei( U

 – μ
 )σ̂ z


τ
N ei εc

 σ̂ z


τ
N ei εc

 σ̂ z


τ
N
)N , ()

where R()
α (φ) = R()

α (φ)R()
α (φ)R()

α (φ)R()
α (φ). The sequence of gates for one Trotter

step is depicted in Figure (b).
A single Trotter step contains  ZZ two-qubit gates (corresponding to the A and B gates

in Figure (b)) between nearest-neighbour qubits,  SWAP gates (for the B gate which
acts on qubits  and ), and  single-qubit rotations. We note that a SWAP-gate amounts
to three CZφ gates, and a ZZ-gate amounts to two CZφ gates (see Eq. ()). This number
can be optimised further if we consider different orderings for odd and even Trotter steps
as in Figure , such that subsequent gates may be suppressed. This reorganisation of in-
teractions does not in principle affect the Trotter error. Hence, for a pair of Trotter steps,
the number of gates is reduced, and we may only consider  ZZ two-qubit gates between
nearest-neighbour qubits,  SWAP gates, and  single-qubit rotations.

5 Results
We focus on the half-filled case, i.e., μ = U

 and εc = , which requires the least amount of
quantum gates, since the C and D gates in Section  vanish. Note that since the value of
εc is fixed in this case, it need not be updated in the self-consistency loop. We use t∗, the
Hubbard hopping in infinite dimensions, as our unit of energy, hence time τ is measured
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Figure 4 Reordering of quantum gates. The ordering of gates shown for (a) an odd Trotter step and (b) an
even Trotter step in the CZφ method. The gates depicted in red can be omitted as they cancel out during a
sequence of time steps.

in units of /t∗. Note that τ refers here to the time in the evolution operator Û(τ ), not to
the actual time to run the experiment.

We show in Figure  the state fidelities F = |〈�(τ )|�T (τ )〉|, where |�(τ )〉 denotes
the state obtained with exact time-evolution using the full, non-Trotterized operator
Û(τ ) = exp(–iτ ĤSIAM) corresponding to the two-site SIAM in Eq. (), and |�T (τ )〉 is the
state evolved using either the XY or CZφ quantum gates, for various Trotter steps N up to
time τ = /t∗. Note that the number of qubits corresponding to the two-site SIAM is fixed,
leaving only N as the parameter to be varied for increased accuracy. We use the initial state
|�(τ = )〉 = ĉ†

↓|GS〉/||ĉ†
↓|GS〉||, where |GS〉 is the ground-state of the two-site SIAM in

Eq. (), which is a relevant state for obtaining the impurity Green function at zero tem-
perature (see Eq. ()). As expected, using XY gates displays superior fidelities, since CZφ

gates require an extra factorization of the hybridization term (see Section ). For N = 
steps, the state fidelity using XY gates remains over % throughout the evolution. In what
follows, we use only XY gates for the time-evolution for concreteness.

As shown in Section , the main object of interest is the retarded impurity Green func-
tion. One possibility to measure iGR

imp(τ ) is single-qubit interferometry (see the Appendix
for details), which raises the total number of qubits in the experimental arrangement to
five. In Figure  we plot the impurity Green function obtained from evolving the state with
XY gates compared to exact evolution of the two-site SIAM for different N . We see that
the Green function from the XY approach starts to follow the curve of the exact Green
function better for increasing N . In our subsequent analysis, we use N =  up to τ = /t∗

to study what two-site DMFT physics can be captured with the digital approach.
To obtain the impurity Green function in the frequency domain, we first consider some

known and general analytic properties of the retarded Green function in Eq. (). This
Green function can be written as a sum of the particle and hole contributions as

iGR
imp(τ ) = θ (τ )

∑

j

(∣∣〈j
∣∣ĉ†

σ
∣∣GS

〉∣∣e–iωjt +
∣∣〈j|ĉσ |GS

〉∣∣eiωjt
)
, ()
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Figure 5 Time-evolution of the state fidelity. State fidelities F = |〈�(τ )|�T (τ )〉|2 using the XY method
(blue diamonds) and CZφ gates (red stars) obtained with (a) 6, (b) 12, (c) 18, and (d) 24 Trotter steps up to time
τ = 6/t∗ . We set U = 4t∗ and V = t∗ .

where |j〉 is an eigenstate of ĤSIAM with eigenenergy Ej, and ωj = Ej – EGS . In two-site
DMFT, the interacting Green function is a four-pole function [], which limits the num-
ber of terms in the above summation to four. Moreover, in the presence of particle-hole
symmetry, we have |〈j|ĉ†

σ |GS〉| = |〈j|ĉσ |GS〉|, and Eq. () can be written as

iGR
imp(τ ) = 

[
α cos(ωτ ) + α cos(ωτ )

]
θ (τ ), ()

where αj = |〈j|ĉ†
σ |GS〉|. Thus, to obtain the impurity Green function in the frequency

domain as

GR
imp(ω + iη) = α

(


ω + iη – ω
+


ω + iη + ω

)

+ α

(


ω + iη – ω
+


ω + iη + ω

)
, ()

we need to extract the unknown residues αj and poles ωj by fitting an expression of the
form in Eq. () to the measurement data of iGR

imp(τ ), as shown in Figure (a). This method
to determine αj and ωj is far more reliable and requires fewer time steps than numerically
Fourier-transforming the iGR

imp(τ ) data. It can also be readily generalised to larger systems
by including more terms in the sum in Eq. (). Figure (b) shows the real part of the
impurity Green function in the frequency domain, Re[GR

imp(ω + iη)], with residues and
poles obtained from the fit in Figure (a), while in Figure (c) we plot the real part of
the impurity self-energy, Re[�imp(ω + iη)], obtained utilizing the Dyson equation (). We
clearly see the four-pole structure of the Green function, while the self-energy has two
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Figure 6 Impurity Green function in the time domain. The retarded impurity Green function iGRimp(τ )
obtained with (a) 6, (b) 12, (c) 18, and (d) 24 Trotter steps up to time τ = 6/t∗ using the XY method (blue
diamonds). Comparison is given to the exact Green function (red dashed line). We set U = 4t∗ and V = t∗ .

poles. The results are in excellent agreement with the exact solution of the two-site SIAM,
with the poles of the self-energy using fitted αj and ωj differing from the exact solution by
%.

Once we have obtained the impurity Green function, and thus the impurity self-energy,
we proceed according to the two-site DMFT protocol in Section  until self-consistency
has been reached. In DMFT we are interested in the local lattice spectral function Alatt,jj(ω)
which, at self-consistency, is given by the impurity spectral function Aimp(ω). In the para-
magnetic phase of the infinite-dimensional Hubbard model, the spectral function has a
three peak structure with an upper and a lower Hubbard band, corresponding to empty
and doubly occupied sites, respectively, and a quasiparticle peak with integrated spectral
weight Z between the bands []. In two-site DMFT, since the self-energy has two poles,
this three peak structure can be qualitatively reproduced with the spectral function []

A(ω) = ρ
[
ω + μ – �imp(ω)

]
, ()

where ρ is the non-interacting density of states of the Bethe lattice. Figure  shows the
spectral function in Eq. () where the impurity self-energy has been obtained both from
the XY method and from exact numerics of the two-site SIAM using the interactions
U = t∗ and U = t∗. We notice that for U = t∗, the Hubbard bands from the XY method
are slightly dislocated and the quasiparticle peak is slightly narrower compared with the
exact solution of the two-site SIAM, but the agreement is still very good. The overall shape
of the spectral function from the XY method is unchanged compared to the exact case.
This underestimation of the width of the quasiparticle peak stems from the fact that the
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Figure 7 The retarded impurity Green function and self-energy in the frequency domain. (a) The
residues and poles of the Green function can be obtained from a fit of the form in Eq. (34) (red dashed line) to
the GRimp(τ ) data from the XY method with 24 Trotter steps (blue diamonds). (b) The real part of the impurity

Green function, Re[GRimp(ω + iη)] (blue line), with residues and poles obtained from the fit from (a), compared
to the exact Green function (red dashed line). (c) Same as in (b), but for the self-energy Re[�imp(ω + iη)]. We
set U = 4t∗ and V = t∗ . In (b) and (c), we have broadened the peaks with η = 0.01 for clarity.

fitting procedure in Figure (a) causes the negative of the derivative of the self-energy in
the XY method to be a bit larger than the exact value from the two-site SIAM, i.e.,

–
dRe[�XY

imp(ω + iη)]
dω

∣∣∣∣
ω=

� –
dRe[�exact

imp (ω + iη)]
dω

∣∣∣∣
ω=

, ()

which leads to Z in Eq. () from the XY method to be slightly smaller than in the exact
solution of the two-site SIAM, i.e., ZXY � Zexact. For U = t∗, the two spectral functions
agree with maximum relative error of –, since in this case V =  is found to be the self-
consistent solution, whence the Trotterized evolution operator in Eq. () matches full
evolution operator of the two-site SIAM, and thus there is no Trotter error. We observe
that in Figure  the central quasiparticle peak vanishes, which is characteristic of insulating
behaviour. See Ref. [] for a discussion of the artifacts of the spectral functions in two-site
DMFT compared to full DMFT.

To study the transition between the two types of spectral functions in Figure , we plot
in Figure  the self-consistent quasiparticle weight Z obtained from the XY method as a
function of the interaction U for different Trotter steps N . We also show Z from the exact
solution of the two-site SIAM for comparison. We see that the digital approach captures
the correct trend of the curve, but in the metallic side underestimates to a small degree the
values of Z for interactions close to U = Uc = t∗, which is the critical interaction for Mott
transition in two-site DMFT at half-filling []. These results are consistent with the spec-
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Figure 8 Spectral functions in the metallic and insulating phases. Spectral functions obtained with the
XY method with 24 Trotter steps (blue line) and exact solution of the two-site SIAM (red dashed line). The
parameters of the two-site SIAM are iterated to self-consistency with (a) U = 5t∗ and (b) U = 8t∗ .

Figure 9 Quasiparticle weight as a function of
interaction U. Self-consistent quasiparticle weight
Z obtained from the XY method with 24 (blue
diamonds), 36 (red circles), and 48 Trotter steps
(yellow squares), compared to the exact solution of
the two-site SIAM (purple stars). Inset: Same plot
zoomed into the region around the critical
interaction, Uc = 6t∗ .

tral functions in Figure . The underestimation of Z can be diminished by increasing N ,
as shown in Figure . It is noteworthy to mention that two-site DMFT overestimates the
quasiparticle weight compared to full DMFT for interactions U < Uc, as demonstrated in
Ref. []. Above Uc, we find Z =  to be the self-consistent solution, corresponding to the
insulating phase.

6 Summary
We have proposed a quantum algorithm for two-site DMFT to be run on a small digital
quantum simulator with a classical feedback loop, allowing the qualitative description of
the infinite-dimensional Hubbard model in the thermodynamic limit. We have considered
two alternative quantum gate decompositions consistent with state-of-the-art technology
in superconducting circuits for the time-evolution operator. We found that an increasing
number of Trotter steps improves the fidelity of our digital scheme to qualitatively describe
the Mott transition. Our work therefore provides an interesting application for small-scale
quantum devices. It also paves the way for more accurate quantum simulations of strongly
correlated fermions in various lattice geometries, which are relevant to novel quantum
materials, when the general self-consistency condition and larger number of qubits are
used.
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Appendix: single-qubit interferometry for the impurity Green function
Here, we present a measurement scheme for the retarded impurity Green function.

A.1 Definitions
The retarded zero temperature impurity Green function in the time domain can be written
as

GR
imp(τ ) = θ (τ )

[
G>

imp(τ ) – G<
imp(τ )

]
, ()

where the ‘greater’ and ‘lesser’ Green functions are given by

G>
imp(τ ) = –i

〈
ĉσ (τ )ĉ†

σ ()
〉
, ()

G<
imp(τ ) = i

〈
ĉ†

σ ()ĉσ (τ )
〉
, ()

respectively. The average is computed in the ground-state |GS〉 of the two-site SIAM in
Eq. (). Here, σ can be either ↓ or ↑ since we are considering a spin-symmetric case (i.e.,
GR

↓ = GR
↑), and the ĉ-operators are given in the Heisenberg picture with respect to ĤSIAM,

i.e.,

ĉσ (τ ) = Û†(τ )ĉσ Û(τ ) = eiτ ĤSIAM ĉσ e–iτ ĤSIAM . ()

One possibility to measure the impurity Green function GR
imp(τ ) is to use a single-

qubit Ramsey interferometer [] which was used in Ref. [] in the more general non-
equilibrium case. To this end, we introduce an ancilla qubit in addition to the ‘system’
qubits, raising the total number of qubits needed to implement the two-site DMFT scheme
to five.

A.2 Jordan-Wigner transformation
The greater and lesser components, G>

imp(τ ) and G<
imp(τ ), must be written in terms of spin

operators by again mapping the ĉσ and ĉ†
σ operators onto Pauli operators via the Jordan-

Wigner transformation. For concreteness, we focus on the case σ =↓. We obtain

G>
imp(τ ) = –

i


(〈
Û†(τ )σ̂ x

 Û(τ )σ̂ x

〉
+ i

〈
Û†(τ )σ̂ x

 Û(τ )σ̂ y

〉
– i

〈
Û†(τ )σ̂ y

 Û(τ )σ̂ x

〉

+
〈
Û†(τ )σ̂ y

 Û(τ )σ̂ y

〉)

, ()

and

G<
imp(τ ) =

i


(〈
σ̂ x

 Û†(τ )σ̂ x
 Û(τ )

〉
– i

〈
σ̂ x

 Û†(τ )σ̂ y
 Û(τ )

〉
+ i

〈
σ̂

y
 Û†(τ )σ̂ x

 Û(τ )
〉

+
〈
σ̂

y
 Û†(τ )σ̂ y

 Û(τ )
〉)

. ()

A.3 Measurement protocol
Each of the terms of the form 〈Û†(τ )σ̂ α

 Û(τ )σ̂ β
 〉, where α,β ∈ {x, y}, can be measured in

the interferometer. This can be seen as follows. We denote the state of the system qubits
by ρ̂sys = |GS〉〈GS|, where |GS〉 is the ground-state of the system. We initialize the ancilla
qubit in the state |〉, yielding the total density operator ρ̂tot = |〉〈| ⊗ ρ̂sys. The total sys-
tem then undergoes the following evolution:
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Figure 10 Quantum network to measure the 〈GS|Û†(τ )σ̂ α
1 Û(τ )σ̂ β

1 |GS〉 contribution to the Green
function GR

imp(τ ). The time-evolution operator Û(τ ) is composed of a set of quantum gates according to the
main text.

. At time t = , a Hadamard gate σ̂H = √
 (σ̂ z + σ̂ x) is applied on the ancilla qubit,

creating the superposition |〉ancilla → (|〉ancilla + |〉ancilla)/
√

.
. A Controlled-Pauli gate σ̂ α

 is applied on the impurity qubit  if the ancilla qubit has
state |〉.

. The system qubits undergo time evolution according to the unitary Û(τ ) which is
decomposed into quantum gates.

. Another controlled Pauli gate σ̂
β
 is applied on the impurity qubit  if the ancilla

qubit has state |〉.
. Another Hadamard gate is applied on the ancilla qubit.
Denoting the total unitary in steps - by T̂ , the state of the ancilla qubit after this evo-

lution is given by

ρ̂ancilla = Trsys
[
σ̂HT̂ σ̂H ρ̂totσ̂HT̂†σ̂H

]

=
 + Re[F(τ )]


|〉〈| – i

Im[F(τ )]


|〉〈| + i
Im[F(τ )]


|〉〈|

+
 – Re[F(τ )]


|〉〈|, ()

where F(τ ) = Trsys[T̂†
 (τ )T̂(τ )ρ̂sys]. We have denoted the controlled unitaries as T̂(τ ) =

σ̂ α
 Û(τ ) and T̂(τ ) = Û(τ )σ̂ β

 . Note that since the same Û(τ ) appears in both unitaries,
only the Pauli gates σ̂

α/β
 need to be controlled, as described above. Note also that F(τ ) =

〈Û†(τ )σ̂ α
 Û(τ )σ̂ β

 〉. We can rewrite the state of the ancilla qubit as

ρ̂ancilla =


(
Î + Re

[
F(τ )

]
σ̂z + Im

[
F(τ )

]
σ̂y

)
, ()

whence Trancilla[ρ̂ancillaσ̂
z] = Re[F(τ )], and Trancilla[ρ̂ancillaσ̂

y] = Im[F(τ )]. Thus, repeated
measurements of the σ̂ z and σ̂ y components of the ancilla qubit yield the real and imag-
inary parts of the term 〈Û†(τ )σ̂ α

 Û(τ )σ̂ β
 〉. See Figure  for the quantum network of the

scheme.
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