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Testing Categorical Moderators in Mixed-Effects Meta-analysis in Presence of 

Heteroscedasticity  

 

Abstract 

Mixed-effects models can be used to examine the association between a categorical 

moderator and the magnitude of the effect size. Two approaches are available to 

estimate the residual between-studies variance, 𝜏𝑟𝑒𝑠
2 , namely separate estimation within 

each category of the moderator versus pooled estimation across all categories. We 

examine, by means of a Monte Carlo simulation study, both approaches for 𝜏𝑟𝑒𝑠
2  

estimation in combination with two methods to test the statistical significance of the 

moderator, namely the Wald-type 𝜒2 and F tests. Results suggest that the F test using a 

pooled estimate of 𝜏𝑟𝑒𝑠
2  across categories is the best option in most conditions, although 

the F test using separate estimates of 𝜏𝑟𝑒𝑠
2  is preferable if the residual heterogeneity 

variances are heteroscedastic.  

 

Keywords: meta-analysis; mixed-effects model; subgroup analyses; residual between-

studies variance. 
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Introduction 

Meta-analysis has emerged as the standard methodology for quantitatively integrating 

the results of a set of primary studies examining a common research question 

(Borenstein, Hedges, Higgins, & Rothstein, 2009; Cooper, Hedges, & Valentine, 2009; 

Schmidt & Hunter, 2015). Two of the main purposes of a meta-analysis are to calculate 

an overall effect estimate across studies and to assess the amount of variability among 

the individual effect sizes. If the amount of variability is larger than expected based on 

sampling error alone, then this is typically taken to indicate that the underlying true 

effects are heterogeneous. The amount of between-studies variance in the true effects 

can then be estimated using a random-effects model (DerSimonian & Laird, 1986). A 

further goal then consists of searching for study-level characteristics (often called 

‘moderator variables’) that may be able to explain at least part of that variability (Lau, 

Ioannidis, & Schmid, 1998; Thompson, 1994).  

 In the present paper, we are particularly interested in the use of subgroup 

analyses, which are commonly used to examine the association between categorical 

moderator variables and the magnitude of the effect size. Based on a subgroup analysis, 

we can estimate the (average) effect size for each level of the moderator and test for 

between-group differences. Such analyses may provide valuable insights regarding the 

influence of qualitative moderators, as well as under which conditions an educational 

intervention is more effective.  

 A general recommendation when conducting such moderator analyses is to 

adopt a mixed-effects model which explicitly models potential ‘residual heterogeneity’ 

in the effects, that is, heterogeneity in the true effects not accounted for by the 

moderator variable(s) included in the model (Thompson & Higgins, 2002). For models 
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with a categorical moderator, residual heterogeneity simply denotes heterogeneity in the 

true effects within the various levels of the moderator. 

 Two approaches can be used to estimate the amount of residual heterogeneity in 

the context of such models. One is to allow for and estimate a different between-studies 

variance component (denoted by 𝜏𝑟𝑒𝑠
2 ) within each level of the moderator, while the 

other consists of assuming a common amount of residual heterogeneity across 

categories and to calculate a pooled estimate thereof (Borenstein et al., 2009). 

 Rubio-Aparicio, Sánchez-Meca, López-López, Marín-Martínez, and Botella 

(2017) recently carried out a simulation study to compare the statistical performance of 

the omnibus Wald-type 𝜒2 test for between-group differences in the (average) effect 

sizes (here denoted as the 𝑄𝐵 test) in terms of its Type I error and statistical power rates 

when the two alternative procedures for estimating 𝜏𝑟𝑒𝑠
2  (i.e., separate vs. pooled 

estimation) are used. The results indicated that pooled estimation is preferable for most 

scenarios, unless 𝜏𝑟𝑒𝑠
2  is different across categories and the number of studies in each 

category is large enough to obtain precise separate estimates. However, the Type I error 

rate of the 𝑄𝐵 test was not nominal for many of the conditions examined, regardless of 

the approach used in the estimation of 𝜏𝑟𝑒𝑠
2 . A potential explanation is that the test does 

not take into account the uncertainty derived from the estimation process of 𝜏𝑟𝑒𝑠
2 , which 

typically results in inflated rejection rates under the null hypothesis. 

 Hartung, Makambi, and Argaç (2001), and Hartung, Argaç, and Makambi (2002) 

proposed an alternative method that accounts for the imprecision in the estimated 

amount of residual heterogeneity in subgroup analyses. 

Knapp and Hartung (2003) proposed an improved method for meta-regression 

based on the same rationale that underlies the Hartung and colleagues´ method (2001, 

2002).  In meta-regression, this method has repeatedly been found to provide adequate 
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control of the Type I error rate in several simulation studies (Huizenga, Visser, & 

Dolan, 2011; Knapp & Hartung, 2003; Sidik & Jonkman, 2005; Viechtbauer, López-

López, Sánchez-Meca, & Marín-Martínez, 2015) and is routinely recommended 

nowadays (Gonzalez-Mulé & Aguinis, 2017). Nonetheless, the implementation of the 

alternative method is still relatively uncommon when testing for categorical moderators 

in contrast with growing popularity of the improved method for continuous moderators. 

It is important to note that the issue of estimating 𝜏𝑟𝑒𝑠
2  separately for each category of 

the moderator or by means of a pooled estimate is specific to qualitative moderators, as 

continuous moderators are typically analyzed assuming a common 𝜏𝑟𝑒𝑠
2 . Therefore, the 

performance of the improved method proposed by Hartung and colleagues (2001, 2002) 

when using pooled or separate estimates of  𝜏𝑟𝑒𝑠
2 , and the conditions under which one 

approach should be recommended over the other have not yet been studied. 

 The purpose of the present study was to examine the Type I error and statistical 

power rates of the improved method proposed by Hartung and colleagues (Hartung et 

al., 2001, 2002; Knapp, & Hartung, 2003) to test the statistical significance of a 

qualitative moderator under a mixed-effects model when using pooled versus separate 

estimates of the residual heterogeneity variance. In addition, we compared Hartung and 

colleagues’ method (2001, 2002) to the standard 𝑄𝐵 test. In sum, we compared the 

performance of four statistical tests: Hartung and colleagues (2001, 2002) versus 

standard QB tests in combination with pooled versus separate estimates of 𝜏𝑟𝑒𝑠
2 . The 

results of this simulation study can shed light on where pooled or separate estimates of 

𝜏𝑟𝑒𝑠
2  should be preferred given the characteristics of the meta-analytic database.  

 In the next section, the mixed-effects model is outlined, followed by a 

description of the two hypothesis tests for categorical moderators and the different 

estimators of 𝜏𝑟𝑒𝑠
2  either using pooled or separate estimates across categories. Then, the 



5 

 

 

methods and results from a Monte Carlo simulation study comparing the performance 

of the different procedures are detailed. Last, a discussion of the main results and 

implications arising from them is provided. 

 

Mixed-effects model 

In a meta-analysis with k studies grouped into m mutually exclusive categories of the 

moderator variable, let 𝑘𝑗 denote the number of effect sizes of category j (𝑗 = 1, … , 𝑚; 

with 𝑘𝑗 > 1 for all j), so that 𝑘 = ∑ 𝑘𝑗𝑗 . The mixed-effects model assumes a random-

effects model for the study-specific true effects within each category of the moderator 

variable and hence the statistical model is given by 

 𝑇𝑖𝑗 = 𝜇𝜃𝑗
+ 𝜖𝑖𝑗 + 𝑒𝑖𝑗, (1) 

where 𝑇𝑖𝑗 denotes the ith effect size estimate within the jth category, 𝜇𝜃𝑗
 represents the 

mean true effect size of the jth category, and 𝜖𝑖𝑗 and 𝑒𝑖𝑗 represent the within-study and 

between-studies errors, respectively. It is common to assume that these two errors are 

normally distributed and independent of each other, and therefore, the estimated effect 

sizes are normally distributed as 𝑇𝑖𝑗 ∼ 𝑁(𝜇𝜃𝑗
, 𝜎𝑖𝑗

2 + 𝜏𝑟𝑒𝑠(𝑗)
2 ), with 𝜎𝑖𝑗

2  being the within-

study variance for the ith study in the jth category of the moderator and 𝜏𝑟𝑒𝑠(𝑗)
2  denoting 

the residual between-studies variance in the jth category. The model also implies that 

the true effects in the jth category, 𝜃𝑖𝑗, follow a normal distribution with mean 𝜇𝜃𝑗
 and 

between-studies variance 𝜏𝑟𝑒𝑠(𝑗)
2 , that is, 𝜃𝑖𝑗 ∼ 𝑁(𝜇𝜃𝑗

, 𝜏𝑟𝑒𝑠(𝑗)
2 ). Therefore, in a mixed-

effects model a random sampling process underlies the standard random-effects model 

in each category of the moderator.  
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 One of the main objectives in a subgroup analysis is to test the statistical 

association of the moderator with the effect sizes, which is accomplished by comparing 

the mean effect sizes from each category of the moderator. For that aim, we first 

estimate the mean effect size of the jth category of the moderator, 𝜇𝜃𝑗
, with 

 𝑇̅𝑗 =
∑ 𝑤̂𝑖𝑗𝑇𝑖𝑗𝑖

∑ 𝑤̂𝑖𝑗𝑖
, (2) 

where the weights 𝑤̂𝑖𝑗 = 1/(𝜎̂𝑖𝑗
2 + 𝜏̂𝑟𝑒𝑠(𝑗)

2 ) are computed with 𝜎̂𝑖𝑗
2  denoting the estimated 

within-study variance of the ith effect size of the jth category and 𝜏̂𝑟𝑒𝑠(𝑗)
2  an estimate of 

the residual between-studies variance of the jth category. Two strategies can be applied 

to estimate 𝜏𝑟𝑒𝑠(𝑗)
2 : (a) by pooling the estimated residual between-studies variances of 

the categories (𝜏̂𝑟𝑒𝑠(+)
2 ) or (b) by means of separate estimates of the residual between-

studies variance (e.g., 𝜏̂𝑟𝑒𝑠(1)
2  and 𝜏̂𝑟𝑒𝑠(2)

2  for a dichotomous moderator, or 𝜏̂𝑟𝑒𝑠(1)
2 , 

𝜏̂𝑟𝑒𝑠(2)
2 , and 𝜏̂𝑟𝑒𝑠(3)

2  for a moderator with three categories) . Note that one of main 

purposes of our investigation was to examine the extent to which pooled or separate 

estimates of the residual between-studies variance can affect the performance of 

statistical tests in a subgroup analysis.  

An estimate of the variance of 𝑇̅𝑗 can be obtained with 

 𝑉𝑎𝑟[𝑇̅𝑗] =
1

∑ 𝑤̂𝑖𝑗𝑖
. (3) 

 

Tests of between-groups differences 

The statistical association of a categorical moderator with the effect sizes can be tested 

by means of a standard Wald-type 𝜒2 test (Borenstein et al., 2009) 

 𝑄𝐵 = ∑ 𝑤̂+𝑗

𝑚

𝑗=1

(𝑇̅𝑗 − 𝑇̅)
2

, (4) 
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where 𝑤̂+𝑗 = 1/𝑉𝑎𝑟[𝑇̅𝑗], with 𝑉𝑎𝑟[𝑇̅𝑗] defined in Equation 3, and 𝑇̅ represents the 

weighted average of all effect sizes and is computed with 

 𝑇̅ =
∑ ∑ 𝑤̂𝑖𝑗 𝑇𝑖𝑗𝑖𝑗

∑ ∑ 𝑤̂𝑖𝑗 𝑖𝑗
, (5) 

where 𝑤̂𝑖𝑗 = 1/(𝜎̂𝑖𝑗
2 + 𝜏̂𝑟𝑒𝑠(𝑗)

2 ) and 𝑇𝑖𝑗 denotes the ith effect size estimate of the jth 

category of the moderator. Note that, as mentioned above, 𝜏̂𝑟𝑒𝑠(𝑗)
2  can be calculated in 

two ways: as a pooled (𝜏̂𝑟𝑒𝑠(+)
2 ) or as a separate (𝜏̂𝑟𝑒𝑠(𝑗)

2 ) estimate.  

Under the null hypothesis that the m categories share the same true mean effect 

size (𝐻0: 𝜇𝜃1
= 𝜇𝜃2

= ⋯ = 𝜇𝜃𝑚
), the 𝑄𝐵 statistic follows asymptotically a 𝜒2 

distribution with m – 1 degrees of freedom (requiring both large within-study sample 

sizes and large 𝑘𝑗 for 𝑗 = 1, … , 𝑚). 

 An alternative method to test the statistical significance of a categorical 

moderator is computed with (Hartung et al., 2001, 2002) 

 𝐹 =

𝑄𝐵

𝑚 − 1
𝑄𝑊

𝑘 − 𝑚

, (6) 

where 𝑄𝑊 = ∑ 𝑄𝑤𝑗𝑗  and 

 𝑄𝑤𝑗
= ∑ 𝑤̂𝑖𝑗(𝑇𝑖𝑗 − 𝑇̅𝑗)

2

𝑘𝑗

𝑖=1

, (7) 

with 𝑤̂𝑖𝑗 = 1/(𝜎̂𝑖𝑗
2 + 𝜏̂𝑟𝑒𝑠(𝑗)

2 ).  

Under the null hypothesis of no difference between the mean effect sizes across 

categories (𝐻0: 𝜇𝜃1
= 𝜇𝜃2

= 𝜇𝜃3
= ⋯ = 𝜇𝜃𝑚

), the F statistic follows asymptotically an 

F distribution with (m – 1) and (k – m) degrees of freedom. The F statistic proposed by 

Hartung and colleagues takes into account the uncertainty due to the estimation of the 
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residual between-studies variance and, as a consequence, it is expected to outperform 

the standard 𝑄𝐵 statistic.  

The F test for subgroup analyses can be considered to be a special case of the 

improved method for meta-regression. In the meta-regression context, Knapp and 

Hartung (2003) proposed a multiplicative adjustment factor for the estimated variances 

of the model coefficients, and suggested to truncate this factor to one if a smaller value 

was obtained, in order to minimize false positive findings. Several pieces of meta-

analytic software currently incorporate such truncation, including Comprehensive Meta-

Analysis 3.3 (Borenstein, Hedges, Higgins, & Rothstein, 2014) and the metareg macro 

for Stata (Harbord & Higgins, 2008), whereas other alternatives like the metafor 

package for R (Viechtbauer, 2010) use the untruncated factor by default. This 

adjustment factor is equal to the denominator of the F formula (see eq. 6), hence 

implementing the truncation in the context of a subgroup analysis would be 

straightforward. However, Viechtbauer et al. (2015) showed that the improved method 

for meta-regression provides an adequate adjustment of the nominal significance level 

without truncating, whereas overly conservative results may be obtained if the 

truncation is applied. Consequently, in the present study, we allowed the denominator of 

the F test to be smaller than one, and we generally would recommend this version of the 

test. 

 

Estimating the residual between-studies variance 

Several methods have been proposed to estimate 𝜏2 in the context of the random-effects 

model (Sánchez-Meca & Marín-Martínez, 2008; Viechtbauer, 2005). Most of these 

estimators have also been extended to the mixed-effects model, and we selected three 

methods that are commonly implemented and have been found to perform adequately in 



9 

 

 

previous simulation studies (López-López, Marín-Martínez, Sánchez-Meca, Van den 

Noortgate, & Viechtbauer, 2014; Veroniki et al., 2016). In this section, we describe the 

three estimators used in the present study and their computation using both separate 

estimates and pooled estimate of 𝜏𝑟𝑒𝑠(𝑗)
2 . 

 

DerSimonian and Laird (DL) estimator 

The estimator proposed by DerSimonian and Laird (1986), probably the 

most commonly used in meta-analysis, is derived from the method of moments. 

Applying this estimator, the residual between-studies variance for the jth category of the 

moderator, 𝜏̂𝑟𝑒𝑠(𝑗)
2 , can be computed with the expression 

 𝜏̂𝑟𝑒𝑠(𝑗)𝐷𝐿
2 =

𝑄𝑤𝑗
∗ − (𝑘𝑗 − 1)

𝑐𝑗
, (8) 

where 𝑄𝑤𝑗
∗ is computed with Equation 7, but using 𝑤̂𝑖𝑗

∗ = 1/𝜎̂𝑖𝑗
2  as the weights, and 𝑐𝑗 is 

given by 

 𝑐𝑗 = ∑ 𝑤̂𝑖𝑗
∗

𝑖

−
∑ (𝑤̂𝑖𝑗

∗ )
2

𝑖

∑ 𝑤̂𝑖𝑗
∗

𝑖
. (9) 

Note that the 𝑄𝑤𝑗 statistic defined in Equation 7 is not the same as the standard 𝑄𝑤𝑗
∗ 

statistic proposed by Hedges and Olkin (1985) to test the model misspecification in a 

mixed-effects model. Unlike 𝑄𝑤𝑗, the weights used to calculate the 𝑄𝑤𝑗
∗  statistics are a 

function of the within-study variance only. Should the DL estimate turn out to be 

negative, it is truncated to zero. 

 The pooled estimate of the residual between-studies variance applying 

DerSimonian and Laird is given by (Borenstein et al., 2009) 

 𝜏̂𝑟𝑒𝑠(+)𝐷𝐿
2 =

∑ 𝑄𝑤𝑗
∗𝑗 − ∑ (𝑘𝑗 − 1)𝑗

∑ 𝑐𝑗𝑗
. (10) 
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Restricted Maximum Likelihood (REML) estimator 

An alternative for estimating 𝜏𝑟𝑒𝑠(𝑗)
2  is based on restricted maximium likelihood 

estimation. The REML estimator for the jth category of the moderator can be obtained 

iteratively from 

 𝜏̂𝑟𝑒𝑠(𝑗)𝑅𝐸𝑀𝐿
2 =

∑ 𝑤̂𝑖𝑗
2 [(𝑇𝑖𝑗 − 𝑇̅𝑗)

2
− 𝜎̂𝑖𝑗

2 ]𝑖

∑ 𝑤̂𝑖𝑗
2

𝑖

+
1

∑ 𝑤̂𝑖𝑗𝑖
 (11) 

by first computing the right-hand side using initial values for the weights (e.g., by 

setting 𝜏̂𝑟𝑒𝑠(𝑗)
2  in 𝑤̂𝑖𝑗 = 1/(𝜎̂𝑖𝑗

2 + 𝜏̂𝑟𝑒𝑠(𝑗)
2 ) equal to the estimate obtained using the non-

iterative DL estimator), then updating the weights (and hence also 𝑇̅𝑗) using the estimate 

of 𝜏̂𝑟𝑒𝑠(𝑗)
2  obtained, and then iterating this process until convergence. Should 𝜏̂𝑟𝑒𝑠(𝑗)

2  ever 

become negative during this process, the estimate is truncated to zero. 

 The pooled REML estimate of the residual variance is again computed 

iteratively, but now using 

 𝜏̂𝑟𝑒𝑠(+)𝑅𝐸𝑀𝐿
2 =

∑ ∑ 𝑤̂𝑖𝑗
2 [(𝑇𝑖𝑗 − 𝑇̅𝑗)

2
− 𝜎̂𝑖𝑗

2 ]𝑖𝑗

∑ ∑ 𝑤̂𝑖𝑗
2

𝑖𝑗

+
𝑚

∑ ∑ 𝑤̂𝑖𝑗𝑖𝑗
, (12) 

with weights 𝑤̂𝑖𝑗 = 1/(𝜎̂𝑖𝑗
2 + 𝜏̂𝑟𝑒𝑠(+)

2 ). 

 

Paule and Mandel (PM) estimator 

The third estimator that we included in our simulation study was proposed by Paule and 

Mandel (1982), and it is sometimes labelled as empirical Bayes estimator (Morris, 

1983). A recent review of simulation studies concluded recommending use of the PM 

estimator in meta-analysis (Langan, Higgins, & Simmonds, 2017). Furthermore, another 

simulation study comparing seven methods in the context of meta-regression found that 
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the PM, DL and REML estimators yielded the best results across conditions (López-

López et al., 2014).   

The PM estimate for the jth category is given by the solution to 

 ∑ 𝑤̂𝑖𝑗(𝑇𝑖𝑗 − 𝑇̅𝑗)
2

− (𝑘𝑗 − 1) = 0

𝑖

. (13) 

The left-hand side of Equation (13) is a monotonically decreasing function of 𝜏̂𝑟𝑒𝑠(𝑗)
2  

and can be easily solved for 0 using any standard root finding algorithm. We denote the 

resulting estimate with 𝜏̂𝑟𝑒𝑠(𝑗)𝑃𝑀
2 . Should Equation (13) be negative for 𝜏̂𝑟𝑒𝑠(𝑗)

2 = 0, then 

the estimate is truncated to zero. 

 To obtain the pooled estimate for the PM estimator, 𝜏̂𝑟𝑒𝑠(+)𝑃𝑀
2 , we must solve  

 ∑ ∑ 𝑤̂𝑖𝑗(𝑇𝑖𝑗 − 𝑇̅𝑗)
2

− ∑(𝑘𝑗 − 1)

𝑗

= 0

𝑖𝑗

, (14) 

with weights 𝑤̂𝑖𝑗 = 1/(𝜎̂𝑖𝑗
2 + 𝜏̂𝑟𝑒𝑠(+)

2 ). 

 

Method 

In the previous section, we presented two methods for testing the statistical significance 

of a categorical moderator (i.e., the 𝑄𝐵  and F tests) and three methods (i.e., the DL, 

REML, and PM estimators) which can be used to obtain either a pooled estimate or 

separate estimates for 𝜏𝑟𝑒𝑠
2 . This yields 12 different ways of testing the statistical 

significance of a categorical moderator in a mixed-effects model subgroup analysis, 

namely the QB(S) test using separate estimates of the heterogeneity variance combined 

with either the DL, REML, or PM estimator (𝑄𝐵(𝑆)𝐷𝐿
, 𝑄𝐵(𝑆)𝑅𝐸𝑀𝐿

, and 𝑄𝐵(𝑆)𝑃𝑀
, 

respectively), the QB(P) test when using a pooled estimate using either the DL, REML, 

or PM estimator (𝑄𝐵(𝑃)𝐷𝐿
, 𝑄𝐵(𝑃)𝑅𝐸𝑀𝐿

, and 𝑄𝐵(𝑃)𝑃𝑀
, respectively), the F(S) test using 

separate estimates (𝐹(𝑆)𝐷𝐿
, 𝐹(𝑆)𝑅𝐸𝑀𝐿

, and 𝐹(𝑆)𝑃𝑀
, respectively), and the F(P) test when 
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using a pooled estimate (𝐹(𝑃)𝐷𝐿
, 𝐹(𝑃)𝑅𝐸𝑀𝐿

, and 𝐹(𝑃)𝑃𝑀
, respectively). To compare the 

performance of these methods, we conducted a Monte Carlo simulation study 

programmed in R using the metafor package (Viechtbauer, 2010). Supplementary file 1 

contains the full R code of our simulation study. 

 Meta-analyses of k studies were simulated with the standardized mean difference 

as the effect size index. Each individual study included in a meta-analysis compared two 

groups (experimental and control) with respect to some continuous outcome. For a 

given study, values of the outcome were sampled from normal distributions with equal 

variances (i.e., 𝑁(𝜇𝐸 , 𝜎2) and 𝑁(𝜇𝐶 , 𝜎2)). For each study, the population standardized 

mean difference,  , was defined as (Hedges & Olkin, 1985) 

 𝜃 =
𝜇𝐸 − 𝜇𝑐

𝜎
. (15) 

Without loss of generality, the normal distributions of the experimental and control 

populations were defined as 𝑁(𝜃, 1) and 𝑁(0,1), respectively. 

 The effect size was estimated by means of the nearly unbiased estimator 

proposed by Hedges and Olkin (1985, p. 81) 

 𝑇 = 𝑐(𝑚)
𝑦̅𝐸 − 𝑦̅𝐶

𝑠
, (16) 

where 𝑦̅𝐸 and 𝑦̅𝐶 are the sample means of the experimental and control groups, s is the 

pooled standard deviation computed with 

 𝑠 = √
(𝑛𝐸 − 1)𝑠𝐸

2 + (𝑛𝐶 − 1)𝑠𝐶
2

𝑛𝐸 + 𝑛𝐶 − 2
, (17) 

𝑛𝐸  and 𝑛𝐶  being the experimental and control group sample sizes, respectively, 𝑠𝐸
2 and 

𝑠𝐶
2 the variances of the two groups, and 𝑐(𝑚) is a correction factor for small sample 

sizes given by 



13 

 

 

 𝑐(𝑚) = 1 −
3

4𝑁 − 9
, (18) 

where 𝑁 = 𝑛𝐸 + 𝑛𝐶. The estimated within-study variance of 𝑇, assuming equal 

variances and normality within each study, is given by 

 𝜎̂2 =
𝑛𝐸 + 𝑛𝐶

𝑛𝐸𝑛𝐶
+

𝑇2

2(𝑛𝐸 + 𝑛𝐶)
. (19) 

 The 𝑘 studies were assumed to fall into two or three categories (with 𝑘1 and 𝑘2 

studies in each group for a dichotomous moderator, and 𝑘1, 𝑘2, and 𝑘3 for a moderator 

with three categories). The true standardized mean differences within each subgroup 

were simulated from 𝑁(𝜇𝜃𝑗
, 𝜏𝑟𝑒𝑠(𝑗)

2 ) according to a mixed-effects model. 

For a dichotomous moderator, we set the number of studies, k, to values of 12, 

20, 40, and 60. For a moderator with three categories, we set k to values of 12, 24, 48, 

and 60. Choice of values for k was based on a review of meta-analyses undertaken by 

Anh, Ames, and Myers (2012) in the educational context where the first quartile, 

median, and third quartile of the empirical distribution of the number of studies were 

found to be 22, 38 and 67, respectively..Moreover, we manipulated how k was 

distributed within each category of the moderator, so that in some conditions there was 

a balanced distribution (i.e., 𝑘1 = 𝑘2, or 𝑘1 = 𝑘2 =  𝑘3), while in the remaining 

conditions there was an unbalanced distribution (i.e., 𝑘1 ≠ 𝑘2 , or 𝑘1 ≠ 𝑘2 ≠  𝑘3 ) 

between the two or three categories. For a dichotomous moderator, an unbalanced 

distribution implied that the second category contained three times as many studies as 

the first category. For instance, when k = 12 we set 𝑘1 = 𝑘2 = 6 in the balanced 

conditions, and 𝑘1 = 3 and 𝑘2 = 9 in the unequal conditions. For a moderator with 

three categories, an unbalanced distribution implied that the second category contained 

twice as many studies as the first category, and the third category was three times as 
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many studies as the first one. For instance, when k = 12 we set  𝑘1 = 𝑘2 =  𝑘3 = 4 in 

balanced conditions, and 𝑘1 = 2, 𝑘2 = 4, and 𝑘3 = 6 in the unequal conditions. 

Furthermore, 𝜏𝑟𝑒𝑠(𝑗)
2  was manipulated in two different ways. First, we considered three 

values for this parameter, 0.08, 0.16, and 0.32. Second, we simulated a set of scenarios 

with homoscedastic variances across categories (𝜏𝑟𝑒𝑠(1)
2 = 𝜏𝑟𝑒𝑠(2)

2 , or 𝜏𝑟𝑒𝑠(1)
2 = 𝜏𝑟𝑒𝑠(2)

2 =

 𝜏𝑟𝑒𝑠(3)
2 , as well as another set of heteroscedastic conditions (𝜏𝑟𝑒𝑠(1)

2 ≠

𝜏𝑟𝑒𝑠(2)
2 , 𝑜𝑟 𝜏𝑟𝑒𝑠(1)

2 ≠ 𝜏𝑟𝑒𝑠(2)
2 ≠  𝜏𝑟𝑒𝑠(3)

2 ). In particular, under homogeneous conditions 

𝜏𝑟𝑒𝑠(1)
2 = 𝜏𝑟𝑒𝑠(2)

2  = 0.08, 𝜏𝑟𝑒𝑠(1)
2 = 𝜏𝑟𝑒𝑠(2)

2  = 0.16, and 𝜏𝑟𝑒𝑠(1)
2 = 𝜏𝑟𝑒𝑠(2)

2 = 0.32 for a 

dichotomous moderator, and  𝜏𝑟𝑒𝑠(1)
2 = 𝜏𝑟𝑒𝑠(2)

2 =  𝜏𝑟𝑒𝑠(3)
2  = 0.16 for a moderator with 

three categories. Heteroscedastic variances were manipulated for a dichotomous 

moderator with pairs of values 𝜏𝑟𝑒𝑠(1)
2 = 0.08 and 𝜏𝑟𝑒𝑠(2)

2 = 0.16, 𝜏𝑟𝑒𝑠(1)
2 = 0.16 and 

𝜏𝑟𝑒𝑠(2)
2 = 0.08, 𝜏𝑟𝑒𝑠(1)

2 = 0.08 and 𝜏𝑟𝑒𝑠(2)
2 = 0.32, 𝜏𝑟𝑒𝑠(1)

2 = 0.32 and 𝜏𝑟𝑒𝑠(2)
2 = 0.08, 

𝜏𝑟𝑒𝑠(1)
2 = 0.16 and 𝜏𝑟𝑒𝑠(2)

2 = 0.32, and 𝜏𝑟𝑒𝑠(1)
2 = 0.32 and 𝜏𝑟𝑒𝑠(2)

2 = 0.16. For a 

moderator with three categories, the variance of the second category was always fixed at 

0.16 (𝜏𝑟𝑒𝑠(2)
2 = 0.16), and the variances of the first and the third categories were varied 

(𝜏𝑟𝑒𝑠(1)
2 = 0.08 and 𝜏𝑟𝑒𝑠(3)

2 = 0.16, 𝜏𝑟𝑒𝑠(1)
2 = 0.16 and 𝜏𝑟𝑒𝑠(3)

2 = 0.08, 𝜏𝑟𝑒𝑠(1)
2 =

0.08 and 𝜏𝑟𝑒𝑠(3)
2 = 0.08,  𝜏𝑟𝑒𝑠(1)

2 = 0.08 and 𝜏𝑟𝑒𝑠(3)
2 = 0.32, 𝜏𝑟𝑒𝑠(1)

2 = 0.32 and 

𝜏𝑟𝑒𝑠(3)
2 = 0.08, 𝜏𝑟𝑒𝑠(1)

2 = 0.32 and 𝜏𝑟𝑒𝑠(3)
2 = 0.32,  𝜏𝑟𝑒𝑠(1)

2 = 0.16 and 𝜏𝑟𝑒𝑠(3)
2 = 0.32, 

and 𝜏𝑟𝑒𝑠(1)
2 = 0.32 and 𝜏𝑟𝑒𝑠(3)

2 = 0.16).  

The average total sample size of the individual studies 𝑁̅ was set to 20, 40, 60, 

80, 200 and 2,000. These values were chosen following the revision of meta-analyses in 

education carried out by Ahn et al. (2012). In this review, the first quartile, median, and 

third quartile of the average total sample size distribution were 90, 185 and 1,900, 

respectively. The data in the primary studies were simulated assuming 𝑛𝐸 = 𝑛𝐶. A 𝜒2 
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distribution with 4 degrees of freedom was used, so that the skewness of the distribution 

was +1.414. In addition, values equal to 16, 36, 56, 76, 196, or 1,996 were added to get 

the desired average value. 

 The mean effect size of each category of the moderator was also manipulated. 

Regarding a dichotomous moderator, in some conditions the two parametric mean 

effects were both equal to 0.5 (𝜇𝜃1
= 𝜇𝜃2

= 0.5), whereas for other conditions they 

were set to different values: 𝜇𝜃1
= 0.5 and 𝜇𝜃2

= 0.3, 𝜇𝜃1
= 0.5 and 𝜇𝜃2

= 0.1, and 

𝜇𝜃1
= 0.7 and 𝜇𝜃2

= 0.1. With respect to the moderator with three categories, in the 

equal conditions the three parametric mean effects were set to 0.3 (𝜇𝜃1
= 𝜇𝜃2

= 𝜇𝜃3
=

0.3), while in the unequal conditions another set of values were manipulated: 𝜇𝜃1
= 0.2, 

𝜇𝜃2
= 0.3 and 𝜇𝜃3

= 0.4, 𝜇𝜃1
= 0.1, 𝜇𝜃2

= 0.3 and 𝜇𝜃3
= 0.5, and  𝜇𝜃1

= 0, 𝜇𝜃2
= 0.3, 

and 𝜇𝜃3
= 0.6. Note that for both types of moderators (two and three categories) the 

difference between the largest mean effect size and the smallest one was fixed to 0.2, 

0.4, and 0.6 across the unequal conditions. The manipulated conditions for the mean 

effect sizes covered a wide range of values around what can be considered as effect 

sizes of medium magnitude, following the benchmark of 0.5 proposed by Cohen (1988) 

in the behavioral sciences and the empirical value of 0.3 found by Lipsey and Wilson 

(1993) in the educational sciences.The conditions with equal mean effect sizes across 

categories allowed us to study the Type I error rate, whereas the conditions with 

different mean effect sizes enabled us to assess the statistical power. 

 To assess the Type I error rate, the total number of conditions was: 4 (number of 

studies) × 2 (balanced-unbalanced number of studies in the two categories) × 6 (average 

total sample size) × 9 (residual between-studies variance) = 432. With respect to the 

statistical power, 432 × 3 = 1,296 conditions examined. Overall, the total number of 

conditions was therefore 1,728 x 2 (moderator with two and three categories) = 3,456 
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and for each condition we generated 10,000 replications. Thus, 34,560,000 meta-

analyses were simulated. The 12 methods (𝑄𝐵(𝑆)𝐷𝐿
, 𝑄𝐵(𝑆)𝑅𝐸𝑀𝐿

, 𝑄𝐵(𝑆)𝑃𝑀
, 

𝑄𝐵(𝑃)𝐷𝐿
, 𝑄𝐵(𝑃)𝑅𝐸𝑀𝐿

, 𝑄𝐵(𝑃)𝑃𝑀
, 𝐹(𝑆)𝐷𝐿

, 𝐹(𝑆)𝑅𝐸𝑀𝐿
, 𝐹(𝑆)𝑃𝑀

, 𝐹(𝑃)𝐷𝐿
, 𝐹(𝑃)𝑅𝐸𝑀𝐿

, and 𝐹(𝑃)𝑃𝑀
) were 

applied to each one of these replications. In each of the 3,456 conditions of our 

simulation study, the proportion of rejections of the null hypothesis of equality of the 

mean effect sizes across categories of the moderator was examined. 

 

Results 

In this section, we describe and compare the performance of the methods under the 

simulated conditions. For brevity, we only present the results for the PM estimator since 

the pattern of results was very similar for the remaining estimators. Nevertheless, 

Supplementary file 2 presents figures using the DL and REML estimators, and the full 

set of results can be obtained from the corresponding author upon request. This section 

is divided into two parts, corresponding to the Type I error and statistical power rates, 

respectively. 

 

Type I Error 

Setting 𝜇𝜃1
= 𝜇𝜃2

= 0.5  and 𝜇𝜃1
= 𝜇𝜃2

= 𝜇𝜃3
= 0.3 allowed comparing the methods in 

terms of their Type I error rates for a moderator with two and three categories, 

respectively. Figures in this section include dashed horizontal lines delimiting the range 

of values that can be considered as equivalent to the nominal significance level of 5%, 

after accounting for Monte Carlo error [.0543; .0457]. Therefore, empirical rejection 

rates within this interval indicated adequate control of the Type I error rate. 

 Figure 1 shows the average Type I error rates as a function of the number of 

studies, balanced and unbalanced distribution of number of studies within each category 
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of the moderator, average sample size per study, and the amount of residual 

heterogeneity, in scenarios with homoscedastic residual between-studies variances 

across the two categories of the moderator. As k increased (Figure 1A), the proportion 

of rejections of the null hypothesis of equality for QB(S), QB(P), and F(S), converged to the 

nominal significance level, whereas F(P) showed nominal levels regardless of the 

number of studies. Focusing on the balanced versus unbalanced distribution of the 

number of studies across categories (Figure 1B), QB(P) and F(P) were not influenced by 

this factor, whereas QB(S) and F(S) showed higher empirical rejection rates (above .05) 

when the number of studies was unbalanced across categories. Last, sample size and the 

amount of residual heterogeneity did not seem to have a strong influence on the 

rejection rates (Figures 1C and 1D), with F(P) consistently yielding the best control of 

the Type I error rate. 

 

INSERT FIGURE 1 

 

 Figure 2 presents the average Type I error rates in conditions where the residual 

between-studies variances were heteroscedastic across the two categories of the 

moderator, and the category with less studies had the smaller variance. The influence of 

the number of studies (Figure 2A) was more pronounced for the QB test, with lower 

Type I error rates as k increased, and QB(S) showing inflated rates with less than 40 

studies. The F test was less affected, with F(S) showing an adequate control and F(P) 

yielding overly conservative results, regardless of the number of studies. Regarding the 

distribution of the number of studies (Figure 2B), QB(S) and F(S) were not influenced by 

this factor, whereas QB(P) and F(P) showed error rates below .05 under unbalanced 

distribution of the number of studies. Furthermore, results did not show important 
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variations as a function of the average sample size and the amount of residual 

heterogeneity (Figures 2C and 2D), with F(S) and QB(P) leading to a good adjustment to 

the nominal level on average, F(P) yielding overconservative results, and QB(S) showing 

inflated Type I error rates. 

 

INSERT FIGURE 2 

 

 Figure 3 shows the average Type I error rates in scenarios with heteroscedastic 

residual between-studies variances across the two categories of the moderator and larger 

variance for the category with less studies. When looking at the results as a function of 

the number of studies (Figure 3A), the rejection rates generally fell above the nominal 

significance level, with accurate rates provided only by QB(S) and F(S) with at least 60 

and 40 studies, respectively. Regarding the distribution of the number of studies in each 

category of the moderator, only F(P) and F(S) achieved good adjustment when the number 

of studies was balanced across categories, with inflated Type I error rates for all 

methods in the unbalanced scenarios (Figure 3B). The influence of the average sample 

size and the amount of residual heterogeneity were relatively minor (Figures 3C and 

3D), and all methods yielded rejection rates that were too liberal. The F(S) test 

consistently provided the closest performance to the nominal significance level. 

 

INSERT FIGURE 3 

 

Figure 4 presents the average Type I error rates in scenarios with homoscedastic 

residual between-studies variances across the three categories of the moderator 

(𝜏𝑟𝑒𝑠(1)
2 = 𝜏𝑟𝑒𝑠(2)

2 =  𝜏𝑟𝑒𝑠(3)
2  = 0.16). F(P) consistently yielded the best control of the 



19 

 

 

Type I error rate in all situations for number of studies, balanced and unbalanced 

distribution of number of studies across the three categories, and sample size (Figures 

4A, 4B, and 4C, respectively). QB(S) and F(S) yielded inflated rates above .15 under all 

scenarios.  

 

INSERT FIGURE 4 

 

Figure 5 shows the average Type I error rates in conditions where the residual 

between-studies variances were heteroscedastic across the three categories of the 

moderator, with smaller variance for the category with less studies. QB(P) provided 

accurate rates as the number of studies increased, whereas F(P) yielded rates slightly 

under .05 regardless of the number of studies (Figure 5A). When looking at the results 

as a function of the distribution of the number of studies (Figure 5B), F(P) yielded a good 

adjustment to the nominal level under balanced distribution of the number of studies 

and QB(P) did under unbalanced distribution. In addition, results did not show substantial 

variations as a function of the sample size and the amount of residual heterogeneity 

(Figures 5C and 5D), with QB(P) yielding inflated error rates, and F(P) showing 

overconservative results. Last, QB(S) and F(S) presented inflated rates above .15 across all 

the conditions (Figures 5A, 5B, 5C, and 5D).  

 

INSERT FIGURE 5 

 

Figure 6 presents the average Type I error rates in scenarios where the residual 

between-studies variances were heteroscedastic across the three categories of the 

moderator, with larger variance for the category with less studies. The influence of the 
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conditions manipulated for the number of studies, balanced and unbalanced distribution 

of the number of studies, sample size and amount of residual heterogeneity was similar, 

for all the methods, to the pattern found in Figure 5. In general, the adjustment to the 

Type I error rate of the QB(P) and F(P) was deteriorated across all conditions (Figures 6A, 

6B, 6C, and 6D), with F(P) performing closest to the nominal significance level. Once 

again, QB(S) and F(S) presented the poorest adjustment under all conditions (Figures 6A, 

6B, 6C, and 6D).  

 

INSERT FIGURE 6 

 

Finally, it is worth noting that, in general, the methods yielded a poorer 

adjustment to the error rate under scenarios with a moderator with three categories (see 

Figures 4-6) than under the dichotomous scenarios (see Figures 1-3).  

 

Statistical Power 

Statistical power reflects the probability of a method rejecting the null hypothesis that is 

in fact false. In general, power rates equal to or greater than 0.8 are often considered as 

acceptable in psychology and education (Cohen, 1988). 

 Figure 7 presents the average power rates in scenarios with homoscedastic 

residual between-studies variances across the two categories of the moderator. First, the 

influence of the different conditions manipulated was equivalent for QB(S), QB(P), F(S), 

and F(P) and, in most conditions, yielding statistical power below 0.8. As expected, for 

all methods, power increased as the number of studies (Figure 7A) and the magnitude of 

the difference between the mean effect sizes of the two categories (Figure 7E) 

increased, with at least 60 studies and a difference between the mean effect sizes equal 
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to 0.6 (𝜇𝜃1
= 0.7 and 𝜇𝜃2

= 0.1) being needed for the methods to provide power rates 

close to 0.8. Furthermore, larger residual heterogeneity resulted in lower power rates 

(Figure 7D), whereas the distribution of the number of studies across categories (Figure 

7B) and the average sample size per study (Figure 7C) did not show a substantial impact 

on the power rates of the methods under assessment. The QB test yielded slightly higher 

power rates than the F test across all manipulated conditions. 

 

INSERT FIGURE 7 

 

 Figures 8 and 9 present the average power rates in scenarios were the residual 

between-studies variances were heteroscedastic across the two categories of the 

moderator, with the largest variance either falling in the category with more (Figure 8) 

or with less studies (Figure 9). The influence of the different conditions manipulated on 

the power rates of QB(S), QB(P), F(S), and F(P) was very similar to those under 

homoscedastic residual between-studies variances (see Figure 7), with larger k and 

larger differences among the mean effects leading to higher power rates. It is worth 

noting the effect of the residual between-studies variance on the power rates. On the one 

hand, when the category with less studies had less heterogeneous effect sizes (Figure 

8D), QB(S), QB(P), F(S), and F(P) yielded power rates relatively higher under the condition 

of 𝜏𝑟𝑒𝑠(1)
2 = 0.08 and 𝜏𝑟𝑒𝑠(2)

2 = 0.32. On the other hand, when the category with less 

studies was more heterogeneous (Figure 9D), power rates for all of methods were 

slightly higher under the condition of 𝜏𝑟𝑒𝑠(1)
2 = 0.16 and 𝜏𝑟𝑒𝑠(2)

2 = 0.08. 

INSERT FIGURES 8 AND 9 
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Figure 10 shows the average power rates in scenarios with homoscedastic 

residual between-studies variances across the three categories of the moderator 

(𝜏𝑟𝑒𝑠(1)
2 = 𝜏𝑟𝑒𝑠(2)

2 =  𝜏𝑟𝑒𝑠(3)
2  = 0.16). As in the dichotomous situation, the influence of 

the different manipulated conditions was equivalent for all methods, with statistical 

power rates below 0.8 in most situations (Figures 10A, 10B, 10C, and 10D). As 

expected, power increased as the number of studies (Figure 10A) and the magnitude of 

the difference between the mean effect sizes of the first and third category of the 

moderator (Figure 10D) increased. The distribution of the number of studies (Figure 

10B) and the sample size (Figure 10C) did not substantially affect the results. The QB(S 

and F(S) were the tests with the highest power rates across all manipulated conditions.  

 

INSERT FIGURE 10 

 

Figures 11 and 12 present the average power rates under the two heterogeneous 

situations of the residual between-studies variances across the three categories of the 

moderator, with the smallest variance either for the category with less (Figure 11) or 

with more studies (Figure 12). The impact of the conditions manipulated was very 

similar to the pattern observed under homoscedastic variances (see Figure 10), with 

higher power rates for the QB(S and F(S) tests. Regarding the effect of the residual 

between-studies variances on the results, power rates for all methods were slightly 

higher under the conditions of 𝜏𝑟𝑒𝑠(1)
2 = .08, 𝜏𝑟𝑒𝑠(2)

2 =  .16, 𝜏𝑟𝑒𝑠(3) 
2 =  .16 (Figure 11D), 

and 𝜏𝑟𝑒𝑠(1)
2 = .16, 𝜏𝑟𝑒𝑠(2)

2 =  .16, 𝜏𝑟𝑒𝑠(3) 
2 =  .08 (Figure 12D).  

 

INSERT FIGURES 11 AND 12 

Discussion 
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This study compared a variety of methods in the context of subgroup analyses using 

mixed-effects models. Specifically, two methods for testing the statistical significance 

of the categorical moderator (i.e., the 𝑄𝐵  and F tests), two procedures for estimating the 

residual between-studies variance (pooled or separate estimates), and three residual 

heterogeneity variance estimators (DL, REML, and PM) were combined to provide 

twelve analysis approaches that were examined in a Monte Carlo simulation study, with 

standardized mean differences as the effect size measure. Two comparative criteria, 

empirical Type I error and statistical power rates, were considered for assessing the 

adequacy of each method across a wide variety of realistic scenarios in education. 

 Results were not found to be affected by the residual between-studies variance 

estimator used. However, some notable differences were observed depending on the 

method employed for testing the statistical association of a categorical moderator and on 

the approach implemented to estimate the amount of residual heterogeneity in each 

category (pooled versus separate estimates). 

 Some authors have criticized that the standard random-effects method does not 

take into account the uncertainty derived from the variance estimation process, which 

can lead to wrong statistical conclusions (e.g., Thompson & Higgins, 2002). This led to 

the development of improved hypothesis tests by Hartung and colleagues in the context 

of random-effects meta-analysis (Hartung, 1999) and mixed-effects meta-regression 

(Knapp & Hartung, 2003). These tests are known to outperform the standard methods in 

terms of their control of the Type I error rate (Huizenga et al., 2011; Sánchez-Meca & 

Marín-Martínez, 2008; Sidik & Jonkman, 2005; Viechtbauer et al., 2015) and are 

recommended for routine use nowadays. Hartung and colleagues (2001) also proposed 

an improved method for subgroup analyses using mixed-effects models using an F test, 

and we examined its performance compared to the typically implemented 𝑄𝐵 test, and 
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using pooled or separate estimates of the residual heterogeneity variance. The empirical 

Type I error rates obtained by both methods suggest that, in general, the improved F test 

has clear advantages over the standard 𝑄𝐵 test for moderators with two and three 

categories. As expected, this finding coincides with that obtained in previous studies for 

continuous moderators (Huizenga et al., 2011; Knapp, & Hartung, 2003; Viechtbauer et 

al., 2015). Therefore, this leads us to encourage meta-analysts who carry out subgroup 

analyses to apply the F test instead of the standard 𝑄𝐵 test in most situations.  

 When comparing the performance of the F(P) and F(S) tests, under homoscedastic 

variances across the two or three categories, F(P) yielded the best control of the Type I 

error rates, regardless of how the number of studies was distributed across the categories 

of the moderator.  

Under heteroscedastic variances across categories, the performance of the F(P) 

and F(S) was different depending on whether the moderator was dichotomous or with 

three categories. Both F(P) and F(S) achieved adequate performance as long as the 

number of studies was distributed equally across the two categories of the moderator, 

whereas for a moderator with three categories, only F(P) showed a good performance. 

However, under an unbalanced distribution of the number of studies, the practical 

consequences of allowing for heteroscedastic residual between-studies variances were 

more evident. On the one hand, when the value of the smallest residual between-studies 

variance was associated with the category with the smallest number of studies the F(S) 

showed good adjustment for the dichotomous situation (see Figure 2), whereas for a 

moderator with three categories QB(P) showed the best adjustment (see Figure 5). On the 

other hand, when the value of the largest residual between-studies variance was 

associated with the category with the smallest number of studies, all tests showed a poor 
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adjustment to the nominal level for both moderators with two and three categories (see 

Figures 3 and 6, respectively).  

 These results allow us to recommend the use of the F(P) test in most conditions, 

except when the meta-analyst suspects that the true value of 𝜏𝑟𝑒𝑠
2  may vary across 

categories and the number of studies across categories is unbalanced. In that case, the 

F(S) and QB(P) tests showed the best performance for moderators with two and three 

categories, respectively. Note that using a pooled estimate would be expected to provide 

more accurate results for most scenarios, as the estimate is then based on a larger 

number of studies. This can be particularly important if the total number of studies is 

small (e.g., 𝑘 < 20), which has been found to be the case for most Cochrane Reviews 

(Davey, Turner, Clarke, & Higgins, 2011). 

 The statistical power of all methods was lower than .80 in most conditions, 

unless the magnitude of the difference between the mean effects across the two or three 

categories was equal to 0.6. As expected, statistical power rates increased with a larger 

number of studies, yielding rates close to .80 with at least 60 studies (see Figures 7-12). 

Note that the differences in the statistical power rates for the methods may also be 

caused by either inflated or overly conservative Type I error rates. 

 In summary, results of our simulation study suggest that out of the different 

alternatives considered in the present study, the improved F test computed using a 

pooled estimate is the most suitable option to test the statistical association between a 

categorical moderator and the effect sizes in most conditions. Nevertheless, if the meta-

analyst suspects that the residual between-studies variances are heteroscedastic across 

categories of the moderator and the number of studies is unbalanced across categories, 

then the F test using separate estimates of the residual between-studies variance for a 
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dichotomous moderator and the Q test using a pooled estimation of the residual 

between-studies variance for a moderator with three categories may be preferable.  

These conclusions provide valuable information for applied researchers carrying out 

subgroup meta-analyses in the educational arena. Our empirical results enabled us to 

make several recommendations about which method (  or F test) in combination with 

which procedure for estimating the residual between-studies variance (pooled or 

separate estimation) is the most suitable option depending on the characteristics of the 

meta-analytic database. Educational researchers should be aware of the practical 

consequences that the choice of one method or another could have for their meta-

analytic results.  For this reason, it is highly recommended to use software (e.g., the 

metafor package in R) that allows to choose between both tests and both estimation 

procedures when conducting a subgroup meta-analysis. Our study has several 

limitations. First, the present simulation study was conducted with standardized mean 

differences, but its results may be generalized to other effect size measures with 

(asymptotically) normal sampling distributions (e.g., mean difference, log odds ratio, 

log risk ratio, Fisher’s Z-transformed correlation coefficients). Second, our results are 

limited to the manipulated conditions. Nevertheless, the values for the parameters were 

chosen to represent real meta-analyses in education. Additional simulation studies are 

needed to assess the performance of the methods under more adverse conditions, such 

as a non-normal distribution for the true effects within each category of the moderator. 

Lastly, an important limitation in this field is that the meta-analyst cannot determine 

whether the residual between-studies variances are homoscedastic or heteroscedastic 

across categories, as the parameters are unknown. In the absence of a formal statistic to 

test the homoscedasticity of the residual between-studies variances across categories, it 

is possible to compare the model fit using separate or pooled estimates.   
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