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Abstract: The reaction of perfluorooctanoic acid with the smallest carbonyl oxide Criegee 

intermediate, CH2OO, has been measured and is very rapid, with a rate coefficient of (4.9 ± 0.8) 

× 10-10 cm3 s-1, similar to that for reactions of Criegee intermediates with other organic acids. 

Evidence is shown for the formation of hydroperoxymethyl perfluorooctanoate as a product. 

With such a large rate coefficient, reaction with Criegee intermediates can be a substantial 

contributor to atmospheric removal of perfluorocarboxylic acids. However, the atmospheric fates 

of the ester product largely regenerate the initial acid reactant. Wet deposition regenerates the 

perfluorocarboxylic acid via condensed-phase hydrolysis. Gas-phase reaction with OH is 

expected principally to result in formation of the acid anhydride, which also hydrolyzes to 

regenerate the acid, although a minor channel could lead to destruction of the perfluorinated 

backbone.  
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Perfluorocarboxylic acids (PFCAs) are a class of compounds with the general formula 

CxF2x+1COOH that are ubiquitous in the environment.1 The smallest member of the series, 

trifluoroacetic acid (TFA), has both natural and man-made sources.2 The larger members of the 

series have no known natural sources and are present in the environment solely as a result of 

human activities. It has been shown previously that reaction with Criegee Intermediates is an 

important gas-phase atmospheric fate of trifluoroacetic acid2 and other organic acids.3-5 We 

extend this work by reporting a study of the longer-chain member of the series perfluorooctanoic 

acid (PFOA; C7F15COOH).  

PFOA was used for more than 60 years to provide surface coatings for industrial and consumer 

products, as a surfactant in fluoropolymer production, and in fire-fighting foams. It is a highly 

persistent chemical6 and bioaccumulates in birds,7 fish,8 and humans.9 The Persistent Organic 

Pollutants Review Committee of UNEP at its thirteenth meeting10 recommended to the 

Conference of the Parties to list PFOA and its salts and PFOA-related compounds in Annex A or 

B of the Stockholm Convention. The production and use of PFOA was phased-out by the 

chemical industry in 2015.11 

In addition to direct industrial emissions, PFCAs arise from the degradation of fluorotelomer 

alcohols with the generic formula F(CF2)nCH2CH2OH, where n is an even number.6, 12, 13 These 

alcohols are used in oil and water repelling coatings and waxes13 and have a lifetime of around 

20 days, allowing significant hemispheric transportation.12 Indeed,  PFOA and other PFCAs have 

been observed in terrestrial14 and aquatic remote environments.15, 16 Indoor air may contain 

higher PFOA concentration than that in outdoor air because there is estimated to be 10-20 times 

higher concentrations of fluorotelomer alcohols in the indoor environment.17-19 

In the atmosphere it is believed that reaction of PFOA with oxidants such as the OH radical is 

too slow to be an important loss process. The reaction of PFOA with OH occurs at ambient 

temperature with a rate coefficient of 1.7 × 10-13 cm3 s-1,20 so the lifetime with respect to OH loss 

would be ca. 68 days.21 Direct photolysis in the troposphere is small because the UV absorption 

of PFOA is at short wavelength,22 so wet and dry deposition were believed to be the main 

removal processes of PFOA. Based on an effective Henry’s law coefficient of 2.46 × 103 mol L-1 

atm-1 and a global average dry deposition velocity of 1.9 mm s-1, the lifetime of PFOA with 

respect to wet deposition and dry deposition has been estimated to be 17 and 48 days, 

respectively,6 giving an overall lifetime of around 12 days. Recently it has been reported that 

carbonyl oxide Criegee intermediates (CH2OO, CH3CHOO and (CH3)2COO) react at or even 

above the gas-kinetic limit with organic and inorganic acids.2-4, 23 

Criegee intermediates (C.I.) are reactive zwitterionic species that are formed during the 

ozonolysis of alkenes in solution24, 25 and in the gas phase. In the last few years the gas-phase 

reactivity of thermalized “stabilized Criegee intermediates” (S.C.I.) with a variety of potential 

atmospheric co-reactants (e.g. SO2, H2O and NO2) has been determined directly by different 

research groups, which has been reviewed in several recent papers.26-30 Preliminary estimates 
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suggest that levels of some Criegee intermediates can be as high as 1 × 105 cm-3 in indoor31 and 

outdoor environments27, 30, 32 and therefore, if reaction (1) has a rate coefficient similar to those 

determined for other organic acids2-4 then it could be a significant or even dominant loss process. 

S.C.I. + C7F15COOH → products       (1) 

In this study the direct determination of the rate coefficient for the reaction of perfluorooctanoic 

acid with the simplest S.C.I., CH2OO, has been made at room temperature and around 4 Torr 

total pressure. We use the STOCHEM-CRI33-35 atmospheric chemistry and transport model to 

investigate reaction (1) as a chemical loss process of PFOA and quantify its significance 

compared with the other physical and chemical loss processes of PFOA. Reaction (1) is assumed 

to be an insertion of the S.C.I. into the O-H bond of PFOA as suggested for other carboxylic 

acids;3 the atmospheric implications of the product are also discussed.  

Experiment 

The CH2OO reaction with PFOA was investigated using the Sandia multiplexed photoionization 

mass spectrometry apparatus at the Advanced Light Source of Lawrence Berkeley National 

Laboratory. Additional measurements for the rate constant determination were carried out at 

Sandia National Laboratories using a hydrogen discharge lamp (10.2 eV) for photoionization. 

The CH2OO Criegee intermediate is formed from the reaction of O2 with •CH2I radical, 

produced by pulsed 351 nm laser photolysis of diiodomethane 
36, and detected by synchrotron 

photoionization and time-of-flight mass spectrometry (TOF-MS), following the experimental 

methods of Welz and coworkers.4, 36, 37 The decay of the resulting CH2OO Criegee intermediate 

is measured as a function of PFOA concentration. The PFOA is delivered in a flow of He that 

passes through a thermostatically controlled (T = 20 °C / 293.15 K) mixing vessel, a “U-tube” 

filled with solid PFOA powder (≥ 95%) mixed with sand (quartz sand, 50-70 mesh particle size). 

The concentration of PFOA in the flow is calculated from the pressure in the mixing vessel and 

the experimentally determined vapor pressure curves of PFOA.38, 39 From the literature we 

estimate uncertainty in PFOA vapor pressure of ~ 5 %.  The mixing vessel was held below the 

temperature in the laboratory where experiments were performed to prevent PFOA condensation 

downstream. Also, measurements at various PFOA concentrations were performed in a random 

order and no sign of any “memory effect” was observed, suggesting PFOA adsorption on the 

delivery system was unimportant under the experimental conditions.  

Uncertainties in the individual pseudo-first order rate coefficient determinations are empirically 

judged to be ± 15% based on repeated measurements at the same concentration of PFOA. The 

initial concentration of CH2OO is estimated as ~ 1-2 × 1011 cm-3; because of the very fast 

kinetics of CH2OO + PFOA reaction and limitations on the time response of the experimental 

system, the measurements at the lowest PFOA concentrations do not meet usual criteria for the 

pseudo-first order limit. The uncertainty at the lowest concentrations is taken to be 
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correspondingly larger (up to ± 30%), and that uncertainty is reflected in the overall final rate 

coefficient determination. 

Modeling 

The Global Chemistry Transport Model, CRI-STOCHEM used in this study has been described 

in detail elsewhere.33-35, 40, 41 The S.C.I. concentration was estimated by considering its 

production through the ozonolysis reactions of the modeled alkenes (ethene, propene, trans-but-

2-ene, isoprene, α-pinene, β-pinene) and loss through unimolecular reaction, and the reactions 

with water and water dimer. The rate constants for the reactions between alkenes and O3 were 

taken from the Master Chemical Mechanism (MCM) (http://mcm.leeds.ac.uk/MCM). The rate 

constants for the loss of S.C.I. with water and water dimer were taken from the literature.42 

Steady state concentrations of S.C.I. ranging from zero to 6.0 × 105, with average of 1.5 × 104  

cm-3, are estimated in our model study.5, 27 The global distribution of the lifetime of PFOA with 

respect to the loss by reaction with S.C.I. and the global reduction in lifetime factor of PFOA 

((loss by OH + deposition loss)/(loss by OH + deposition loss + loss by S.C.I.) was estimated 

under the assumption that reactions of all Criegee intermediates with PFOA occur with the same 

rate coefficient as that determined for k1 (at least for reactions of organic acids the rate 

coefficients with stabilized C1 and C2 Criegee intermediates are known to be similar).4 

Results and Discussion  

Kinetics 

Figure 1 shows traces of CH2OO signals at various PFOA concentrations. An exponential decay 

is employed to fit the data, and the decay constants are plotted against the PFOA concentration in 

Figure 2. The linear fit to this plot, weighted by the estimated uncertainties in the individual 

determinations (with larger uncertainty for the lowest-concentration measurements as described 

above), returns the second-order rate coefficient for the reaction of CH2OO with PFOA, k1 = (4.9 

± 0.8) × 10-10 cm3 s-1 (95% uncertainty bounds). The reactivity of CH2OO towards PFOA is 

similar to that with TFA,2 k = (3.4 ± 0.3) × 10-10 cm3 s-1, and consistent with the general behavior 

of carbonyl oxides towards organic acids, which shows a strong dependence on the dipole 

moment of the acid. A structure-activity relationship (SAR) based on a dipole-dipole capture 

model3 predicts a rate coefficient of 2.9 × 10-10 cm3 s-1, about 60% lower than the present 

experimental measurement, a reasonable level of agreement for the SAR prediction.  

The reactions of carbonyl oxides with organic acids are calculated43, 44 and observed3 to proceed 

by insertion to form hydroperoxyesters. Theory shows that this 1,4-insertion is barrierless, 

resulting in large rate coefficients, as observed experimentally.43 By analogy, the reaction of 

CH2OO with PFOA should form a hydroperoxymethyl perfluorooctanoate (Scheme I), which we 

abbreviate to HPMPFO. 
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Figure 1. Measured decay of photolytically produced CH2OO, detected by 10.2 eV 

photoionization, for several concentrations of PFOA. Fits to an exponential decay function are 

shown as the lines. 
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Figure 2. Plot of the pseudo-first order decay constants, acquired from fits as shown in Figure 1, 

versus the concentration of PFOA. The slope of the fitted line gives the second-order rate 

coefficient for CH2OO removal by PFOA. 

 

Figure 3. Time behavior of signals for the CH2OO reactant (m/z = 46) and a fragment ion of the 

product (m/z = 47) of reaction 1.  
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The HPMPFO product has a mass of 460 amu. A search for product signal around the flight time 

corresponding to a cation at m/z = 460 was not successful (see Figures S1 and S2); but the 

fragment protonated carbonyl oxide is observed at m/z = 47, with a rise time corresponding to the 

decay time of CH2OO (Figure 3). The kinetic profile matches that of a stable product; the 

hydroperoxymethyl esters formed in reactions of Criegee intermediates with other acids have 

been observed to dissociatively ionize to yield a protonated Criegee intermediate.3 

Photoionization signals at the parent mass for other hydroperoxymethyl esters are often small or 

unobservable,3, 4, 45 although the hydroperoxymethyl-2,2,2-trifluoroacetate from CH2OO reaction 

with trifluoroacetic acid does show a parent ion signal.3 Figure 4 compares the photoionization 

spectrum of this fragment ion to m/z = 47 fragment ions from hydroperoxymethyl esters formed 

in several other Criegee intermediate reactions. The similarity in the spectra suggests substantial 

commonality in the dissociative ionization process of these analogous molecules. The neutral 

•CH2OOH radical is essentially unbound46, 47 and direct ionization of this species cannot be the 

source of the stable product spectrum. Moreover, the spectrum is not consistent with direct 

ionization of the more stable CH3OO• radical.48  
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Figure 4. Photoionization spectrum for the m/z = 47 fragment ion from the HPMPFO product of 

reaction 1, compared to spectra for similar products from CH2OO reactions with other 

halogenated acids 3 and the direct photoionization spectrum of the methylperoxy radical 48.  

 

Modeling 

Combining the value of k1 measured here and a global annual average S.C.I. concentration of 1.5 

 104 cm-3 gives a lifetime of PFOA with respect to loss by reaction with S.C.I. of 1.7 days. 

Given that the global model is likely to underestimate the level of Criegee intermediates, 

especially in regions of high ozone and high alkene (urban outflow and where high biogenic 

emissions meet elevated ozone),49 the impact of reaction (1) as a loss process compared with 

other loss processes (e.g. loss by OH, wet deposition and dry deposition) could be substantial, 

reducing its lifetime by more than 90% in high S.C.I. regions (Figure 5). Over much of the Earth 

the reaction with Criegee intermediates are likely to be the dominant loss process for PFOA and 

similar perfluorinated carboxylic acids.  
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Figure 5. The reduction in lifetime factor due to the reaction of S.C.I. with PFOA. Reduction in 

lifetime factor is the ratio of the literature sum of loss processes (loss by OH + deposition loss) to 

the revised sum of loss processes (loss by OH + deposition loss+ loss by reaction with S.C.I.) 

 

However this rapid loss does not necessarily correspond to permanent removal of PFOA, and 

assessment of atmospheric consequences demands consideration of the set of possible fates for 

HPMPFO. The University of Manchester UManSysProp tool,50 which applies group contribution 

methods51, 52 to estimate vapor pressures, predicts the vapor pressure of HPMPFO to be ~ 40 

times smaller than that of the PFOA reactant, which may lead to increased nucleation and 

secondary organic aerosol formation over terrestrial regions.3 If the product is taken up into 

atmospheric aqueous phases including cloud, fog and aerosol liquid water, expected to occur on 

a time scale of approximately 5-15 days,53 rapid hydrolysis54 is expected to regenerate PFOA and 

hydroperoxymethanol or formic acid. The net effect of the reaction would then be largely to 

accelerate the wet deposition of PFOA and convert the Criegee intermediates into aqueous-phase 

products. Hydroperoxyesters in general are also expected to be lost from the atmosphere by 

reaction with OH radicals. Hydrogen abstraction from the OO-H bond would be expected to 

occur with a rate constant of approximately the value of (0.5-1.0) × 10-11 cm3 s-1 observed for the 

analogous reaction with methyl hydroperoxide.55 Combining this rate constant with [OH] = 1 × 

106 cm-3 gives an estimate of ~1-2 days for the atmospheric lifetime of HPMPFO with respect to 

reaction with OH. A rate coefficient of k(OH+HPMPFO) = 4.8 × 10-12 cm3 s-1 is calculated using 

the Estimation Programs Interface (EPI) Suite developed by the United States Environmental 

Protection Agency;56 for this rate coefficient the estimated lifetime against reaction with OH is 

about 2½ days. 
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Reaction of HPMPFO with OH is conceivably important for PFOA destruction because in the 

presence of NO it could lead to “unzipping” of the fluorinated alkyl chain by the following 

mechanism:12 

C7F15C(O)OCH2OOH + OH  →  C7F15C(O)OCH2OO + H2O (2) 

C7F15C(O)OCH2OO + NO  →   C7F15C(O)OCH2O + NO2
 (3) 

C7F15C(O)OCH2O  →  C7F15C(O)O + HCHO (4a) 

C7F15C(O)OCH2O  + O2 →  C7F15C(O)OCHO + HO2
 (4b) 

C7F15C(O)O  →  C7F15 + CO2
 (5) 

C7F15 + O2/NO/H2O →  →  →  CO2 + HF (6) 

However, unless reaction (4a) is substantially more rapid than reaction (4b), the reaction of 

PFOA with Criegee intermediates will largely form the acid anhydride C7F15C(O)OCHO, which 

will hydrolyze to regenerate PFOA 

C7F15C(O)OCHO + H2O →  PFOA + HCOOH (7) 

and not initiate atmospheric perfluorocarboxylic acid degradation. Measurements of degradation 

in the analogous CF3C(O)OCH3 system57 suggest that reaction of the fluoroalkoxy radical with 

O2 (4b) will be far more important than dissociation (4a). Further investigation of the reactions of 

HPMPFO or similar hydroperoxyfluoroesters is required to completely understand the 

mechanism of atmospheric removal. 

The results presented here for PFOA, combined with previous results for TFA, show that 

reaction with Criegee intermediates is the dominant gas-phase atmospheric fate of 

perfluorocarboxylic acids over land masses. The concentration of reactive alkenes and hence 

Criegee intermediates drops off sharply over the ocean and Criegee intermediate chemistry is 

less important. The reactions of perfluorocarboxylic acids CxF2x+1C(O)OH with general Criegee 

intermediates (R1)(R2)COO, where R1 and R2 denote an H atom or a hydrocarbon radical group, 

produce hydroperoxyfluoroesters of the general formula CxF2x+1C(O)OC(R1)(R2)OOH. These 

will in turn be removed by uptake into atmospheric aqueous aerosols and reaction with OH 

radicals. Uptake into aqueous aerosols will be followed by hydrolysis to reform the 

perfluorocarboxylic acid,54 with a net effect the same as direct uptake of the perfluorocarboxylic 

acid into the aqueous aerosol. However, reaction with OH radicals, expected to occur on a time 

scale of 1-2 days, will likely lead to regeneration of the gas-phase perfluorocarboxylic acid, with 

at most a minor contribution from oxidative degradation into CO2 and HF. As a consequence, 

reactions with S.C.I. are unlikely to be a substantial overall loss mechanism for gas-phase 

atmospheric perfluorocarboxylic acids. Further modeling studies are needed to quantify the 

global impact of such reactions as an atmospheric fate for perfluorocarboxylic acids. 
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