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 7 

ABSTRACT 8 

Ever-increasing precision in isotope ratio measurements requires a concomitant small bias and minimisation of 9 

inter-laboratory bias. The double spike technique is the most suitable method to obtain reliable isotope 10 

composition data that are accurately corrected for instrumental mass fractionation. Compared with other 11 

methods, such as sample-standard bracketing, only the double spike technique can correct for all sources of 12 

fractionation after equilibration of the sample with the double spike, such as that incurred during chemical 13 

separation and measurement. In addition, it is not dependent on a priori assumptions of perfect matrix 14 

matching of samples to reference materials or quantitative recovery of the sample through the chemical 15 

separation procedure to yield accurate results. In this review article, we present a detailed discussion of the 16 

merits of the double spike technique, how to design and calibrate a suitable double spike and analytical 17 

strategies. Our objective is to offer a step-by-step introduction to the use of the double spike technique in 18 

order to lower potential barriers that researchers new to the subject might face, such that double spiking will 19 

replace sample-standard bracketing as the measurement method of choice.  20 

Keywords: double spike method; instrumental mass fractionation; mass-dependent isotope variation; spike 21 

calibration; measurement procedure optimisation 22 

 23 

1. Introduction 24 

Isotope geochemistry, the study of variation in the isotopic composition of elements, is a key aspect of the 25 

Earth Sciences. It has proven to be a crucial tool in establishing major concepts such as absolute dating of 26 

geological materials, the formation of the Earth in our solar system and the recycling of the Earth’s crust into 27 

the mantle through plate tectonics. Traditionally, isotope geochemistry focused on isotopic anomalies arising 28 

from the decay of long-lived nuclides, such as the radiogenic 87Rb-87Sr and 238U-206Pb systems, and the mass-29 

dependent isotopic fractionation of light elements (H, C, N, O, S) in the low-temperature geochemical realm. 30 

The latter, often but inappropriately called stable isotope fractionation, comprises fractionation of isotopes of 31 

an element through physicochemical processes as a function of the masses following a limited class of well-32 

known functions (e.g., linear, power and exponential fractionation laws; Bigeleisen and Mayer 1947, Schauble 33 

2004, Young et al. 2015). Elements heavier than S were traditionally regarded not to show isotopic 34 



2 
 

fractionation in nature due to the small relative mass differences between their isotopes, but at present mass-35 

dependent isotope fractionation has been detected for elements as heavy as Tl (Prytulak et al. 2013) and U 36 

(Andersen et al. 2015). The use of these “non-traditional stable isotopes” has taken flight to address a wide 37 

range of research questions across the Earth sciences. In particular, the advent of ICP-MS instruments heralded 38 

a new era of increasingly precise isotopic measurements that could, in principle, be applied to every non-39 

monoisotopic, non-gaseous element in the periodic table. Improving the precision (repeatability) of isotopic 40 

measurements is relatively straightforward and relies for a large part on optimising counting statistics by longer 41 

measurements of higher-intensity ion beams (e.g., Albarede et al. 2004). The current levels of measurement 42 

precision, however, require a concomitant small bias, meaning the minimisation of (systematic) measurement 43 

errors both within and between laboratories, which has proven to be more of a challenge. A strict control on 44 

the accuracy of high-precision isotope ratio data is clearly required. 45 

The double spike technique, where a tracer consisting of two artificially enriched isotopes is mixed with the 46 

sample, provides the most reliable method to obtain accurate isotopic compositions for elements with at least 47 

four isotopes (Albarède and Beard 2004, Rudge et al. 2009). Its fundamentals were proposed by Dodson 48 

(1963), but at first the double spike technique saw little use apart from the application to Pb (e.g., Compston 49 

and Oversby 1969, Cumming 1973, Hamelin et al. 1985, Galer and Abouchami 1998) and Ca isotope 50 

measurements (Russell et al. 1978). It took over three decades and a significant increase in measurement 51 

precision with new MC-ICP-MS instruments before the geochemical community became aware of the full 52 

potential of the double spike technique and the first doubly-spiked studies of mass-dependent fractionation of 53 

non-traditional isotopes appeared (e.g., Johnson and Beard 1999), thus vindicating Dodson’s (1963) statement 54 

that, with the double spike technique, “it would be possible in principle to measure precisely the natural 55 

isotopic fractionation of a large number of polyisotopic elements, for example Mg, Ca, Ti, Cr, Ni, Fe, Mo, Sn”.  56 

Despite the clear advantages, Rudge et al. (2009) noted a general hesitation in the implementation of double 57 

spike measurement protocols, possibly related to the perceived difficulty of their practical use. Even though 58 

ready-to-use data reduction software and spreadsheets are available (e.g., Rudge et al. 2009, Creech and Paul 59 

2015), designing, making and calibrating a double spike might present a significant inertia barrier. This article 60 

aims to lower this barrier by providing a practical guide to double spiking. The solutions to the double spike 61 

equations have been presented in various forms in the literature (e.g., Dodson 1963, Russell 1971, Hamelin et 62 

al. 1985, Galer 1999, Johnson and Beard 1999, Siebert et al. 2001, Albarède and Beard 2004). The most recent 63 

version by Rudge et al. (2009) is generally accepted by the geochemical community and we will follow their 64 

nomenclature and definitions throughout. As Rudge et al. (2009) have published the definitive approach for 65 

solving the double spike equation and its uncertainty propagation, and most researchers use publicly available 66 

data reduction programs such as the Double Spike Toolbox Matlab code (Rudge et al. 2009), we will not delve 67 

into a detailed discussion of the mathematics behind double spiking. Rather, we will focus on practical 68 

considerations when working with double spikes, aimed at researchers new to the subject. We aim to address 69 

questions arising when setting up a mass spectrometry protocol for a new element, including the advantages of 70 

double spiking over other corrections methods, how to choose a suitable double spike, ways to calibrate and 71 
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validate a double spike, etc. To aid the discussion, we will often refer to the new Ni double spike that we 72 

recently implemented at the University of Bristol as an example. 73 

 74 

2. Principles of the double spike technique 75 

2.1. Instrumental mass fractionation 76 

Mass spectrometric data require extensive correction for analytical artefacts and specifically the effects of 77 

instrumentally-induced mass-dependent fractionation (IMF). Non-quantitative transmission of a sample in the 78 

mass spectrometer gives rise to mass-dependent fractionation of isotope ratios just as physicochemical 79 

processes do in nature. In TIMS, preferential evaporation of the lighter isotopes in a sample leads to relatively 80 

small but variable IMF, whereas in ICP-MS, space charge effects in the interface cause strong but relatively 81 

constant IMF (e.g., Albarède and Beard 2004). Albeit the magnitude of IMF is variable, it closely follows the 82 

exponential mass fractionation law (Russell et al. 1978) that, for a given pair of isotopes (denoted i), can be 83 

written as 84 

Eq. (1) 𝑁𝑖 = 𝑛𝑖𝑒
−𝛼𝑃𝑖 85 

where N is the true isotopic ratio of a sample, n is the measured isotopic ratio of a sample, α is the 86 

fractionation parameter and P is the natural logarithm of the exact mass ratio of the two isotopes (notation 87 

following (Rudge et al. 2009). The subscript i denotes the ith isotope ratio of the element in question, for 88 

example 60Ni/58Ni, 61Ni/58Ni, etc., corresponding to i = 1, 2, etc. The only free parameter in equation (1) is the 89 

mass fractionation parameter, α, whose value specifies the “degree of fractionation” with positive α being an 90 

IMF favouring detection of heavy isotopes over light. Note that α has no subscript and thus has the same value 91 

for all pairs of isotopes for a given element. Hence, to correct mass spectrometric data for IMF, it is necessary 92 

to determine α. Accurate correction is critical as the magnitude of the IMF often exceeds natural mass-93 

dependent variations by orders of magnitude in ICP-MS measurements. There are several ways to approach 94 

this problem, the addition of a double spike tracer being one of them. We discuss the four most common IMF 95 

correction procedures below. 96 

For radiogenic isotope systems, such as Sr and Nd, internal normalisation eliminates all mass-dependent 97 

fractionation, both natural and IMF. In this case the sample is assumed to be fractionated (by a natural process) 98 

relative to some reference ratio for a non-radiogenic isotope pair to (e.g., 86Sr/88Sr = 0.1194; Nier 1938). During 99 

measurement, IMF further fractionates this ratio and the combined effect is rolled into a single value of α, the 100 

solution of equation (1), with N set equal to the reference ratio. Thus, the radiogenic isotope ratio (e.g., 101 

87Sr/86Sr), devoid of all mass-dependent effects and leaving only the radiogenic excess or deficit, is readily 102 

determined from the measured ratio and the previously solved-for value of α. 103 

When a non-radiogenic isotope pair is not available, notably for Pb, or the magnitude of natural mass-104 

dependent fractionation is investigated, an external method is required to correct for IMF. The most commonly 105 

used method is sample-standard bracketing. Here, a reference material (standard) with a known composition is 106 
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measured alongside the unknown samples and used to monitor IMF. A clear advantage of this approach is that 107 

the absolute composition of the reference material need not be known as long as results are expressed as the 108 

relative difference of an isotopic ratio (δ notation; Coplen 2011). By alternately measuring the reference 109 

material and unknown samples (“bracketing”) and using the mean isotope ratios of the adjacent reference 110 

materials to correct the unknown, drift in IMF during the measurement session can be corrected for (Albarede 111 

et al. 2004). A critical prerequisite for sample-standard bracketing is that samples and reference materials 112 

fractionate to the same extent during measurement, which is very difficult to validate as we will discuss below.  113 

A third correction method involves doping samples with an element that has at least two interference-free 114 

isotopes and a mass close to that of the element of interest to monitor IMF, such as Tl in case of Pb (e.g., 115 

Longerich et al. 1987). The isotope composition of the dopant element is presumed to be known and, when 116 

one assumes that the magnitude of IMF is the same for elements of similar mass, can be used to correct the 117 

IMF of the element of interest. Whether IMF is indeed sufficiently similar for different elements is contentious 118 

and doping with another element can produce precise data that are nevertheless inaccurate (e.g., Thirlwall 119 

2002, Waight et al. 2002, Taylor et al. 2015).  120 

Finally, the double spike technique uses a well-calibrated artificial tracer enriched in two isotopes (the double 121 

spike) that is added to a sample. The addition of this exotic tracer allows an internal correction to be made to 122 

obtain the isotopic composition of a sample that is corrected for all mass-dependent isotope fractionation 123 

incurred after homogenisation with the tracer.  124 

2.2. The double spike equation 125 

The principles of the double spike technique are shown schematically in Figure 1. In four-isotope space, 126 

measurement of a natural sample N yields three independent isotope ratios that are affected by IMF so that 127 

the measured composition (n) is offset from the true value. The form of the IMF line is only dependent on the 128 

mass of the isotopes as given by equation (1) and is therefore known, but the displacement along the line, 129 

given by the mass fractionation parameter α, is not. Hence, the true composition N cannot be constrained 130 

other than to lie somewhere on the IMF line that passes through n. If an aliquot of the natural sample N is 131 

mixed with the double spike tracer (T), a mixture M will result with a composition that is dependent on the 132 

proportion (given by λ) in which the sample and double spike are mixed. The measurement of this mixture (m) 133 

will also be affected by IMF, again along a line of known form but with unknown displacement (β). It is now 134 

possible to construct one, and only one, mixing line that passes through the point T and intersects with the two 135 

IMF lines. The two intersection points are N and M; thus a solution for the sample composition (N) is found. 136 

The procedure can be described in algebraic terms as follows: the line N-n is given by equation (1); M-m and 137 

the mixing line N-M-T can be expressed as 138 

Eq. (2) 𝑀𝑖 = 𝑚𝑖𝑒
−𝛽𝑃𝑖  139 

Eq. (3) 𝑀𝑖 = λ𝑇𝑖 + (1 − λ)𝑁𝑖  140 
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Note that a linear mixing line, as described above, requires that the same denominator isotope is chosen for 141 

each of the three isotope ratios. Substituting equations (1) and (2) into equation (3) gives the exponential law 142 

double spike equation (Rudge et al. 2009): 143 

Eq. (4) λ𝑇𝑖 + (1 − λ)𝑛𝑖𝑒
−𝛼𝑃𝑖 −𝑚𝑖𝑒

−𝛽𝑃𝑖 = 0 144 

Since the composition of the double spike is known and the ratios of n and m are measured, equation (4) has 145 

three unknowns: α, β and λ. Writing out equation (4) for i = 1, 2 and 3 provides three equations that can be 146 

solved numerically for the three unknowns (see Rudge et al. 2009), a procedure often referred to as inversion. 147 

Herein lies the main limitation of the double spike method: to solve the equations for three unknowns the 148 

isotope system requires at least four available isotopes (three ratios). We will refer to the four isotopes used in 149 

the double spike equation as the inversion isotopes. The true composition of the sample N can then be found 150 

by entering the value of α, obtained from the inversion, and the measured ratios for n in equation (1). As such, 151 

the isotope composition of a sample can be obtained through the measurement of a pure (n) and spiked (m) 152 

aliquot of the sample. This is used in the case of Pb isotopes where 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb are 153 

used as geochemical tracers (e.g., Thirlwall 2000, Klaver et al. 2016). Note that, although four isotopes are 154 

required for the double spike inversion, all isotopes of an element with five or more isotopes can be measured 155 

and corrected for IMF following Equation (1) so that the double spike technique can be used to obtain the 156 

absolute isotopic composition of an element. 157 

2.3. Double spiking applied to natural mass-dependent fractionation 158 

When one is interested in the natural mass-dependent (“stable”) isotope fractionation relative to a reference 159 

material, a simpler approach can be followed. Assuming IMF and natural fractionation both follow the 160 

exponential fractionation law, it follows that the isotopic composition of the sample and reference material 161 

satisfy equation (1) (i.e., they lie on the same mass-dependent fractionation line). In this case, the isotopic 162 

composition of the reference material in the double spike inversion (Eq. 4) can take the places of the measured 163 

ratios of the unspiked sample (n), thus obviating the need to measure the unspiked sample; a single 164 

measurement of the spiked sample (m) suffices to calculate α relative to the reference material. The value for α 165 

resulting from the double spike inversion represents the degree of natural fractionation (the displacement 166 

from reference material n to sample N), which can be directly expressed in the δ notation. Following the IUPAC 167 

convention (Coplen 2011) and taking Ni as an example: 168 

Eq. (5) 𝛿 𝑁𝑖𝑖 = 𝑒−𝛼𝑃𝑖 − 1 169 

where i again indicates a specific pair of isotopes of the element (e.g., 60Ni/58Ni) and P is the natural logarithm 170 

of the ratio of the exact isotopic masses. Note that α is the quantity of interest and that the choice of isotope 171 

ratio in the δ notation is completely arbitrary; there is no advantage in choosing one ratio over another other 172 

than convention. Consequently, for double spike data, consistency between, for example, δ60/58Ni and δ62/58Ni 173 

cannot be used as an independent measure of data quality. This presents a marked contrast with other 174 

correction methods, such as sample-standard bracketing, where each isotope ratio is independently corrected 175 

for IMF through bracketing against the reference material.  176 
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2.4. Two special cases 177 

The double spike technique is normally only applicable to elements with at least four stable isotopes but can be 178 

extended to 3-isotope elements using an ingenious adaptation (Hofmann 1971, Coath et al. 2017). This critical-179 

mixture method employs the fact that β is an output parameter of the double spike equation but has little 180 

practical use. Thus, if β can be constrained through independent means, the number of unknowns decreases by 181 

one and only two independent isotope ratios are required to solve equation (4). Typically, any bias in 182 

estimating β, for instance through sample-standard bracketing, propagates directly into a bias in α and its 183 

associated uncertainty, the parameter of interest. In the special case where the IMF line M-m is tangential to 184 

the sample – double spike mixing line, however, a bias in estimating β has a marginal influence on α as the 185 

displacement of the presumed position of M is parallel to the mixing line. The IMF vector and mixing line only 186 

become parallel when sample and double spiked are precisely combined in a “critical mixture”, typically 187 

requiring an iterative effort to optimise the sample – double spike proportion (Coath et al. 2017). 188 

An alternative option to extend the double spike technique is the use of one or two non-naturally occurring 189 

radioactive isotopes to make a double spike. This is commonly used for high-precision U-Pb and U-series 190 

measurements of small samples where well-calibrated 202Pb-205Pb and 233U-236U spikes allow direct correction 191 

for IMF as these isotopes do not naturally occur in samples (e.g., Todt et al. 1996). The main problem of 192 

upscaling this technique to mass-dependent fractionation studies of a greater variety of elements is the use of 193 

large quantities of costly radioactive spike material and the consequent radiological hazard. To our knowledge 194 

this has not yet been undertaken for elements other than U. 195 

 196 

3. The advantages of double spiking 197 

3.1. Matrix effects and variable mass fractionation 198 

The main advantage of double spiking is that it provides accurate correction for IMF as long as the double spike 199 

is properly calibrated. It does not rely on an a priori assumption of identical IMF behaviour of samples and 200 

reference material – in clear contrast to sample-standard bracketing (SSB). To illustrate this point, we present a 201 

comparison between double spike and SSB-corrected δ60/58Ni data, obtained by MC-ICP-MS (see Appendix A), 202 

for the same measurements of a pure Ni solution in Figure 2. Because the double spike inversion yields a value 203 

for β (the magnitude of the IMF) for every measurement, double spike corrected data can be re-corrected 204 

assuming constant IMF between samples and the reference material as in SSB. Repeated double spike 205 

measurements of a pure Ni solution (our in-house CPI Ni solution) yield results with a high intermediate 206 

measurement precision. Correcting the same data through SSB leads to more scatter of the data points and 207 

introduces a bias compared to the double spike results. This is particularly evident in the case of CPI standards 208 

processed through the chemical separation procedure: whereas double spike-corrected results are 209 

indistinguishable from unprocessed CPI solutions, SSB-corrected data can yield over 1 ‰ lower δ60/58Ni values. 210 

This is a significant effect considering that natural variations in Ni isotopes are often <0.1 ‰. Clearly, the 211 

requirement of identical IMF of the reference material and processed CPI standards is not met. In this case, the 212 
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likely cause is residual organic material (from the dimethylglyoxime used to elute Ni) in the processed Ni 213 

solutions. The presence of a small amount of matrix (any element or compound other than the one of interest) 214 

in samples can affect plasma conditions to such an extent that the IMF behaviour becomes significantly 215 

different compared to the matrix-free reference material. Such matrix effects are very common and very hard 216 

to systematically suppress (e.g., Barling and Weis 2008, Tipper et al. 2008, Shiel et al. 2009, van den Boorn et 217 

al. 2009, Nan et al. 2015, Peters et al. 2015), making it extremely difficult to obtain bias-free isotope data 218 

through sample-standard bracketing. Strikingly, the repeatability measurement precision (the 2 SE of the mean 219 

of 6-8 independent measurement results) is only a factor ~3 worse than for the DS-corrected data, indicating 220 

that SSB can induce a significant measurement bias yet yield relatively precise results, with the high precision 221 

potentially giving a false sense of security. The double spike method, on the other hand, has no trouble dealing 222 

with these matrix effects and produces accurate results. 223 

3.2. Correcting for fractionation during chemical purification 224 

As matrix effects can have a pronounced influence on IMF, care has to be taken to matrix-match samples to the 225 

elementally pure reference material, which typically involves the elimination of the sample matrix as much as 226 

possible. Purification of geological materials is mostly achieved through a single- or multistage ion-exchange 227 

chromatography (“column”) procedure (e.g., Schönbächler and Fehr 2013). Although sample purification is 228 

essential, it can have negative side effects such as the introduction of organic species as in the case of Ni 229 

(Figure 2). A second major complication is that isotopic fractionation can occur during ion-exchange 230 

chromatography, implying that non-quantitative recovery of the analyte can lead to mass-dependent 231 

fractionation. This is particularly pertinent to lighter elements that are more readily fractionated due to the 232 

larger relative mass difference between their isotopes (e.g., Russell and Papanastassiou 1978, Oi et al. 1991, 233 

Chernonozhkin et al. 2015), but with increasing precision of isotope measurement results it should not be 234 

neglected for heavier elements either. Quantitative recovery of the analyte is thus required to avoid 235 

introducing a bias but is difficult to demonstrate on a sample-to-sample basis and any fractionation incurred 236 

during chemical purification cannot be corrected for using sample-standard bracketing. On the other hand, the 237 

double spike technique corrects for any mass-dependent fractionation after sample-spike equilibration. Hence, 238 

if a sample and double spike are mixed and equilibrated prior to ion-exchange purification, the double spike 239 

inversion will correct for the combined mass-dependent fractionation during purification and measurement. As 240 

such, the double spike technique is the only method that is not dependent on quantitative recovery through 241 

the separation procedure and can produce accurate results even if a significant fraction of the sample is lost 242 

during purification (e.g., <50 % yield). 243 

 244 

4. Designing a double spike 245 

The aim of the double spike technique is to produce isotope data with a small uncertainty. The accuracy of 246 

double spike data relies on the quality of the calibration of the double spike and reference material, which is 247 

discussed below, but the precision of the results depends greatly on the choice of double spike composition. 248 
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Obviously, one would prefer a double spike that produces the best possible precision, either in a ratio of 249 

interest (e.g., 207Pb/204Pb) or in α when natural mass-dependent fractionation is investigated. Rudge et al. 250 

(2009) included a model in their Double Spike Toolbox that can be used to calculate the theoretical precision in 251 

α or an isotope ratio for a wide range of variable parameters. Briefly, their precision model is based on linear 252 

propagation of the variance associated with the measurement of ion beam intensities: i) thermal noise of the 253 

resistors fitted in the amplifier feedback loop of the Faraday detectors (Johnson-Nyquist noise) and ii) counting 254 

statistics of the ion beam intensities (Poisson or shot noise; see e.g., Albarede et al. 2004). If the double spike is 255 

calibrated perfectly, the double spike inversion does not introduce a bias and only leads to magnification of the 256 

measurement precision. As such, the precision model provides a theoretical limit on the highest precision that 257 

can be achieved for a given total ion beam intensity and integration time. 258 

A double spike that leads to minimal magnification of the measurement precision is considered optimal and a 259 

“cocktail list” of double spikes that yield the highest theoretical precision is provided by Rudge et al. (2009). We 260 

strongly prefer their approach of linear propagation of variances to assess the performance of a double spike 261 

over geometrical methods proposed by e.g., Galer (1999) and Johnson and Beard (1999). The latter predict that 262 

the precision of a double spike solution is dependent on the choice of denominator isotope in the ratios used in 263 

the double spike inversion. Because mixing and mass fractionation processes are coordinate-independent, 264 

there is no physical basis for the choice of denominator isotope to have any effect, as discussed by Rudge et al. 265 

(2009). 266 

There are several factors that can influence the choice of the isotopes used in a double spike and, in the case of 267 

elements with five or more isotopes, the four isotopes used in the double spike inversion. Selecting the four 268 

inversion isotopes should be the first step in choosing an appropriate double spike: the same double spike can 269 

perform better or worse depending on the choice of inversion isotopes. The presence of isobaric interferences 270 

can make some isotopes less suitable as an inversion isotope. In the case of Ni, five stable isotopes are 271 

available: 58Ni (68.08 % abundance), 60Ni (26.22 %), 61Ni (1.14 %), 62Ni (3.63 %) and 64Ni (0.93 %; Gramlich et al. 272 

1989). We decided to avoid the use of 64Ni as it suffers from isobaric interference by a major isotope of Zn (64Zn 273 

has an abundance of 48.6 %; Rosman 1972), even though double spikes with 64Ni yield the best possible 274 

precision. It is difficult to quantitatively remove Zn from samples as it is a common contaminant in labware and 275 

the environment. Correction for Zn interference is possible but undesirable as monitoring 66Zn would require a 276 

magnet jump in the method and thus consume time and analyte. Hence, we have opted to exclude 64Ni and use 277 

58Ni, 60Ni, 61Ni and 62Ni as inversion isotopes. Isobaric interferences have also affected the choice of, for 278 

instance, Mo (Siebert et al. 2001) Cd (Ripperger and Rehkämper 2007) and Pt (Creech et al. 2013) inversion 279 

isotopes. In addition to isobaric interferences, the presence of nucleosynthetic anomalies in extra-terrestrial 280 

materials can also be taken into account when choosing the four inversion isotopes (e.g., Millet and Dauphas 281 

2014). 282 

Upon choosing the inversion isotopes, the precision model of Rudge et al. (2009) can be used to explore a wide 283 

parameter space to find the most suitable double spike. Simply choosing the one with highest theoretical 284 

precision might not always be the best choice. Taking Ni as an example again, we used the precision model of 285 
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Rudge et al. (2009) to generate contour diagrams of the precision in α as a function of double spike 286 

composition and the proportion of spike in the sample-spike mixture for two different double spikes (Figure 3). 287 

Excluding 64Ni, a 60Ni-62Ni double spike yields the best possible precision, albeit only marginally better than a 288 

61Ni-62Ni spike. The performance of the 60Ni-62Ni spike, however, is much more dependent on getting the 289 

sample-spike proportion exactly right: a small deviation from the optimal sample-spike proportion leads to a 290 

significant decrease in precision. If the double spike deviates from the optimal composition, this becomes even 291 

more pertinent. On the other hand, the 61Ni-62Ni spike has a broad precision minimum with very little 292 

deterioration in precision over a wide range in the sample-spike ratio. Versatility of a double spike in terms of 293 

sample-spike proportion is desirable, in particular when the concentration of the element in the double spike 294 

or, more likely, the sample is poorly known. As such, we preferred the use of a 61Ni-62Ni double spike. 295 

The default precision model of the Double Spike Toolbox employs a total beam intensity for the four inversion 296 

isotopes of 100 pA (10 V), integration time of 8 s and a 1011 Ω amplifier feedback resistor. These measurement 297 

conditions are typical for MC-ICP-MS and TIMS measurements, but if the double spike method will be applied 298 

to much larger or smaller sample sizes it is worth investigating the effect of total beam intensity on the 299 

expected precision. Figure 4 shows the precision in α as a function of sample-spike proportion for two Ni 300 

double spikes at a total beam intensity that varies by three orders of magnitude. The broad precision minimum 301 

of the 61Ni-62Ni double spike, as seen in Figure 3, is maintained down to very low (0.1 V) beam intensities. In 302 

contrast, the deterioration in the precision when moving away from the optimal sample-spike proportion is 303 

more acute for the 60Ni-62Ni double spike although the best possible precision is always higher than for the 61Ni-304 

62Ni double spike. Thus, use of a 60Ni-62Ni double spike would require more stringent control on mixing of 305 

sample and double spike in the optimal proportion, in particular for small sample sizes. If only a small amount 306 

of sample is available, one might not want to sacrifice an aliquot for concentration measurement prior to 307 

spiking and hence one would have to rely on published or estimated concentration data for the element of 308 

interest. In such a case, a versatile double spike with a wide precision minimum is preferable as it allows for 309 

significant deviation from the optimal sample-spike proportion without suffering a large decrease in precision. 310 

Another argument for choosing the 61Ni-62Ni spike is that it boosts the intensity of the minor 61Ni isotope (1.14 311 

% abundance). Although the precision model of Rudge et al. (2009) incorporates the Johnson-Nyquist noise 312 

that is the dominant source of predictable variance at low beam intensities, it does not take into account 313 

unpredictable, non-proportional effects, such as the variable effects of background and blank corrections on 314 

minor isotopes, which diminish at higher beam intensities.  315 

A final consideration is the required purity of the single spikes and their cost. Optimal double spikes commonly 316 

include at least one minor (<5 % abundance) isotope of the element (Rudge et al. 2009) and the cost of single 317 

spikes is typically higher for isotopes with a low abundance in nature and increases with the enrichment factor 318 

of an isotope. Although the double spike technique does not critically rely on high purity single spikes as do 319 

isotope dilution methods (e.g., Stracke et al. 2014), the enrichment factor of the single spikes does have some 320 

influence on the versatility of a double spike and the precision that can be obtained. If reliable IMF correction is 321 

required but not the highest possible precision, it might be cost-efficient to opt for less-enriched single spikes 322 
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of isotopes with a reasonably high natural abundance. Moreover, a double spike with a low proportion of spike 323 

in the optimal sample-spike mixture allows more measurements for a given quantity of double spike. The 324 

Double Spike Toolbox precision model allows the spike compositions to be varied so that the effects of single 325 

spike purity on the performance of double spikes can be investigated for a specific application. 326 

 327 

5. Calibrating a double spike 328 

5.1. Calibration relative to a reference material 329 

The accuracy of data corrected for IMF using the double spike technique relies heavily on how well the 330 

composition of the double spike is known, although reporting data relative to a reference material that was 331 

spiked and measured together with the samples can correct a potential bias. Careful gravimetric mixing 332 

provides insufficient accuracy even in the rare case where the isotope composition of the single spikes is well 333 

known. The compositional certificate of single spikes provided by their distributor gives an indication only and 334 

cannot be trusted to be sufficiently accurate. Hence, proper calibration of the double spike composition is 335 

required. As it is extremely difficult to obtain an absolute isotope composition, double spikes are typically 336 

calibrated relative to a reference material: the δ = 0 reference material for mass-dependent fractionation 337 

studies. For Pb double spikes, SRM 982 is commonly used as calibrant, leaving SRM 981 as an independent 338 

check of the quality of Pb isotope data (e.g., Thirlwall 2000, Klaver et al. 2016).  339 

The calibration of a double spike relative to a reference material is shown in Figure 5; a schematic flowchart 340 

with a step-by-step approach is provided in Figure 6. As the calibration of the double spike is made relative to 341 

the reference material, the absolute isotope composition of the latter does not need to be known and it is 342 

sufficient to constrain the mass fractionation line on which the reference material lies (Rudge et al. 2009). The 343 

first step of the double spike calibration thus constitutes a precise measurement of the (unspiked) reference 344 

material. A first-order IMF correction can be applied by either an internal normalisation to a given ratio (e.g., Ni 345 

reference material SRM 986 corrected to 61Ni/58Ni = 0.016744; Gramlich et al. 1989) or by doping with another 346 

element for an external estimate of the IMF. This ensures that the corrected composition of the reference 347 

material is close to its true value and only offset along the mass fractionation line, which does not introduce a 348 

bias in the double spike inversion (see Rudge et al. 2009 for a proof). 349 

The next step is calibrating the composition of the double spike itself, which can be addressed in multiple ways 350 

but generally requires a measurement of the pure double spike. One can apply an external IMF correction to 351 

the pure double spike measurement by doping with another element (e.g., Pd for Mo or Cu for Ni; Siebert et al. 352 

2001, Gall et al. 2012). The same caveat as for samples (section 2.1) applies here: an external estimate of IMF 353 

critically relies on the assumption of identical IMF behaviour between double spike and reference materials. In 354 

the absence of a geological matrix in these materials this could be justifiable and a small difference in IMF will 355 

not directly have a disastrous effect on the accuracy of double spike data, as discussed below. The second and 356 

our preferred approach entails the construction of the mixing line N-T between the double spike and a 357 

reference material through the measurement of one or more mixtures of the two (Mk; Figure 5). In theory, only 358 
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a single mixture Mk is required (in addition to the measurement of the pure double spike) to solve Equation 5 359 

for the composition of the double spike: simply substitute the composition of the reference material for the 360 

double spike (i.e., use the reference material as a “quadruple spike”) and treat the pure double spike 361 

measurement as the unknown sample. A more accurate result can be obtained by measuring multiple mixtures 362 

with different proportions of sample to double spike. These mixtures serve to define the N-T mixing line in 363 

four-isotope space; the composition of the double spike lies at the intersection of this mixing line and the mass 364 

fractionation line defined by the measurement of the pure double spike (Figure 5). Two mixtures are required 365 

to constrain the direction of the N-T mixing line; the measurement of more mixtures leaves the system 366 

overdetermined and a least-squares approach can be used improve the precision with which the direction of 367 

the mixing line is determined (Rudge et al. 2009). Note that, in isotope systems where the total range of 368 

geological variation in mass-dependent isotope fractionation is small, the accuracy of the double spike 369 

inversion is largely dependent on how well the direction of the N-T mixing line is known, rather than the 370 

location of the double spike composition on this line (Rudge et al. 2009). 371 

5.2. Validation of the calibration and possible biases 372 

Upon calibration of the double spike, it is important to validate the quality of the calibration. Any bias in the 373 

double spike calibration should become apparent when a series of mixtures of a quality control material 374 

(“secondary standard”) is measured at various sample-spike proportions (Figure 6). If the calibration is 375 

accurate, the quality control material mixtures should yield the correct value and not show any systematic 376 

variation with sample-spike proportion. A constant offset or deviations at high or low double spike proportions 377 

in the mixtures flag an issue with the double spike calibration. We will explore the effects of two common 378 

sources of uncertainty in the double spike calibration: the effect of blank correction on the pure double spike 379 

and reference material measurements and variable IMF between reference material and double spike when 380 

applying an external IMF correction. Again, we will use our Ni double spike as an example. This double spike 381 

was calibrated relative to reference material SRM 986 using multiple SRM 986-double spike mixtures as 382 

described above. The accuracy of the calibration was checked by measuring multiple spiked aliquots of a 383 

quality control material (our in-house CPI Ni solution); the results are shown in Figure 7.  384 

Systematic errors in the measurement of the pure double spike are the most likely source of inaccuracies in the 385 

double spike calibration. Due to its extremely non-natural isotopic composition and generally low abundance of 386 

all but the spike isotopes, correction for the contribution of instrumental background has a pronounced effect 387 

on the measured isotopic composition of the double spike. Making blank corrections without introducing a bias 388 

can be problematic for isotopic measurement by MC-ICP-MS. Blanks corrections are usually made by 389 

subtracting the on-peak intensity measured in the pure solvent, the same as that used for dissolution and 390 

dilution of the analyte. The intensities so measured will include: i) trace levels of the analyte and other 391 

elements present in the solvent, ii) plasma-generated molecular species and iii) instrument “memory” of 392 

previously analysed solutions. In particular, memory effects (iii) are of special concern in the case of double 393 

spike measurements because of the variable isotopic composition of the double-spike sample mixtures in 394 

combination with a mass-fractionation of the instrumental memory, which is often distinct from the IMF of the 395 
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analyte. We have modelled, therefore, the effect of over- and under-correcting a) the double-spike 396 

composition with an IMF-affected reference material composition and b) the reference material isotopic 397 

composition with an IMF-affected double-spike composition. Figure 7 shows that an increasingly inaccurate 398 

double-spike inversion results as the proportion of double-spike in the mixture increases and decreases for 399 

cases (a) and (b) respectively. The sign and magnitude of the bias are a function of the composition of this 400 

blank and the error in correcting for it, but the overall form of the bias, as shown in Figure 7, is independent of 401 

these parameters. The magnitude of the bias at a given sample-spike proportion is constant and does not scale 402 

with α, meaning that samples spiked in exactly the same proportion will yield results that are correct relative to 403 

one another, but will be wrong in an absolute sense; any difference in sample-spike proportion will lead to bias 404 

between samples.  405 

For a double-spike calibrated by direct measurement of the pure double-spike and corrected for IMF by 406 

sample-standard bracketing, or by internal normalisation by addition of another element, such as Cu in the 407 

case of Ni (Gall et al. 2012) or Pd for a Mo double spike (Siebert et al. 2001), it is likely that the IMF correction 408 

will not be accurate. From the mixing equation (4) it is easily shown that the effect of this inaccuracy on the 409 

calibration is to offset the apparent sample fractionation α by the same magnitude but with the opposite sign. 410 

This effect is independent of the proportion of double-spike in the mixture: all samples and all mixtures are 411 

offset the same. Therefore, an external correction may be applied, based on measurements of double-spiked 412 

reference materials, or, equivalently, the double-spike calibration can be adjusted. 413 

The measured Ni CPI data in Figure 7 are identical within uncertainty of the mean for sample-spike proportions 414 

between ~0.15 and ~0.75. The measurement at p ~0.8 is marginally higher, potentially reflecting a small blank 415 

correction-induced inaccuracy in the double spike calibration, but these results give confidence that samples 416 

measured at sample-spike proportions <0.7 should yield results with a small uncertainty. Demonstrating 417 

constant results for a quality control material over a wide range in sample-spike proportions is vital in 418 

validating a double spike method. 419 

5.3. Improving a double spike calibration? 420 

From the discussion above it is evident that the measurement of the pure double spike is likely the weak spot 421 

of the calibration. Blank correction has a significant effect on the measured composition and it is questionable 422 

to what degree a blank or background correction can be bias-free. In particular for ICP-MS instruments, 423 

memory effects can be pronounced and such a background can have a distinctly non-natural composition due 424 

to complex mass fractionation effects (e.g., Albarede et al. 2004). Bias introduced by the blank correction on 425 

the sample-spike mixtures are less of an issue because it induces a translation largely along the sample-spike 426 

mixing line, thus hardly influencing the obtained direction of the mixing line. A way to circumvent the need to 427 

measure the pure double spike involves a second mixing line between the double spike and a secondary 428 

standard with a very different isotopic composition to the primary reference material (Rudge et al. 2009). This 429 

is illustrated in Figure 5. Multiple mixtures EMk between the secondary, exotic standard E and the double spike 430 

will allow the construction of the secondary mixing line; the double spike composition lies at the intersection 431 

between the mixing lines N-T and E-T. This approach requires the use of a secondary standard with a 432 
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sufficiently exotic composition, potentially by doping with an isotopic spike that is not used in the double spike. 433 

Its composition need not be known as long as at least four mixtures (including an unspiked exotic standard) are 434 

measured. In theory, this method might yield a more precise double spike calibration as it does not rely on 435 

accurately blank-correcting a pure double spike measurement. Practical impedances include the availability of 436 

a suitable exotic secondary standard, introducing such a material in the mass spectrometer in the light of 437 

possible memory effects and the complicated mathematics required to solve for the intersection of the two 438 

mixing lines. 439 

 440 

6. Double spike measurement strategies 441 

6.1. General considerations 442 

As long as the isotopic compositions of the double spike and reference material are properly calibrated and any 443 

spectral interferences are resolved or corrected for, the double spike method should yield data with a low 444 

uncertainty. In practice, however, there might be significant long- and short-term drift caused by external 445 

factors such as Faraday cup degradation, magnet instability and tailing from interfering species, clipping of the 446 

ion beam and other mass-independent effects (e.g., Albarede et al. 2004, Carlson 2014). These effects can be 447 

transient in time but, particularly in ICP-MS instruments, surprisingly straightforward to address by adopting 448 

sample-standard bracketing as a secondary correction. Bracketing spiked samples with the spiked reference 449 

material typically improves the reproducibility of data and counteracts long- and short-term drift: the double 450 

spike method accurately corrects for mass fractionation while bracketing resolves additional analytical 451 

artefacts. In addition, bracketing with a reference material spiked in a similar fashion as the samples will 452 

eliminate some of the potential biases introduced by inaccuracies in the double spike calibration and is hence 453 

recommended. The precision of double spike data can be enhanced by improving counting statistics by 454 

measuring more intense ion beams (higher analyte concentration) for a longer time. In order to offer the best 455 

correction for transient instrument drift, it might be preferable to measure the same sample multiple times 456 

bracketed by the spiked reference material, potentially in different measurement sessions, and pool the data of 457 

these measurements. In this case, there is a trade-off between analyte and time loss during sample uptake and 458 

washout and the improvement in precision. 459 

There is no time-penalty in the use of double spiking as a correction method for IMF in the case of mass-460 

dependent isotope fractionation studies. Once the double spike is calibrated, total integration time per sample 461 

need not be different to other correction methods (sample-standard bracketing, doping). Hence, the number of 462 

samples that can be measured per day is the same if bracketing is adopted as a secondary correction; if such a 463 

secondary correction is not deemed necessary, more samples can be measured per session by double spike 464 

than by sample-standard bracketing. In addition, the use of a double spike obviates the need to verify column 465 

yields and absence of matrix in the analyte on a sample-by-sample basis, which are clear prerequisites for 466 

sample-standard bracketing, and as such presents a significant decrease in analytical time and effort. 467 



14 
 

Similar to single spikes used in isotope dilution techniques, a double spike measurement can be used to obtain 468 

the concentration of the element of interest in a sample. As the sample – double spike mixing parameter (λ) is 469 

computed as part of the double spike inversion, it can be used to calculate the amount of the natural element 470 

present in the mixture; see Rudge et al. (2009) regarding how to convert λ to a molar proportion. This requires 471 

that the double spike is calibrated for concentration and careful weighing of the sample and spike contributions 472 

to the mixture; the former is easily achieved using a gravimetric solution of the reference material for the 473 

double spike calibration.  474 

6.2. Data reduction 475 

Solutions to the double spike equation have been presented in various forms in the literature. The earliest 476 

forms are based on a linear mass fractionation law (e.g., Dodson 1963, Hamelin et al. 1985) for which the 477 

double spike equations can be solved algebraically. Natural and instrumental mass fractionation, however, 478 

most closely follow an exponential mass fractionation law (Russell et al. 1978). A geometric approach to 479 

approximate an exponential law solution was commonly used (e.g., Johnson and Beard 1999) until Albarède 480 

and Beard (2004) and Rudge et al. (2009) promoted numerical methods to solve the exponential law double 481 

spike equation (Equation 4). Rudge et al. (2009) presented a detailed guide on how to numerically solve 482 

Equation 4 using matrix algebra and a Newton-Raphson iteration, which, following their equations, is easily 483 

implemented into a spreadsheet program. Alternatively, the Double Spike Toolbox Matlab code or the Iolite 484 

add-in IsoSpike (Creech and Paul 2015) can be used for data reduction. 485 

A mass spectrometric measurement is typically divided into multiple cycles with a discrete integration time 486 

(e.g., 50 cycles of 4.2 s integration time yielding a total measurement duration of 210 s). This means that there 487 

are two ways to approach data reduction: the double spike inversion can be carried out on a cycle-by-cycle 488 

basis after which an average can be calculated for the results of the individual cycles, or the average of the 489 

measured cycles can be used in the inversion. In other words, the difference lies in taking an average before or 490 

after performing the double spike inversion. If the input data are identical (i.e., no cycles are rejected at any 491 

stage), the results of the two approaches should be almost identical and thus we assert no preference for 492 

either one. Treating the data on a cycle-by-cycle basis has the advantage that it provides an easy way to assess 493 

the uncertainty of a single measurement by taking the standard error of the results for all cycles (Creech and 494 

Paul 2015) rather than having to rely on complex linear uncertainty propagation (formulated by Rudge et al. 495 

2009) or Monte Carlo approaches.  496 

In the case of our Ni method, we perform all data reduction in an automated offline spreadsheet. Data are 497 

corrected for isobaric interference of 58Fe on a cycle-by-cycle basis after which the corrected ratios are 498 

screened for outliers (>4 interquartile ranges from the median), which typical originate from memory effects of 499 

the introduction system (see Appendix A). We then use the average ratios for the double spike inversion and 500 

apply no uncertainty propagation or estimate for individual measurements. Rather, we analyse every sample 6-501 

10 times, bracketed by the spiked SRM 986 reference material, in at least two different measurement sessions 502 

and report the average and standard error for these repeat measurements. 503 
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6.3. Mass-independent anomalies and double spiking 504 

So far, we have largely focused on the use of the double spike technique to derive the magnitude of natural 505 

mass-dependent isotope fractionation relative to a reference material. We reiterate that for this purpose a 506 

single measurement of the spiked sample is required; the calibrated reference material is used as the unspiked 507 

composition in the double spike inversion. The fundamental assumption of this approach is that the sample 508 

and reference material are distinct through mass-dependent fractionation only (i.e., they lie on the same mass 509 

fractionation line). The presence of mass-independent anomalies, i.e. any isotopic effects that do not obey the 510 

assumed fractionation law, will cause a bias in the calculated value of α unless explicitly corrected for (e.g., Hu 511 

and Dauphas 2017). In practically all terrestrial applications this condition is met, and a single measurement of 512 

the spiked sample is required to solve the double spike equation. Mass-independent anomalies can, however, 513 

be present in various forms and particularly so in extra-terrestrial samples (e.g., Dauphas and Schauble 2016). 514 

Regardless of the origin of the mass-independent anomalies, however, measuring both a spiked and an 515 

unspiked aliquot will always yield the true isotopic composition of a sample. It must be noted that because the 516 

double spike is calibrated relative to a reference material, the true isotopic composition so measured is known 517 

only as a relative difference from the reference material, but without the restriction of a purely mass-518 

dependent relationship between the two. 519 

The most commonly encountered type of mass-independent anomaly results from the radiogenic ingrowth due 520 

to the decay of a long- or a short-lived radioactive parent and affects, for instance, 40Ca, 87Sr and 182W. The 521 

magnitude of these radiogenic anomalies can be orders of magnitude larger than natural mass-dependent 522 

fractionation of these elements. If it is not possible to exclude the radiogenic isotope as an inversion isotope, 523 

separate measurements of the unspiked and spiked sample are required. This allows one to obtain the true 524 

isotopic composition and a non-radiogenic isotope pair can subsequently be expressed as a deviation from the 525 

reference material (e.g., δ88/86Sr; Krabbenhöft et al. 2009, Lewis et al. 2017). In the case of Pb where three out 526 

of four stable isotopes are radiogenic, two measurements are also required but it is impossible to disentangle 527 

the contribution of mass-dependent fractionation from radiogenic anomalies. 528 

Other sources of deviation from mass-dependent fractionation include the nuclear field shift effect, 529 

cosmogenic or spallation effects and nucleosynthetic anomalies. Nuclear field shift anomalies result from 530 

variations in the shape and size of nuclei as a function of the number of neutrons and are commonly 531 

manifested as an odd-even isotope effect. It predominantly affects heavier elements and has been 532 

demonstrated for Hg, Tl and U in natural samples (e.g., Dauphas and Schauble 2016). In addition, it can occur 533 

during ion-exchange chemistry or measurement (e.g., Fujii et al. 2009). For instance, nuclear field shift effects 534 

have been invoked to explain the anomalous behaviour of 207Pb above certain filament temperatures in TIMS 535 

measurements (e.g., Thirlwall 2000, Amelin et al. 2005, Klaver et al. 2016). As nuclear field shift effects remain 536 

poorly understood, there is no straightforward way to correct potential fractionation during sample processing.  537 

Extra-terrestrial materials often display mass-independent anomalies as a result of cosmogenic and/or 538 

nucleosynthetic effects. Meteorites display systematic mass-independent variations resulting from the 539 

heterogeneous distribution of the products of stellar nucleosynthesis in the Solar System, roughly as a function 540 
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of heliocentric distance (e.g., Dauphas 2017, Kruijer et al. 2017). In addition, materials exposed in space 541 

undergo neutron-capture reactions induced by interactions with cosmic rays, thus producing cosmogenic 542 

anomalies. Again, the simplest way to deal with these mass-independent anomalies is to perform a spiked and 543 

an unspiked measurement for a sample, but this might not be possible when the amount of sample is limited, 544 

such as in the case of precious meteoritic samples, or when contamination of the unspiked sample with double 545 

spike during sample preparation or measurement is an issue. In this case, it is still possible to perform some 546 

corrections to account for the mass-independent anomalies if additional data are available. For instance, 547 

measurements of another element have been successfully used as neutron dosimeter to correct cosmogenic 548 

anomalies in the element of interest (e.g., Kruijer et al. 2013). When internally-normalised mass-independent 549 

data are reported in the literature, ideally for the same meteorite/sample or at least the same meteorite class, 550 

these data can be used to correct for nucleosynthetic anomalies given that the these are expressed relative to 551 

the same reference material. The most direct approach is to impose the nucleosynthetic anomaly of the sample 552 

on the composition of the reference material; this is equivalent to making an unspiked measurement and, in 553 

other words, synthesising an unspiked measurement from the reference ratios and mass-independent 554 

anomalies. The obtained alternative reference material is related to the sample only by mass-dependent 555 

fractionation and can then be used as an input parameter in the double spike inversion to solve for the natural 556 

mass-dependent fractionation. Alternatively, one can apply an a posteriori correction to double spike data 557 

given that the magnitude of the mass-independent anomalies is known (Burkhardt et al. 2014, Hu and Dauphas 558 

2017). The latter is likely easier to implement and we found no significant difference between the two methods 559 

correcting our mass-dependent Ni data. 560 

6.4. Optimising measurements when sample is limited 561 

In our arguments for choosing an appropriate double spike above, we assumed that an unlimited amount of 562 

sample material is available, i.e. one can always hold the total beam intensity constant regardless of the double 563 

spike contribution. This is rarely the case and the amount of analyte available for measurement can be 564 

relatively small, thus restricting the presumed flexibility in choosing sample-spike proportions. John (2012) 565 

suggested that increasing the amount of double spike in excess of the optimum proportion can improve the 566 

precision, which might be beneficial when sample-limited. There is some merit to this argument: a higher total 567 

beam intensity leads to an improvement in counting statistics, which might exceed the decrease in precision 568 

caused by a suboptimal sample-spike proportion. That this is, however, not always the case is illustrated in 569 

Figure 8. We modelled the theoretical precision in α as a function of sample-double spike proportion with the 570 

Double Spike Toolbox, but instead of adopting a constant total beam intensity we fixed the amount of natural 571 

Ni to 0.5 V and varied the amount of double spike added. For our 61Ni-62Ni double spike, precision indeed 572 

improves marginally when double spike was added in excess of the optimal proportion (denoted by a star in 573 

Figure 8), as found by John (2012), but this is not the case for a hypothetical 60Ni-62Ni spike (the optimal 574 

composition based on Oak Ridge single spikes). This makes sense when comparing the behaviour of these 575 

spikes at a constant total beam intensity (Figure 4): the 60Ni-62Ni double spike is characterised by a steeper 576 

decrease in precision away from the optimum that is not balanced by the improvement in counting statistics 577 
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obtained through over-spiking. Note that, for a 60Ni-62Ni double spike, over-spiking holds no benefit even when 578 

prepared from isotopically pure single spikes. Another important constraint is the trade-off with a potential 579 

decrease in accuracy at higher sample-spike proportions as a result of a bias in the double spike calibration 580 

(Figure 7). We argue that the marginal gain in precision at high sample-spike proportions is not sufficient to 581 

potentially jeopardize the robustness of the data. Hence, we are wary of over-spiking to improve precision 582 

unless the accuracy of the double spike data at high sample-spike proportions is explicitly demonstrated. 583 

 584 

7. Summary and outlook 585 

The aim of this review article was to demonstrate the usefulness of the double spike method in obtaining 586 

reliable mass-dependent isotope data and lowering potential inertia barriers in working with double spikes 587 

through a step-by-step discussion. We emphasize that the double spike technique is the only way to eliminate 588 

the effects of potential mass-dependent fractionation during sample processing and measurement, given that 589 

the double spike is added beforehand. In addition, it is superior to other methods, including sample-standard 590 

bracketing, in correcting for fractionation during measurement as it is not susceptible to matrix effects. An 591 

external normalisation to spiked reference materials measured alongside the samples can eliminate the effects 592 

of long- and short-term instrumental drift and potential inaccuracies in the double spike calibration. With the 593 

double spike technique, it has been proven to be possible to measure natural mass-dependent fractionation to 594 

an uncertainty better than 20 ppm for elements with at least four isotopes. In the light of the rapid increase in 595 

the application of the “non-traditional stable isotopes” in the high-temperature geochemical realm, the use of 596 

the double spikes will continue to grow. We envisage that double spiking will rapidly replace sample-standard 597 

bracketing as the method of choice for obtaining reliable mass-dependent isotope data. 598 

Although the basics of the double spike technique are well established, there is still room for innovation and 599 

potential improvements. With ongoing developments in amplifier technology, measurements of low intensity 600 

ion beams will become increasingly precise. This might open possibilities for the use of radioactive spikes that is 601 

currently restricted by their cost and/or activity. Elements that are outside the reach of the regular double 602 

spike technique might have a radioactive isotope with a sufficiently long half live to allow its use as a spike. In 603 

addition, the regular double spike inversion requires three independent isotope ratios. For elements with five 604 

or more isotopes, additional independent isotope ratios are available for data reduction but in the present 605 

form of the inversion these are not used. There is no theoretical restriction to a 3-dimensional solution of the 606 

double spike equation; including more independent isotope ratios will leave the system overdetermined. 607 

Although difficult to visualise, a least-squares regression solution in a higher number of dimensions can 608 

potentially increase the precision and accuracy of the double spike method. Moreover, in three dimensions no 609 

triple spike has been found to be advantageous over a double spike (e.g., Rudge et al. 2009), but whether this 610 

holds in a higher number of dimensions remains to be investigated. 611 

 612 
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 621 

Appendix A – Analytical details 622 

 623 

All Ni isotope data shown in the figures were collected using a Thermo-Finnigan Neptune multi-collector ICP-624 

MS and a CETAC Aridus introduction system at the University of Bristol. When applicable, samples were spiked 625 

prior to ion-exchange purification. All measurements were carried out in medium resolution (m/Δm >6000, 5-626 

95% peak edge definition) to resolve isobaric interferences, notably 40Ar18O+ on 58Ni+ and trace argide and oxide 627 

interference on the other masses. Isobaric interference of 58Fe on 58Ni could not be resolved but was corrected 628 

by monitoring 56Fe+ and 57Fe+ and subtracting IMF-corrected 58Fe+ from 58Ni+; this correction was found to be 629 

robust to at least 56Fe/60Ni ≥0.6 while samples had 56Fe/60Ni <0.15. Samples were measured at a concentration 630 

of total Ni (sample plus double spike) of ~1 µg ml-1 in 0.3 mol L-1 HNO3, yielding a total Ni ion beam intensity of 631 

50-85 V on 1011 Ω amplifiers compared to a background of <20 mV. Each sample was measured 6-8 times (50 632 

cycles of 4.2 s integration time) in at least two measurement sessions, always bracketed by measurements of 633 

double spiked SRM 986 reference material. Results are expressed as δ60/58Ni relative to this reference material 634 

(Equation 5) with a quoted precision that is 2 standard error of the mean of the replicate measurements.  635 

 636 
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Figure 1. Schematic diagram showing the principle of the double spike technique. In 4-isotope space, using Ni 770 

as an example, a natural sample (N) and double spike (T) have very different compositions. A mixture between 771 

the two (M) lies on the N-M-T mixing line (mixing parameter λ), but the measured composition of the mixture 772 

(m) and natural sample (n) are displaced along instrumental mass fractionation (IMF) lines M-m and N-n, 773 

respectively. The form of these IMF lines is known, but the degree of fractionation (mass fractionation 774 

parameters α and β) is not. As the composition of the double spike is known, measurement of n and m is 775 

needed to solve the double spike equation to yield α, β and λ, where α can subsequently be used to calculate 776 

the true composition N of the sample.  777 

 778 

 779 

Figure 2. Comparison of double spike (DS) versus sample-standard bracketing (SSB) corrected data for our in-780 

house CPI Ni solution. Data points are the average of 6-8 repeats of the same solution measured in at least two 781 

measurement sessions; repeatability precision (2 SE of 6-8 independent measurement results per sample) is 782 

smaller than symbol size. The CPI Ni solution is elementally pure and should hence be expected to behave the 783 

same as the SRM 986 Ni reference material. The CPI solution was measured without processing, but spiked 784 

aliquots were also processed along with samples through the chemical purification protocol. Double spike-785 

reduced data are highly reproducible (δ60/58NiSRM 986 = 0.078 ± 0.015 ‰, 2s, n = 25; grey bar). The double spike 786 

inversion yields a value for β (see section 2.2) for every measurement, allowing a correction to be made 787 

assuming that IMF is identical for the CPI standard and SRM 986. These pseudo-corrected data (shown as open 788 

symbols) therefore show the composition of the CPI standard as if they were corrected through sample-789 

standard bracketing. See text for discussion. 790 

 791 



24 
 

 792 

Figure 3. Contour diagram of the theoretical precision in α (see Figure 1) as a function of double spike 793 

composition and sample-spike ratio for two different Ni double spikes, generated using the default settings of 794 

the precision model in the Double Spike Toolbox (Rudge et al. 2009) and 58Ni, 60Ni, 61Ni and 62Ni as inversion 795 

isotopes. The precision decreases from blue to yellow; the optimal composition of the double spike is denoted 796 

by the cross. Although a 60Ni-62Ni double spike will yield a slightly higher absolute precision in α at the optimal 797 

sample-spike proportion (see Figure 4), its magnification of measurement precision is much more dependent 798 

on the sample-spike ratio than for a 61Ni-62Ni double spike. 799 

 800 
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 801 

Figure 4. The theoretical precision in α as a function of sample-spike ratio and total beam intensity (in V for 802 

1011 Ω amplifier feedback resistors) for the two Ni double spikes (the optimal double spike composition shown 803 

in Figure 3), generated using the precision model in the Double Spike Toolbox (Rudge et al. 2009) and 58Ni, 60Ni, 804 

61Ni and 62Ni as inversion isotopes; the default setting of the Toolbox is a 100 pA (10 V) total ion beam intensity, 805 

8 s integration time and 1011 Ω amplifier feedback resistors. The precision in α is divided by the square root of 806 

the beam intensity to eliminate the effect of shot noise and facilitate comparison of the two double spikes. A 807 

61Ni-62Ni double spike has a broad precision minimum at any total ion beam intensity and hence, near this 808 

minimum, the precision in α is not very sensitive to the proportion in which the sample and double spike are 809 

mixed, which is ideal if the concentration of either is not well known. A 60Ni-62Ni double spike on the other 810 

hand can produce a higher absolute precision for α if double spike and sample are mixed accurately but suffers 811 

a lower precision when the sample-spike proportion is suboptimal. This behaviour is compounded at lower 812 

beam intensities.  813 

 814 

 815 

Figure 5. Schematic four-isotope diagram illustrating the calibration of a double spike. Solid arrows indicate 816 

mass fractionation lines; dashed arrows mixing lines. The measured composition of a reference material (n) and 817 

double spike (t) is offset from the true values N and T by IMF. A first-order IMF correction will yield the 818 

composition N. Multiple mixtures Mk (k = 1, 2, …) between N and T will constrain the direction of the mixing 819 
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line N-T; the calibrated double spike composition is the intersection between the mixing line and the mass 820 

fractionation line t-T. Alternatively, a reference material with an exotic composition (E) and mixtures EMk (k = 1, 821 

2, …) can be used to construct a secondary mixing line E-T such that the calibrated double spike composition 822 

lies at the intersection of mixing lines N-T and E-T, thus obviating the need of a pure double spike 823 

measurement. 824 

 825 

 826 

Figure 6. Flowchart diagram for the calibration procedure of a double spike (T) against a reference material (N) 827 

and its validation using a quality control material (QCM). 828 

 829 
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 830 

Figure 7. Effects of errors in blank corrections on the accuracy of double spike data. Modelled curves illustrate 831 

the effect of under- and over-correcting for blank contribution on the pure reference material (RM; grey 832 

curves) and double spike (DS; black curves) compositions. The bias introduced by a DS blank correction error 833 

increases at higher double spike proportions; contamination of the pure RM measurement with double spike 834 

introduces a bias at low double spike proportions; see main text for more discussion. The in-house CPI Ni 835 

solution was measured at different sample-spike proportions and yield results within uncertainty of the 836 

intermediate measurement precision (light grey bar) for 0.15 < p < 0.75; the measurement at p ~0.8 is 837 

marginally higher and might indicate a small bias in the double spike calibration. 838 

 839 

 840 

Figure 8. The precision in α as a function of sample-spike ratio and total beam intensity for the two Ni double 841 

spikes shown in Figures 3 and 4. Here, the amount of sample is fixed at 0.5 V natural Ni while the amount of 842 

double spike added to this sample is varied to obtain different sample-spike proportions. The optimal double 843 

spike composition at a total beam intensity of 1 V is indicated by the stars. In the case of a 61Ni-62Ni spike, 844 

increasing the amount of spike in the mixture past the optimal proportion at 1 V leads to a marginal 845 

improvement in precision, but potentially at the cost of a bias introduced by inaccuracies in the double spike 846 

calibration (compare to Figure 6). A 60Ni-62Ni spike does not offer any advantage for over-spiking. 847 


