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The use of instrumental variables
in peer effects models

Stephanie von Hinke, George Leckie, and Cheti Nicoletti ∗

Abstract

Instrumental variables are often used to identify peer effects. This paper shows that
instrumenting the “peer average outcome” with “peer average characteristics” requires
the researcher to include the instrument at the individual level as an explanatory vari-
able. We highlight the bias that occurs when failing to do this.
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1 Introduction

Many papers in economics provide empirical evidence on the causal effect of peers on in-

dividual outcomes using an instrumental variable (IV) approach. They usually consider

linear in mean regressions of an individual outcome on the corresponding average outcome

of peers and a set of individual explanatory variables. They may then instrument the average

outcome of peers with the peer average of certain characteristics.1

As in any other standard linear regression, the IV estimator consistently estimates the

causal peer effect if the instruments are as good as randomly assigned (independence), ir-

relevant in explaining the individual outcome except through the average peers’ outcome

(exclusion), and relevant in explaining the endogenous outcome averaged across peers (rele-

vance).2

The contribution of this paper is to highlight a subtle, but important implication of the

relevance assumption, something not explicitly recognized in this literature: the individual

variable, say x, whose peer average, say x̄, is used to instrument the peer average outcome

ȳ must be included as an individual explanatory variable of the dependent variable y. The

idea is simple: if x̄ is a valid instrument for ȳ, then x must also be related to y at the

individual level. We show that failing to include the individual variable leads to inconsistent

estimates. The only case when consistency holds is if peers are randomly allocated across

individuals. However, even if peers are randomly allocated within clusters (e.g. schools) but

not across clusters, the inclusion of cluster fixed effects – a necessity as randomization takes

place within clusters – renders the estimates inconsistent.3

While most applications of peer effects that use IV do include the instrument at the

individual level and therefore avoid the inconsistency and bias described here, a number

of papers have not done so. More generally, we have found no discussion of this issue in

the literature. Given the widespread use of IV in peer effects models, we argue that it is

1Different types of instruments have been used, including, (i) the average price of peers’ decisions which
is exogenously shifted by the introduction of policy or program affecting only some of the people (see the
“partial-population” identification approach defined by Moffitt (2001), and the application in Dahl et al.
(2014)); (ii) peer averages of predetermined variables that affect peers but only influence the individual
outcome through the peers’ outcome (e.g. et al 2014), (iii) average characteristics of peers, who are not
direct peers (see Bramoullé et al. 2009, De Giorgi et al. 2010, Nicoletti and Rabe 2016, Nicoletti et al. 2016).
Other approaches to identify peer effects include (natural) experiments (e.g. Hoxby 2000; Duflo and Saez
2003; Gould and Winter 2009), random allocation of peers (e.g. Sacerdote 2001; Kremer and Levy 2008),
and fixed effects, value-added approaches (e.g. Neidell and Waldfogel 2010).

2Boozer and Cacciola (2001) and Angrist (2014) additionally show that the individual variable, say x,
whose peer average, x̄, is used to instrument the peer average outcome must have some variation within as
well as between peer groups.

3To avoid confusion with ‘peer groups’, we refer to these (often larger) groupings such as schools or
neighbourhoods as ‘clusters’.
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important to raise awareness of this amongst both econometricians and applied researchers.

2 The peer effects model

As the consistency of the instrumental variable estimation of a peer effect depends on whether

cluster fixed effects are controlled for, we discuss both cases separately, and end with a formal

proof of the asymptotic bias. To better clarify what we mean by peers and clusters, consider

the case where the peer group is defined by the classmates within schools, then the peer

effect is the effect of the classmates, while the cluster fixed effect is the school fixed effect.

2.1 The case without cluster fixed effects

We follow the existing literature that almost exclusively specifies a linear-in-mean peer effects

model and consider the following specification

y = Wyρ + u, (1)

where y is the N×1 vector of the individual outcome, W is an N×N row-standardized weight

matrix describing the social ties between individuals, ρ is the scalar peer effect parameter

and u is the residual error vector.4 Model (1) does not include the intercept but there is

no loss of generality as long as all variables are expressed as deviations from their means.

Furthermore, as we discuss below, the model can easily be adjusted to account for additional

explanatory variables.

The instruments for Wy are defined as the peer average of characteristics X, i.e. WX.

These must satisfy independence, exclusion and relevance. Exclusion assumes that the in-

struments WX only affect y through Wy, i.e. that there is zero correlation between the

error term in model (1) and WX, or corr(WX,u) = 0; relevance requires the instruments

to explain variation in Wy, i.e. that corr(Wy,WX) ≠ 0. The IV estimation of the peer

effect ρ, which we refer to as ρ̂IV 0 is then given by:

ρ̂IV 0 = [(Wy)′PWX(Wy)]−1(Wy)′PWXy, (2)

where PWX is the projection matrix [(WX)[(WX)′(WX)]−1(WX)′]. The IV estimator

ρ̂IV 0 is equivalent to a 2-Stage Least Squares (2SLS) estimator where the first stage is the

Ordinary Least Squares (OLS) regression of Wy on WX, and the second stage is the OLS

4W is generally constructed to have zero elements on the leading diagonal, ensuring that Wy excludes the
individuals themselves. We also assume that the peer relationships be symmetric, so that W is symmetric.
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regression of y on the prediction of Wy obtained from the first stage, i.e. [PWX(Wy)] (see

e.g. Cameron and Trivedi, 2005).

The peer effects literature that adopts this IV approach assumes that the individual

outcome y is not directly affected by peers’ average characteristics WX, but they generally

do not make any explicit assumption on whether the individuals’ characteristics X directly

affect y. Appendix A shows that under the relevance and exclusion assumptions, it follows

that X directly affects y, and hence model (1) is misspecified because it omits X from the

explanatory variables. In other words, X should be included as explanatory variables in

model (1):

y = Wyρ +Xγ + ε, (3)

where we still omit the constant and assume that all variables, including X, are expressed

in deviation from their mean. We therefore refer to equation (3) as the true model.5 By

replacing y in equation (2) with the right hand side of equation (3), we can show that the

estimator ρ̂IV 0 in (2) is inconsistent:

ρ̂IV 0 = ρ + [(Wy)′PWX(Wy)]−1(Wy)′PWX(Xγ + ε). (4)

Denoting [PWX(Wy)] with (WX)λ̂, where λ̂ is the OLS estimator of the coefficients of

WX in the first stage regression of Wy on WX, and taking the probability limit, we obtain

p-lim ρ̂IV 0 = ρ + (λ′E((WX)′(WX))λ)−1λ′E((WX)′(Xγ + ε)), (5)

where λ = p-lim λ̂, which is the vector of the true slope coefficients of WX in the linear

regression of Wy on WX. This shows that the IV estimation is consistent if and only if

E((WX)′ε) = 0 and E((WX)′X) = 0. E((WX)′ε) = 0 is the main assumption imposed

by empirical studies that estimate peer effects by instrumenting the peer average Wy with

WX. The condition E((WX)′X) = 0 is satisfied when peers are randomly allocated across

individuals. If, instead, peers are randomly allocated within clusters, but not across clusters,

X may have a different distribution across these clusters, leading to E((WX)′X) ≠ 0 and

potentially biasing the estimation. For example, university classmates can be randomly

chosen from the students enrolled in a specific degree but not from other degrees, or university

5Here, we follow the existing literature that almost exclusively considers specifications in which all co-
variates enter additively and linearly (including the literature that does account for the instrument at the
individual level; Section 3 discusses some of the relevant literature). We use this specification when deriving
the asymptotic bias below. However, we note that these derivations do not generalise to situations where
the true model includes some other function of the instrument at the individual-level (e.g. X2 or ln(X)).
Hence, in such cases, the asymptotic bias is also likely to be different. Nevertheless, because the majority of
studies specify the model as in (3), we derive the bias for this specification.
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roommates can be randomly chosen within a college but not across colleges (see e.g. the

review by Sacerdote (2001)). Because students do not randomly select into different colleges

or degrees, peers (i.e. class or roommates) are not necessarily randomly allocated across

such clusters.

Nevertheless, this potential inconsistency can be solved by controlling for the individual

variables X as in model (3), and adopting the following IV estimation

ρ̂IV 1 = [(MX(Wy))′PMX(WX)(MX(Wy))]−1(MX(Wy))′PMX(WX)(MXy), (6)

where MX = I −X(X′X)−1X′, I is the identity matrix, and PMX(WX) is the projection matrix

(MX(WX))[(MX(WX))′(MX(WX))]−1(MX(WX))′. The estimator ρ̂IV 1 is a standard

two-stage least squares estimation applied to model (3) transformed by pre-multiplying all

variables by MX:

MXy = MXWyρ +MXε, (7)

with instruments MX(WX), i.e. the original instruments (WX) pre-multiplied by MX.

Note that transforming model (3) by pre-multiplying each variable by MX is equivalent to

replacing each variable with the residual from the regression of the variable itself on the

explanatory variables X. By applying the Frisch-Waugh theorem, we can prove that the

above transformation does not affect the estimation of the peer effect ρ.

We refer to the estimation of ρ̂IV 1 as IV approach 1, i.e. the approach that includes the

instrument at the individual level; we refer to the estimation of ρ̂IV 0 as IV approach 0, i.e.

the estimation approach that omits the instrument at the individual level.

2.2 The case with cluster fixed effects

In applied work, peers are sometimes randomized within clusters. For example, class peers

are often randomly chosen from the set of children enrolled in a school, but because children

do not randomly sort into schools, the distribution of individual characteristics X is likely to

differ between schools, leading to E((WX)′X) ≠ 0 and potentially biasing the instrumental

variable estimation ρ̂IV 0. Because randomization in such cases is within schools, analyses

of these experiments necessarily include school (or cluster) fixed effects. We now show that

failing to include the instrument at the individual level leads to inconsistent estimation of

the peer effect in models with cluster fixed effects, even in cases where peers are randomized.

Consider the following fixed effects model:

y = Wyρ +Dδ + ν, (8)
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where, D is the N × J matrix of binary cluster indicators, J is the number of clusters, δ is

the corresponding vector of fixed effects and ν = Xγ + e. Applying cluster-mean deviations,

we can rewrite (8) as:

y∗ = (Wy)∗ρ + ν∗, (9)

where the subscript * indicates that the variable is pre-multiplied by the orthogonal projec-

tion matrix MD = I −D(D′D)−1D′: y∗ = MDy, (Wy)∗ = MD(Wy), and ν∗ = X∗γ + e∗ =
MDν. In other words, model (9) is equal to model (8) with the variables transformed to

indicate deviations from their cluster means (i.e. a within-cluster transformation).

Using the instrument (WX)∗, the IV estimator that fails to control for the individual

variables X∗, i.e. IV approach 0, can be written as

ρ̂∗IV 0 = [(Wy)′
∗
PWX∗(Wy)∗]−1(Wy)′

∗
PWX∗y∗, (10)

where PWX∗ is the projection matrix [(WX)∗((WX)′
∗
(WX)∗)−1(WX)′

∗
].6 With ν∗ =

X∗γ + e∗, this converges in probability to

p-lim ρ̂∗IV 0 = ρ + [λ′

∗
E((WX)′

∗
(WX)∗)λ∗]−1λ′

∗
E((WX)′

∗
(X∗γ + e∗)), (11)

where λ∗ = p-lim ((WX)′
∗
(WX)∗)−1(WX)′

∗
(Wy)∗ is the effect of the instruments (WX)∗

on the peer average outcome (Wy)∗. Hence, consistency of (11) requires that E((WX)′
∗
e∗) =

0 and E((WX)′
∗
X∗) = 0. Under random assignment of peers across individuals, the indi-

vidual vector of characteristics X is uncorrelated with WX. This is because WX is the peer

average excluding the individual herself, and the random assignment of peers implies that

X is identically and independently distributed (i.i.d.) across individuals. Nevertheless, the

random assignment does not imply a zero correlation between the transformed variables X∗

and (WX)∗, i.e. between the within-cluster deviations of X and WX.

To prove this and without loss of generality, we consider a scalar exogenous variable xi

and the corresponding scalar instrumental variable x̄p
−i, which is the usual peer average of x

excluding individual i. Then the within-cluster deviations of xi and x̄p
−i are equal to (xi− x̄ci)

and (x̄p
−i − ¯̄xpci ), respectively, where x̄ci is the cluster average of xi including the individual

i, ¯̄xpci = ∑nc,i

j=1 x̄
p
−j/nc,i is the cluster average of the peer average of all members in the cluster

of individual i, and nc,i is the number of members in this cluster including individual i. By

excluding the very unlikely case where individuals interact exclusively with peers who do

not belong to their cluster, we can prove that (xi − x̄ci) and (x̄p
−i − ¯̄xpci ) are correlated. Let us

consider an individual k who is a (randomly assigned) peer of individual i belonging to the

6Note the difference with ρ̂IV 0 in (2), i.e. the cluster-mean deviation, indicated by *.
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same cluster; then her observed characteristic xk will contribute to both the cluster and the

peer averages of individual i, x̄ci and x̄p
−i respectively. Hence both (xi− x̄ci) and (x̄p

−i− ¯̄xpci ) will

be correlated with xk and therefore corr((xi− x̄ci)(x̄
p
−i− ¯̄xpci )) ≠ 0, despite random assignment

of peers.

Generalizing of the above proof to multivariate instruments, we can see that random

assignment does not imply a zero correlation between X∗ and (WX)∗. Ultimately, this

implies that the instrumental variables (WX)∗ will be correlated with ν∗ = X∗γ + e∗, i.e.

the error term in equation (9), biasing the instrumental variable estimation. Note that the

bias is induced by the within-transformation: it exists even if the untransformed instrumental

variable WX is unrelated to the untransformed errors ν.7 Avoiding this bias is possible by

including the instruments at the individual-level, X∗, in the peer effects model, as in IV

Approach 1 8, considering the following model

y∗ = (Wy)∗ρ +X∗γ + e∗. (12)

The IV estimator for the peer effect can then be written as

ρ̂∗IV 1 = [(MX∗(Wy)∗)′PMX∗(WX)∗(MX∗(Wy)∗)]−1(MX∗(Wy)∗)′PMX∗(WX)∗MX∗y∗,

(13)

where MX∗ = I −X∗(X′

∗
X∗)−1X′

∗
, and PMX∗(WX)∗ is the projection matrix on the space

generated by the columns of MX∗(WX)∗.9 By replacing y∗ in (13) with the right hand side

of (12), we can show that ρ̂∗IV 1 converges in probability to ρ if E((WX)′
∗
e∗) = 0.

2.3 Asymptotic bias

We next characterize the asymptotic bias. For this, we assume that equation (12) represents

the true model (or equation (3) for the case without cluster fixed effects). However, if the

true model specifies y as some other function of the instrument at the individual-level (e.g.

X2 or ln(X)), the asymptotic bias will be different and hence, our derivations only refer to

the case where X enters the specification in an additively separable way.

7The idea is similar to the ‘Nickell bias’ (Nickell, 1981) in dynamic models that include individual fixed
effects, leading to a correlation between the lagged dependent variable and the mean deviation of the error
term. Whereas the Nickell bias reduces as the number of time periods increases, the bias of ρ̂∗IV 0 reduces as
the cluster size increases relative to the peer group, since the contribution of each peer to the cluster means
becomes negligible.

8Although the instrument at the individual level has to be included as an additional explanatory variable,
the form in which it enters matters for the bias. As the existing literature mainly considers additively
separable specifications, we characterize the bias for this case only in Section 2.3.

9In addition to avoiding the bias discussed here, it also corrects for the ‘exclusion bias’ defined by Caeyers
and Fafchamps (2016).
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Assuming E((WX)′
∗
e∗) = 0, the asymptotic bias of the estimator ρ̂∗IV 0 is given by

[λ′

∗
E((WX)′

∗
(WX)∗)λ∗]−1λ′

∗
E((WX)′

∗
X∗)γ;

as shown by equation (11) above. Nevertheless, it is difficult to predict its sign and mag-

nitude because it depends on (a) the effect of the instrument at the individual level on the

individual outcome, i.e. γ, (b) the effect of the instruments on the peer average outcome

λ∗, (c) E((WX)′
∗
X∗), and (d) on E((WX)′

∗
(WX)∗). Nevertheless, we can characterize

the asymptotic bias in the case with one instrument as shown in the following Proposition.

Proposition 1. Let us assume that the following conditions hold.

A1. Correct model specification: The true model for yi is given by

yi = ȳp−iρ + xiγ + diδ + ei, (14)

where the subscript i = 1, ...,N denotes individuals; yi and xi are demeaned; ȳp
−i is the peer

average of y excluding individual i; xi is a scalar exogenous variable; di is the 1 × J vector

of cluster indicators; J is the number of clusters; ei is an idiosyncratic error uncorrelated

with the explanatory variables except for the endogenous variable ȳp
−i; and (yi, xi, ei) are i.i.d.

with means zero and variances σ2
x, σ2

y and σ2
e .

A2. Three-level hierarchical balanced data structure: Individuals (level 1) are nested

within peer groups (level 2), which are nested within clusters (level 3). The data are

balanced in the sense that all peer groups and all clusters have the same number of

individuals, which we denote with np and nc respectively.

A3. Random assignment: Peers are randomly assigned across individuals.

A4. Exogeneity of the instrument: There is no correlation between the deviation from

the cluster mean of the error term, ei,∗ = ei − ēci , and of the instrument, x̄p
−i,∗ = x̄

p
−i −

∑nc
j=1 x̄

p
−j/nc, where the sum is over all individuals belonging to the same cluster as

individual i.

Then the asymptotic bias in the IV estimation that uses x̄p
−i to instrument for ȳp

−i but omits

to include xi among the explanatory variables is

− np
nc − np

γ

λ∗
. (15)
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where γ is the effect of xi on yi, and λ∗ is the coefficient on x̄p
−i from an OLS regression

of ȳp
−i on x̄p

−i and the dummy variables for each of the clusters di; i.e. the first stage in a

two-stage least squares procedure.

The proof is given in Appendix B. The above proposition shows that the asymptotic bias

is inversely related to the effect of the instrument on the peers’ average outcome, λ∗, and

converges to zero if nc tends to infinite as long as np remains bounded.10 Similarly, the larger

the peer group, np, the larger the bias. Notice that Assumption A2 implies that the size of

peer groups is smaller than the size of the clusters and this ensures that the bias does not

explode. In the case where there is just one cluster i.e. nc = N , we have random allocation

of peers across individuals and the asymptotic bias goes to zero for N which tends to ∞.

Note that IV approach 0 and 1 can easily be adjusted to account for additional explana-

tory variables, by extending model (12) to include covariates, say, Q∗. The asymptotic results

can be extended to this case by applying the Frisch-Waugh-Lovell theorem which implies re-

placing y∗ with the residual of the regression of y∗ on Q∗, i.e. MQ∗y = [I −Q∗(Q′

∗
Q∗)−1Q′

∗
]y∗

and similarly replacing (Wy)∗ with (MQ∗Wy
∗
) and X∗ with (MQ∗X∗). The conclusions

remain unchanged, i.e. IV approach 1 provides a consistent estimation for the peer effect ρ,

while IV approach 0 is inconsistent.

3 A brief discussion of the literature

Although we recognize that most empirical peer effects estimations include the instrument at

the individual level, some papers have not. For example, Kang (2007) examines peer effects

in students’ maths attainment, estimating a school fixed effects model that uses peers’ aver-

age science scores to instrument for peers’ average maths scores, but excludes the individual’s

science score from the structural equation. Hence, despite students being quasi-randomly

allocated from elementary to middle schools, not including the instrument at the individual

level, combined with the inclusion of school fixed effects, leads to biased peer effects esti-

mates. Similarly, Figlio (2007) investigates peer effects in students’ disruptive behaviour,

using the proportion of classroom boys with girls’ names to instrument for peers’ average

behaviour, whilst adjusting for individual and grade fixed effects, but not including an indi-

cator whether the individuals themselves have a girls’ name. Lundborg (2006) investigates

peer effects in adolescent substance use, estimating school-grade fixed effects models that

use various peer-level instruments, several of which are excluded at the individual-level from

the structural equation. For example, one of the instruments for peer average illicit-drug

10The latter also holds for the ‘exclusion bias’, which Caeyers and Fafchamps (2016) show converges to
zero when nc tends to infinite while np remains bounded.
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use is the proportion of peers who indicate they know someone who could give or sell them

drugs; and one of the instruments for peer average binge drinking is the proportion of peers

who indicate their parents would provide beer if asked. These variables, however, are not

included at the individual level.

As we discuss above, it is difficult to predict the sign and magnitude of the asymptotic

bias as it depends on different factors. Nevertheless, we can comment on this to an extent.

Equation (15) shows that the the asymptotic bias has the same sign as − γ
λ∗

. Because it is

generally true that the relationship between x and y at the peer group level also holds at the

individual level, γ and λ∗ are of the same sign, implying the bias is negative. Furthermore,

the magnitude of the asymptotic bias depends on the ratio
np

nc−np
. This suggests that in e.g.

primary school settings, which tend to be smaller than secondary schools but with similar

class sizes, one would expect to see larger biases if classes are defined as the peer group, all

else equal.

As an example, consider the study by Kang (2007). Their data include 4813 students in

248 classes and 124 schools, suggesting that the average peer group (i.e. class) and school

include 19 and 39 pupils respectively. The estimated λ∗ (i.e. the effect of the instrument

in the first stage) is 0.64. If we assume that λ∗ ≈ γ (i.e. the effect of the instrument at

the individual level on the individual outcome is similar to the first stage), the asymptotic

bias approximates − np

nc−np

γ
λ∗

= −0.95 × 1 = −0.95.11 This suggests that the bias may be

relatively large, indicating that it does matter whether the instrument at the individual level

is included as a covariate or not. Their peer effect is estimated to be around 0.3. Our

back-of-the envelope calculations suggest that this is an underestimate, with our estimate

closer to 1.25. Although this is a large difference, we cannot comment on its significance.

Furthermore, we note that the bias also depends on the extent to which our assumptions,

listed in the proposition above, hold. Indeed, it relies on the true model being defined by

equation (12), in the sense that xi enters the equation in an additively separable way, which

may not be the case. Similarly, we assume that each individual has the same number of

peers and the same number of cluster members, which is unlikely to be the case. The true

data structure will therefore also impact on the estimate of the bias.

11We do not know the true value of γ, as this is precisely the parameter that is not estimated. In our
illustrative application, presented in the Web Appendix, the ratio γ

λ∗
=

0.332
0.290

= 1.145. Hence, although this is
tentative as this estimate is obtained from a different dataset, it suggests that assuming γ = λ∗ is a reasonable
approximation. It is difficult to characterize the likely bias in Figlio (2007) and Lundborg (2006); their data
contain approximately 76,000 and 3,000 students respectively, but they do not mention how many schools
and classrooms they observe, and Lundborg (2006) does not report the first stage estimates.
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4 Conclusion

A popular approach to estimating peer effects in the economics literature is to fit linear in

mean regressions of individuals’ outcomes on the corresponding average outcomes of their

peers. A common approach to deal with the simultaneity of the peer effect is to use IV,

instrumenting the average outcome of peers with the peer average of certain characteristics.

We show that the validity of the relevance assumption in this setting has a subtle, but im-

portant implication: the instrument at the individual level must be included as an additional

explanatory variable. We show that failing to do so leads to biased and inconsistent peer

effect estimates. We demonstrate that the only case when consistency holds, is if peers are

randomly allocated across individuals. However, even then, the IV estimation remains incon-

sistent if the model includes cluster fixed effects in addition to the peer effect. Examples are

those where randomization takes places within, but not across, schools or neighbourhoods,

where the inclusion of school or neighbourhood fixed effects (a necessity as randomization

takes place within these clusters) renders the estimates inconsistent. In that case, the bias is

induced by the inclusion of cluster fixed effects and its within-cluster transformation; some-

thing that has hitherto not been discussed in this literature. We present a simple solution:

the instrument at the individual-level must be included in the peer effects model. This leads

to consistent peer effect parameter estimates under the assumptions required for IV.
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Appendix A: Proof by contradiction

In the following we prove that, if the instrumental variables WX satisfy the relevance and

exclusion conditions for the estimation of the peer effect in model (1), then X directly affects

y, and hence model (1) is misspecified because it omits X from the explanatory variables.

The proof does not rely on any specific type of peer assignment.

As used in the spatial statistics and econometrics literature on peer effect (see e.g. Lee

(2007) and Bramoullé et al. (2009)), we can derive the reduced form of model (1),

y = (I −Wρ)−1u, (16)

where I is the identity matrix of size N and we assume that ∣ρ∣ < 1 and ρ > 0 so that the

matrix (I −Wρ) is invertible and the peer effect is positive. By using the series expansion

(I −Wρ)−1 = ∑∞

s=1 ρ
sWs we can then rewrite the reduced form model as

y =
∞

∑
s=1

ρsWsu. (17)

Given equation (17), the symmetry of the matrix W (because of the symmetry of peer

relationships), and the fact that all variables are demeaned, we can prove that the covariance

between Wy and WX is

Cov(Wy′,WX) = E(
∞

∑
s=1

ρsu′Ws+2X). (18)

This implies that WX are relevant instruments for Wy only if the right hand side of the

above equation is different from zero. We can rewrite this as a sum of expectations, with

weights given by ρs:
∞

∑
s=1

ρsE(u′Ws+2X). (19)

Because ρs > 0, the above expression is different from zero if at least one of the following

conditions hold: (i) u depends linearly on WX; (ii) u depends linearly on WhX for some

h > 1 but does not depend linearly on WX; (iii) u depends linearly on X. Condition (i)

would invalidate the instrumental variable because the exclusion restriction would not be

satisfied. Condition (ii) would imply that the outcome y depends on the average of X for

peers separated by h interactions12 but not on the average of X for direct peers (i.e. peers

separated by 1 interaction). This is unlikely, as it is implausible that peers separated by

12A peer is separated by her direct peers by one interaction, a peer is separated by her peers of peers by
two interaction and so on.
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more than one interaction have a larger influence on the outcome y than direct peers. This

implies that condition (iii) must hold to guarantee that the right hand side of (18) be non-

zero. In other words, X and u are correlated, implying that X are omitted variables. The

only situation when omitting X would not bias the estimation of the peer effect is if there

were no correlation between the instruments WX and X.

Appendix B: Proof of Proposition 1

Proof. While the true model is given by model (14) (see assumption A1), the estimation

model omits the explanatory variable xi and is given by

yi = ȳp−iρ + diδ + νi, (20)

where i = 1, ....,N and the error term νi = xiγ + ei. Notice that model (20) is identical

to model (8), but it is expressed as a set of N individual equations rather than in matrix

notation.

To control for the cluster effect we can transform all variables in model (20) using within-

cluster deviations:

yi − ȳci = (ȳp
−i − ¯̄ypci )ρ + νi − ν̄ci , (21)

where ȳci and ν̄ci are the averages of yi and νi across all members belonging to the same cluster

as individual i and, similarly, ¯̄ypci = ∑nc
j=1 ȳ

p
−j/nc is the cluster average of the peer average of

all members belonging to the same cluster as individual i.

Note that (Wy)∗, y∗ and (WX)∗ defined in Section 2.2 are equivalent to the vectors

of the individual within-cluster deviations (ȳp
−i − ¯̄ypci ), (yi − ȳci ) and (x̄p

−i − ¯̄xpci ) respectively.

Note also that the IV estimator of the peer effect ρ based on the misspecified model (21),

which instruments (ȳp
−i− ¯̄ypci ) with (x̄p

−i− ¯̄xpci ), is equivalent under Assumption A3/A4 to that

defined in (11):

p-lim ρ̂∗IV 0 = ρ + [λ′

∗
E((WX)′

∗
(WX)∗)λ∗]−1λ′

∗
E((WX)′

∗
(X∗γ + e∗)), (22)

where λ∗ = p-lim ((WX)′
∗
(WX)∗)−1(WX)′

∗
(Wy)∗ is the coefficient on x̄p

−i in the first stage

regression of ȳp
−i on x̄p

−i and the cluster dummy variables, di, and γ is the effect of xi in

the true model (14). Notice that because the explanatory variable xi and the instrument

x̄p
−i are univariate variables, the coefficients λ∗ and γ are actually scalars which we can

denote as λ∗ and γ. Under the assumption of exogeneity of the instrument (Assumption
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A4), E((WX)′
∗
e∗) = 0 so that the asymptotic bias becomes:

p-lim ρ̂∗IV 0 − ρ = [λ′

∗
E((WX)′

∗
(WX)∗)λ∗]−1λ′

∗
E((WX)′

∗
(X∗γ)). (23)

Because we assume that each individual has the same number of peers np and all his/her

peers belong to the same cluster (see assumption A2), ¯̄xpci = (∑nc
j=1∑

np

s=1,s≠j xs)/(ncnp) = x̄ci .
The intuition here is that the characteristic xk of individual k belonging to the same cluster

as individual i appears np times in the sum of the numerator of [(∑nc
j=1∑

np

s=1,s≠j xs)/(ncnp)]
as a peer of her np peers. This implies that

(
nc

∑
j=1

np

∑
s=1,s≠j

xs)/(ncnp) = (
nc

∑
j=1

xjnp)/(ncnp) =
nc

∑
j=1

x̄j/nc = x̄ci .

Because all variables are demeaned, xi is i.i.d. across individuals (see Assumption A1)

and peers are randomly allocated across individuals (Assumption A3), E((WX)′
∗
X∗) is

the covariance between (x̄p
−i − x̄ci), and (xi − x̄ci) and E((WX)′

∗
(WX)∗) is the variance of

(x̄p
−i − x̄ci). Hence, equation (22) can be rewritten as

p-lim ρ̂∗IV 0 − ρ = Cov(x̄p−i − x̄ci , xi − x̄ci)V ar(x̄
p
−i − x̄ci)−1

γ

λ∗
. (24)

We can prove that

Cov((x̄p
−i − x̄ci), (xi − x̄ci)) = Cov(x̄

p
−i, xi) −Cov(x̄

p
−i, x̄

c
i) −Cov(x̄ci , xi) + V ar(x̄ci)

= 0 − σ
2
x

nc
− σ

2
x

nc
+ σ

2
x

nc
= −σ

2
x

nc
.

(25)

by using the following conditions

(i) xi is i.i.d. across individuals with mean zero and variance σ2
x (see Assumption A1);

(ii) peers are randomly allocated across individuals (see Assumption A3);

(iii) all peers of members of a cluster belong to the same cluster (see Assumption A2).

� Conditions (i) and (ii) implies that xi is uncorrelated with x̄p
−i so that Cov(x̄p

−i, xi) = 0.

� Using assumptions (i) and (iii),

Cov(x̄p
−i, x̄

c
i) = Cov(

np

∑
j=1,j≠i

xj,
nc

∑
s=1

xs)/(ncnp) = E(
np

∑
j=1,j≠i

x2j)/(ncnp) = σ2
x/nc

.
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� Because xi is included in the cluster average, x̄ci ,

Cov(x̄ci , xi) = Cov(
nc

∑
s=1

xs, xi)/nc = σ2
x/nc.

� Finally, using condition (i), V ar(x̄ci) =
σ2
x

nc
.

Using the same reasoning, we can show that

V ar(x̄p
−i − x̄ci) = V ar(x̄

p
−i) + V ar(x̄ci) − 2Cov(x̄p

−i, x̄
c
i) =

σ2
x

np
+ σ

2
x

nc
− 2

σ2
x

nc
= σ2

x

nc − np
ncnp

. (26)

Replacing Cov((x̄p
−i − x̄ci), (xi − x̄ci)) and V ar(x̄p

−i − x̄ci) in equation (24) with the last right

hand side terms in equations (25) and (26), we get

p-lim ρ̂∗IV 0 − ρ = −
np

nc − np
γ

λ∗
. (27)
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