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ABSTRACT:  A new Lewis acid-assisted Brønsted acid cascade approach for the stereoselective formation of the tetracyclic Stemona 

alkaloid skeleton is described in five steps from epoxide 15. Crucially, this tetracyclic product can be accessed as either C13 epimer, 

potentially serving as intermediates for the synthesis of a range of Stemona alkaloids. 

The Stemona alkaloids (Figure 1) are a large class of natural 

product, possessing a wealth of complex stereochemistry as 

well as potent bioactive properties;1 such features make them 

attractive targets to synthetic chemists and medicinal chemists 

alike. Indeed, a considerable body of work in this area under-

lines the level of interest,2,3 as does their continued interest as 

non-opioid antitussives.4 Previously, we reported a synthesis of 

(±)-neostenine 1 employing a [5+2]-photocycloaddition (8 to 9) 

as a key step (Scheme 1).5 While this provided rapid, protecting 

group-free access to neostenine, it had the drawback that the 

route was specific for neostenine only and could not be easily 

modified to give wider access to other members of the Stemona 

alkaloid family (Figure 1). 

 

Figure 1. Illustrative examples of Stemona alkaloids  

We therefore considered whether an alternative approach 

could give access to a common intermediate, thus allowing a 

more general synthesis of this family of compounds. A revised 

approach, where selective protonation of TIPS enol ether 10 

could generate a reactive Michael acceptor 11, would be ideally 

suited for further cyclisation onto the pyrrole ring (Scheme 1). 

We imagined such an approach would not only give efficient 

access to the ring system, but could be modified to provide ac-

cess to a range of Stemona alkaloids, for instance to stenine and 

sessilifoline B directly, as well as sessilifoline A and bisdehy-

drotubersostemonine following appropriate functionalization of 

the pyrrole ring. Another key aspect of the approach was the 

flexibility regarding the stereochemistry of the C13 methyl 

group, which we considered could be either installed at the start 

or introduced later, likely leading to different stereochemical 

outcomes. 

Scheme 1. Previous work and revised synthetic approach 
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With this in mind, we set about the synthesis of pyrrole-epoxide 

16. Mesylation and substitution of known6 epoxy alcohol 15 

proved highly successful, yielding 25 g quantities of the epox-

ide. We then studied a variety of methods for 7-exo cyclisation 

of the pyrrole onto the epoxide. While boron trifluoride was 

found to effect this in moderate yield, it was accomplished most 

efficiently using conditions reported by Banwell,7 where the use 

of indium(III) chloride as a Lewis acid furnished 17 as a single 

diastereomer in high yield. With this alcohol in hand, we next 

examined its oxidation to the corresponding ketone 18. This 

step proved considerably more challenging than we had initially 

expected, with standard Swern, Dess-Martin, TPAP and Corey-

Kim conditions all proving unsuccessful. Nevertheless, we 

were glad to observe that a Parikh-Doering oxidation8 did pro-

ceed efficiently, and optimization of reaction conditions pro-

vided 18 in good yield. 

Scheme 2. Acid catalyzed polycyclisation route towards the 

ABCD ring system of the Stemona alkaloids  

 

 

With ketone 18 in hand, we had a range of approaches avail-

able to synthesize the furan-pyrrole 20 to investigate the key 

cyclisation step. After our initial studies, we elected to introduce 

the furanone fragment via a Stille cross-coupling followed by 

alkene reduction. To this end, ketone 20 was converted to the 

corresponding E-triflate using sodium hydride and PhNTf2. Use 

of Et3N/Tf2O gave the Z-enol triflate in lower yield and selec-

tivity (4:1). Stille coupling of the crude triflate with stannane 19 

proved moderately successful under a range of conditions, but 

full conversion was not achieved. Stannane activation using so-

dium hydroxide9 proved highly successful and gave the cross-

coupled product in excellent overall yield from the ketone. 

Reduction of the tetra-substituted alkene in 20 proved chal-

lenging in the presence of the silyl ether. After some experimen-

tation, it was discovered that this could be effected through the 

use of Pd(OH)/C as catalyst, however the product was found to 

be both unstable and difficult to separate from a minor by-prod-

uct.10 Consequently this mixture was employed directly in the 

subsequent key cyclisation step, where regioselective protona-

tion of the silyl enol ether moiety was required to initiate cy-

clization. We noted that Yamamoto had reported the use of 

BINOL/SnCl4-derived Lewis acid-assisted Brønsted acid 

(LBA) for related processes,11 and this was investigated. To our 
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delight, this resulted in the formation of cyclized product 21, 

albeit as a mixture of diastereomers at the α-methyl position. 

We reasoned that in fact two equivalents of the LBA should be 

required for this process, one for cyclisation and a second for 

stereoselective protonation of the resulting TIPS enol ether. The 

observed lack of diastereocontrol may therefore result from pro-

tonation of the silyl enol ether by an alternative, less bulky acid. 

Gratifyingly, this hypothesis appeared to be confirmed when in-

creasing to two equivalents led to the formation of 21 as essen-

tially a single diastereomer (15:1) and in good overall yield 

from alkene 20 (53%). While the diastereomer formed by this 

process could not be confirmed at this stage, introduction of an 

aldehyde moiety by a Vilsmeier-Haack reaction led to crystal-

line product 22, which was characterised by XRD. This showed 

the stereochemistry to be that required for sessilifoline A and B, 

as well as for tubersostemonine and tuberostemonine A. 

Having developed a route to 21 and demonstrated its poten-

tial to be functionalized in a manner suitable for the synthesis 

of a range of natural products, we returned to our initial hypoth-

esis that both epimers at the C13 position could be accessed us-

ing this approach. We therefore returned to ketone 18, again 

converting this to the corresponding triflate but now performing 

a Stille coupling with stannane 23. This proved successful, and 

hydrogenation was again performed under similar conditions. 

The subsequent LBA-promoted protonation/cyclisation se-

quence was again performed on this crude material, although in 

this case the reaction was found to be significantly more sensi-

tive to temperature than for the formation of methyl-substituted 

21. Fortunately, it was found that good yields could be achieved 

with sufficient care and the product was again formed in high 

dr.  Interestingly, resubmitting desilylated, uncyclized material 

from an incomplete reaction to these reaction conditions led to 

no observed cyclisation, suggesting that the TIPS group is pre-

sent in an intermediate species, activating the α,β-unsaturated 

lactone for cyclisation. In fact, all other acids investigated for 

this cyclisation led to only desilylation, perhaps indicating the 

uniqueness of the LBA in maintaining the TIPS-oxonium spe-

cies required for cyclisation. 

 

Scheme 3. Acid catalyzed polycyclisation route towards the al-

ternative C13 epimer 25 

  

   At this point, introduction of the α-methyl group was required, 

with the intention of obtaining the C13 epimer of 21. This was 

performed using LiHMDS followed by MeI and proceeded in 

good yield and diastereoselectivity to form a compound that 

was seen to be different to 21 by 1H NMR spectroscopy. Again, 

crystallographic analysis proved impossible due to the oily na-

ture of the compound, and conversion to the corresponding al-

dehyde via a Vilsmeier-Haack reaction was performed. This 

provided crystalline material, allowing proof by XRD the de-

sired C13 epimer 27 had been formed.  

    In conclusion, we have shown that two advanced potential 

intermediates for the synthesis of a range of Stemona alkaloid 

derivatives can be achieved through the use of Lewis-assisted 

Bronsted acid protonation-cyclisation sequence as a key step. 

The yields are high and the synthesis can provide significant 

quantities of material. We believe the ability to choose which 

C13 epimer is formed12 while retaining the same synthetic ap-

proach to the series is a considerable advantage, potentially al-

lowing for more thorough medicinal chemistry to be performed 

on this important class of biologically active natural products. 

Methods for the stereoselective reduction of pyrroles to pyrrol-

idines are known,13,14 potentially allowing broader access to the 

stenine and neostenine ring systems. Future work will focus on 

performing an asymmetric reduction of tetrasubstituted alkene 

20 to allow the preparation of 21 and 25 in enantiopure form, 

thus allowing access to a range of natural product structures fol-

lowing either reduction of the pyrrole core or reagent-controlled 

addition to aldehydes 22 and 27. 

ASSOCIATED CONTENT  

N

O

Et

H

O

H
H

N

O

Et

H

O

H
H LiHMDS, MeI, 

THF -78 °C to rt, 1 h

79%, >10:1 dr

25

N

Et

O
TIPSO

26

1) H2, Pd(OH)2/C
MeCN, rt
2) SnCl4, (±)-BINOL
CH2Cl2, -40 °C
61% overall

N

Et

O

18

1) NaH, PhNTf2 DMF

2)

OTIPSO SnBu3

NH

13

O

O

Et

H
H

H

O

(COCl)2, DMF
CH2Cl2, rt, 72%

27

24
23

5 mol % Pd(PPh3)2Cl2
NaOH, THF, reflux
67% (2 steps)



 

 

Experimental procedures and spectroscopic data. This material is 

available free of charge on the ACS Publications website at DOI: 

xxxxxx 
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