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Abstract
 Radon (and its decay products) is a known human carcinogenBackground:

and the leading cause of lung cancer in never-smokers and the second in
ever-smokers. The carcinogenic mechanism from radiation is a combination of
genetic and epigenetic processes, but compared to the genetic mechanisms,
epigenetic processes remain understudied in humans. This study aimed to
explore associations between residential radon exposure and DNA methylation
in the general population.

 Potential residential radon exposure for 75-metre area buffers wasMethods:
linked to genome-wide DNA methylation measured in peripheral blood from
children and mothers of the Accessible Resource for Integrated Epigenomic
Studies subsample of the ALSPAC birth cohort. Associations with DNA
methylation were tested at over 450,000 CpG sites at ages 0, 7 and 17 years
(children) and antenatally and during middle-age (mothers). Analyses were
adjusted for potential residential and lifestyle confounding factors and were
determined for participants with complete data (n = 786-980).

 Average potential exposure to radon was associated in anResults:
exposure-dependent manner with methylation at cg25422346 in mothers
during pregnancy, with no associations at middle age. For children, radon
potential exposure was associated in an exposure-dependent manner with
methylation of cg16451995 at birth, cg01864468 at age 7, and cg04912984,
cg16105117, cg23988964, cg04945076, cg08601898, cg16260355 and
cg26056703 in adolescence.

Residential radon exposure was associated with DNAConclusions: 
methylation in an exposure-dependent manner. Although residual confounding
cannot be excluded, the identified associations may show biological
mechanisms involved in early biological effects from radon exposure.
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Introduction
Radon is a noble gas with no stable isotopes. Radon-222  
(half-life (t

1/2
) 3.82 days) and radon-220 (t

1/2
 55.2 seconds) are 

found in the environment as components of the radioactive 
decay chains of the naturally occurring, long-lived radionuclides  
uranium-238 and thorium-232, respectively, which are found 
to varying extents in all rocks and soil. Radon-222 is the  
product of the decay of long-lived radium-226 (t

1/2
, 1600 years), 

and in most parts of the world, following their accumula-
tion in enclosed spaces, inhalation of 222Rn and its short-lived  
radioactive decay products is the largest contribution of human 
exposure to ionising radiation. Globally, inhalation of 222Rn and 
its progeny is estimated to provide nearly half of the average  
annual effective dose (the radiation- and tissue-weighted 
whole-body absorbed dose) of 2.4 mSv from natural sources of  
ionising radiation1. However, the geographical variation of the 
effective dose from 222Rn and its progeny is considerable, with 
a typical range of 0.2-10 mSv per annum. The contribution  
to the global average annual effective dose from the inhalation of 
220Rn and its progeny is much less at 0.1 mSv.

Radon-222 and some of its short-lived progeny deliver most of  
their radiation dose through short-range alpha-particle emission 
and, following inhalation, the radiation dose is received prima-
rily by the bronchial epithelium. There is compelling epide-
miological and experimental evidence that 222Rn and its decay 
products (hereafter, “radon”) cause lung cancer, with exposure-
response associations approximately linear with no evidence of a  
threshold2,3, and radon has been classified as a Group 1 carcinogen 
(“carcinogenic to humans”) by the International Agency for 
Research on Cancer (IARC)4.

Exposure to radon is considered the second leading cause of 
lung cancer after tobacco smoking, and the principal cause in  
never-smokers5,6. The fraction of the lung cancer burden attribut-
able to indoor exposure to radon ranges from 3% to 14% across 
the world, and is estimated at 3.3%7, or 1,100 lung cancer deaths 
annually, in the UK specifically3. Once inhaled, radon gas itself 
is mostly exhaled again, but a large proportion of the inhaled 
short-lived radon progeny deposits in the airways of the lungs  
with the alpha-particles emitted by 218Po and 214Po dominating 
the dose to the lung. In contrast, radon gas transported from the 
lung makes a larger contribution than its decay products to doses 
to organs/tissues other than the lung, particularly those with a 
comparatively high fat content (including the red bone marrow  
(RBM)). However, the evidence for radon causing cancers other 
than lung cancer is limited and relates to the fact that doses to  
other tissues from radon are relatively small. For example, the 
UK average annual equivalent dose (the radiation-weighted  
absorbed dose) to the RBM from radon is 80 µSv (children and 
adults) as compared to the RBM dose of 1430 µSv (5-year old) 
and 1070 µSv (adult) from all-natural sources8; this RBM dose  
from radon compares with that to the lung of 10,000 µSv.

Worldwide, the population-weighted geometric mean indoor 
level of radon is estimated to be 30 Bq m-3 9, with a large  
geographical variation3. In England, the concentration in homes is 
about 20 Bq m-3 on average, but it ranges from 5 to 10,000 Bq m-3 

and more in some radon-prone areas; for comparison, the  
average outdoor concentration is 4 Bq m-3 2. Variation between 
and within small geographical areas, as well as over time, can be 
the result of many factors including the abundance of 226Ra in the 
ground, fissuring of rocks, permeability of the soil, openings in 
the foundations of buildings through which radon can enter, and 
the extent to which a particular structure retains radon, includ-
ing ventilation3,10. In Great Britain, a strong correlation between  
domestic radon levels and socio-economic status (SES) has been 
observed, where lower SES residences have, on average, only  
two-thirds of the radon levels of those of the more affluent, which 
may be related to greater underpressure in warmer and better- 
sealed houses11. Because people spend a significant portion of  
their time indoors, homes are typically the primary source of  
indoor radon exposure3, and within houses concentrations can 
also widely vary, with (in the USA) concentrations typically 50%  
higher in basements compared to the ground floor12.

The World Health Organisation (WHO) and International Com-
mission on Radiological Protection (ICRP) recommend radon 
reference levels for homes in the range of 100-300 Bq m-3 13, 
with the ICRP reference level of 300 Bq m-3 having been incor-
porated as the upper limit for the reference level by the Euro-
pean Union14. The annual effective dose for a dwelling at  
300 Bq m-3, and given several assumptions, is estimated at 
about 14 millisievert (mSv)15. In the UK, Public Health England  
recommends that indoor radon levels should be below 200 Bq m-3 
(averaged over the home; the Action Level), which corresponds 
to about 12 mSv annual effective dose2, with 100 Bq m-3 being 
considered the Target Level for remediation work and for new  
buildings2.

The multistage carcinogenic process is in all probability a  
mixture of genetic and epigenetic process. Ionizing radiation, 
in addition to producing mutations mainly by gene deletion and  
gross chromosomal damage, can also induce epigenetic effects4. 
Residential radon exposure has been associated with DNA- 
repair gene polymorphisms in adults16 and children17, with 
the latter study also reporting double-strand break repair gene  
polymorphisms. Epigenetics describe heritable chemical modi-
fications of DNA and chromatin affecting gene expression, and  
include DNA methylation, histone modifications and micro-
RNAs which can act in concert to regulate gene expression18. 
In addition, the ‘bystander effect’, in which cells that are not 
directly irradiated, but are in the neighbourhood of cells that  
have, also exhibit phenotypic features of genomic instability that 
is considered to be epigenetic in nature4. DNA methylation is  
the most stable and most readily quantifiable epigenetic marker 
and is sensitive to pre- and postnatal exogenous influences19.  
However, there is only limited data on effects of radon exposure 
on DNA methylation in humans, with some evidence from high 
exposed uranium miners in China20.

This study aims to explore whether there is evidence of DNA 
methylation from residential radon exposure in the general  
population and assesses whether any methylation varies across the 
lifecourse.
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Methods
Data
This study used data from the Avon Longitudinal Study of  
Parents and Children (ALSPAC)21,22. ALSPAC recruited 14,541  
pregnant women with expected delivery dates between April 
1991 and December 1992, which resulted in 14,062 live births 
of which 13,988 children were alive at 1 year of age. Details of 
all data searchable though are provided at the ALSPAC data  
dictionary.

A sub-sample of 1,018 ALSPAC mother–child pairs had DNA 
methylation measured using the Infinium HumanMethylation450 
BeadChip (Illumina, Inc.)23 as part of the Accessible Resource 
for Integrated Epigenomic Studies (ARIES) project24. For this 
study DNA methylation data generated from cord blood, venous 
blood samples at age 7 years and again at age 15 or 17, and  
additionally from the mothers during pregnancy and at middle 
age were used. All DNA methylation analyses were performed  
at the University of Bristol as part of the ARIES project and has 
been described in detail previously24.

Ethical approval for this study was obtained from the ALSPAC  
Ethics and Law Committee and the Local Research Ethics  
Committees (Reference B2805).

DNA methylation
DNA methylation profiles for ALSPAC children were gener-
ated at birth from cord blood and in childhood from peripheral 
blood at ages 7 and 15–17 years using the Illumina Infinium  
HumanMethylation450 BeadChip as part of the Accessible 
Resource for Integrated Epigenomic Studies (ARIES)25. DNA 
was bisulphite-converted using the Zymo EZ DNA MethylationTM 
kit (Zymo, Irvine, CA). Infinium HumanMethylation450  
BeadChips (Illumina, Inc.) and used to measure genome-wide 
DNA methylation levels at over 485,000 CpG sites. The arrays 
were scanned using an Illumina iScan, with initial quality review  
using GenomeStudio (version 2011.1). This assay detects  
methylation of cytosine at CpG islands using one probe to detect 
the methylated and one to detect the unmethylated loci. Single- 
base extension of the probes incorporated a labelled chain-ter-
minating ddNTP, which was then stained with a fluorescence 
reagent. The ratio of fluorescent signals from the methylated  
site versus the unmethylated site determines the level of methyla-
tion at the locus.

Quality control and normalization of the profiles was performed 
using the meffil R package (version 1.1.0) as previously  
described26. The level of methylation is expressed as a per-
centage (β-value) ranging from 0 (no cytosine methylation) 
to 1 (complete cytosine methylation). Finally, to reduce influ-
ence of outliers in statistical models, normalized β-values were  
90%-Winsorized.

Radon exposure
Potential residential radon exposure is available from the 
Health Protection Agency (HPA; now Public Health England) 
– British Geological Survey (BGS) ‘radon potential dataset for  
Great Britain’, and was obtained for the Avon area (which  

includes the original ALSPAC catchment area) from BGS 
after a data sharing agreement was agreed by BGS and the PI’s  
Institute. Estimates of potential radon exposure were based on 
long-term radon measurements from 479,000 homes across Great  
Britain and provided with a spatial resolution of 75-metre  
buffers as the percentage of dwellings exceeding the 200 Bq m-3 
Radon Action Level for 75-metre buffers in 6 classes: 1 (0-1%),  
2 (1-3%), 3 (>3-5%), 4 (>5-10%), 5 (>10-30%) and 6 (>30-
100%). More information is available at: http://www.bgs.ac.uk/
radon/hpa-bgs.html. To assess measurement error, we also linked 
the ARIES dataset to estimates from the freely available radon  
‘indicative atlas’27, which is based on the ‘potential dataset’, but 
provides the estimates in 1-km-side squares.

Residential histories of mothers and children were geocoded to 
postcode centroid level, and were linked to average potential 
radon exposure using ArcGIS software (version 10.6)28 within 
the ALSPAC Data Safe Haven. This resulted in at least one  
address match for 986 mothers and 1001 young people (includ-
ing two sets of twins). Once each residential address had a radon 
potential exposure class assigned, time spent at each address 
was calculated. This was merged with ARIES sample prevision  
dates, allowing time-weighted average potential radon exposures  
to be calculated up to the ‘mothers at middle age’, ‘children at 
7’ and ‘children at 15/17’ sample extraction time points. For the 
cord and antenatal sample extractions, radon exposure potential 
of address at date of birth or closest address (temporally) to  
sample time point were assigned respectively.

These data were then linked to ALSPAC self-reported data  
selected to test for potential confounding (described below). After 
the linked exposure data were processed to minimise the risk of 
participant disclosure, the linked methylation-radon data were  
used for statistical analyses.

Statistical methods
For these analyses we only use participants with complete  
data. In the primary analyses average potential radon expo-
sure was analysed as a continuous variable (range 1–6) to assess  
linear exposure-response associations. In addition, we also  
analysed associations based on binary exposure classifications  
(≤5% vs >5%).

Associations were tested using linear models using the limma R 
package (version 3.32.10)29. Associations were tested in (1) uni-
variate analyses but with adjustment for the surrogate variables30 
to handle batch effects, sex differences, cell count heterogeneity 
and possible unknown confounders31, and (2) additionally with 
adjustment for potential confounding factors maternal age at 
birth, maternal BMI, smoking during pregnancy, partner smok-
ing during pregnancy, AHRR CpG site that detects own smoking  
nearly as accurately as self-report32, mother alcohol intake in 
early pregnancy, equivalized income, parental occupation, and  
parental education, and (3) all factors of models 1 and 2 and  
additionally, for damp problems, central heating, boiler loca-
tion, gas cooking, time windows open in the summer/winter  
day/night, and heavy traffic.
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Associations at false discovery rate (FDR) less than 20%  
calculated using the q method33 are reported. Where associations 
between MRB and methylation was positive, these sites were 
defined as “hypermethylated” and conversely when for inverse 
associations, these were defined as “hypomethylated”.

Results
Participants and location
The results were based on 786 to 980 participants with  
complete information, depending on the time analyses. A 
graphical overview of the geographical study area and the  
distribution of potential radon exposure classes, as well as the 
distribution of addresses in each class, is shown graphically in  
Figure 1, and indicates that 79% of addresses are in areas with  
low probability (class 1 and 2) of exposure >200 Bq m-3.

CpG sites
Results for CpG sites with FDR <0.20 are shown in Table 1. In 
mothers, average potential exposure to radon was only associ-
ated in an exposure-dependent manner with hypomethylation 
of cg25422346 during pregnancy (p = 1.1x10-8, FDR = 0.005), 
with no associations observed at middle age. For the children, 
radon potential exposure was associated in an exposure- 
dependent manner with hypomethylation at cg16451995 at 
birth (p = 3.2x10-7, FDR = 0.16) and with hypermethylation of  
cg01864468 at age 7 (p = 1.1x10-8, FDR = 0.005). In adoles-
cence (age 15–17) there was evidence of exposure-dependent 
methylation at several CpG sites. Cg04912984, cg16105117 and  
cg23988964 were hypermethylated with increased potential 
exposure, while cg04945076, cg08601898, cg16260355 and  
cg26056703 were hypomethylation proportionally to average 
potential radon exposure. The same CpG sites at the same time-
points were identified when average potential exposure to  
>200 Bq m-3 was dichotomized into low (≤5%) and high (>5%) 
probability (Table 2), and similarly when using another cut-off 
(≤3% vs >3%); data not shown.

Regardless of exposure metric, there is little evidence of signifi-
cant confounding with directions and sizes of associations similar  
for univariable and both multivariable models.

To assess the impact of measurement error, the same analyses  
were repeated but with exposure based on the ‘indicative radon 
atlas’ using 1-km2 spatial resolution (Table 3). Results were  
comparable to those based on the 75-m buffers.

Discussion and conclusions
In this exploratory study we aimed to investigate associations 
between residential exposure to radon in the general popula-
tion and DNA methylation. Associations were observed with 
increasing probability of average potential exposure of the 
residence over 200 Bq m-3 in children at birth, age 7 and during  
adolescence, with single CpG sites affected at birth (cg16451995) 
and age 7 (cg01864468) and seven sites affected at age  
15–17 (cg04912984, cg04945076, cg08601898, cg16105117, 
cg16260355, cg23988964, cg26056703) after adjustment for 
important confounding factors. These also did not depend on 
the choice of cut-off used. For mothers an association with  

hypomethylation of cg25422386 was observed during pregnancy, 
but not at a later time point during middle age. To our knowl-
edge, this is the first study identifying associations between radon  
exposure with methylation patterns in a general population.

Locations of the affected CpG sites of the children were on the 
PMM2 gene (cordblood), associated with abnormalities in amni-
otic fluid and congenital disorders, upstream of HCG14 (age 7), 
involved in the development of lung carcinoma, and NDRG2 and 
SGPL1, associated with glioblastoma development and Alzheim-
er’s disease and nephrotic syndrome, respectively, LINC01197, 
as well as upstream of VANGL1, associated with congenital  
disorders, and FAM71A genes (age 15–17), while for mothers 
cg25422346 is located upstream of SMIM31. These meth-
ylation patterns, describing both hyper- and hypomethylation  
associated with potential residential radon exposure, have not 
been reported elsewhere. In a candidate gene study of Chinese  
uranium miners, the authors reported increased methylation of 
promotor regions of p16INK4a and O6-MGMT genes, as well as  
increased total methylation rate, depending on cumulative 
radon doses20, and a study using BEAS-“B human lung cells 
exposed to 20,000 Bq m-3 radon for 30 minutes showing global 
hypomethylation and hypermethylation of candidate CpG-sites at  
PTPRM and EDA2R genes34. Similarly, these genes have also 
not come up in candidate gene studies of exposure to radon, in 
which gene-environment interactions with p5335, GSTM1 and  
GSTT136, hOGG1 and APE137, ADPRT38, XPG, ADPRT and  
NBS116, LIG439, and NBS1 and ATM1 have been reported. Possible 
explanations for the different genes for which hyper- or hypometh-
ylation was associated with potential radon exposure in this  
study compared to other studies, may be that CpG sites  
identified in this study are involved in the ‘bystander effect’, 
rather than the result of direct irradiation, they may be a 
marker of earlier biological effects, it may be because meth-
ylation was measured in blood rather than in lung tissue, and of 
course residual confounding or chance findings can also not be  
completely excluded.

This study has several limitations. Most importantly, the  
exposure metric used in this study is a relatively weak one. 
It is not generally possible to accurately predict indoor radon 
concentrations for specific buildings without individual  
measurements3. Although people spend most of their time indoors 
at home, estimates are based on the modelled probability that 
a dwelling in the 75-m buffer that includes a person’s home has 
a radon concentration exceeding 200 Bq m-3. Because of high  
spatial and temporal variability40,41 this will inevitably have led to  
considerable misclassification. Assuming measurement error  
in this case is non-differential, generally resulting in bias to the 
null, it is interesting that exposure-response associations were 
still observed in this study with a relatively small sample size.  
Furthermore, the possibility of misclassification of radon  
exposure should affect all participants in a similar way and is 
unlikely to bias associations with DNA methylation.

Although there was little evidence of significant confound-
ing in these analyses, residual confounding explaining these 
findings cannot be excluded. For example, rurality is a known  
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Figure 1. Geographical distribution of potential radon exposure classes, and number of addresses per class. Based upon the ‘Radon 
Potential Dataset’, reproduced with the permission of the British Geological Survey.
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Table 1. Potential exposure to >200 Bq m-3 radon and methylation at specific CpG sites.

CpG Chromosome Gene N  
(Model 1)

Model 11 
Beta (se)

N  
(model 2)

Model 22 
Beta (se)

N  
(model 3)

Model 33 
Beta (se)

Min. FDR 
(adjusted)

Mothers during pregnancy

cg25422346 4 upstream 
SMIM31

980 -0.002 
(0.001)

712 -0.002 
(0.001)

630 -0.003 
(0.001)

0.005

Cordblood

cg16451995 16 PMM2 912 -0.005 
(0.001)

649 -0.005 
(0.001)

576 -0.004 
(0.001)

0.123

Age 7

cg01864468 6 upstream 
HCG14

978 0.006 
(0.002)

697 0.004 
(0.002)

615 0.002 
(0.002)

0.173

Age 154

cg04912984 1 upstream 
VANGL1

979 0.002 
(0.001)

313 0.003 
(0.001)

313 0.004 
(0.001)

0.184

cg04945076 12 979 -0.007 
(0.002)

313 -0.008 
(0.003)

313 -0.008 
(0.004)

0.184

cg08601898 8 979 -0.002 
(0.001)

313 -0.004 
(0.002)

313 -0.004 
(0.002)

0.184

cg16105117 14 NDRG2 979 0.000 
(0.000)

313 0.000 
(0.000)

313 0.000 
(0.000)

0.185

cg16260355 10 SGPL1 979 -0.001 
(0.001)

313 0.000 
(0.001)

239 -0.000 
(0.001)

0.093

cg23988964 1 upstream 
FAM71A

979 0.004 
(0.001)

313 0.001 
(0.002)

239 0.002 
(0.003)

0.185

cg26056703 15 LINC01197 979 -0.001 
(0.001)

313 -0.000 
(0.001)

239 -0.000 
(0.001)

0.184

Mothers at middle age

None

1Adjusted for surrogate variable only. 2Adjusted for surrogate variable, maternal age at birth, maternal BMI, smoking during pregnancy, partner 
smoking during pregnancy, mother alcohol intake in early pregnancy, equivalized income, parental occupation, parental education. 3Adjusted for 
surrogate variable, maternal age at birth, maternal BMI, smoking during pregnancy, partner smoking during pregnancy, mother alcohol intake in 
early pregnancy, equivalized income, parental occupation, parental education, damp problems, central heating, boiler location, gas cooking, time 
windows open in the summer/winter day/night, heavy traffic. 4At age 15/17, also adjusted for AHRR CpG site that detects own smoking.

confounding factor for studies on radon41. However, within  
ALSPAC and certainly within Avon there are few true ‘rural’ resi-
dential areas as the area quite heavily populated, so it is unlikely 
this will bias associations significantly. We also had no infor-
mation on whether participants lived in houses or apartments 
(and in the latter case on which floor)40 or whether houses had a  
basement12, which will have added to further measurement error.

There are known limitations in quality of the ALSPAC residential 
address history data in terms of missingness and gaps; although 
in this study the impact of this will be limited as the postnatal  
ARIES sample dates are linked to direct contact with partici-
pants where address details would have been validated. However, 
to enable assignment of potential radon exposure to individuals 
over periods of unknown residence, remediation was carried out 
by (a) setting the address start date to child date of birth where 
first address start date fell after child date of birth, which is a  

reasonable assumption because often the address start date  
represents a data capture date as opposed to an actual move date, 
and (b) by rectifying all other temporal gaps by calculating a mean 
radon potential exposure class based on the radon potential at the 
preceding and succeeding addresses.

The current analysis lack directly measured blood-cell-type pro-
portions, and we therefore included cell count heterogeneity  
using estimates obtained using surrogate variable analysis in the 
models30. This approach has been found to perform just as well 
or better31 than the more commonly used method of Houseman  
et al.42. In this case, it probably performs better in DNA  
methylation profiles generated from childhood peripheral blood  
because DNA methylation references are available only for  
adult blood43 and cord blood. Levels of methylation vary between 
tissue types and may relate differently to traits and exposures, 
which may limit inferences from this study. In the current study 
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Table 2. CpG site methylation and low (≤5%) vs high (>5%) probability of potential exposure to >200 Bq m-3 radon 
(FDR<0.20).

CpG Chromosome Gene N  
(Model 1)

Model 11 
Beta (se)

N  
(model 2)

Model 22 
Beta (se)

N  
(model 3)

Model 33 
Beta (se)

Min. FDR 
(adjusted)

Mothers during pregnancy

cg25422346 4 upstream 
SMIM31

980 -0.012 
(0.002)

712 -0.010 
(0.002)

630 -0.011 
(0.003)

0.005

Cordblood

cg16451995 16 PMM2 912 -0.020 
(0.004)

649 -0.018 
(0.004)

576 -0.016 
(0.005)

0.123

Age 7

cg01864468 6 upstream 
HCG14

970 0.017 
(0.006)

692 0.016 
(0.008)

611 0.012 
(0.009)

0.173

Age 154

cg04912984 1 upstream 
VANGL1

965 0.013 
(0.003)

310 0.014 
(0.005)

236 0.020 
(0.005)

0.184

cg04945076 12 965 -0.037 
(0.007)

310 -0.032 
(0.012)

236 -0.029 
(0.014)

0.184

cg08601898 8 965 -0.018 
(0.004)

310 -0.031 
(0.006)

236 -0.031 
(0.007)

0.184

cg16105117 14 NDRG2 965 0.003 
(0.001)

310 0.002 
(0.001)

236 0.002 
(0.001)

0.185

cg16260355 10 SGPL1 965 -0.007 
(0.002)

310 -0.008 
(0.004)

236 -0.009 
(0.005)

0.093

cg23988964 1 upstream 
FAM71A

965 0.026 
(0.006)

310 0.010 
(0.008)

236 0.010 
(0.009)

0.185

cg26056703 15 LINC01197 965 -0.014 
(0.003)

310 -0.009 
(0.005)

236 -0.014 
(0.005)

0.184

Mothers at middle age

None

*Methylation for population with average potential radon exposure 5% or lower compared with population with probability >5%. 1adjusted for surrogate 
variable only. 2adjusted for surrogate variable, maternal age at birth, maternal BMI, smoking during pregnancy, partner smoking during pregnancy, 
mother alcohol intake in early pregnancy, equivalized income, parental occupation, parental education. 3Adjusted for surrogate variable, maternal age 
at birth, maternal BMI, smoking during pregnancy, partner smoking during pregnancy, mother alcohol intake in early pregnancy, equivalized income, 
parental occupation, parental education, damp problems, central heating, boiler location, gas cooking, time windows open in the summer/winter 
day/night, heavy traffic. 4At age 15/17 also adjusted for AHRR CpG site that detects own smoking.

we have methylation from blood samples, but it may have been  
beneficial had we been able to test associations in a more  
relevant cell type such as the lung.

And finally, this study had reduced statistical power due to the 
relatively limited sample size of the ARIES sub-sample, which 
was further diminished as a result of missing values. Alcohol  
consumption for adolescents could not be included as a poten-
tial confounding variable because this was only available for 
less than 200 teens. Because current approaches for multi-
ple imputation are not feasible for genomic datasets including  
hundreds of thousands of measured variables (our study included 
variables corresponding to DNA methylation levels at over  
480,000 CpG sites) we did not apply multiple imputation to 
increase sample size. In future, when feasible approaches have  
been developed, we plan to revisit these analyses.

The main strength of this study is the unique resource which 
allowed for the assessment of genome-wide methylation  

profiles at different time points linked to detailed phenotypic  
characterisation, which enabled assessment of the temporality 
of associations. In these analyses we used three cross-sectional 
models to compare methylation patterns at birth, age 7 and in  
adolescence, but with better characterization of the dynamic  
elements of the human methylome44, longitudinal analyses will 
help to better elucidate persistent and reversible effects of (envi-
ronmental) exposures as well as critical periods of effect45.  
Information on epigenetic signals across the life-course and 
radon exposure are of interest because they have the potential to  
describe early biological effects, and the estimated induction 
(lag) period of lung cancer to radon exposure is between 5 and  
25 years1.

In conclusion, this exploratory study is, to our knowledge, the 
first study to study association between genome-wide DNA  
methylation and (potential) residential exposure to radon. Despite 
the relatively weak exposure metric, differential methylation  
associated with increased potential residential radon exposure 
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Table 3. Indicative (1 km2 spatial granularity) potential exposure to >200 Bq m-3 radon and CpG site methylation.

CpG Chromosome Gene N  
(Model 1)

Model 11 
Beta (se)

N  
(model 2)

Model 22 
Beta (se)

N  
(model 3)

Model 33 
Beta (se)

Min. FDR 
(adjusted)

Mothers during pregnancy

cg25422346 4 upstream 
SMIM31

857 -0.001 
(0.001)

615 -0.001 
(0.001)

543 -0.002 
(0.001)

0.005

Cordblood

cg16451995 16 PMM2 786 -0.004 
(0.001)

551 -0.004 
(0.001)

485 -0.003 
(0.001)

0.123

Age 7

cg01864468 6 upstream 
HCG14

851 0.009 
(0.002)

596 0.007 
(0.002)

524 0.006 
(0.002)

0.173

Age 154

cg04912984 1 upstream 
VANGL1

852 0.001 
(0.001)

272 0.002 
(0.001)

208 0.004 
(0.002)

0.184

cg04945076 12 -0.002 
(0.002)

272 -0.010 
(0.004)

208 -0.008 
(0.005)

0.184

cg08601898 8 852 -0.002 
(0.001)

272 -0.002 
(0.002)

208 -0.004 
(0.002)

0.184

cg16105117 14 NDRG2 852 0.000 
(0.000)

272 0.000 
(0.000)

208 0.000 
(0.000)

0.185

cg16260355 10 SGPL1 852 -0.002 
(0.001)

272 -0.000 
(0.001)

208 -0.001 
(0.002)

0.093

cg23988964 1 upstream 
FAM71A

852 0.001 
(0.002)

272 0.002 
(0.003)

208 0.001 
(0.003)

0.186

cg26056703 15 LINC01197 852 -0.001 
(0.001)

272 -0.000 
(0.002)

208 -0.002 
(0.002)

0.184

Mothers at middle age

None

1Adjusted for surrogate variable only. 2Adjusted for surrogate variable, maternal age at birth, maternal BMI, smoking during pregnancy, partner 
smoking during pregnancy, mother alcohol intake in early pregnancy, equivalized income, parental occupation, parental education. 3Adjusted for 
surrogate variable, maternal age at birth, maternal BMI, smoking during pregnancy, partner smoking during pregnancy, mother alcohol intake in early 
pregnancy, equivalized income, parental occupation, parental education, damp problems, central heating, boiler location, gas cooking, time windows 
open in the summer/winter day/night, heavy traffic. 4At age 15/17 also adjusted for AHRR CpG site that detects own smoking.

was observed prenatally in mothers, for children at birth, age  
7, and especially at age 15–17, but not for the mothers in  
middle age. Future work in a larger population, with replication 
in an independent sample, and using a radon exposure estima-
tion methodology, most notably personal exposure measures, can  
further elucidate these associations.

Data availability
The potential residential radon exposure was provided by the  
British Geological Survey (BGS) under license for the current 
study (Licence number 2017/017RAD ED British Geological 
Survey © NERC. All rights reserved) and can be requested from  
BGS (http://www.bgs.ac.uk/radon/hpa-bgs.html). Details on who 
will be granted access to the data, and whether there will be a 
charge for data access can be found online.

ALSPAC data access is through a system of managed open  
access. Full details of all available data can be accessed through 

a fully searchable data dictionary provided on the ALSPAC study 
website (http://www.bris.ac.uk/alspac/researchers/data-access/data- 
dictionary) and the steps below highlight how to apply for access 
to both the data included in this data note and all other ALSPAC 
data. The datasets presented in this data note are linked to 
ALSPAC project number B645; please quote this project number 
during your application. The ALSPAC variable codes high-
lighted in the dataset descriptions can be used to specify required  
variables.

1.   �Please read the ALSPAC access policy (PDF, 627kB) 
which describes the process of accessing the data and 
samples in detail and outlines the costs associated with  
doing so.

2.   �You may also find it useful to browse our fully  
searchable research proposals database, which lists all 
research projects that have been approved since April 
2011.
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3.   �Please submit your research proposal for consideration 
by the ALSPAC Executive Committee using the online  
process. You will receive a response within 10 working 
days to advise you whether your proposal has been  
approved.

If you have any questions about accessing data, please email  
alspac-data@bristol.ac.uk.

The ALSPAC data management plan describes in detail the  
policy regarding data sharing, which is through a system of  
managed open access.

Reporting guidelines
STROBE Guidelines for cohort studies have been used for this  
publication. DOI: https://doi.org/10.17605/OSF.IO/KGCHQ46.
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The paper  entitled “Residential exposure to radon and DNA methylation across the lifecourse: an
 by Frank de Vocht et al. is a novel and stimulatingexploratory study in the ALSPAC birth cohort”

contribution to studies on the effects of residential radon exposure. The study finds some significant
associations between potential exposure to radon >200 Bq m3 and methylation pattern of cytosines within
several CpGs  in children and one site in mothers. Both hypo- and hypermethylations have been
detected.

At the current stage of knowledge, the biological meaning of the detected epigenetic changes is not
known, however, the work performed is still of value and the inferences observed may be clarified in the
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The authors discuss their findings providing description of the pathologies related to the mutations of the
genes  where the specific hypo- or hypermethylation has been found (lacking reference). Nevertheless,
the epigenetic effects observed were neither located at the promoter sites of these genes nor enhancers,
thus may not affect the genes activity, which in my opinion shall be stated explicitly. 

The limits of the study, including lack of precise data on study participants exposure have been identified
and described by the authors.
The paper is very clearly written and reads very well.
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Introduction:
“Residential radon exposure has been associated with DNA repair gene polymorphisms in adults  and
children , with the latter study also reporting double-strand break repair gene polymorphisms.”. Please,
check in the cited articles what associations have been reported, and correct the statement accordingly.
Methods:
2  paragraph reports at which ages blood was collected from study subjects (children and mothers). The
information for children is unnecessary repeated in the subsection describing “DNA methylation”.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?

Yes

16
17

nd

Page 12 of 13

Wellcome Open Research 2019, 4:3 Last updated: 20 FEB 2019

https://doi.org/10.21956/wellcomeopenres.16353.r34801
http://orcid.org/0000-0003-3915-2872


 

Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 No competing interests were disclosed.Competing Interests:

Reviewer Expertise: epidemiology

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Page 13 of 13

Wellcome Open Research 2019, 4:3 Last updated: 20 FEB 2019


