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Stereospecific Alkene Aziridination Using a Bifunctional Amino-Rea-
gent: an Aza-Prilezhaev Reaction 

Joshua J. Farndon,† Tom A. Young,† and John F. Bower*,† 

† School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom                                                                                   

In situ deprotection (TFA) of O-Ts activated N-Boc 

hydroxylamines triggers intramolecular aziridination of N-tethered 

alkenes to provide complex N-heterocyclic ring systems. Synthetic 

and computational studies corroborate a diastereospecific aza-

Prilezhaev-type mechanism. The feasibility of related intermolecu-

lar alkene aziridinations is also demonstrated. 

Epoxidations of non-polarized alkenes are commonly achieved 

by their exposure to peracids, usually m-CPBA (Scheme 1A).1 This 

process, reported in 1909 by Prilezhaev (Prileschajew), has become 

a cornerstone reaction of organic chemistry because it is operation-

ally simple and diastereospecific.2 This latter facet is attributed to 

a mechanism wherein simultaneous formation of both new C-O 

bonds occurs via butterfly-like transition state 1.3 By contrast, anal-

ogous stereospecific alkene aziridinations are virtually unknown; 

instead, this transformation is typically achieved under mechanis-

tically distinct metal-catalyzed conditions, often involving 

nitrenoids.4-7 Although there are exceptions,5e such methods can 

only usually generate aziridines with electron withdrawing groups 

on nitrogen. The absence of reagents that can promote simple 

metal-free Prilezhaev-like aziridinations is surprising. Existing 

metal-free aziridinations of non-polarized alkenes either require 

strong external oxidants and/or are not stereospecific and/or offer 

limited flexibility with respect to the nitrogen substituent.6 Conse-

quently, the provision of a simple and stereospecific alkene aziridi-

nation protocol that provides N-alkylated products is a challenging 

and worthwhile objective. 

Recently, we reported that in situ deprotection of O-Ts activated 

N-Boc hydroxylamines 3 generates a potent electrophilic aminat-

ing agent (4) that can be harnessed for C-N bond forming dearoma-

tizations or C-H aminations of pendant arenes (Scheme 1B).8a,9 Key 

features of these processes include (a) their operational simplicity 

and (b) direct access to the substrates via Mitsunobu alkylation of 

commercially available bifunctional amino-reagent 2.10 The free 

base of intermediate 4 (4’) has an obvious structural analogy to m-

CPBA, and this led us to question whether Prilezhaev-like alkene 

aziridinations might be feasible. In these processes, N-alkylation of 

reagent 2 would precede alkene aziridination, with the two-step se-

quence using 2 as a synthetic linchpin equivalent to an “N-+-“ 

synthon. Outlined below is the successful realization of this idea, 

which provides unique examples of aza-Prilezhaev reactions. Our 

results offer a counterpoint to established metal-catalyzed alkene 

aziridinations and provide a framework for the development of a 

general metal-free protocol. 

Our studies commenced by examining the intramolecular aziridi-

nation of system 5a (R1 = Ph), which contains a trans-configured 

styrene (Table 1A); this was easily accessed by Mitsunobu alkyla-

tion of 2 (93% yield; see the SI). Remarkably, exposure of a TFE  

Scheme 1.  
 

 
 
solution of 5a to TFA (200 mol%) resulted in efficient aziridination 

to provide 6a in 76% yield and as a single diastereomer. More com-

mon alcohols (e.g. EtOH) were not effective solvents, whereas ap-

preciable quantities of 6a were observed using CH2Cl2 (40%) or 

PhMe (32%) (see the SI). When the corresponding system contain-

ing a cis-styrene (5b, R3 = Ph) was subjected to the TFE/TFA con-

ditions, aziridine 6b, the diastereomer of 6a, was generated as the 

sole product in 78% yield. Thus, the process is diastereospecific 

with respect to olefin geometry. Further studies sought to evaluate 

scope with respect to the alkene. Electron deficient variants do not 

participate, as evidenced by attempted aziridination of acrylate sys-

tem 5c, which did not provide detectable quantities of target 6c. 

However, other classes of electron rich alkene are suitable, such 

that 1,2-dialkylated system 5d provided 6d in 55% yield. Extension 

to a range of styrenes and 1,2- or 1,1-disubstituted alkenes provided 

products 6e-n in an efficient manner; the structure of 6i was con-

firmed by single crystal X-ray diffraction. Protected alcohols are 

tolerated, providing the protecting group is relatively stable to acid 

(cf. 6l vs 6m). Systems containing additional substitution at either 

C1 or C3 undergo highly diastereoselective cyclization, as high-

lighted by the efficient formation of 6f and 6g. For substrates con-

taining very electron rich styrenes, reaction efficiency is compro-

mised by the instability of the aziridine product under the reaction 

conditions (vide infra); this accounts for the diminished yield in the 



 

conversion of 5k to 6k. Classically, bicyclic aziridines related to 

those described in Table 1 have been accessed by Pb(OAc)2-medi-

ated cyclization of primary amines onto alkenes;11 the present 

method offers much wider scope and has the obvious benefit of cir-

cumventing the requirement for stoichiometric quantities of a toxic 

Pb-based reagent. 

 

Table 1. Aziridinations of di-, tri- and tetrasubstituted al-

kenes.  
 

 
a Isolated as the TsOH salt. b 72 h. c The free alcohol of 5l/m (R = 

H) did not undergo efficient aziridination. 

 

A notable feature of the new aziridination protocol is its ability 

to construct highly substituted aziridines (Table 1B). Cyclizations 

involving trisubstituted alkenes proceeded smoothly to provide tar-

gets 6o-t and 6v-x with minimal variation in efficiency. The reac-

tion conditions are sufficiently mild that O-TBS protected phenols 

remain intact (e.g. 5v to 6v) and acid promoted isomerization of 

skipped dienes (5r to 6r) was not observed. Tetrasubstituted al-

kenes are also effective reaction partners as evidenced by the for-

mation of 6u, which occurred in 90% yield. The ability to form 

highly congested C-N bonds suggests that the method will be of 

high value in target directed settings, especially alkaloid synthesis. 

Although the intramolecular aziridination process is most effec-

tive for 5-ring cyclizations, we have also found that 6-ring pro-

cesses occur with synthetically useful levels of efficiency (Table 

2). Cyclization of styrene-based system 7a was relatively demand-

ing, and 8a was isolated in 44% yield. Conversely, aziridination to 

generate benzofused system 8b was more efficient, occurring in 

60% yield.  As with 5-ring cyclizations, non-styrenyl alkenes also 

participate; for example, aziridinations involving acyclic trisubsti-

tuted olefins provided 8c, 8d and 8f in modest to good yields. In-

tramolecular aziridination of a cyclic alkene (7e) provided highly 

complex tricyclic system 8e in 51% yield. 

 

Table 2. Aziridinations to give azabicyclo[4.1.0]heptanes. 
 

 

 

As noted earlier, aziridine 6k was unstable to the reaction condi-

tions with competitive formation of 1,2-aminoetherification prod-

uct 9k (15:1 d.r.) observed in 20% yield (Scheme 2A). When 6k 

was resubjected to the aziridination conditions 9k was formed as 

the sole identifiable product. These observations are consistent with 

the electron rich naphthyl unit of 6k facilitating acid promoted ion-

ization of the aziridine to provide a benzylic carbocation, which is 

captured by TFE in a diastereocontrolled SN1 reaction.12 For sub-

strates 5y and 5z, which bear highly stabilizing para-methoxy-

phenyl or 2-thienyl substituents, aziridine products 6y and 6z were 

not observed and competing alkene 1,2-aminoetherification prod-

ucts formed exclusively. Attempts to suppress ring opening of the 

initially formed aziridine by varying the reaction solvent or acid 

were unsuccessful; in part, this reflects the observation that 

TFE/TFA is easily the most effective combination found so far for 

the aziridination process. However, by switching to less nucleo-

philic HFIP as solvent, we were able to use BnOH as an external 

nucleophile and this provided 1,2-aminoetherification product 11 

in 42% yield (14:1 d.r.) directly from alkene 10.13 Based on this, 

we examined whether the aziridination-ionization sequence could 

be adapted to other classes of alkene 1,2-difunctionalization 

(Scheme 2B). Under optimized aziridination conditions, inclusion 



 

of trimethoxybenzene as an exogenous nucleophile enabled the di-

rect conversion of alkene 5a to 1,2-aminoarylation product 12 in 

50% yield and 20:1 d.r.14 1,2-Aminoazidation product 13 was ac-

cessed by exposing aziridine 6a to TMSN3 under acidic conditions; 

in this case, direct conversion of 5a (the alkene precursor to 6a) to 

13 was less efficient.15 Formal alkene hydroaminations can be 

achieved by hydrogenative C-N reduction of benzylic aziridines; 

for example, 6t was converted to 14 in 98% yield. Ring expansions 

to piperidines are facile as evidenced by the efficient conversion of 

6n to 15a-c.16 The relative stereochemistries of 9y, 11, and 12 were 

determined by single crystal X-ray diffraction of crystalline deriv-

atives. Stereochemical assignments of 9k and 9z are made by anal-

ogy, and the assignment of 13 is based on comparison to reported 

NMR data.  

 

Scheme 2.  
 

 
a An X-ray structure of a derivative was obtained (see the SI). 

 

The diastereospecificity of the processes described here (cf. 6a 

and 6b) suggests that, following Boc-deprotection (TFA), alkene 

aziridination proceeds in a concerted manner, where both new C-N 

bonds form simultaneously. Mechanistically, this could be ration-

alized either by the formation and capture of a nitrenium ion or by 

an aza-Prilezhaev-type mechanism. To our knowledge, efficient al-

kene aziridinations using nitrenium ions without stabilizing groups 

are unknown.17 Indeed, computational studies on the conversion of 

5a’ (the Boc-deprotected version of 5a) to 6a indicate that for-

mation of a solvent-stabilized nitrenium ion has a large energy bar-

rier (TS2, ΔG‡ = 49.6 kcal mol-1) (Figure 1). On the other hand, the 

transition state for an aza-Prilezhaev pathway (TS1) is accessible 

(ΔG‡ = 22.0 kcal mol-1) and strongly resembles the spiro ‘butterfly’ 

transition state involved in m-CPBA-mediated alkene epoxidations 

(see the SI for details).3,18,19 Thus, in line with our initial reaction 

design, we favor an aza-Prilezhaev pathway for the processes de-

scribed here. 

 

Figure 1. Reaction profiles for the generation of a nitrenium ion 

(grey) and aziridination of 5a’ via an aza-Prilezhaev mecha-

nism (black).a 

 
Δ

 

 
a Solvated Gibbs free energies are quoted at PBE0/6-

311++G(2d,p)//PBE0-D3BJ/6-31+G(d), SMD(TFE). Free energy 

contributions have been calculated at 298 K. See the SI for details. 

Scheme 3. Preliminary intermolecular aziridination results. 

 

 

Although our focus so far has been on the development of intra-

molecular aziridinations, we have also validated the method in in-

termolecular settings (Scheme 3). Exposure of cis-β-methylstyrene 

to reagent 16 (120 mol%) in the presence of TFA delivered cis-

configured aziridine 17a as the sole diastereomer in 42% yield. 



 

Similarly, aziridination of trans-β-methylstyrene provided trans-

configured aziridine 17b in 32% yield. The diastereospecificity of 

these reactions mirrors observations made earlier, which suggests 

that an analogous reaction pathway is operative. Notably, the OTs 

analogue of 16 was not effective for the formation of 17a and 17b.20 

Accordingly, modification of the electrophilic nitrogen source can 

improve reaction efficiency and this provides an avenue for the de-

velopment of a more general intermolecular protocol; studies to-

wards this objective are ongoing. Notably, N-Me aziridines have 

previously been prepared by metal-catalyzed nitrenoid transfer 

from reagents that bear a close similarity to the Boc-deprotected 

form of 16;5e the results in Scheme 3 highlight the feasibility of a 

complementary metal-free alternative. 

In summary, we show that activated hydroxylamines engage al-

kenes in a process that resembles an aza-variant of the m-CPBA 

promoted Prilezhaev reaction, a process reported over one hundred 

years ago. The substrates are easily accessed by Mitsunobu alkyla-

tion of commercially available “linchpin” reagent 2.21 Intramolec-

ular versions of the aziridination process provide direct access to 

structurally intriguing N-heterocyclic ring systems. These can be 

modified further in a distinct step, or harnessed in tandem one-pot 

processes, as the basis of an approach to alkene 1,2-amino-func-

tionalization. Preliminary studies demonstrate the feasibility of re-

lated intermolecular aziridinations. Our studies provide unique ex-

amples of transition metal-free stereospecific alkene aziridinations 

that provide N-alkylated products. Efforts to broaden the utility of 

the process are underway and will be reported in due course. 
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