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Abstract
Identification of failure thresholds and critical uncertainties associated with slope stability often requires the specification of
geotechnical parameter values for input into a physically-based model. The variation of these parameters (including mechanical
soil properties such as effective friction angle and cohesion) can have a significant impact on the computed factor of safety. These
uncertainties arise from natural variations in soils, measurement techniques, and lack of reliable information. Researchers may
use statistical analysis coupled with numerical simulation to determine possible ranges of slope factors of safety and the relative
influence of geotechnical and other parameters, such as topsoil depth and rainfall. This study investigates the variation of
geotechnical parameters observed on the island of Saint Lucia in the Eastern Caribbean. A database of particle size distributions,
in-situ moisture contents, Atterberg and direct shear box test results is compiled from 91 samples of tropical soils in Saint Lucia.
A study of various probability distributions shows that theWeibull distribution may be favoured for the effective friction angle of
the Saint Lucian soils considered based on the Akaike information criterion, employed as an estimator of the relative quality of
statistical models dealing with the trade-off between goodness-of-fit and simplicity of the model.
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Notation
c' cohesion intercept, kPa
CF clay fraction
k number of parameters in a model

L likelihood
n number of data points
PI plasticity index, %
p p-value; probability of rejecting the null hypothesis

and thus concluding that no correlation exists
between two parameters

r correlation coefficient
R2 coefficient of determination
SF silt-clay fraction, % (taken here as percent passing

the 0.075mm sieve)
wnat natural water content, %
wL liquid limit, %
wP plastic limit, %
x a variable
β Weibull shape factor
δ Weibull scale factor
μ statistical mean
σ' effective normal stress, kPa
τ shear stress, kPa
ϕ' effective friction angle, degrees
ϕ'crit effective critical state friction angle, degrees
ϕ'peak effective peak friction angle, degrees
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Introduction

Landslides and geotechnical data

Landslides triggered by rainfall and seismic events affect peo-
ple, the built environment and economies worldwide. The
susceptibility of slopes to landslides is due to a combination
of preparatory factors including slope angle, geology, soil
properties, groundwater conditions and vegetation cover.
Human actions such as the construction of buildings and roads
or changes to natural vegetation can affect these preparatory
factors and decrease the stability of a slope. Rapid rates of
urbanisation and land use change (both planned and informal)
in landslide-prone developing countries mean that they are
disproportionately affected by landslide hazards and their con-
sequences (Petley, 2009). In such locations, landslides fre-
quently occur due to a combination of localised factors such
as slope-cutting, surcharge loading, altered surface water
drainage patterns, and leakage from water services, water
tanks and latrines – as reported in the city of São José dos
Campos, Brazil, by Mendes et al. (2018), for example.

Implementation of landslide hazard assessments at the re-
quired resolution to inform landslide exposure, vulnerability
and risk assessments, and risk management are often hindered
by the limited availability of data in such regions. Acquisition
of soil geotechnical information poses a particular challenge
due to the expense of soil sampling in relevant locations and
laboratory testing, the inherent heterogeneity of soils, the dis-
turbance of in-situ soil structure and moisture content that oc-
curs with sample extraction, and the resulting uncertainties as-
sociated with parameter values and sparse data. Furthermore,
any such data from previous studies and projects tend to be
inaccessible or undocumented. Thus, engineers and slope sta-
bility modellers encounter a geotechnical data gap when
attempting to use physics-based models to investigate highly
localised urban landslide processes (and potential mitigation
measures) and when parameterising spatially-distributed land-
slide hazard models in Geographical Information Systems
(GIS) at city or regional scales (e.g., Mutekanga et al. 2010;
Ringrose-Voase et al. 2017; Du et al. 2018).

Effective friction angle

Slope stability calculations are sensitive to soil strength pa-
rameters such as the effective friction angle (ϕ', degrees),
which is a measure of the resistance of the soil sample to shear
stress, as defined by theMohr-Coulomb failure criterion, Eq. 1
(e.g., Parry, 2004):

τ ¼ c′ þ σ′sin ϕ′
� � ð1Þ

where τ is the shear stress, c' the cohesion intercept, and σ' the
effective normal stress. Simple factor of safety calculations

(and the associated design charts) used by engineers for rapid
slope stability assessments require input values for the soil
effective friction angle, effective cohesion intercept, unit
weight, slope geometry and groundwater conditions (e.g.,
Taylor, 1937; Anderson and Lloyd, 1991; Anderson et al.
1997; Michalowski, 2002 and Li et al. 2008). The c' and the
ϕ' can also be back-calculated from field observations (e.g.,
van Asch, 1984). During shearing, a dense soil sample reaches
a peak effective angle of friction (ϕ'peak) at a relatively low
strain; as strain increases the angle drops to a critical effective
angle of internal friction (ϕ'crit) (c.f. Craig, 2004, p.103) which
should be used if designing against slope failure (Take and
Bolton, 2011). However, ϕ'crit is still rarely reported in geo-
technical characterisation studies.

More sophisticated models representing dynamic hydro-
logical processes of rainfall infiltration, sub-surface flow, pore
water pressure and slope stability response have shown that in
certain cases the choice of friction angle design values can
affect computed factors of safety to the same extent as varia-
tions in rainfall for deeply weathered residual soil slopes in the
humid tropics (e.g., Holcombe et al. 2016, Beesley et al. 2017
and Shepheard et al., 2018a, 2018b). Physically-based models
can also be applied using reliability or stochastic approaches,
in which input parameters are described using probability dis-
tributions rather than discrete values. Sensitivity analysis of
model inputs and outputs may then be performed to identify
dominant slope stability mechanisms for different classes of
slope, system behavioural thresholds and ultimately data ac-
quisition priorities.

Geotechnical correlations and classification systems

Where extensive laboratory testing is not available or afford-
able, it is common practice to use comparisons with other soil
index properties, such as the plasticity index (PI) as a proxy
for friction angle (e.g., Kenney, 1959; Brooker and Ireland,
1965, Ladd et al. 1977 and Sorensen and Okkels, 2013). Such
relationships allow geotechnical engineers to draw additional
information from the routine soil tests carried out as part of
civil engineering design and construction of foundations and
transport infrastructure.

Another source of proxies for soil mechanical properties
can be agricultural soil maps and databases developed at na-
tional and worldwide scales. Agricultural soil data often in-
clude soil indices such as particle size distribution and soil
bulk density and aspects of soil chemistry relating to clay
particles, though not always the PI. Current engineering and
agricultural databases of soil properties are most representa-
tive of North America, Europe and other regions with re-
sources for soil testing. The most landslide-prone areas, typi-
cally encompassing developing countries in sub-tropical and
tropical climatic zones, are less well represented. On the other
hand, more recently, studies based in developing countries are
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becoming available (e.g., Roopnarine et al. 2012, Havaee
et al. 2015). Roopnarine et al. (2012) reported the results of
a study of Trinidadian soils and used soil physical properties
to predict friction angle, reporting that the sand and clay
fractions were the key predictors of residual and peak
friction angle. Havaee et al. (2015) obtained significant posi-
tive correlation between friction angle and gravel content for
Central Iran, and they also observed improvement in predic-
tion models of soil shear strength derived using basic soil
properties and normalized difference vegetation index.

Study aims

This paper investigates the extent to which the gap between
available and required geotechnical data, specifically friction
angle, can be reduced using soil data typically available in a
landslide-prone humid tropical country. The first step was the
collation of non-georeferenced hard copies of soil test results
routinely undertaken by the Government of Saint Lucia, in-
cluding soil classification and indexing, and direct shear test
data. The resulting database is analysed with the following
research objectives:

(i) Based on preliminary work by Shepheard et al. (2018b)
and Vardanega et al. (2018), to investigate whether sig-
nificant soil property correlations can be derived to link
soil friction angle to basic soil parameters for the Saint
Lucia database (hereafter referred to as the 'SL database');

(ii) To distinguish different classes of Saint Lucia’s soils
using both a soil type classification framework and the
well-known Casagrande approach (Casagrande 1947);

(iii) To fit probability distribution curves to the soil proper-
ties, the functions that best fit the available data.

The overall aim is to provide local engineers and landslide
researchers with information to make a priori estimates of key
geotechnical parameters based on available local data instead
of (or in addition to) more generic probability distributions
derived from regional or global datasets.

Materials and methods

The Saint Lucia soil data were made available by the
Government of Saint Lucia materials testing laboratory in
2016 as part of collaboration on the landslide hazard assess-
ment component of aWorld Bank funded public infrastructure
asset risk management project (‘Vision 2030’). The database
contains the results of a variety of historical laboratory tests
carried out on soil samples from across the island. These data
represent a subset of the laboratory’s historic soil test records,
which are currently archived in largely analogue format. Tests
typically included the determination of field moisture content,
particle size distribution and Atterberg limits as well as direct
shear tests on partially-disturbed samples. The direct shear
apparatus (DSA) in Saint Lucia has previously been

Fig. 1 (a) Geological series, and (b) Soil group maps for Saint Lucia (CHaRIM, 2013 see http://charim-geonode.net/people/profile/lucia/?content=
layers; with soil map digitised from the original RRL, 1966, survey). Approximate soil sample locations marked by dots

Minding the geotechnical data gap: appraisal of the variability of key soil parameters for slope stability... 4853

http://charim-geonode.net/people/profile/lucia/?content=layers
http://charim-geonode.net/people/profile/lucia/?content=layers


satisfactorily benchmarked against a modified DSA at the
University of Bristol by repeating the tests reported in Lings
and Dietz (2004), using loosely and densely compacted sam-
ples of Leighton Buzzard sand. The DSA testing procedure for

Saint Lucia was also reviewed as part of the Vision 2030
project and found to have been consistently applied by the
laboratory technicians. The Saint Lucia procedure is to extract
samples from the field and place them into the direct shear

Fig. 2 Scatter plots of the key
parameters in the Saint Lucia
database regressed linearly
against each other (plot adapted
from Shepheard et al. 2018b)
(original source: On the
variability of Effective Friction
Angle of Saint Lucian Soils:
investigations through a
Laboratory database, Shepheard
et al., ce/papers-Online collection
for conference papers in civil
engineering (c) [2018], John
Wiley and Sons)

Fig. 3 ϕ'peak plotted against PI,
see the section "Classification of
soils from Saint Lucia" for soil
classes
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box, without sieving or remoulding in the classical sense,
although some degree of disturbance is inevitable during ex-
traction and transportation.

The first stage of data processing was the creation of a
digital database of the soil test records and the estimation
of the location from which each sample was obtained. Of
the 91 database entries there were 70 samples, taken from
44 sites, for which approximate map co-ordinates could be
determined (assigned). Figure 1 indicates the 44 approxi-
mate sample locations associated with parent material ge-
ologies and the soil groups identified in the 1966 Saint

Lucia soil and land-use survey (Regional Research
Laboratory, 1966). The next stage was to identify classes
of soils that might be expected to show distinct geotechni-
cal properties and that could be distinguished from a com-
bination of field observations, basic (often incomplete) soil
descriptions in the original soil test records, and locations
of the samples with respect to a particular parent material
or soil type. The rationale for this classification is de-
scribed in the next section along with the interpretation of
the Saint Lucia soil data, the 1966 soil survey and local
expert knowledge.

Fig. 4 ϕ'peak plotted against
sample wnat, the section
"Classification of soils from Saint
Lucia for soil classes, (plot
adapted from Shepheard et al.
2018b) (original source: On the
variability of Effective Friction
Angle of Saint Lucian Soils:
investigations through a
Laboratory database, Shepheard
et al., ce/papers-Online collection
for conference papers in civil
engineering (c) [2018], John
Wiley and Sons)

Fig. 5 Comparison of friction angle with varying plasticity index for
Saint Lucian soils (data points shown on plot) compared with the trends
given in Kenney (1959); Ladd et al. (1977) [the trend-line shown in Ladd

et al. 1977 is attributed to NAVDOCKS DM-7]; Brooker and Ireland
(1965) and Sorensen and Okkels (2013) [trends for normally
consolidated (NC) and overconsolidated clays (OC) are shown]
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Results and discussion

Geotechnical correlations

In soil engineering and geotechnics it is common to estimate
engineering parameters that are complex or hard to measure
by using a simpler property, or combination of properties (e.g.,
Kulhaway and Mayne, 1990; Ching and Phoon, 2014a,
2014b; Havaee et al. 2015; Zolfaghari, et al. 2016; Ahmed
(2018), Bayat et al. (2018); Jie et al. (2018); Pham et al.
(2018) and Schjønning and Lamandé, 2018). Preliminary sta-
tistical analysis of this database has been reported in
Shepheard et al. (2018b) and Vardanega et al. (2018).

Figure 2 shows the soil friction angles (and apparent cohe-
sion intercepts) in the database plotted against the liquid limit
(wL), plastic limit (wp), PI, silt-clay fraction (SF) and natural
water content (wnat). As clay fraction (CF) is not routinely
available from the Saint Lucia geotechnical laboratory, SF is
used in place of this more common parameter, which is de-
fined as the percentage of material passing the 0.075 mm
sieve. The effective friction angles are assumed to correspond
to a normal stress range of 37.2 kPa to 112.4 kPa based on
examination of local working practice in Saint Lucia. This is
analogous to reports by Rouse et al. (1986) and Rouse (1990)
of a series of effective friction angles of Dominican soils ob-
tained from reversible shear box testing using a normal stress
range of 41.8 kPa to 229.8 kPa.

In Fig. 2 the number of data-points available for each sub-
correlation (n); the correlation coefficient (r) and the p-value
(p) are shown underneath each sub-plot. The p-value repre-
sents the probability value estimated to test the null hypothesis
that the coefficient of correlation between the variables is zero
(no effect). A low p-value leads to the rejection of the null

hypothesis, suggesting that the tested variable can be a mean-
ingful addition for the prediction of friction angle.
Examination of Fig. 2 shows that the two best correlations
with effective friction angle are the natural water content
(r = −0.60, n = 52) and the plasticity index (r = −0.39, n =
55), where the water content (w) is characterised by
p < 0.001 and the plasticity index (PI) by p < 0.004, making
these two parameters good candidates for a regression model
for predicting the friction angle. Figure 3 shows the regression
of ϕ'peak with PI used to construct Eq. (2). Figure 4 shows the
regression of ϕ'peak with wnat to derive Eq. 3.

ϕ
0
peak ¼ 26:4−0:22PI ð2Þ

Equation 2 was found to have an R2 = 0.15 for n = 55 with
p = 0.004.

ϕ
0
peak ¼ 30:7−0:32wnat ð3Þ

Equation 3 was found to have an R2 = 0.36 for n = 52 with
p < 0.001.

Fig. 6 Soils from the SL database
plotted on the Casagrande chart
(chart design based on
Casagrande 1947 and Howard
1984)

Table 1 Anderson-Darling test statistics for the exponential, normal,
lognormal and Weibull distributions fitted to the SL database, including
unclassified data (strongest fits shown in bold type)

Exponential Normal Lognormal Weibull n

ϕ'peak 13.37 0.93 1.03 0.61 85

c' 5.43 1.78 1.26 0.47 86

PI 7.06 1.00 0.68 0.49 61

wnat 9.59 0.99 0.68 0.79 58
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The reduction of effective friction angle with increasing
plasticity index has been identified previously by many re-
searchers (e.g., Kenney, 1959; Brooker and Ireland, 1965,
Ladd et al. 1977 and Sorensen and Okkels, 2013). The data
are highly scattered for all the correlations of basic soil param-
eters with ϕ'peak and c'. Figure 2 shows only basic soil param-
eters that do not capture the effects of sample disturbance.
Figure 5 illustrates how the regression of ϕ'peak with PI for
the SL database compares with some previously quoted by
Kenney (1959), Ladd et al. (1977), Brooker and Ireland
(1965) and Sorensen and Okkels (2013). The Saint Lucia
trend-line correlates with a lower ϕ'peak than other sources.
This may be due to sample disturbance effects. The line from
Brooker and Ireland (1965) is closest to that for the SL data.

Shepheard et al. (2018b) performed multiple-linear-
regression analysis and found the following relationship to
predict ϕ'peak (to within about ±50%) from basic soil proper-
ties:

ϕ
0
peak ¼ 19:8−0:14wL þ 0:77wP−0:46wnat ð4Þ

Equation 4 was found to have an R2 = 0.56 for n = 47 with
p < 0.001. Vardanega et al. (2018) found that when ϕ'peak was
regressed against liquidity index for the SL database a R2 of
0.43 was obtained.

Classification of soils from Saint Lucia

Classification of soils based on formation and weathering

The natural structure of soil, and thus its geotechnical behav-
iour, is dependent on its parent material and the climate, to-
pography, biological factors (micro-organisms, plants and
animals) and time. The formation process for many fine-
grained soils can be categorised simply as either ‘residual’ or
‘sedimentary’. Sedimentary soils are formed from minerals
and organic materials that have been eroded (or produced by
a volcanic eruption), transported and deposited by air, water or
ice, and become consolidated (Wesley, 1990). Over time, sed-
imentary soil horizons may develop, and bonds can form be-
tween particles so that the material eventually behaves more
like intact rock. For engineers, the stress history of sedimen-
tary soils is recognised to be an important factor in

determining their geotechnical behaviour. Conversely, taking
the definition of The Geological Society Professional
Handbook on Tropical Residual Soils (Fookes, 1997a, p10),
residual soil profiles are formed from the in situ physical and
chemical weathering of rock, leaching and accumulation of
insoluble minerals and movement of fine particles, animal
activity, plant root growth, and incorporation of organic ma-
terials, typically leading to cohesive soils and in some cases
the cementation of the soil (e.g. laterites); essentially the re-
verse of the sedimentary soil formation process (Wesley,
1990). Large areas of the earth are mantled by residual soils,
and deep profiles can form in humid tropical regions, such as
the Caribbean, where readily available moisture and high tem-
peratures lead to aggressive weathering. Both the mineralogy
and structure of the parent material and the degree of
weathering decomposition strongly influence the geotechnical
behaviour of residual soils (cf. Wesley, 2009).

The 1966 soil survey of Saint Lucia (Regional
Research Laboratory, 1966) primarily focuses on soils re-
garding their agricultural usage. It names 53 soil types
based on parent material, geomorphological or topograph-
ical context, estimated particle size distribution, mineral-
ogy, chemistry, nutrient availability, drainage, erodibility
and depth. These soils are grouped into six classes accord-
ing to the prevailing soil science taxonomy of the time
(see legend of Fig. 1b). Although soil science terms such
as ‘latosols’ are not often used by engineers (Wesley,
2009), they do encapsulate information on the soil forma-
tion process, parent material and structure. Thus, the soil
series and classes defined in global and national soil
maps, such as those compiled by FAO-UNESCO and re-
ported by Hartemink et al. (2013), for example, can pro-
vide a starting point for investigating potential soil
strength properties (e.g., Bonilla and Johnson, 2012).
When the 1966 Saint Lucia soil survey information was
combined with field observations, soil sample descrip-
tions and depths, and local geotechnical engineering
knowledge of the soils, it was possible to identify three
distinct soil classes for this study: A) residual soils B)
agglomerate soils and C) ash-derived soils, the second
two classes having been formed through the weathering
of sedimentary materials that were originally deposited by
volcanic activity.

Table 2 Akaike information criterion values modified for small samples for the exponential, normal, lognormal, Weibull and Generalised Extreme
Value distributions fitted to the SL database, including unclassified data (strongest fits shown in bold type)

Exponential Normal Lognormal Weibull Generalised Extreme Value n

ϕ'peak 714 639 643 635 636 85

c' 715 712 697 690 694 86

PI 519 497 484 485 483 61

wnat 529 470 470 467 470 58

Minding the geotechnical data gap: appraisal of the variability of key soil parameters for slope stability... 4857



As well as identifying which of the three classes each soil
sample in the SL database belonged to, a further distinction
was made based on the degree of weathering of the residual
soils (A) and the soil matrix from the agglomerate material
(B). For residual soils the weathered state of rock is often
defined in terms of gradations from rock to soil, numbered
from the fresh parent rock, Grade I, to completely weathered
residual soil, Grade VI (GCO Geotechnical Control Office,
1982; Fookes, 1997a, 1997b; Toll, 2012). In this paper, the
term ‘residual soil’ is used to describe soil samples in the Saint
Lucia dataset that are likely to fall within both weathering
Grade V (completely decomposed rock) and weathering
Grade VI (soil) classes; due to the weathering grade classifi-
cation being based largely upon visual inspection of samples
(GCO Geotechnical Control Office, 1982), and the fact that
the Saint Lucia soil sample descriptions did not explicitly
record the weathering grade. This is also in keeping with
Fookes (1997a, p12) who recognised that using the term ‘soil’
for weathering Grade VI only is “… somewhat restrictive for
engineering purposes as much material normally described as
‘soil’ occurs below this Grade in the weathered profile”.

The three classes of soils, and weathering subsets, identi-
fied for this study are as follows:

& Class A: Tropical residual soils are the classical ‘tropical
residual soils’. They are reddish-brown, clayey soils with
deep weathering profiles, and are particularly associated
with the latosolic soils and andesitic polysols of the 1966
Regional Research Laboratory soil survey. Colluvium de-
rived from these soils is also included as Grade VI mate-
rial, based on field observations. Two subsets are defined,
where ‘A1’ (n = 17) describes the upper layer of
weathering Grades V and VI (soil), and ‘A’ (n = 23) is
the underlying layer of weathered Grade IV material in
which some of the relict rock structure and cementation
is still present (which, in turn is underlain by Grades III, II

and the Grade I parent material). Subset ‘A1’ contains
only data which are known to pertain to the topsoil layer
based on knowledge of the original samples. Subset ‘A’
contains all other ‘A’ data, excluding ‘A1’.

& Class B: Agglomerate soils derived from poorly sorted
pyroclastic deposits. This soil is recognisable by the pres-
ence of boulders and gravels with a weakly cemented (and
sometimes clayey) weathered soil matrix. Two subsets are
defined, where ‘B1’ describes the most weathered layer in
which the soil matrix is fully weathered and few large
particles remain (large particles are manually removed
from samples before direct shear testing), and ‘B’ the un-
derlying less weathered layer. Because the soil matrix of
Soil ‘B’ tested in the DSA is thought to be similar to that of
Soil ‘A’, Soil ‘A’ is included in the statistical analysis of
angle of friction: Subset ‘B1’ contains all data for Soil ‘A’,
‘A1’ and ‘B’ (n = 47). Subset ‘B’ contains all data for Soil
‘A’ (excluding A1) and Soil ‘B’ (n = 30).

& Class C: Volcanic ash soils derived from pumice or
tuff. This class contains only data points described
recognised as a distinctive grey ash (or tuff) soil,
sometimes highly cemented, but otherwise friable
(n = 14). It is typically associated with the southern
geological series (Fig. 1). Wright et al. 1984 give fur-
ther commentary on the soils of Saint Lucia and is part
of the so called ‘Belfond Pumice’.

Of the 91 samples collected, 47 can be classed as residual
soils (‘A1’, ‘A’, ‘B1’ and ‘B’), according to these geological
maps and soil descriptions (see column 2, Table 4).1

1 Some soils in the database were classified as being comprised ofmultiple soil
classes.

Fig. 7 Weibull probability
density function (PDF) fitted to
(a) ϕ'peak, (b) c' for the SL
database
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Classification of soils based on soil index parameters

The data from Saint Lucia (Table 4) have been classified using
the Casagrande chart in Fig. 6. The number of data points
shown in Fig. 6 is below that in the whole database, as for
many samples both a liquid limit and plasticity index are not
available. The residual soils plot close to the A-line.
According to the chart, 32 soils were classified as silts and
24 as clays. All data plot below the U-line.

Statistical Models

Probability density functions can be used to describe the var-
iability of soil parameters and account for parametric uncer-
tainty in reliability-based design, the development of decision-
support tools, and stochastic physics-based modelling. When
data for a particular site or region are limited, a geotechnical
database and derived probability distributions, can provide
useful information. Vardanega and Bolton (2016) suggest that
reliability-based design analysis is best used for assessing the
performance of geo-structures, as opposed to failure analysis.
For instance, analysis of various predictors of undrained shear
strength using a database and probability density function has
been recently reported (Ching and Phoon, 2014a, 2014b).
Pham et al. (2016) and Pham et al. (2017) have used decision
support trees for landslide susceptibility assessments in
Vietnam and India. Chen et al. (2018a, 2018b) used data-
mining approaches to develop landslide susceptibility maps
for the Shangnan County and Shangzhou district in China.
Numerical models can be coupled with probability distribu-
tions when studying the effects of different sources of uncer-
tainty on computed slope factors of safety, and the sensitivity
of the system to different model inputs (e.g., Singh et al.,
2014; Pianosi et al., 2016; Almeida et al., 2017). Recent work
by Almeida et al. (2017) used Classification and Regression

Tree (CART) Analysis (Breiman et al. 1984) in conjunction
with the CHASM model (see Anderson and Howes, 1985;
Wilkinson et al., 2002) to evaluate thresholds for slope failure
due to parameter variation. Almeida et al. (2017) assigned
uniform, normal and lognormal distributions to the
parameter inputs for CHASM simulations in order to
investigate the effects of various parameters on the failure of
a modelled slope in Saint Lucia.2

Lumb (1966) suggested the normal distribution gives a
good fit for the wL and wP (and thus also PI), and the strength
parameters ϕ' and c' for some Hong Kong soils. A review by
Scott et al. (2003) noted that while the normal distribution
may be the “least biased”model, many soil parameters cannot
have negative values – therefore the lognormal distribution
may be more appropriate. Similarly, Lumb (1970) used the
beta distribution to adapt the normal distribution to skewed
data. However, to fit a beta distribution the data must be trans-
formed into the range [0,1], thus increasing the number of
computational steps required.

Goodness of fit tests

The goodness of fit of a probability distribution can be evalu-
ated using the Anderson-Darling test statistic (Anderson and
Darling, 1954), for which a smaller test statistic indicates a
better fit (Minitab 17 Support, 2017). For the parameters in
the SL database, Anderson-Darling tests have been calculated
usingMinitab (Minitab 17 Support, 2017), and the results quot-
ed in Table 1. The ranking of different SL database candidate
distributions can be done by directly comparing the Anderson-
Darling tests statistics because they are all two-parameter dis-
tributions. Note that this comparison excludes the exponential
distribution, which is a one-parameter distribution and shows
relatively poor performance with respect to the other distribu-
tions. Table 1 shows that based on the Anderson and Darling
criterion the Weibull is the preferred model for ϕ'peak, c' and PI.
The lognormal distribution is favoured for wnat.

Another suitable approach is to rank distributions according
to the maximum likelihood (e.g., Faber, 2012). Such ranking
approaches are effective for the cases in which the candidate
family distributions have the same number of parameters. For
the cases in which the number of parameters is different, criteria
employed in the information theory are more suitable as they
“weight” the number of parameters considered allowing a
trade-off between the goodness-of-fit of the model and its sim-
plicity (i.e., the number of parameters). The corrected Akaike
information criterion (AICc) is employed herein to rank the
different fits (Akaike, 1974), to take into account the size of
the sample and also to include a three-parameter distribution –
in this case the Generalised Extreme value (GEV). In general,

2 Almedia et al. (2017) used a normal distribution tomodel the variability ofϕ'
and c'.

Fig. 8 Probability plots for ϕ'peak data considering Normal, Lognormal,
Weibull, Exponential and Generalised Extreme Value (GEV) fits

Minding the geotechnical data gap: appraisal of the variability of key soil parameters for slope stability... 4859



the GEV distribution is the one with maximum likelihood, but
the Akaike criterion accounts for the risk of ‘over-fitting’ the
data (De Risi et al. 2017). The sample of data considered is not
large enough, so the correctedAkaike formulation is considered
as shown in Eq. (5), where k is the number of parameters, L is
the likelihood and n is the size of the data sample considered.

AICC ¼ 2k−2ln Lð Þ þ 2k2 þ 2k
n−k−1

ð5Þ

As previously mentioned, from the comparison of
Anderson-Darling statistics for each candidate distribution, it
appears quite clear that, of the distributions assessed, the two-
parameter Weibull (Eq. 6) (Montgomery et al., 2007, p.80) is
the best-fitted for most of the data and, even when not ranked
as the most suitable, it has test statistics that are relatively close
to those of the best distribution (i.e., normal and lognormal),
see Table 2. The same results are obtained if the fits are ranked
using the corrected AICc: the Weibull always represents the
best fit with the exception of the PI in which the GEV distri-
bution provides a slightly better result.

The probability density function of Weibull is presented in
Eq. 6, where β is a shape factor and δ is a scale factor, (e.g.,
Murthy et al., 2004, p.10).

f xð Þ ¼ β
δ

x
δ

h iβ−1
e−

x=δð Þβ ð6Þ

These fitting parameters make the Weibull distribution
highly adaptable to data. The Weibull model has been used
to model aggregate size (e.g., Nimmo and Perkins, 2002).
Fig. 7 shows that the shape factor β estimated for the
variables are higher than 1.

TheWeibull distribution appears to be a sensible choice of fit
for the soils in the SL database. Like the lognormal distribution,
the Weibull does not allow for values below zero; while the
shape parameter in Eq. 6 allows the skewness to be represented
(Weibull, 1951; Murthy et al., 2004). Figure 8 shows the com-
parison of the probability plots for the effective friction angle
data fitted with normal, lognormal, Weibull, exponential and
GEV. From the plots it is can be seen that the Weibull and
GEV fit the data best. However, the Weibull is preferred, as it

gets a result similar to the GEV, but with just two parameters,
and is more efficient with respect to the size of the database.
Table 3 shows the best fit distributions for the ϕ'peak and c'
parameters when the database is divided by soil type (i.e. A1,
A, B1, B, C and U), and again the Weibull distribution is either
the most favoured or second most favoured based on the
Anderson-Darling test statistics.

Conclusions

A database comprising information on 91 soil samples from
Saint Lucia has been presented and classified according to soil
type and formation. Simple regression analysis has been per-
formed for some soil parameters, and it is seen that the stron-
gest correlation for the friction angle is found with the natural
water content. Additionally, a variety of probability distribu-
tions have been fitted to key parameters from the SL database.
According to two ranking criteria (i.e. Anderson-Darling and
Akaike), the Weibull distribution is preferred for ϕ'peak and c'.

These results are directly applicable for slope stability as-
sessments in Saint Lucia. For local engineers, the database,
soil property correlations and statistical distributions provide a
basis for estimating soil properties in preliminary geotechnical
analyses and for prioritising data acquisition (from basic soil
sampling to potentially costly geotechnical investigations).
For slope stability modellers the identification of appropriate
parameter ranges and probability distributions can inform
parametric studies at specific sites (e.g. Holcombe et al.,
2016) or stochastic physics-based modelling of slope stability
or over wide areas (Almeida et al., 2017), thus accounting for
the effect on slope factor of safety of uncertainties in geotech-
nical and other slope properties.

In broader terms, this paper demonstrates that even in loca-
tions where traditional, well-curated geotechnical data are rela-
tively scarce, it can be possible to compile useful databases of
soil properties. Where statistically significant correlations and
probability distributions fitted, this can provide a basis for geo-
technical analysis and reliability-based design. In this paper,
based on the available data, the Weibull distribution is shown

Table 3 Anderson-Darling results of fitting the normal, lognormal, Weibull and exponential distributions to the ϕ'peak and c' data from the SL database
subdivided by soil class

Distribution Saint Lucia soil type (number of data points)

A1 (n = 17) A (n = 23) B1 (n = 47) B (n = 30) C (n = 14) U (n = 24)

ϕ'peak c' ϕ'peak c' ϕ'peak c' ϕ'peak c' ϕ'peak c' ϕ'peak c'

Normal 0.35 0.69 0.28 0.80 0.31 1.45 0.25 0.73 0.65 0.21 1.15 0.64

Lognormal 1.33 0.49 0.56 0.64 1.72 0.55 0.74 0.78 0.42 0.94 0.34 0.42

Weibull 0.36 0.50 0.27 0.42 0.44 0.41 0.25 0.38 0.60 0.60 0.77 0.28

Exponential 4.16 1.96 3.03 1.99 8.04 2.29 4.54 2.42 2.65 1.28 3.14 2.46
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to be more appropriate for certain geotechnical parameters in
Saint Lucia. This contrasts with the usual assumption by engi-
neers and environmental modellers that the lognormal distribu-
tion is often the best representation for soil parameters (Kulhawy,
2010, Hamm et al., 2006). It is suggested that while the selection
of a lognormal distribution has a strong precedent and is the
default choice for “operational reasons” (Rackwitz, 2000,
p201), if sufficient local soil data can be compiled, it is worth-
while exploring the possibility that another distributionmay give
a better fit.

Acknowledgements The authors acknowledge the support of ‘Landslide
risk assessment of lifeline roads for public asset management and rainfall-
based index insurance’ which formed part of EP/P510920/1 ‘EPSRC
Global Challenges Research Fund Institutional Sponsorship Award
2016 - University of Bristol. The first author acknowledges the support
of a Vacation Bursary in 2016 from the Queen’s School of Engineering,
University of Bristol. The authors thank the reviewers of the paper for
their helpful and insightful comments which have helped improve the
paper. The authors also thank Dr. Raffaele De Risi and Miss Mair
Beesley for their helpful comments and suggestions.

Data Availability Statement: This research has not generated new exper-
imental data. The authors thank the Government of Saint Lucia Ministry
of Infrastructure, Port Services and Transport for supplying the authors
with the Saint Lucia soils data for use in the database analysis.

Appendix

Table 4 Summary of the SL database (where ‘U’ represents the
unclassified samples)

Entry Class ϕ'peak c' PI wL wP wnat SF

1 A, B, B1 24 30.3 37 68 31 27 41.5
2 A, B, B1 30 26.2 26 56 30 15.9 28.7
3 A, B, B1 32 10.0
4 A, B, B1 22 29.6 21 55 34 31 48.8
5 A, B, B1 33 74.5 32 70 38 22.8 68.4
6 A, B, B1 24 33.0 22 57 35 41.6 27.4
7 A, B, B1 12 53.8 36 75 39 40 61.5
8 A, B, B1 22 21.4 16 44 28 27 50.5
9 A, B, B1 29 27.6 21 47 26 18.6 37.1
10 A, B, B1 38 12.4 17 47 30 24.7 7.2
11 A, B, B1 19 31.0 24 49 25 27.8 55
12 A, B, B1 20 42.1 37 77 40 59.7 73.7
13 A, B, B1 15 57.2 34 74 40 56.3 48.8
14 A, B, B1 17 60.0 47 86 39 43.8 73.8
15 A, B, B1 32 16.5 22 57 35 47.7
16 A, B, B1 5 4.8 25.6 59.6 34 52.8 49.1
17 A, B, B1 5 4.8 31 64 33 44.6 37
18 A, B, B1 13 22.8 16 41 25 46 43.9
19 A, B, B1 10 21.4 23 53 30 45 16.6
20 A, B, B1 15 29.0 12 40 28 40.6 17.2
21 A, B, B1 23 24.1
22 A, B, B1 12 26.9
23 A, B, B1 12 16.5 31 64 33 56.4
24 A1, B1 36 5.5
25 A1, B1 29 11.0
26 A1, B1 25 14.0

Table 4 (continued)

Entry Class ϕ'peak c' PI wL wP wnat SF

27 A1, B1 30.9 6.0 20 45 25
28 A1, B1 25 14.0
29 A1, B1 18 20.0
30 A1, B1 22 22.0 24.5 68
31 A1, B1 22 5.0 20.5 34
32 A1, B1 32 5.0 20.5 34
33 A1, B1 30 31.7 20 56 36 35.1 16.6
34 A1, B1 35 6.35 8 52 44
35 A1, B1 25.8 13.8 16 68 52
36 A1, B1 36.7 6.8 40
37 A1, B1 22.7 13.0
38 A1, B1 21.4 10.0
39 A1, B1 28.4 15.0
40 A1, B1 6 13.8 39 62 23 47 77.2
41 B, B1 25 38.0 18 44 26 17.2 17.2
42 B, B1 25 23.0
43 B, B1 14 24.8 23 43 20 29.1 12.6
44 B, B1 22 20.7 12 32 20 23.6 21.7
45 B, B1 22 42.7 36 62 26 57.3
46 B, B1 39 6.9 27 55 28 26.3
47 B1 20 7.0 28 54 26 35 16.4
48 C 26 1.4 4 32 28 22.5 27.5
49 C 22 26.2 10 22.1 8.5
50 C 19 23.4 8 23 5.3
51 C 17 44.1 41 58 17 19.3 42.4
52 C 22 22.1 18 39 21 13.3 18.6
53 C 12 41.4 35 63 28 26.8 18.6
54 C 22 26.9 20 40 20 12.8 33.4
55 C 39 16.5
56 C 37 17.2
57 C 37 14.5
58 C 23 11.0
59 C 46 5.5
60 C 24 24.8
61 C 47 29.6
62 U 25 19.3 8 35 27 30.3 23.5
63 U 24 22.1 18 39 21 28.6 36.9
64 U 15 25.0 29 66 37 58 25
65 U 29 13.8 36 74 38 30.6 21.8
66 U 17 22.1 31 68 37 44.3 36.4
67 U 8 35.2 88 136 48 56.7 94.9
68 U 22 27.6 20 56 36 27 92.7
69 U 16 36.0 29 68 39 54 19
70 U 25 10.0
71 U 10 4.3
72 U 14 23.0 30 63 33 44 20
73 U 48 17.0
74 U 29 22.1 26 61 35 30.7 87.1
75 U 17 29.6 52 89 37 53.3 74.5
76 U 15 64.1 54 90 36 55.5 96.4
77 U 23 14.0 29 63 34 43.5
78 U 16 41.4 14 35 21 18.6 13.4
79 U 20.7 22 42 20 21.8 28.4
80 U 20 15.0 9 46 37 36
81 U 21 27.6 23 60 37 30 47.5
82 U 18 57.9 44 69 25 25.3 36.5
83 U 47 29.6
84 U 50 45.0
85 U 45 5.5
86 U 35 15.0
87 U 27 56 29 10.7 42
88 U 15 47 32 39.2 54.5
89 U 9 48.7 37.5
90 U 15 43.9 39.5
91 U 7 31 51.7 34.8
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