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Abstract (n=248 words, limit=250) 

Factor VII (FVII) is an important component of the coagulation cascade. Few genetic loci regulating 

FVII activity and/or levels have been discovered to date.  

We conducted a meta-analysis of nine genome-wide association studies of plasma FVII levels (seven 

FVII activity and two FVII antigen) among 27,495 participants of European and African ancestry. 

Each study performed ancestry-specific association analyses. Inverse variance weighted meta-analysis 

was performed within each ancestry group and then combined for a trans-ancestry meta-analysis. Our 

primary analysis included the seven studies that measured FVII activity, and a secondary analysis 

included all nine studies. We provided functional genomic validation for newly identified significant 

loci by silencing candidate genes in a human liver cell line (HuH7) using siRNA and then measuring 

F7 mRNA and FVII protein expression. Lastly, we used meta-analysis results to perform Mendelian 

randomization analysis to estimate the causal effect of FVII activity on coronary artery disease, 

ischemic stroke, and venous thromboembolism. 

We identified two novel (REEP3 and JAZF1-AS1) and six known loci associated with FVII activity, 

explaining 19.0% of the variance. Adding FVII antigen data to the meta-analysis did not result in the 

discovery of further loci. Silencing REEP3 in HuH7 cells upregulated FVII, while silencing JAZF1 

downregulated FVII. Mendelian randomization analyses suggest that FVII activity has a positive 

causal effect on the risk of ischemic stroke.  

Variants at REEP3 and JAZF1 contribute to FVII activity by regulating F7 expression levels. FVII 

activity appears to contribute to the etiology of ischemic stroke in the general population. 

  



 

 

Introduction 

As the initiator of the extrinsic coagulation pathway, coagulation factor VII (FVII) plays a central role 

in fibrin formation. FVII and tissue factor activate factor X, which then converts prothrombin to 

thrombin, and in turn converts fibrinogen into fibrin. Plasma levels of FVII are associated with several 

clinical outcomes. For example, FVII deficiency is a rare bleeding disorder associated with 

hemorrhagic complications,1 while elevated levels of FVII have been associated with arterial 

thrombosis and venous thromboembolism (VTE).2-5  

FVII activity and levels have a substantial heritable component, with estimates of the 

heritability of FVII activity ranging from 0.40 to 0.52.6,7 The Cohorts for Heart and Aging Research in 

Genomic Epidemiology (CHARGE) Consortium previously conducted genome-wide association 

studies (GWASs) with data on over 2 million common single nucleotide polymorphisms (SNPs) in 

European-ancestry participants, identifying four new candidate genes for FVII in addition to the 

protein-coding locus, F7.8,9 The lead variants at these known loci explain 7.7% of the variance in 

FVII, implying that further heritability remains to be uncovered.8  

To discover additional genetic variants associated with FVII, we performed an expanded 

GWAS with data on over 10 million common and low-frequency SNPs and insertion-deletions in 

27,495 participants across nine studies, including 3,420 African American participants. Gene 

silencing in a human liver cell line was used to validate the genomic function of significantly 

associated loci. Lastly, we performed Mendelian randomization analyses to estimate the causal effects 

of FVII activity on atherosclerotic and thrombotic diseases by leveraging our GWAS results in 

Mendelian randomization analyses.  

Methods 

Study design and Participating Cohorts 

This study was organized within the CHARGE Consortium Hemostasis Working Group.9 Nine 

studies were included: the Atherosclerosis Risk in Communities (ARIC) study,10 the Cardiovascular 

Health Study (CHS),11 the Coronary Artery Risk Development In young Adults (CARDIA) study,12 

the Genetic Analysis for Idiopathic Thrombophilia 2 (GAIT2) study, the Framingham Heart Study 



 

 

(FHS),13 the LUdwigshafen RIsk and Cardiovascular Health (LURIC) study,14 the Multiple 

Environmental and Genetic Assessment of risk factors for venous thrombosis (MEGA) study, the 

Precocious Coronary Artery DISease (PROCARDIS) study,15 and the Rotterdam Study (RS).16 

Descriptions and ancestry composition of participating cohorts are found in the Supplementary 

Material (Supplementary Methods and Supplementary Table 1). Seven studies (ARIC, CHS, 

CARDIA, GAIT2, LURIC, MEGA, RS) including 23,434 participants measured FVII activity (% or 

IU/ml*100) and two studies (FHS, PROCARDIS) including 4,061 participants measured FVII antigen 

(% or IU/ml*100). 

Genotyping and imputation 

All participating cohorts performed genome-wide genotyping using commercial platforms available 

from Illumina or Affymetrix. Each study performed standard pre-imputation quality control checks 

and imputed autosomal and X-chromosome variants from the 1000 Genomes Project (1000G) Phase I 

version 3 reference panel using available imputation methods.17-20 Genotyping, pre-imputation quality 

control, and imputation procedures are described in Supplementary Table 2.  

Cohort-specific association analyses 

Natural-log-transformed FVII was analyzed within each cohort. Participants with values 3 standard 

deviations above or below the population mean were removed prior to cohort-level analysis and any 

individuals on anticoagulant therapy were also excluded. Ancestry-stratified, study-specific regression 

analyses using an additive genetic model were performed between genome-wide 1000G imputed 

variant dosages and phenotype levels, adjusted for age, sex, ancestry-informative principal 

components, and study-specific variables, such as center. Analyses of the X-chromosome were 

stratified by sex, with variants in males coded as 0/2. The covariates used in each of the studies are 

shown in Supplementary Table 2. Quality control assessment of ancestry-specific results files from 

each study was conducted prior to meta-analysis using the EasyQC software package.21 Quality 

control procedures are further described in the Supplementary Methods. 

Trans-ancestry meta-analysis 



 

 

The discovery trans-ancestry meta-analysis was conducted in two steps. First, METAL was used to 

perform ancestry-specific inverse-variance weighted meta-analysis.22 We then used the same method 

to meta-analyze the ancestry-specific results. As suggested by Huang et al.23, we adopted a genome-

wide significance threshold of P-value < 2.5×10-8. Compared with the traditional genome-wide 

significance threshold of 5×10-8, this stricter threshold additionally corrects for the low-frequency 

variants that were not included in the initial generation of GWASs.24 Finally, a locus was defined as 

+/- 1Mb from the variant with the lowest P-value. 

In order to reduce heterogeneity the primary trans-ancestry meta-analysis included the seven 

studies that measured FVII activity, and not the two studies (FHS and PROCARDIS) that measured 

FVII antigen. In a secondary meta-analysis we added results from the two studies that measured FVII 

antigen.  

Post-discovery analyses 

Newly identified loci were validated and characterized by using siRNA to silence candidate genes in 

human liver HuH7 cells, and measuring F7 mRNA levels and release of FVII protein levels. These 

functional validation steps are described in detail in the Supplementary Methods. 

To identify additional independent signals at the associated loci, an approximate method 

implemented in GCTA was used for conditional and joint analysis using meta-analysis summary 

statistics from the trans-ancestry meta-analysis of FVII activity.25,26 Further details on the conditional 

analysis are provided in the Supplementary Methods. 

Mendelian randomization analyses were used to investigate the causal effect of FVII activity 

on coronary artery disease (CAD), ischemic stroke (IS), and VTE. We used two-sample methods that 

rely on summary statistics (beta coefficients with standard errors from GWASs).27 We obtained 

summary statistics for CAD from the CARDIoGRAMplusC4D consortium 

(http://www.cardiogramplusc4d.org/data-downloads/),28 summary statistics for IS from the 

MEGASTROKE consortium,29 and summary statistics for VTE from the INVENT consortium.30 The 

methods used to perform Mendelian randomization can be found in the Supplementary Methods. In 

http://www.cardiogramplusc4d.org/data-downloads/


 

 

brief, we used four techniques to obtain causal effect estimates based on the lead variants at the 

genome-wide significant loci: 1) inverse-variance weighted meta-analysis (primary analysis), 2) 

Egger regression,31 and 3) weighted median estimator,32 4) restriction of the analysis to the lead 

variant at the F7 locus. Given that the lead variant at the F7 locus is located in the gene that encodes 

the FVII protein, it may be less likely to influence clinical outcomes through pathways that do not 

involve FVII. 

Results 

Baseline characteristics 

In total, 20,014 European-ancestry and 3,420 African-ancestry subjects from seven studies were 

included in the meta-analysis of FVII activity and an additional 4,061 European-ancestry subjects 

were included in the combined meta-analysis of FVII activity and antigen. Baseline characteristics are 

shown in Supplementary Table 1. The mean age across the studies was 57.2 years, and 52.2% of the 

participants were women.  

Trans-ancestry meta-analysis 

After quality control, 10,044,948 variants across the autosomal and X chromosomes were examined 

in the trans-ancestry meta-analysis of FVII activity. Of these variants 9,316,598 were SNPs and 

728,350 were insertions-deletions. The genomic inflation factors that were used to apply genomic 

control correction to each of the included studies were all < 1.05 and are shown in Supplementary 

Table 2. A QQ plot and Manhattan plot are shown in Supplementary Figures 1 and 2, respectively.  

Genome-wide significant results are presented in Table 1. Briefly, 1,637 variants located in 

eight loci exceeded the genome-wide significance level of P-value < 2.5×10-8. Among the associated 

regions, loci containing F7, PROC, GCKR, MS4A6A, ADH4, and TSKU represented replications of 

previously described loci (Supplementary Figures 3-8),8 whereas two loci were novel: REEP3 and 

JAZF1-AS1. The most significant variant at the REEP3 locus was an intronic variant, rs10761784 

(Beta = 0.013; P-value = 6.7×10-10) in REEP3 (Figure 1). At the second novel locus the lead variant, 

rs498475, was located within the noncoding RNA JAZF1-AS1 (Beta = 0.012; P-value = 1.5×10-8; 



 

 

Figure 2). Lead variants at PROCR and GCKR were identical to previously reported lead variants, 

whereas the lead variants at the remaining known loci differed from previously reported lead variants 

(Supplementary Table 3). 

No additional genome-wide significant loci emerged when adding data from two additional 

studies in the combined analysis of FVII activity and antigen, but variants at the TSKU and JAZF1-

AS1 loci were no longer genome-wide significant (Supplementary Table 4). A QQ plot and 

Manhattan plot for the combined analysis of FVII activity and antigen are shown in Supplementary 

Figures 9 and 10 respectively. The lead variants at TSKU and JAZF1-AS1 had opposing effect 

directions on FVII activity and antigen, but lead variants at the remaining six loci had relatively 

similar effects on FVII activity and antigen (Supplementary Figure 11). The variance in FVII 

activity explained by the lead variants at the eight significant loci was 17.6%. The variance explained 

by each of the lead variants individually is shown in Table 1.  

Conditional analysis 

Conditional analysis identified four independent signals at the F7 locus as well as two independent 

signals at the PROCR locus. The conditional analysis of the trans-ancestry meta-analysis of FVII 

activity is shown in Table 2. Among the independently associated variants at the F7 locus was a low-

frequency variant (minor allele frequency = 0.02) with the second largest effect size discovered by 

GWASs thus far (joint beta = 0.08; joint P-value = 8.7×10-20). By considering these independent 

signals, the variance in FVII activity explained by the F7 locus increased from 13.9% to 15.2%, while 

the variance explained by the PROCR locus increased from 1.6 to 1.8%. The total variance explained 

therefore increased from 17.6% to 19.0%. 

Functional validation of novel loci 

The s47939 and s37271 silencing siRNAs both suppressed expression of REEP3 mRNA by 88% 

compared with the scramble siRNA (negative control). Experiments were repeated three times with 

consistent results, showing that silencing of REEP3 resulted in upregulation of F7 mRNA (P-value = 



 

 

0.0001 for s47939; P-value > 0.05 for s37271; Figure 3) and a corresponding increase in FVII protein 

levels (P-value = 9.1×10-5 for s47939; P-value = 0.0003 for s37271; Figure 3).  

At the JAZF1-AS1 locus we targeted the JAZF1 gene for silencing rather than the antisense 

noncoding RNA in which the lead variant was located. The s225897 silencer reduced expression of 

JAZF1 mRNA by 68%, whereas the s48121 silencer reduced JAZF1 mRNA expression by 75%. As 

shown in Figure 3, silencing of JAZF1 resulted in downregulation F7 mRNA (P-value = 0.02 for 

s225897; P-value < 2×10-6 for s48121) and a corresponding decrease in FVII protein expression: 

silencing experiments showed no effect on FVII protein in the media of cells silenced with s225897, 

but a significant decrease upon silencing with s48121 (P-value = 1.1×10-6). 

Mendelian randomization 

Figure 4 contains forest plots showing causal effect estimates of FVII activity on A) CAD, B) IS, and 

C) VTE. Causal effect estimates are given as odds ratios (ORs) per 1 unit increase in natural-log-

transformed FVII activity (% or IU/ml*100). Effect estimates were obtained from single variants 

associated with FVII activity and meta-analyzed to produce combined causal effect estimates. 

Heterogeneity was detected among the causal effect estimates (Pheterogeneity<0.05), and the variant at the 

PROCR locus, rs867186, was removed from all analyses due to outlying causal effect estimates for 

CAD, IS, and VTE. No further heterogeneity was detected after excluding this variant 

(Pheterogeneity>0.05). 

A significant causal effect of FVII activity on IS was detected (ORIVW = 1.37; 95% 

confidence interval (CI95) = 1.14-1.65). Given that the SD of natural-log-transformed FVII activity 

ranged from 0.18 to 0.26 across our studies, the causal effect estimate corresponds to an approximate 

OR of 1.06 to 1.09 per SD change in natural-log-transformed FVII activity. Results were consistent 

across sensitivity analyses, including the use of Egger regression, the weighted median estimator, and 

restriction of the analysis to the rs561241 variant at the F7 locus, indicating that pleiotropy is unlikely 

to have biased the causal estimate. Causal effect estimates for CAD (ORIVW = 1.14; CI95 = 0.97-1.34) 

and VTE (ORIVW = 1.22; CI95 = 0.80-1.85) were more modest and failed to reach statistical 



 

 

significance. Nevertheless, the magnitude of these effect estimates were consistent across sensitivity 

analyses, including when the rs561241 variant at the F7 locus was examined in isolation (ORCAD = 

1.14; CI95 = 0.96-1.36; ORVTE = 1.31; CI95 = 0.84-2.07). 

Discussion 

In this GWAS of circulating FVII levels, we identified the six previously known FVII loci as well as 

two new loci: REEP3 and JAZF1-AS1. In total, the eight loci associated with FVII activity explained 

19.0% of the variance. For each new discovery, we showed functional impact in vitro of candidate 

genes on F7 mRNA and FVI protein expression: REEP3 gene silencing in liver cells increased F7 

mRNA and FVII protein expression, whereas JAZF1 gene silencing decreased F7 mRNA and FVII 

protein expression. 

REEP3 encodes Receptor Accessory Protein 3. Although this protein has not been widely 

studied, there is evidence that an absence of this protein leads to defects in mitosis and a proliferation 

of intranuclear membranes derived from the nuclear envelope.33 The REEP gene family may also be 

involved in shaping the membrane of the endoplasmic reticulum and the trafficking of G-protein 

coupled receptors.34 Given that FVII is processed in the endoplasmic reticulum, this may explain the 

association with FVII levels.35 The locus containing REEP3 has been previously associated to several 

other coagulation phenotypes, namely circulating fibrinogen levels,36,37 mean platelet volume,38,39
  and 

platelet aggregation,40 as well as to liver enzyme concentrations.41,42 For many of these phenotypes, 

the gene that was reported is not REEP3 but JMJD1C, with missense variants localized in the 

JMJD1C being associated with mean platelet volume.38 Functional studies in zebrafish indicate that 

JMJD1C has a major role in hematopoiesis.43 Although we did not examine the consequences of 

JMJD1C silencing on F7 expression and FVII release, our experiments implicate REEP3 as a causal 

gene for FVII. These results are consistent with tissue-specific pleiotropic effects at this locus, with 

JMJD1C being involved in hematopoiesis and REEP3 being of functional relevance in the liver, 

although further research is needed to confirm this hypothesis. 

JAZF1-AS1 is a non-coding RNA that may regulate the adjacent JAZF1 gene, which encodes 

a transcriptional repressor. Variants at the JAZF1-AS1 locus were associated with FVII activity, but 



 

 

their effect on FVII was attenuated when we included studies that measured FVII antigen. A possible 

explanation is that variants at the JAZF1-AS1 loci affect FVII activity independent of circulating FVII 

protein levels. However, silencing of JAZF1 in liver cells resulted in lower F7 mRNA and FVII 

protein expression, suggesting that the mechanism underlying the genetic association is likely to 

involve FVII levels.  

Apart from REEP3 and JAZF1-AS1 we identified six known loci: F7, PROCR, GCKR, 

MS4A6A, ADH4, and TSKU. The results of this study may aid in the identification of causal variants 

at these loci. For example, lead variants in PROCR and GCKR were both missense variants leading to 

amino acid substitutions (Ser219Gly in PROCR and Pro446Leu in GCKR). These variants were also 

the lead variants in their respective loci in the previous GWAS of FVII,8 and have been associated 

with other hemostatic phenotypes.44,45 In contrast, the lead variants that we identified at the F7, 

MS4A6A, ADH4, and TSKU loci differ from those published in the previous GWAS and may be in 

higher linkage disequilibrium with the true causal variant.8 

 Using the genetic association results generated in this study, we performed Mendelian 

randomization analyses to estimate the causal effect of FVII activity on CAD, IS, and VTE. These 

analyses suggest that variation in FVII activity in the general population influences the risk of IS. 

These results warrant further etiological research on the role of FVII in IS, as well as translational 

research on potential clinical applications involving FVII. Potential clinical applications that should 

be investigated include the reduction of FVII activity through lifestyle or pharmaceutical interventions 

for the prevention of IS, as well as the restriction of off-label use of recombinant FVII given the 

increased risk of IS that this may result in.46-48  

Our results do not exclude the possibility of additional causal effects of FVII activity on CAD 

and VTE. In fact, when using the rs561241 variant at the F7 locus in isolation as an instrumental 

variable, the estimate of the causal effect on VTE was equal to the estimate of the effect on IS. Lower 

statistical power for the Mendelian randomization analysis of VTE may explain the lack of a 

statistically significant causal effect of FVII activity on this outcome: the GWAS from which we 

obtained the effect of the variants on IS was comprised of 60,341 cases and 454,450 controls,29 while 



 

 

the GWAS on VTE consisted of 7,507 cases and 52,632 controls.30 Our results are thus consistent 

with causal effects of FVII activity on CAD and VTE, albeit more modest effects than on IS. Further 

research using larger sample sizes will be necessary to detect or rule out these effects. 

Our GWAS included 27,495 participants, providing a 78% increased sample size when 

compared with the largest previous GWAS of FVII levels.8 Other strengths include the functional 

validation of newly identified loci by silencing candidate genes in human liver cell lines, as well as 

the use of Mendelian randomization in leveraging our newly generated data for insights into disease 

etiology. However, these approaches also have limitations. In the gene silencing experiments, we 

silenced a single gene at each locus. Because an effect of FVII levels was observed in both cases, we 

did not pursue further experiments involving other genes at these loci. As such we cannot exclude the 

possibility that other genes at these loci also influence FVII. In turn, the validity of Mendelian 

randomization can be threatened by the presence of pleiotropic effects among FVII variants. In order 

to minimize the impact of pleiotropy on our results, we excluded variants with heterogeneous effects 

on disease outcomes from the analyses. This lead to the removal of the variant at the PROCR locus 

from all analyses. Furthermore, we performed three alternative Mendelian randomization approaches, 

Egger regression, weighted median estimation, and restricting the analysis to the rs561241 variant at 

the F7 locus, that are, to some degree, robust to pleiotropy.31,32 The estimate of the causal effect of 

FVII activity on IS was consistent across these sensitivity analyses, as were the estimates of the causal 

effects of FVII activity on CAD and VTE.  

To conclude, this study identifies two novel loci associated with FVII activity and functional 

studies suggest that REEP3 and JAZF1 are the causal genes within these loci. Mendelian 

randomization analyses indicate that FVII activity is causally involved in the development of IS and 

possibly CAD and VTE, with high FVII activity being associated with an increased risk of these 

clinical outcomes.  
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Tables 

Table 1: Lead variants at additional loci associated with FVII activity when excluding studies that measured FVII antigen from the trans-ancestry meta-

analysis.  

Variant 

rsID 

Chr:Pos Alleles Freq β Standard 

Error 

P-value Variance 

Explained  

Closest 

Gene 

Annotation Status 

rs569557 13:113769917 G/A 0.89 0.157 0.003 6.4×10-600 13.9% F7 Intronic Known 

rs867186 20:33764554 G/A 0.10 0.057 0.003 3.3×10-64 1.6% PROCR Missense Known 

rs1260326 2:27730940 T/C 0.39 0.024 0.002 2.3×10-30 0.7% GCKR Missense Known 

rs7935829 11:59942815 G/A 0.39 0.018 0.002 6.3×10-18 0.4% MS4A6A Intronic Known 

rs6532796 4:100042242 G/A 0.70 0.016 0.002 2.6×10-13 0.3% ADH4 Downstream Known 

rs1149616  11:76498369  T/C 0.17 0.017 0.003 1.7×10-10 0.2% TSKU Intronic Known 

rs10761784 10:65308750 A/T 0.53 0.013 0.002 6.7×10-10 0.2% REEP3 Intronic Novel 

rs498475  7:28256240  G/A 0.42 0.012 0.002 1.5×10-8 0.2% JAZF1-AS1 ncRNA Novel 



 

 

The Chr:Pos column shows the chromosome and position (Build 37). The Alleles column shows the FVII-increasing allele / FVII-decreasing allele. The Freq 

column shows the frequency of the FVII-increasing allele. The variance explained shown in this table was calculated using the sample size weighted mean 

variance of log-transformed FVII and the betas and frequencies from the trans-ancestry meta-analysis summary statistics. 

  



 

 

Table 2: Conditional analysis results for FVII activity using the trans-ancestry meta-analysis results. 

rsID Chr:Pos Alleles Freq β P-value Joint β Joint P-value Variance Explained 

F7         

rs117989138 13:113697671 A/G 0.02 0.086 3.6×10-22 0.081 8.7×10-20 0.6% 

rs36086577 13:113728498 C/A 0.87 0.035 2.2×10-19 0.031 7.5×10-15 0.6% 

rs71446935 13:113734376 A/G 0.31 0.035 5.5×10-38 0.032 5.1×10-31 1.2% 

rs1046205 13:113752057 A/T 0.79 0.121 3.9×10-573 0.121 <1.0×10-320 12.1% 

         

PROCR         

rs6119569 20:33672371 G/A 0.78 0.022 8.8×10-17 0.019 3.9×10-13 0.3% 

rs867186 20:33764554 G/A 0.10 0.057 3.3×10-64 0.055 8.1×10-59 1.4% 

The Chr:Pos column shows the chromosome and position (Build 37). The Alleles column shows the FVII-increasing allele. The Freq column shows the 

frequency of the FVII-increasing allele. The variance explained shown in this table was calculated using the sample size weighted mean variance of log-

transformed FVII and the betas and frequencies from the trans-ancestry meta-analysis summary statistics. The β and P-value columns are based on the 

association of each variant in isolation, while the Joint β and Joint P-value columns are based on the association of each variant test conditioned on the other 

variants. The Variance Explained column is based on the joint analysis.   



 

 

Figures 

Figure 1: Regional FVII association plot of the REEP3 locus in the trans-ancestry meta-analysis of 

FVII activity. 

  



 

 

Figure 2: Regional association plot for the JAZF1 locus in the trans-ancestry meta-analysis of FVII 

activity. 

 

  



 

 

Figure 3: a) F7 RNA expression after silencing REEP3, b) FVII protein levels in cell media after 

silencing REEP3, c) F7 RNA expression after silencing JAZF1, d) FVII protein levels in cell media 

after silencing JAZF1. 

 

  

  

 

 

  



 

 

Figure 4: Causal effect estimates of FVII activity on coronary artery disease (CAD), ischemic stroke 

(IS), and venous thromboembolism (VTE) using Mendelian randomization. 



 

 

 

 

 



 

 

Causal effect estimates are shown as odds ratios (OR) amd 95% confidential intervals per every 

higher standard deviation change in FVII activity. Causal estimates based on single variant 

instrumental variables (IVs) are shown, as well as causal estimates based on the combination of these 

variants using inverse variance weighted (IVW) meta-analysis, Egger regression, and weighted 

median estimation. 

 

 


