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ARTICLE OPEN

Oxidative stress in the oral cavity is driven by individual-
specific bacterial communities
Mária Džunková1,2,3,4, Daniel Martinez-Martinez1,2,3, Roman Gardlík5, Michal Behuliak5,6, Katarína Janšáková5,7, Nuria Jiménez1,2,3,
Jorge F. Vázquez-Castellanos1,2, Jose Manuel Martí3, Giuseppe D’Auria2,8, H. M. H. N. Bandara9, Amparo Latorre1,2,3, Peter Celec5 and
Andrés Moya 1,2,3

The term “bacterial dysbiosis” is being used quite extensively in metagenomic studies, however, the identification of harmful
bacteria often fails due to large overlap between the bacterial species found in healthy volunteers and patients. We hypothesized
that the pathogenic oral bacteria are individual-specific and they correlate with oxidative stress markers in saliva which reflect the
inflammatory processes in the oral cavity. Temporally direct and lagged correlations between the markers and bacterial taxa were
computed individually for 26 volunteers who provided saliva samples during one month (21.2 ± 2.7 samples/volunteer, 551 samples
in total). The volunteers’ microbiomes differed significantly by their composition and also by their degree of microbiome temporal
variability and oxidative stress markers fluctuation. The results showed that each of the marker-taxa pairs can have negative
correlations in some volunteers while positive in others. Streptococcus mutans, which used to be associated with caries before the
metagenomics era, had the most prominent correlations with the oxidative stress markers, however, these correlations were not
confirmed in all volunteers. The importance of longitudinal samples collections in correlation studies was underlined by simulation
of single sample collections in 1000 different combinations which produced contradictory results. In conclusion, the distinct intra-
individual correlation patterns suggest that different bacterial consortia might be involved in the oxidative stress induction in each
human subject. In the future, decreasing cost of DNA sequencing will allow to analyze multiple samples from each patient, which
might help to explore potential diagnostic applications and understand pathogenesis of microbiome-associated oral diseases.

npj Biofilms and Microbiomes            (2018) 4:29 ; doi:10.1038/s41522-018-0072-3

INTRODUCTION
Recent metagenomic studies showed that the oral cavities
affected by periodontitis, gingivitis, halitosis or dental caries, are
colonized by a variety of microbial species, including those found
in healthy oral microbiome.1–3 It suggests that the oral diseases
are not caused by an overgrowth of a single pathogen as
previously thought, such as Streptococcus mutans in dental caries,4

rather, they are caused by dysbiotic composition of the oral
microbiome which has been revealed by comparison with healthy
individuals.5 However, despite rigorous metagenomic sequencing
efforts, there is no consensus about specific pathogens which
cause these oral diseases.
When pathogens are being engulfed by human leukocytes,

reactive oxygen species (ROS) are formed.6–8 Inflammation-related
production of ROS might result in oxidative stress, which triggers
structural and functional changes of proteins, lipids, and nucleic
acids.9 The byproducts of these reactions are present in saliva and
can be reliably quantified as marker of oxidative stress.10 The
dynamic interactions between the immune system and the
composition of the microbiome in an apparently healthy oral
cavity is reflected in temporal variability of the oxidative stress

marker levels in otherwise healthy subjects.11–13 The bacterial taxa
likely differ in their ability to resist oxidative stress induced by
immune cells. Even the presence of genes for antioxidant enzymes
in bacterial genomes can be considered as an important virulence
factor.14,15 However, responses to oxidative stress have been
studied by a systematic approach only in E. coli so far16 and there
are no detailed studies about consequences of the oxidative stress
on oral microbiome.
The most commonly evaluated markers of oxidative stress

reactions are associated with lipid peroxidation, protein oxidation,
and the antioxidant status. As these markers are involved in
different biochemical pathways in human tissues, they are likely to
be independent and do not have to correlate necessarily with
each other.17,18 For interpretation of the oxidative stress markers
values, physiological role of ROS as signaling molecules should
also be taken into account.19 Temporal variability of oxidative
stress markers can be the consequence of unstable signaling that
may or may not be related to the variability of the oral
microbiome composition.
Although it is widely accepted that activation of immune cells

during inflammation leads to increased production of ROS and
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oxidative stress, the interaction is far more complex. The degree of
alteration of lipids and proteins by oxidative damage is dependent
on the ability of tissues/cells to prevent this damage (antioxidative
status or capacity).20 Neutrophils and macrophages are able to
actively produce ROS to combat pathogens, while on the other
hand, the microorganisms can also protect themselves with
antioxidant enzymes.14 Some oral bacteria, such as Enterococci,
are capable of endogenous production of ROS which makes
interpretation of oxidative stress markers in saliva even more
difficult.21

Several studies have reported that saliva from patients with
periodontitis and/or dental caries exhibited elevated levels of
oxidative stress markers and proteomic inflammatory markers.22–
26 Thus, it suggests that focusing on the immune-, or host
response related- markers is likely to result in precise identification
of potential pathogenic bacterial species associated with oral
diseases. It has been demonstrated that the levels of the oxidative
stress markers rise temporally after consumption of meals
containing ROS stimulating bacterial strains.27 The composition
of the oral microbiome also shows intra-individual temporal
variations.28 Herein, we hypothesized that the temporal variation
of oxidative stress markers levels in saliva can correlate with the
temporal variations of oral microbiota that are likely to stimulate
ROS production. Hence, in the present study daily taxonomic
composition of the oral microbiome and oxidative stress markers
for 26 volunteers were evaluated for a period of one month.
Subsequently, bacteria that might trigger inflammation in each
volunteer were identified on individual-specific level.

RESULTS
Volunteers’ microbiome had individual-specific composition
Twenty-six volunteers (13 women and 13 men) of age between 21
and 28 years participated in this study. On average 21 non-
stimulated saliva samples (2 ml) were collected from each
participant during the period of 30 days. DNA extracted from
the saliva samples was amplified for the 16S ribosomal gene and
sequenced. In total, 27,072,746 sequences from 551 samples
collected from 26 volunteers have passed the quality filters and
have been clustered into 18,146 operational taxonomic units
(OTU). The final OTU names used in this study consisted from the
assigned genus of the reference sequence and the number of the
cluster.
The microbiome of all volunteers was dominated by the

Streptococcus-OTU0 (highest similarity with Streptococcus para-
sanguinis) forming on average 37.5 ± 10.1% of the whole
microbiome (Supplementary Figure S1) followed by taxon
Rothia-OTU1 (20.9 ± 11.3%). The ratios of these two most
dominant species differed significantly (p < 0.001, t-test) in 15%
of pairwise comparisons among volunteers. For example, the
proportion of Rothia-OTU1 could be as high as 35.3 ± 10.5% in
volunteer F06 or as low as 5.4 ± 5.2% in volunteer M12. The overall
microbiome composition of the volunteers differed significantly
due to the less prevalent (average proportion 0.1–5.4%)
individual-specific taxa (p < 0.001, “envfit” test, Supplementary
Figure S2). Some volunteers (e.g., F18, F20, and M20) were
characterized by high proportions of Granulicatella-OTU2 (8.7 ±
4.1%) and Atopobium-OTU3 (6.9 ± 3.7%), while other volunteers
(e.g., M12, M21) had high proportions of Gemella-OTU6 (4.1 ±
3.1%). The volunteer F12 had the highest proportion of
Saccharibacteria-OTU4 (8.9 ± 4.5%). Some volunteers did not
possess any extreme proportions of the most detected prevalent
OTUs (central part of the CCA plot in the Supplementary Figure S2).
The indexes describing microbiome diversity, Shannon index
(2.5 ± 0.4) and the evenness index (0.5 ± 0.1), also differed
significantly (p < 0.001, t-test) in 11% of all pairwise volunteers
combinations (Supplementary Figure S3).

Before commencing with the following analyses which may
require larger computational memory, we used Procrust test to
check whether reduction of the OTUs list would provide the same
results as including all 18,146 detected OTUs (many of them may
actually include OTUs corresponding to sequencing errors). The
test showed that OTUs with proportions of above 0.1% (50 OTUs)
result in the same ordination of samples as all detected OTUs
(Supplementary Figure S4).

Volunteers differed by degree of microbiome temporal variability
Changes of the OTUs relative abundances over time was assessed
by Taylor’s equation σ= V × μβ, where V and β are the parameters
of the model, and σ and μ are the dispersion (in standard
deviation) and the mean of the measurements. The variability
parameter V was the direct estimator of the amplitude of
fluctuations and therefore of the general stability, while the β
parameter, the scaling index, described the statistical behavior of
the ecosystem, always between 0.5 (behaving as a Poisson
process) and 1 (behaving as an exponential distribution).29

All the values of the Taylor’s parameter β were between 0.5 and
1 which means that the most prevalent OTUs in all samples
showed less relative variability over time than the less abundant
OTUs (Fig. 1). The Taylor’s variability parameter V (average 0.27 ±
0.06) significantly varied in 26% of pairwise comparisons among
volunteers (p < 0.001, t-test). The volunteer F11 had the least
stable microbiome of our cohort (V= 0.47 ± 0.09), while the
microbiome of F18 was the most stable (V= 0.20 ± 0.03).
In addition, we calculated the difference variability (DV) and

rank variability (RV) to detect time-points with highest variability
on intra-individual level (Supplementary Figure S5). DV expresses
an absolute difference between every OTU’s rank (proportion) at a
specific time point compared to the previous time point. The DV
was generally higher in the least stable volunteer F11 when
compared to the most stable volunteer F18 (Fig. 2). This is
expected because there are more rank differences in subjects with
higher Taylor’s parameter V (F11) than in subjects with lower
fluctuations (F18). In general, DV and RV are good estimators of
community shifts on intra-individual level. For example, the
volunteer F04 had a short community composition shift during
the days 20–24, but later on the day 25 came back to the previous
bacterial composition (Supplementary Figure S5).

Fig. 1 Temporal variability of the microbiome. Taylor’s Parameter
space for the 26 volunteers of the study. V represents the y-intercept
of the linear fit, and β to the slope of the line. Each individual has
been placed in this plot according to its V and β value, where the
error bars correspond to the standard error of the mean
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The most prevalent OTUs Rothia-OTU1 and Streptococcus-OTU0
had the rank stability index (RSI) over 96% in both volunteers F11
and F18 (Fig. 2) which indicated that the most prevalent OTUs
were very stable in the volunteer with the most stable microbiome
as well as in the volunteer with the least stable microbiome. The
microbiome temporal variability of the volunteers F11 and F18
differed due to the changing proportions of the less prevalent
OTUs. The average RSI of all 50 OTUs in volunteers F11 (the least
stable) and F18 (the most stable) were 52.3 ± 20.1% and 67.7 ±
19.2%, respectively. The volunteer F11 had 26 OTUs with RSI
below 50%, while the volunteer F18 had only seven such highly

unstable OTUs. When the OTUs were sorted according to their
prevalence, the last OTU with an RSI above 70% in the least stable
volunteer F11 was placed in the 16th position, while in the most
stable volunteer F18 it was placed in the 49th position (Fig. 2). The
OTUs found in lower proportions were in general less stable than
the highly abundant OTUs (Supplementary Figure S5). However,
the most prevalent OTUs were not always the most stable. For
example, Saccharibacteria-OTU15 and Rothia-OTU15862 were in
high proportion in F11 and F18, but it possessed a low RSI in the
both volunteers (Fig. 2).

Fig. 2 Rank matrix for the 50 most abundant OTUs for F11 and F18. Rank matrix corresponding to the most and less time-variable volunteers,
F11 and F18 respectively. Both plots represent the 50 most abundant OTUs, and heat-map colors corresponds to the abundance of each OTU
at each time, ranging from light-yellow for rank 1, to black, representing very low ranks. Alongside, the Rank Stability Index (RSI) is colored by
the percentage of rank stability, following the same color-code as before. Below, both Rank and Difference Variability (DV) is plotted in red and
blue colors for each time point
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Large inter-individual and intra-individual difference of the
oxidative stress markers levels
Oxidative stress can be measured by estimating oxidative damage
to lipids (lipid peroxidation) and proteins (protein oxidation), or by
quantifying the capacity to resist oxidative damage (antioxidant
capacity).30 The lipid peroxidation was quantified by measuring
thiobarbituric acid reacting substances (TBARS, average 0.10 ±
0.18 μmol/l, Supplementary Figure S6). Advanced glycation end
products (AGEs, 0.27 ± 0.19 g/l) and advanced oxidation protein
products (AOPP, 37.6 ± 21.8 μmol/l) were herein quantified as
carbonyl and oxidative stress markers respectively, to express
oxidative protein damage. The capacity to resist oxidative damage
was measured by total antioxidant capacity (TAC, 578.6 ±
149.4 μmol/l) and ferric reducing ability of saliva (FRAS, 396.7 ±
183.6 μmol/l). The values of the five markers possessed intra-
individual temporal variations, and they also differed significantly
(p < 0.001, t-test) among volunteers—in 44–73% of volunteers
pairwise combinations (Supplementary Figure S6).
In addition, the five oxidative stress markers were tested for

their pairwise correlations on intra-individual level. FRAS corre-
lated positively with TAC in 14 out of the 26 volunteers, but the
majority of the salivary markers pairwise combinations resulted in
non-uniform correlation patterns on intra-individual level among
the 26 volunteers (Fig. 3). Correlations lagged by 1–3 days
accounted for 36.7% of all significant correlations detected, while
the remaining 63.3% were temporally direct correlations.

Correlations between bacterial taxa and oxidative stress markers
are individual-specific
As much as 94% of the 250 marker-OTU pairs (5 markers × 50
most prevalent OTUs) had a significant correlation on intra-
individual level in some of the 26 volunteers (Fig. 4, details in the
Supplementary Figure S7). These correlations were either tempo-
rally direct or lagged by 1–3 days. The remaining 6% of the
marker-OTU pairs did not show any significant correlation in any
of the volunteers. The possible delay in the correlations between
our variables was measured for all possible combinations, and the
significant results were only found on a single lagged day as Fig. 3
shows.
The results of the Pearson’s correlations showed that a

particular marker-OTU pair can have positive correlations in some
volunteers, while negative correlations in others (Fig. 4, details in
the Supplementary Figure S7). This result is consistent with
Spearman correlation coefficients, a non-parametric correlation
(Supplementary Figure S7). The volunteers with contradictory
correlation results did not possess any extreme values of a given
marker-OTU pair.
Importantly, there were some marker-OTU pairs that produced

mostly non-significant correlations, but when they were found to
be significant in some of the volunteers, they were exclusively
either positive or negative in these volunteers (Fig. 4, details in the
Supplementary Figure S7). The most prominent exclusive correla-
tions with oxidative stress markers had Streptococcus-OTU16 (S.
mutans), a well established causative agent of dental caries.4 S.
mutans correlated positively with AOPP (in two volunteers), with
FRAS (in five volunteers) and with TBARS (in one volunteer) and
correlated negatively with AGE (in three volunteers). The
proportion of S. mutans in the salivary microbiome was as low
as 0.19 ± 0.47% in the studied cohort indicating that its significant
correlations with the oxidative stress markers were independent
of its proportion in the microbiome.
Among other marker-OTU pairs with exclusively negative

correlations found in a higher number of volunteers (3–6) were
e.g., AOPP—Cardiobacterium-OTU41, AOPP—Actinomyces-OTU27,
FRAS—Streptococcus-OTU56148 and FRAS—Cardiobacterium-
OTU41. The marker-OTU pairs resulting in exclusive positive
correlations were e.g. AOPP—Rothia-OTU15862, FRAS—Rothia-

OTU18624, AGE—Streptococcus-OTU11787 and TAC—Actino-
myces-OTU27 (Fig. 5).

Correlations and interactions between bacterial OTUs are also
individual-specific
Similar to the marker-OTU pairs, the significant intra-individual
correlations found among the OTU–OTU pairs did not show any
notable generalized pattern (Supplementary Figure S7). There
were some particular OTU–OTU pairs resulting in consistent
correlations among most of the volunteers, for example a negative
correlation was found between Streptococcus-OTU0 and Rothia-
OTU1 in 17 out of 26 volunteers, while in the remaining 9
volunteers no significant correlation was detected.
Also, we analysed the interactions of the 15 most abundant

OTUs from each volunteer using the generalized Lotka-Volterra
model, a system of equations that has been often used for the
inference of bacterial interactions in complex ecosystems such as

Fig. 3 Correlations between the oxidative stress markers. The
summary of the Pearson’s intra-individual correlations. The color of
square indicates either a positive or a negative correlation (blue or
red) of a pair of oxidative stress markers in a volunteer. The number
in square indicates the days by which the correlation was lagged.
Empty white squares indicate no significant correlation. The majority
of volunteers possessed a positive correlation between FRAS and
TAC. Several marker pairs had positive correlations in some
volunteers while negative correlations in others
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the human microbiome.31 These models allow us, when a
temporal series is available, to make better predictions of bacterial
interactions rather than the use of classic correlation coefficients
that could be filled by false positives and false negatives due to
compositional effects.31 The results from the Lotka-Volterra model
are more accurate than using simple correlations in terms of

microbial interactions,32,33 but it did not yield any generalized
interaction pattern either (Supplementary Figure S8).

Inconsistent results of the single sample collection simulation
In order to demonstrate the utility of the longitudinal sample
collections in correlation studies, we simulated 1000 different
single-samples combinations. Single samples from the 26 sample-
sets were selected and combined to form a set of 26 samples in
1000 repetitions. Each of the 1000 simulated one-sample-one-
volunteer sets was tested for correlations of oxidative stress
markers with OTUs. The majority (82.4%) of the 250 marker—OTU
pairs (5 markers x 50 OTUs) produced contradictory results. For
example, a negative correlation was found in 22.2% of these single
sample combinations for the TBARS—Rothia-OTU15862 pair, but
still 0.1% of combinations for this marker—OTU pair resulted in a
positive correlation, while 77.7% of the combinations did not yield
any significant correlation (Fig. 5).
The results of the correlation analyses performed on this

simulated one-sample-one-volunteer sets (Fig. 5) were not
consistent with the results obtained on the intra-individual level
(Fig. 4). For example, AGE—Actinomyces-OTU27 pair exhibited
exclusively negative correlations in 26.6% of the one-sample-one-
volunteer combinations, however, it showed positive correlations
in two volunteers (F04, M01) on intra-individual level. Further-
more, the exclusive positive correlation of S. mutans (Streptococ-
cus-OTU16) with FRAS observed in five volunteers on intra-
individual level, was not confirmed by this one-sample-one-
volunteer approach (only 2.2% of positive correlations and 0.3% of
negative correlations in the 1000 combinations).
In contrast, in some cases the correlation results obtained by

the two approaches were quite consistent; e.g., negative
correlations between AGE—S. mutans, AOPP—Actinomyces-
OTU27, AOPP—Cardiobacterium-OTU41, and FRAS—Cardiobacter-
ium-OTU41.

DISCUSSION
Streptococcus mutans used to be associated with caries before the
metagenomics era, while recent metagenomics studies have
assumed that the oral diseases are of polymicrobial origin.5,34–36

Nevertheless, metagenomic studies based on comparing oral
microbiome composition of infected and healthy subjects often
lead to inconsistent results.37–40

We aimed to identify bacteria with pathogenic potential on
individual-specific level by correlation analysis with oxidative
stress markers that may reflect the inflammatory processes in the
oral cavity sampled on daily basis. Salivary markers of oxidative
stress were found to be associated with several oral diseases
including periodontitis, caries and oral precancerose.41–43 How-
ever, their usage for diagnostics of oral diseases is limited due to
their large temporal variability in healthy subjects.10,13 The factors
that determine this variability are largely unknown although
microbes have been postulated as their modulators several years
ago.44,45 The association of microbes with oxidative stress can only
be tested in interventional experiments including long temporal
sampling, because both, the microbes and immune cells, can
induce the production of ROS and oxidative stress.18,46 In addition,
potential systemic causes for the variability of both, oxidative
stress markers in saliva and oral microbiome should not be
omitted.47

In order to assess association of bacterial taxa with oxidative
stress markers, we needed to detect temporal variability of the
oral microbiome composition on the intra-individual level. In
general, the temporal variability of the microbiome detected in
our cohort of healthy volunteers (as measured by the Taylor’s
parameter V) was lower than the variability detected in perturbed
microbiomes previously studied using similar method.29 However,

Fig. 4 Marker-OTU correlations on intra-individual level. The
summary of the Pearson’s correlation plot in the Supplementary
Figure S7. The graduated color in tones from blue to white to red
indicate whether the correlations found in the volunteers on intra-
individual levels were mostly positive or negative. The number on
the left in each rectangle indicates the number of volunteers with a
negative correlation, while the number on the right in each
rectangle indicates the number of volunteers with a positive
correlation. The oxidative stress markers and the OTUs have been
ordered according to their correlation tendency by hierarchical
clustering using Euclidean distances. The OTUs with the strongest
tendency of either positive or negative correlations with some of the
oxidative stress markers were e.g. Streptococcus-OTU16 (Streptococcus
mutans), Actinomyces-OTU27 and Cardiobacterium-OTU41
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even slight temporal variations in the oral microbiome composi-
tion provided important data for intra-individual correlation
analysis in this study. The design of the vast majority of
microbiome studies does not take into account intra-individual
temporal variability, which can be in fact very informative on the
health status of the host.29 Our results are in accordance to the
study of Gonze et al.48, which demonstrated that a microbiome
may adopt one or another distinct state in the same environ-
mental conditions, meaning that intra-individual temporal varia-
bility does not have to correlate necessarily with the changes of
the environmental conditions. Interestingly, the intra-individual
variability of the microbiome has been identified as the major
cause of contradictory results reported by different biomedical
studies.49,50 As shown in this study, an individual can have an
unstable microbiome composition (expressed by the variability
parameter V, Fig. 1), even being considered a healthy subject, thus
a realistic picture of subject’s microbiome cannot be captured by
collecting only one sample per individual. The computational
simulation revealed that contradictory correlation analysis results
may be obtained, if only one sample per volunteer is collected. For
example, if single samples from the 26 volunteers are collected in
1000 different studies and analysed for correlations between
Rothia.OTU15862 and TBARS, 22.2% of the studies would report a
negative correlation, while 0.1% would report a positive correla-
tion, and 77.7% would report no significant correlation. In
comparison, our intra-individual correlation analysis found nega-
tive correlations in two volunteers and a positive correlation in
one volunteer, while in the remaining volunteers the Rothia.
OTU15862-TBARS pair resulted in no significant correlations.
Another advantage of using correlation analysis on intra-
individual level is in the possibility of identifying lagged
correlations. The identification of lagged correlations was very
important in the present study, as increased production of ROS

may not necessarily start at the moment of overgrowth of a
pathobiont, but it may be delayed by several days.
The detected correlation patterns between oxidative stress

markers, between bacterial species and between markers and
bacteria were unique for each volunteer. However, we also found
some correlations which were highly consistent on intra-individual
level in our cohort, e.g., negative correlation between Streptococ-
cus-OTU0 and Rothia-OTU1, positive correlation between FRAS
and TAC, etc. In addition, the Lotka-Volterra set of equations has
proved the uniqueness of each volunteer interaction matrix.
Interaction-based models, such as Lotka-Volterra equations, are
more robust to extract biologically relevant interactions in the
ecosystem than correlation models.31

The set of low-abundance species (0.1–5.4% average propor-
tion), which were mostly individual-specific, contributed to the
most of the microbiome temporal variability and correlated with
the oxidative stress markers more often than the more prevalent
species (such as Rothia and Streptotoccus parasanguinis). For
example, S. mutans was one of the less prevalent species and it
had significant correlations with the oxidative stress markers in
the highest number of volunteers in our cohort. However, these
correlations were not confirmed in all volunteers. Though, S.
mutans is capable of producing ROS in vitro,51,52 its activity may
be hampered by other species in the oral microbial community. It
is possible that other bacterial species may inhibit S. mutans ROS
production, particularly in the samples in which S. mutans did not
correlate with oxidative stress markers. In addition, these
volunteers are likely to contain other bacterial species that
stimulate ROS production or benefit from ROS production to
increase their biological niche in anoxic regions.53,54 Nevertheless,
S. mutans was the bacterial species with one of the most
pronounced correlations with the oxidative stress markers which
supports its important role in caries pathogenesis.

Fig. 5 Marker-OTU correlations obtained by the simulation of collection of only one sample per volunteer. The bar-plots illustrate which
portion (in %) of the 1000 combinations in the one-sample-one-volunteer approach simulation resulted in a positive correlation (blue), in a
negative correlation (red) or no significant correlation (p > 0.05, grey). Both positive and negative correlations occurred in the majority of the
marker-OTU pairs in low proportion. However, there were also some marker-OTU pairs with an explicitly positive or an explicitly negative
correlation (no contradictory correlations were detected). The bacterial OTUs in this figure are arranged according to the Fig. 4, to make them
easily comparable
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Correlation patterns of bacterial species with oxidative stress
markers differed among volunteers which may be explained by
numerous factors. First of all, cells belonging to the same bacterial
species distributed in different compartments of the oral cavity
differ by their activity—some cells are actively metabolizing
nutrients, while others are waiting for optimal growth conditions
in a dormant stage.55,56 However, differential activity of bacterial
cells is not taken into account when total DNA from saliva is
sequenced which might explain why intra-individual correlation
patterns of bacterial OTUs with oxidative stress markers were non-
uniform in this study. Laboratory experiments performed with
pure cultures containing uniformly growing bacterial cells might
not fully mimic the real in vivo ROS production due to the
differential activity of bacterial cells in the oral cavity. Furthermore,
it was demonstrated that only a portion of bacterial cells
belonging to the same bacterial species stimulate human immune
reactions.57,58 Therefore, only a portion of each bacterial species is
involved in the induction of the ROS production and these
portions are likely inconsistent among different individuals.
Although highly active bacterial cells and those which interact
with the human immune system could be quantified using flow
cytometry,59,60 it is very difficult to determine the exact number of
variables that may influence the actual proportion of bacterial cells
stimulating the ROS production in vivo. Having absolute number
of cells belonging to each bacterial species, rather than
compositional data, would help to address correlation patterns
in each volunteer with more details.
In our study, many bacterial OTUs correlated either positively or

negatively with some of the measured oxidative stress markers in
some of the volunteers, which suggests that each volunteer has
different homeostatic mechanisms. Therefore, there is no universal
answer to which specific bacterial species are associated to the
ROS production in the oral cavity in all humans. Integrating
microbiome composition data with proteomics and metabolomics
may help in determining which bacteria are associated to the ROS
production in the oral cavity, as different bacterial species are
likely to be responsible for the same metabolic function in
different individuals.61,62 In such studies, information on micro-
biome temporal variability would be also of very high importance.
In addition, future experimental studies should focus on the origin
and the consequences of oxidative stress in the oral cavity in
relation to the microbiome composition and its modulation or
transplantation.
In conclusion, longitudinal sample collections allows to capture

a realistic picture of subject’s microbiome, which may be relatively
unstable even in good health conditions. Correlation analyses may
produce contradictory results when performed with combinations
of single samples collected from the same volunteers on different
days. In contrast, longitudinal sample collections allow to calculate
temporally direct and lagged correlation of bacterial taxa with
distinct biochemical markers on intra-individual level. Not only
marker-bacteria correlations but also the species-species correla-
tions patterns can be unique for each volunteer. In general, the
less prevalent species are mostly individual-specific and they
contribute to the most of the microbiome temporal variability.
Correlation analysis showed that there are different species

associated with oxidative stress in each human individual, rather
than a universal single bacterial organism. Despite some promis-
ing correlations (e.g., the positive correlation between FRAS and
Streptococcus mutans and negative correlations in the pairs AGE-
Streptococcus mutans, AOPP-Actinomyces, AOPP-Cardiobacterium
and FRAS-Cardiobacterium), the findings were not universal to all
individuals. ROS production in the oral cavity should be further
investigated in more details, e.g., including animal models,
because correlation analyses do not provide direct evidence that
a species induces inflammation.
The results of this study highlight the importance of long-

itudinal sample collection, especially in studies where correlations

with oral microbiota composition are the key outcomes. In the
future, the decreasing cost of DNA sequencing will allow to
analyze multiple samples from each patient, extending potential
diagnostic applications, and also understanding of microbiome-
associated oral diseases.

METHODS
Ethics approval and consent to participate
The ethical clearance was obtained from The Ethical Committee of the
Faculty of Medicine, Comenius University in Bratislava, Slovakia. An
informed written consent was obtained from each participant prior to
the study.

Subjects and sampling
Unstimulated whole mouth saliva was collected from 26 volunteers (13
males and 13 females) recruited from students of the Comenius University
in Bratislava, Slovakia. Exclusion criteria included active periodontitis,
untreated caries, oral pain or any known oral diseases, but also smoking
and major chronic systemic diseases. Subjects taking any medications
including over the counter available antioxidants were excluded as well. At
least 2 ml of saliva was taken by spitting into sterile tubes daily for 30 days
at the same time between 06:00 and 08:00 at least 30 min after
toothbrushing. The volunteers were instructed not to eat in the morning
before saliva collection. All samples were immediately frozen after
collection and stored at −20 °C until further processing.

16S rRNA gene sequencing
DNA extracted from all salivary samples was extracted using a modified
phenol chloroform protocol as described previously,63,64 and V3 and V4
regions of the 16S rRNA gene were amplified using following primers:
forward primer TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT
ACG GGN GGC WGC AG, reverse primer GTC TCG TGG GCT CGG AGA TGT
GTA TAA GAG ACA GGA CTA CHV GGG TAT CTA ATC C65) and Kapa HiFi Hot
Sart polymerase (Ref. 7958935001). The PCR conditions were the following:
95 °C for 30 s, 55 °C for 30 s, 72 °C for 30 s repeated in 25 cycles. The
samples were multiplexed by 96 index combination and sequenced on the
Illumina platform with MiSeq Reagent Kit v3 (600-cycle, Ref. MS-102-3003).
Quality assessment of raw paired ends data has been carried out using
prinseq-lite program: sequences shorter than 50 bp were removed and
then we applied a 3′ (right-hand) trimming up to a minimum quality mean
value of 30 in a sliding window of 20 nucleotides.66 The obtained trimmed
paired-end reads were merged using fastq-join program from ea-utils
package67 and chimeric amplicons were removed by usearch program.68 In
addition, the samples with less than 2500 sequences were removed from
the analysis.
In the first step, we determined which are the most suitable settings for

clustering of sequences into operational taxonomic units (OTUs) for this
study. Clustering on 97% sequence similarity level is widely used for
obtaining OTUs on species-like level, however, the 97% threshold is not
universal for all species. Some species can be split into multiple OTUs,
while hybrid OTUs containing multiple species can be formed as well.69

The testing of the most optimal clustering threshold in this study was
crucial for distinguishing between caries-associated Streptococcus mutans4

and commensal Streptococcus species not associated with caries.70 For this
purpose, all 16S rDNA sequences belonging to the genus Streptococcus
were downloaded from the Ribosomal Database Project website (RDP,
January 2016), clipped for the region V3 and V4 (regions which are used for
sequencing in this study) and the clustering on different similarity levels
(0.95, 0.96, 0.97, 0.98, 0.99) was tested using the usearch program. The
similarity level 0.96 produced homogeneous clusters (OTUs) corresponding
to separate Streptococcus species.
Afterwards, all obtained sequences from the 26 volunteers have been

clustered together on 0.96 similarity level by the usearch program and the
reference sequences of each OTU cluster have been taxonomically
assigned by RDP classifier;71 the annotation was accepted if the bootstrap
confidence estimation value was over 0.8.

Analysis of the bacterial composition
The resulting bacterial composition was analysed in the R programming
environment using packages “vegan”72 and “ade4”.73 As the clustering of
large datasets into OTUs often results in formation of artificial low
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abundant OTUs corresponding to sequencing errors,74 the dataset
containing all detected OTUs was compared to the datasets containing
only OTUs with average proportion >0.001, and >0.1%. In the datasets with
reduced OTUs numbers, the low prevalent OTUs were discarded. The
Procrustes test (R library vegan, function “protest”) was performed to test
whether the datasets with different OTU numbers produce the same
ordination of samples in the nonmetric multidimensional scaling (NMDS)
with Bray-Curtis dissimilarity.
The Shannon diversity index, Pielou’s evenness index values were

compared among volunteers using t-test with Holm correction of p-values
using the R package “vegan”.
In the next step, the “envfit” function from “vegan” R package was used

for testing of the bacterial composition (OTUs with average proportion
>0.1%) for fitting on variable “volunteer” in the canonical correspondence
analysis (CCA). This analysis was used to test whether each volunteer has
its own characteristic microbiome and whether the microbiomes differ
significantly between volunteers.

Temporal variations of the microbiome
The changes in the relative abundance of the OTUs were fitted to a power
law with two parameters that described the microbiome stability over
time, σ= V × μβ, where V and β are the parameters of the model, and σ
and μ being the dispersion (in standard deviation) and the mean of the
measurements.
The variability V was a direct estimator of the amplitude of fluctuations

and therefore of the general stability, while the variable β described the
statistical behavior of the ecosystem.29

Rank stability index (RSI) was calculated, per element, as 1 less the
quotient of the number of true rank hops taken between the number of
maximum possible rank hops, all powered to p:

RSI ¼ 1� truerank hops
possiblerank hops

� �p

¼ 1� D
N � 1ð Þ t � 1ð Þ

� �p

; (1)

where D is the total of rank hops taken by the studied element, N is the
number of elements that have been ranked, and t is the number of time
samples. p is arbitrarily chosen to increase the resolution in the desired
region, for example the stable region.29

In addition, the rank variability (RV) and the differences variability (DV)
were also calculated and plotted below RSI. The RV is the absolute
difference between every taxon’s rank at a specific time point, and its
accumulated abundance rank averaged for all the taxa shown. The DV is
the absolute difference between every taxon’s rank at a specific time point
compared to the previous time point. RV is a direct estimator of global
changes, and DV is informing about local changes in the rank stability. All
the analyses concerning the temporal variability of intra-individual
microbiome are described in the work of Marti et al.29

Analysis of oxidative stress and antioxidative status
The marker of lipid peroxidation, thiobarbituric acid reactive substances
(TBARS), was assessed according to Behuliak et al.10 Twenty microliter of
samples and standards (1, 1, 3, 3—tetraethoxypropane) were added into a
96-well plate. Thereafter, 30 µl of water, 20 µl of thiobarbituric acid
together with 20 µl of glacial acetic acid were added and whole mixture
was incubated at 95 °C for 45min. Afterwards, 100 µl of n–butanol was
added, and plate was centrifuged at 2000×g, at 4 °C for 10min. Seventy
microliter of the upper organic phase was transferred into a new microtiter
plate and, subsequently, the fluorescence was measured at ex= 515 nm
and em= 535 nm.
Advanced oxidation protein products (AOPP) were measured as a

marker of protein damage.75 Chloramine T mixed with potassium iodide
was used for preparation of the calibration curve. Two hundred µl of
samples or standard were transferred onto a 96 well plate for analysis.
Later, 20 µl glacial acetic acid was added to both standards and samples
and incubated on a plate shaker (500 rpm) for 2 min. Then absorbance was
measured at 340 nm.
Advanced glycation end products (AGEs) were assessed as a marker of

carbonyl stress.76 Twenty microliter of samples together with standards
(AGE-BSA) were placed into a 96-well plate and diluted with phosphate
buffer saline (pH= 7.2). The fluorescence was measured at ex.= 370 nm
and em.= 440 nm.
The analysis of antioxidant status was represented by the assessment of

the total antioxidant capacity (TAC) according to Erel et al.77 Twenty
microliter of samples and standards (Trolox) were mixed with 200 µl of

acetate buffer (pH= 5.8) and measured at 660 nm as a blank. Thereafter,
20 µl of 2, 2 azino—bis (ethylbenzthiazoline—6—sulfonic acid) was added.
Plate was incubated at room temperature for 5 min and the absorbance at
660 nm was measured.
Ferric reducing antioxidant power of saliva (FRAS) was the next marker

of antioxidant status. Ferrous sulfate was used as a standard for the
construction of the calibration curve.78 Two hundred µl of prewarmed (37 °
C) FRAP reagent, composed of tripyridyl—s—triazine, FeCl3 × 6H2O,
acetate buffer (pH= 3.6) and water, was added to the assay plate. Initial
absorbance at 593 nm was measured as a blank. Thereafter, the samples
and standards were added and the absorbance was measured at 593 nm.

Correlations between salivary markers and microbiota
Pearson’s and Spearman’s temporally direct correlations and local
similarity analysis for lagged correlations were used to assess correlations
between bacterial OTUs in oral cavity of each volunteer individually taking
into account the temporal dimension. Local Similarity Analysis checks the
existence of a delay in the correlations between all possible combinations
of variables. Pearson’s, Spearman’s, and LSA correlation coefficients were
computed using eLSA Python package,79 with default parameters. This
package computes permutation tests that are helpful when multiple
hypothesis tests are being studied in this kind of problems. The correlation
values > 0.3 and <−0.3 were then filtered by their p-value at a level of 0.05
for statistical significance. Correlations in this study have been plotted
using R packages “corrplot”80 and “beeswarm”.81

In addition, interactions between the 15 most abundant OTUs per
sample were calculated with LIMITS algorithm31 in Wolfram Mathematica
software (version 11.0). This algorithm looks for interactions under the
generalized Lotka-Volterra model of ecological interactions, as they are a
robust manner of looking for interdependence between species that has
biological implications. One of the strengths of this algorithm is that it
forces sparsity in the generated matrices, looking for interaction matrices
that are similar to the real biological communities. We only used the 15
most abundant species per sample as one of the caveats of this kind of
analysis is that it needs a great number of time-points for studying the
interaction of only a few species, due to overfitting problems.

Longitudinal sample collection vs. single sample collection
In most of the biomedical studies, only one sample per volunteer is
collected and tested for correlations with its corresponding biomedical
data. Such an approach ignores the temporal intra-individual variability of
the microbiome composition and may lead to contradictory results
obtained by different research groups.48 To test our data, we simulated
such an one-sample-one-volunteer approach and compared it with the
result of the intra-individual correlation analysis based on our longitudinal
sample collection described above. For that purpose, only one sample per
each volunteer was selected randomly for a total 1000 combinations and
then tested for Pearson’s correlations between salivary markers and OTUs
proportions. The correlation values > 0.3 and <−0.3 were also filtered by
their p-value at a level of 0.05 for statistical significance.

DATA AVAILABILITY
The obtained sequences were deposited to the EBI database with the study accession
number: PRJEB20213 (ERP022351).
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