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On quality of implementation of Fortran 2008 complex

intrinsic functions on branch cuts

A. SHTERENLIKHT, The University of Bristol, UK

Branch cuts in complex functions have important uses in fracture mechanics, jet flow and aerofoil analysis.

This paper introduces tests for validating Fortran 2008 complex functions - LOG, SQRT, ASIN, ACOS, ATAN,

ASINH, ACOSH and ATANH - on branch cuts with arguments of all 3 IEEE floating point binary formats:

binary32, binary64 and binary128, including signed zero and signed infinity. Multiple test failures were re-

vealed, e.g. wrong signs of results or unexpected overflow, underflow, or NaN. We conclude that the quality

of implementation of these Fortran 2008 intrinsics in many compilers is not yet sufficient to remove the need

for special code for branch cuts. The electronic appendix contains the full test results with 8 Fortran 2008

compilers: GCC, Flang, Cray, Oracle, PGI, Intel, NAG and IBM, detailed derivations of the values of these

functions on branch cuts and conformal maps of the branch cuts, to be used as a reference. The tests and the

results are freely available from https://cmplx.sourceforge.io. This work will be of interest to engineers who

use complex functions, as well as to compiler and math library developers.
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1 INTRODUCTION

In the followingw = u+ iv and z = x + iy are complex variables,w = f (z) is a conformal mapping
function from z tow and z = f −1 (w ) is a conformal mapping function fromw to z.ℜz and ℑz are
the real and the imaginary parts of z.
Complex functions with branch cuts have useful applications e.g. in fracture mechanics, be-

cause a branch cut can represent a mathematical crack. Perhaps the oldest and simplest example
is function

z = w + 1/w (1)

which maps a complex plane with a cut unit circle onto a complex plane with a cut along x at
−2 ≤ x ≤ 2. This function has been in use probably since early 20th century, see e.g. [17, 21]. It is
still widely used in fracture mechanics today [18]. In practice the inverse of Eqn. (1) is more useful:

w =
1

2

(

z + copySign(1,ℜz)
√
z2 − 4

)

(2)

where copySign is the IEEE functionwhich returns a valuewith themagnitude of the first argument
and the sign of the second argument [13]. The map of Eqn. (2) is shown in Fig. 1.
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w = 0.5*(z + SIGN(1, REAL(z)) * SQRT( z*z - 4 ))

Fig. 1. Map of w = 1
2 (z + copySign(1,ℜz)

√
z2 − 4). The branch cut ABCD in z is mapped onto a unit circle

ABCD inw .

Fig. 2. Map of function w = tan(arccos z2/4), reproduced from [17].

Note that Eqn. (2) produces the desired mapping only if +0 and −0 can be distinguished, so
that points in z on the top and the bottom boundary of the cut, i.e. with y = +0 and y = −0 are
mapped respectively onto the top and the bottom boundary of the unit circle in w . For example,
point z = +0− i0 is mapped to pointw = +0− i1, point B in Fig. 1, and point z = +0+ i0 is mapped
to pointw = +0 + i1, point D in Fig. 1.
Another function, useful for the study of intersecting cracks, isw = tan(arccosz2/4) [17, p. 79],

which maps a plane with 2 intersecting cuts onto an upper half plane, v ≥ 0. The two cuts form a
cross centered at the origin, see Fig. 2. Two branch cuts in arccos along the real axis together with
the ability to distinguish +0 and −0, mean that points B, D, F and H, located at the origin in z are
mapped onto 4 distinct points inw in Fig. 2.
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On quality of implementation of Fortran 2008 complex intrinsic functions on branch cuts 3

In fact, there are 8 elementary complex functionswith branch cuts – log,
√
, three inverse trigono-

metrics (arcsin , arccos, arctan) and three inverse hyperbolic functions (arcsinh , arccosh, arctanh)
– all of which have useful applications in fracture and aerodynamics [15, 16]. For example, log has
a single branch cut along the negative real axis. Therefore it can be used for analysis of an edge
crack in an infinite plate. arcsin , arccos, arctan, arcsinh and arctanh have 2 cuts on either the real
or the imaginary axis, and can therefore be used for the analysis of bodies with 2 cracks along
the same line, e.g. an infinite or a finite width plate with 2 opposing cracks with a finite ligament
length in between. This case is of significant practical importance in fracture mechanics, see e.g.
[23, Sec. 4, ‘Parallel Cracks’]. arccosh has a single branch cut and can be used for an edge crack
geometry.
In all these 8 functions the cuts lie either along the real axis, x = 0, or along the imaginary axis,

y = 0. Hence, the ability to distinguish +0 and −0 is required in applications of these elementary
functions in science and engineering, so that the sides of each cut can be mapped independently.
Jet flows and aerofoils are among other popular practical examples where signed zero is required
to obtain correct conformal maps of multivalued complex functions on branch cuts [15, 16]. The
usage of −0 was further popularised, although with no new examples, in [4, 22]. It is important to
note that signed zero, ±0, is linked to signed infinities, ±∞, e.g. 1

+0 = +∞ but 1
−0 = −∞. Hence the

use of complex intrinsics with branch cuts for science and engineering applications needs support
for signed infinity too.
The IEEE floating point standard [7] defined signed zero and signed infinity: +0,−0,+∞,−∞,

as early as 1985. Expressions for these 8 complex intrinsics, which deal correctly with ±0,±∞ and
NaN, and avoid cancellation, were given by W. Kahan in 1987 [15]. A recent study concludes that
no better expressions have been proposed since then [20]. However, to date support for ±0 and
±∞ in math libraries is varied. If signed zero or signed infinity are not available, algorithms can
be, and have been, developed which use data a short distance away from the cuts. However, this
is not very satisfactory, as it is not obvious what this small distance should be. In addition, branch
cuts often contain the most important data, e.g. the extremum values of crack tip displacement
fields are found on crack flanks, which is useful in experimental fracture mechanics analysis [19].
It would help algorithm developers and programmers significantly if they had full confidence that
complex functions behave correctly on branch cuts, and no special cases need to be considered
and coded for.
Given that Fortran is still themost widely used language in science and engineering, particularly

in high performance computing, where Fortran codes use 60-70% of machine cycles [24], we focus
on implementation of the above 8 complex functions in Fortran. For C programmers we note that
specifications for complex math functions for ±0, ±∞ and NaN were added in C99 [10].
In the following, Fortran functions and written in MONOSPACE UPPERCASE and all other Fortran

names are written in monospace lowercase font.
The Fortran intrinsic functions SQRT and LOG have accepted complex arguments at least since

the FORTRAN66 standard [1]. The Fortran 2003 standard [8] added support for the IEEE floating
point arithmetic. Fortran 2008 standard [9] added support for complex arguments to intrinsic func-
tions ACOS, ASIN, ATAN and 3 new inverse hyperbolic intrinsics: ACOSH, ASINH, ATANH, all of which
also accept complex arguments. With Fortran 2008, programmers finally have access to intrinsics
implementing the above 8 elementary complex functions, including on the branch cuts. However,
the question of how well the above 8 complex functions are implemented in modern Fortran still
deserves attention. This question is addressed in this work with the introduction of a set of 96
tests, which check correctness of the 8 Fortran 2008 complex intrinsics on branch cuts. The code
used in this work is freely available from https://cmplx.sourceforge.io.
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4 A. Shterenlikht

2 TESTS

The tests are designed to verify the behaviour of the 8 intrinsic Fortran functions at special points
on branch cuts. All three IEEE basic binary formats are verified: binary32, binary64 and binary128
[13]. To aid portability, the Fortran 2008 intrinsic module iso_fortran_env includes named con-
stants for these IEEE data formats: REAL32, REAL64 and REAL128, which are used to define the
kinds of real and complex variables and constants in the tests as e.g:

use , intrinsic :: iso_fortran_env

integer , parameter :: fk=real64

real(kind=fk), parameter :: one =1.0_fk

The tests check that the signs of the real and the imaginary parts are correct, and that no un-
due overflow, underflow or NaN results are produced. The Fortran IEEE intrinsics IEEE_CLASS,
IEEE_COPY_SIGN,IEEE_IS_FINITE,IEEE_IS_NAN,IEEE_SUPPORT_SUBNORMAL,IEEE_SUPPORT_INF,
IEEE_SUPPORT_NAN, IEEE_VALUE are used, as well as the named constants ieee_negative_inf,
ieee_positive_inf,ieee_negative_zero,ieee_positive_zero,ieee_positive_denormaland
ieee_negative_denormal. For example, the values of ±0 and ±∞ are defined in the tests as:

real(kind=fk) :: infp , infm , zerop , zerom

infp=IEEE_VALUE( one , ieee_positive_inf )

infm=IEEE_VALUE( one , ieee_negative_inf )

zerop=IEEE_VALUE( one , ieee_positive_zero )

zerom=IEEE_VALUE( one , ieee_negative_zero )

In addition, the Fortran intrinsics HUGE, TINY and EPSILON are used, which return the largest and
the smallest positive model (normalised) numbers respectively, here denoted h and t , and machine
epsilon, ϵ . Note that the Fortran definition of ϵ is ϵ = r 1−p , where r is the radix, r = 2 on binary
computers, and p is the precision. This definition follows the IEEE standard [13].
The accuracy of complex floating point calculations has been analysed in a number of works.

Expressions for the relative errors of complex
√
and log (as well as exp, sin, cos) are given in [5],

although the authors did not distinguish +0 and −0. The expressions are given in terms of the
relative errors of the real counterparts of these intrinsics, e.g. their bound for the relative error in
complex

√
is 2ϵ + 1.5Esqrt, where Esqrt is the relative error bound for real

√
. [3] proposed a high

speed implementation of complex
√
which preserved the accuracy of [5]. For complex log [5] gives

the relative error bound of 3.886ϵ+Elog, where Elog is the relative error bound for real log x , x ≫ 1.
For arcsin and arccos [6] give the relative error bound of 9.5ϵ . The relative error bound of a fused
multiply-add (FMA) for complex multiplication was recently estimated as low as ϵ [14].
Based on these accuracy estimates, in this work a conservative relative error bound of 102ϵ

was considered acceptable for π , π/2 and 1, the magnitudes of the real or the imaginary parts
of the result values on the branch cuts. Another reason for choosing a high error bound is that
the Fortran 2008 standard is deliberately vague about the accuracy of floating point intrinsics, e.g.
for log on the branch cut it just says that the imaginary part of the result is ‘approximately π ’ or
‘approximately −π ’, depending on the cut side [9].

Where the real or the imaginary part of the result is predicted analytically to be ±0, it was
validated against zerop or zerom respectively, i.e. exact result values were expected for ±0.

Although C11 [11, App. G.6] specifies the return values of these 8 complex intrinsics on the
branch cuts, including points at infinity, and details which exceptions should be raised, Fortran
2008 has no such constraints [9, Clause 13.7]. Therefore, the electronic appendix contains concise
but full derivations of analytic expressions for the 8 intrinsics on the branch cuts, including points

, Vol. 1, No. 1, Article . Publication date: November 2018. 2018-11-30 13:03. Page 4 of 1–9.
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On quality of implementation of Fortran 2008 complex intrinsic functions on branch cuts 5

at infinity. These expressions are used as a reference to validate the values returned by the Fortran
2008 intrinsics.
A summary of the test results is given in Sec. 3. The detailed results can be found in the electronic

appendix, together with the reference conformal maps of the branch cuts for the 8 intrinsics. The
reader can use the maps, which are similar to Fig. 1, as a graphical aid in visualising the locations
of the test points.
In the following, where ± occurs in both the argument and the result, the result has the same

sign as the argument.

2.1 LOG

The behaviour of LOG was checked on the branch cut at 8 points: z = −∞ ± i0, z = −h ± i0,
z = −1± i0 and z = −t ± i0. The top and the bottom boundaries of the cut are mapped tow = u+ iπ
andw = u − iπ respectively.

2.2 SQRT

The behaviour of SQRT was checked on the branch cut at 10 points: z = −∞ ± i0, z = −h ± i0,
z = −1 ± i0, z = −t ± i0 and z = −0 ± i0. The top boundary of the cut is mapped onto the positive
imaginary axis, and the bottom boundary of the cut is mapped onto the negative imaginary axis.

2.3 ASIN

The behaviour of ASIN was checked on 12 points: z = ±∞ ± i0, z = ±h ± i0 and z = ±1 ± i0.
w = arcsin z maps a plane with 2 cuts along the real axis, x ≤ −1 and x ≥ 1 to an infinite strip of
width π along the imaginary axis, −π/2 ≤ u ≤ π/2. The left cut, x ≤ −1 is mapped onto the left
boundary of the strip, u = −π/2. The right cut, x ≥ 1 is mapped onto the right boundary of the
strip, u = π/2.

2.4 ACOS

The behaviour of ACOS was checked on the same 12 points as of ASIN.w = arccosz has 2 branch
cuts, both on the real axis, at x ≤ −1 and x ≥ 1. For x ≤ −1, the top boundary of the cut, y = +0,
is mapped tow = π − ib and the bottom boundary of the cut, y = −0, is mapped tow = π + ib. For
x ≥ 1, the top boundary of the cut, y = +0, is mapped tow = +0− ib, and the bottom boundary of
the cut, y = −0, is mapped to w = +0 + ib. In all cases b ≥ 0.

2.5 ATAN

The behaviour of ATAN was checked on 16 points: z = ±0 ± i∞, z = ±0 ± ih, z = ±0 ± i1 and
z = ±0 ± i(1 + ϵ ). The last 4 values are interesting because they are likely to be used as the best
substitute for ±0± i1 on systems which do not support ±∞.w = arctan z maps a plane with 2 cuts
along the imaginary axis, y ≤ −1 and y ≥ 1 to an infinite strip along the imaginary axis of width
π and centred on zero.

Note that ℑ arctan(±0 ± ih) is subnormal (C11 uses the term subnormal instead of the earlier
denormal), e.g. for REAL64 the smallest normal number is ≈ 2.2×10−308 while |ℑ arctan(±0± ih) | ≈
5.6×10−309 (see the electronic appendix for full details). On systemswith no support for subnormals
the correct result is ℑ arctan(±0 ± ih) = ±0, with the correct sign. On the other hand, on systems
with no support for subnormals, a subnormal return value is not acceptable, because such value,
k , would violate the expected inequalities |k | > 0 and |k | < t [9].

C11 defines arctan(±0± i1) = ±0 ± i∞ [11, Annex G.6]. The expressions given in the electronic
appendix are different: arctan(±0 ± i1) = ±π/2 ± i∞. However, it is easy to show [2, Eqn. 4.21.39]
that a more relaxed expression: arctan(±0 ± i1) = ±q ± i∞, where q = +0 or 0 < q ≤ π/2,

2018-11-30 13:03. Page 5 of 1–9. , Vol. 1, No. 1, Article . Publication date: November 2018.
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6 A. Shterenlikht

is sufficient to satisfy the identity tan(arctanz) = z. Hence the tests use the relaxed expression
above to validateℜ arctan(±0 ± i1).

2.6 ASINH

The behaviour of ASINH was checked on 12 points: z = ±0 ± i∞, z = ±0 ± ih and z = ±0 ± i1.
w = arcsinh z maps a plane with 2 cuts along the imaginary axis, y ≤ −1 and y ≥ 1 to an infinite
strip of width π along the real axis, −π/2 ≤ v ≤ π/2. The bottom cut, y ≤ −1 is mapped onto the
bottom boundary of the strip, v = −π/2. The top cut, y ≥ 1 is mapped onto the top boundary of
the strip, v = π/2.

2.7 ACOSH

The behaviour of ACOSHwas checked on 10 points: z = −∞± i0, z = −h± i0, z = −1± i0, z = +0± i0
and z = 1 ± i0. w = arccoshz maps a plane with a single cut along the real axis at x ≤ 1 onto a
semi-infinite strip of width 2π , running along the real axis, u ≥ 0. The tests check that (1) the top
side of the cut at x ≤ −1 is mapped onto the top boundary of the strip, u = +0 and u > 0,v = π ;
(2) the top side of the cut at −1 ≤ x ≤ 1 is mapped onto the end of the strip at u = +0,v = +0
and 0 < v ≤ π ; (3) the bottom side of the cut at −1 ≤ x ≤ 1 is mapped onto the end of the strip at
u = +0,v = −0 and −π ≤ v < 0, and (4) the bottom side of the cut at x ≤ −1 is mapped onto the
bottom boundary of the strip, u = +0 and u > 0,v = −π .

2.8 ATANH

ATANH was verified on 16 points: z = ±∞ ± i0, z = ±h ± i0, z = ±1 ± i0 and z = ±(1 + ϵ ) ± i0.
w = arctanh z maps a plane with 2 cuts along the real axis, x ≤ −1 and x ≥ 1 onto a infinite strip
of width π centered on 0 and running along the real axis.
The behaviour of ATANH on the branch cutsmirrorsmany features of that of ATAN, since arctan z =
−i arctanh(iz). C11 defines arctanh(±1 ± i0) = ±∞± i0 [11, Annex G.6]. The expressions given in
the electronic appendix are different: arctanh(±1 ± i0) = ±∞ ± iπ/2. However, it is easy to show,
using [2, Eqn. 4.35.36], that a more relaxed expression: arctanh(±1 ± i0) = ±∞± iq, where q = +0
or 0 < q ≤ π/2, is sufficient to satisfy the identity tanh(arctanhz) = z. Hence the tests use the
relaxed expression above to validate ℑ arctanh(±1 ± i0).
Clearly the sameqmust be taken for arctan(±0±i1) = ±q±i∞ and for arctanh(±1±i0) = ±∞±iq,

for the identity arctan z = −i arctanh(iz) to hold.

3 SUMMARY OF THE RESULTS AND DISCUSSION

The detailed test results are given in the electronic appendix and at https://cmplx.sourceforge.io.
The main conclusion is that the quality of implementation varies significantly between the 8 com-
pilers tested.
Most compiler documentation referred to during this work indicates that evaluation of the 8

complex intrinsics is done via external calls, typically to libm. Therefore, the diversity of results
between compilers is surprising. Although in some cases identical failures are seen, e.g. with Cray
and Oracle for arcsinh for REAL32 and REAL64 kinds, or with Cray and GCC for REAL128 kind for
all intrinsics, in general different failure patterns are seen in each compiler. This indicates that not
all vendors use the same algorithms and/or math libraries.
Only a single compiler has passed all 96 tests for all 3 IEEE floating point types. Another compiler

has passed all 96 tests for REAL32 and REAL64 kinds.
As mentioned in the introduction, both LOG and SQRT Fortran intrinsics accepted complex argu-

ments at least as far back as FORTRAN66, and perhaps even earlier. Therefore it was surprising to
find that one compiler failed several log tests, and 4 out of 8 compilers showed multiple failures

, Vol. 1, No. 1, Article . Publication date: November 2018. 2018-11-30 13:03. Page 6 of 1–9.
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On quality of implementation of Fortran 2008 complex intrinsic functions on branch cuts 7

in
√

tests with REAL32 and REAL64 kinds, including overflow, wrong sign and NaN. Given that

all CPUs used in this work are meant to fully support IEEE arithmetic with REAL32 and REAL64

kinds (except possibly support for subnormals, which might be implemented in software) and had
hardware instructions for single and double precision

√
, we speculate that the problems are likely

in compiler implementations of complex
√
.

Many failures of type "n", were obtained. These are failures where NaN values were produced.
None of these 8 intrinsics should produce NaN results on branch cuts, including points at infinity.
Hence, such failures are obviously completely unacceptable. This is the most obvious failure type,
both to the programmer and to the compiler or library developers. The vendors should be able to
find and fix all such failures easily.
Another frequently observed failure type was "o", overflow, i.e. when ±∞ results were produced

instead of the correct finite values. These are most likely caused by overflow in the intermediate
computations in the math library. These failures are more dangerous to the programmer, because
they can be hidden by consecutive calculations.
In our opinion the most dangerous type of failure to the programmer is type "s", where the sign

of the real or the imaginary part of the result, or both, is wrong. Such failures will likely cause
unexpected results further down in the calculations, which will be hard to debug. Expressions
carefully derived in the electronic appendix are intended as a reference and a debugging aid.
Other failure types were seen less often. Failure of type "z", where a zero result was obtained

instead of the correct non-zero normal value was seen only together with other failure types,
overflow and NaN. We therefore recommend the vendors to focus on resolving failure types "n"
and "o" first. Failures of types "d", where a subnormal result was obtained while the processor did
not support subnormals, were seen only in a single compiler. Likewise, failures of type "m", where
themagnitude of the real or the imaginary part was clearly wrong, were peculiar to a single vendor.
Finally, a single vendor erroneously printed +0 in formatted output for −0 internal representa-

tion. Since the tests are currently done using only the internal representations of the result values,
and not the printed values, such compiler behaviour did not result in test failure. However, the
users reading the wrongly signed zero values in print can be misled. Hence, we flag such tests as
"д", to alert the user.
It is important to emphasise that only failures of type "n", where NaN results were produced,

can be interpreted as compiler non-conformance with the standard. This is because Fortran 2008,
or any previous Fortran standard, requires very little in terms of accuracy of floating point calcula-
tions. Descriptions of many intrinsics have only the phrase ‘processor-dependent approximation’,
e.g. the result of arccosh(X) is defined as ‘a value equal to a processor-dependent approximation
to the inverse hyperbolic cosine function of X’, where ‘processor’ is defined as a ‘combination of a
computing system and mechanism by which programs are transformed for use on that computing
system’ [9], i.e. it includes the compiler, the libraries, but also the runtime environment and the
hardware. Therefore, we interpret the test results only as ‘quality of implementation’.

4 RECOMMENDATIONS FOR A FUTURE FORTRAN STANDARD

Fortran 2008 and the draft 2018 standards [9, 12] prohibit LOG from accepting a zero argument,
likely because the imaginary part of log(±0 ± i0) is mathematically undefined. It is proposed that
future Fortran standards allow log(±0 ± i0) with the return values used by C11 [11, Annex G.6]:

log(−0 + i0) = −∞ + iπ ; log(+0 + i0) = −∞ + i0; log(conj(z)) = conj(log(z)) (3)
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Allowing log(±0± i0) would be useful to the programmer, because it will make the fundamental

identity za = exp(a logz) valid for all z. An immediately useful example is
√
−0 ± i0:

√
−0 ± i0 = exp(

1

2
log(−0 ± i0)) = exp(

1

2
(−∞ ± iπ )) = exp(−∞) (cos

π

2
± i sin π

2
) = +0 ± i0 (4)

5 CONCLUSIONS

96 tests for complex Fortran 2008 intrinsics LOG, SQRT, ACOS, ASIN, ATAN, ACOSH, ASINH and ATANH

on branch cuts were designed for this work. Only 2 compilers passed all tests with IEEE binary32
and binary64 types and only a single compiler passed all tests with all 3 IEEE floating point types.
Based on this limited testing, the user is advised to deploy inverse trigonometric and hyperbolic
intrinsics,

√
and log on branch cuts with caution, using extensive testing of the algorithms on

known cases. Unfortunately the need to use special code for calculations on branch cuts has not
yet disappeared completely. We expect the quality of implementation in all compilers to improve
in line with customer demands. The immediate future work will include checks for exceptions, and
also for additional IEEE capabilities added in the Fortran 2018 standard. Finally, we welcome any
feedback on our tests, such as bug reports or results from other compilers or compiler versions.
These can be submitted via https://cmplx.sourceforge.io.

6 ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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