
 Shterenlikht, A. (2019). On Quality of Implementation of Fortran 2008
Complex Intrinsic Functions on Branch Cuts. ACM Transactions on
Mathematical Software, 45(1), [11]. https://doi.org/10.1145/3301318

Peer reviewed version

Link to published version (if available):
10.1145/3301318

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via ACM at https://dl.acm.org/citation.cfm?doid=3314951.3301318 . Please refer to any applicable terms of use
of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/195283865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3301318
https://doi.org/10.1145/3301318
https://research-information.bris.ac.uk/en/publications/on-quality-of-implementation-of-fortran-2008-complex-intrinsic-functions-on-branch-cuts(55218404-9e49-490b-8c7d-cea4507a34cd).html
https://research-information.bris.ac.uk/en/publications/on-quality-of-implementation-of-fortran-2008-complex-intrinsic-functions-on-branch-cuts(55218404-9e49-490b-8c7d-cea4507a34cd).html

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

On quality of implementation of Fortran 2008 complex

intrinsic functions on branch cuts

A. SHTERENLIKHT, The University of Bristol, UK

Branch cuts in complex functions have important uses in fracture mechanics, jet flow and aerofoil analysis.

This paper introduces tests for validating Fortran 2008 complex functions - LOG, SQRT, ASIN, ACOS, ATAN,

ASINH, ACOSH and ATANH - on branch cuts with arguments of all 3 IEEE floating point binary formats:

binary32, binary64 and binary128, including signed zero and signed infinity. Multiple test failures were re-

vealed, e.g. wrong signs of results or unexpected overflow, underflow, or NaN. We conclude that the quality

of implementation of these Fortran 2008 intrinsics in many compilers is not yet sufficient to remove the need

for special code for branch cuts. The electronic appendix contains the full test results with 8 Fortran 2008

compilers: GCC, Flang, Cray, Oracle, PGI, Intel, NAG and IBM, detailed derivations of the values of these

functions on branch cuts and conformal maps of the branch cuts, to be used as a reference. The tests and the

results are freely available from https://cmplx.sourceforge.io. This work will be of interest to engineers who

use complex functions, as well as to compiler and math library developers.

Additional Key Words and Phrases: Fortran, LOG, SQRT, ASIN, ACOS, ATAN, ASINH, ACOSH, ATANH,

branch cuts, signed zero, signed infinity

ACM Reference Format:

A. Shterenlikht. 2018. On quality of implementation of Fortran 2008 complex intrinsic functions on branch

cuts. 1, 1 (November 2018), 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

In the followingw = u+ iv and z = x + iy are complex variables,w = f (z) is a conformal mapping
function from z tow and z = f −1 (w) is a conformal mapping function fromw to z.ℜz and ℑz are
the real and the imaginary parts of z.
Complex functions with branch cuts have useful applications e.g. in fracture mechanics, be-

cause a branch cut can represent a mathematical crack. Perhaps the oldest and simplest example
is function

z = w + 1/w (1)

which maps a complex plane with a cut unit circle onto a complex plane with a cut along x at
−2 ≤ x ≤ 2. This function has been in use probably since early 20th century, see e.g. [17, 21]. It is
still widely used in fracture mechanics today [18]. In practice the inverse of Eqn. (1) is more useful:

w =
1

2

(

z + copySign(1,ℜz)
√
z2 − 4

)

(2)

where copySign is the IEEE functionwhich returns a valuewith themagnitude of the first argument
and the sign of the second argument [13]. The map of Eqn. (2) is shown in Fig. 1.

Author’s address: A. Shterenlikht, The University of Bristol, Department of Mechanical Engineering, Queen’s Building,

University Walk, Bristol, BS8 1TR, UK, mexas@bristol.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

XXXX-XXXX/2018/11-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2018-11-30 13:03. Page 1 of 1–9. , Vol. 1, No. 1, Article . Publication date: November 2018.

https://cmplx.sourceforge.io
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 A. Shterenlikht

-2

-1

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

A
B

C
D

E

F

G

H

I
M
(
z
)

RE(z)

z

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1 2 3 4

A

B

C

D

E

F

G

H

z=(-0,+0)=(-0.0000E+000, +0.0000E+000)
w(z)=(+0.0000E+000, +1.0000E+000)

z=(+0,+0)=(+0.0000E+000, +0.0000E+000)
w(z)=(+0.0000E+000, +1.0000E+000)

z=(-0,-0)=(-0.0000E+000, -0.0000E+000)
w(z)=(+0.0000E+000, -1.0000E+000)

z=(+0,-0)=(+0.0000E+000, -0.0000E+000)
w(z)=(+0.0000E+000, -1.0000E+000)

I
M
(
w
)

RE(w)

w = 0.5*(z + SIGN(1, REAL(z)) * SQRT(z*z - 4))

Fig. 1. Map of w = 1
2 (z + copySign(1,ℜz)

√
z2 − 4). The branch cut ABCD in z is mapped onto a unit circle

ABCD inw .

Fig. 2. Map of function w = tan(arccos z2/4), reproduced from [17].

Note that Eqn. (2) produces the desired mapping only if +0 and −0 can be distinguished, so
that points in z on the top and the bottom boundary of the cut, i.e. with y = +0 and y = −0 are
mapped respectively onto the top and the bottom boundary of the unit circle in w . For example,
point z = +0− i0 is mapped to pointw = +0− i1, point B in Fig. 1, and point z = +0+ i0 is mapped
to pointw = +0 + i1, point D in Fig. 1.
Another function, useful for the study of intersecting cracks, isw = tan(arccosz2/4) [17, p. 79],

which maps a plane with 2 intersecting cuts onto an upper half plane, v ≥ 0. The two cuts form a
cross centered at the origin, see Fig. 2. Two branch cuts in arccos along the real axis together with
the ability to distinguish +0 and −0, mean that points B, D, F and H, located at the origin in z are
mapped onto 4 distinct points inw in Fig. 2.

, Vol. 1, No. 1, Article . Publication date: November 2018. 2018-11-30 13:03. Page 2 of 1–9.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

On quality of implementation of Fortran 2008 complex intrinsic functions on branch cuts 3

In fact, there are 8 elementary complex functionswith branch cuts – log,
√
, three inverse trigono-

metrics (arcsin , arccos, arctan) and three inverse hyperbolic functions (arcsinh , arccosh, arctanh)
– all of which have useful applications in fracture and aerodynamics [15, 16]. For example, log has
a single branch cut along the negative real axis. Therefore it can be used for analysis of an edge
crack in an infinite plate. arcsin , arccos, arctan, arcsinh and arctanh have 2 cuts on either the real
or the imaginary axis, and can therefore be used for the analysis of bodies with 2 cracks along
the same line, e.g. an infinite or a finite width plate with 2 opposing cracks with a finite ligament
length in between. This case is of significant practical importance in fracture mechanics, see e.g.
[23, Sec. 4, ‘Parallel Cracks’]. arccosh has a single branch cut and can be used for an edge crack
geometry.
In all these 8 functions the cuts lie either along the real axis, x = 0, or along the imaginary axis,

y = 0. Hence, the ability to distinguish +0 and −0 is required in applications of these elementary
functions in science and engineering, so that the sides of each cut can be mapped independently.
Jet flows and aerofoils are among other popular practical examples where signed zero is required
to obtain correct conformal maps of multivalued complex functions on branch cuts [15, 16]. The
usage of −0 was further popularised, although with no new examples, in [4, 22]. It is important to
note that signed zero, ±0, is linked to signed infinities, ±∞, e.g. 1

+0 = +∞ but 1
−0 = −∞. Hence the

use of complex intrinsics with branch cuts for science and engineering applications needs support
for signed infinity too.
The IEEE floating point standard [7] defined signed zero and signed infinity: +0,−0,+∞,−∞,

as early as 1985. Expressions for these 8 complex intrinsics, which deal correctly with ±0,±∞ and
NaN, and avoid cancellation, were given by W. Kahan in 1987 [15]. A recent study concludes that
no better expressions have been proposed since then [20]. However, to date support for ±0 and
±∞ in math libraries is varied. If signed zero or signed infinity are not available, algorithms can
be, and have been, developed which use data a short distance away from the cuts. However, this
is not very satisfactory, as it is not obvious what this small distance should be. In addition, branch
cuts often contain the most important data, e.g. the extremum values of crack tip displacement
fields are found on crack flanks, which is useful in experimental fracture mechanics analysis [19].
It would help algorithm developers and programmers significantly if they had full confidence that
complex functions behave correctly on branch cuts, and no special cases need to be considered
and coded for.
Given that Fortran is still themost widely used language in science and engineering, particularly

in high performance computing, where Fortran codes use 60-70% of machine cycles [24], we focus
on implementation of the above 8 complex functions in Fortran. For C programmers we note that
specifications for complex math functions for ±0, ±∞ and NaN were added in C99 [10].
In the following, Fortran functions and written in MONOSPACE UPPERCASE and all other Fortran

names are written in monospace lowercase font.
The Fortran intrinsic functions SQRT and LOG have accepted complex arguments at least since

the FORTRAN66 standard [1]. The Fortran 2003 standard [8] added support for the IEEE floating
point arithmetic. Fortran 2008 standard [9] added support for complex arguments to intrinsic func-
tions ACOS, ASIN, ATAN and 3 new inverse hyperbolic intrinsics: ACOSH, ASINH, ATANH, all of which
also accept complex arguments. With Fortran 2008, programmers finally have access to intrinsics
implementing the above 8 elementary complex functions, including on the branch cuts. However,
the question of how well the above 8 complex functions are implemented in modern Fortran still
deserves attention. This question is addressed in this work with the introduction of a set of 96
tests, which check correctness of the 8 Fortran 2008 complex intrinsics on branch cuts. The code
used in this work is freely available from https://cmplx.sourceforge.io.

2018-11-30 13:03. Page 3 of 1–9. , Vol. 1, No. 1, Article . Publication date: November 2018.

https://cmplx.sourceforge.io

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 A. Shterenlikht

2 TESTS

The tests are designed to verify the behaviour of the 8 intrinsic Fortran functions at special points
on branch cuts. All three IEEE basic binary formats are verified: binary32, binary64 and binary128
[13]. To aid portability, the Fortran 2008 intrinsic module iso_fortran_env includes named con-
stants for these IEEE data formats: REAL32, REAL64 and REAL128, which are used to define the
kinds of real and complex variables and constants in the tests as e.g:

use , intrinsic :: iso_fortran_env

integer , parameter :: fk=real64

real(kind=fk), parameter :: one =1.0_fk

The tests check that the signs of the real and the imaginary parts are correct, and that no un-
due overflow, underflow or NaN results are produced. The Fortran IEEE intrinsics IEEE_CLASS,
IEEE_COPY_SIGN,IEEE_IS_FINITE,IEEE_IS_NAN,IEEE_SUPPORT_SUBNORMAL,IEEE_SUPPORT_INF,
IEEE_SUPPORT_NAN, IEEE_VALUE are used, as well as the named constants ieee_negative_inf,
ieee_positive_inf,ieee_negative_zero,ieee_positive_zero,ieee_positive_denormaland
ieee_negative_denormal. For example, the values of ±0 and ±∞ are defined in the tests as:

real(kind=fk) :: infp , infm , zerop , zerom

infp=IEEE_VALUE(one , ieee_positive_inf)

infm=IEEE_VALUE(one , ieee_negative_inf)

zerop=IEEE_VALUE(one , ieee_positive_zero)

zerom=IEEE_VALUE(one , ieee_negative_zero)

In addition, the Fortran intrinsics HUGE, TINY and EPSILON are used, which return the largest and
the smallest positive model (normalised) numbers respectively, here denoted h and t , and machine
epsilon, ϵ . Note that the Fortran definition of ϵ is ϵ = r 1−p , where r is the radix, r = 2 on binary
computers, and p is the precision. This definition follows the IEEE standard [13].
The accuracy of complex floating point calculations has been analysed in a number of works.

Expressions for the relative errors of complex
√
and log (as well as exp, sin, cos) are given in [5],

although the authors did not distinguish +0 and −0. The expressions are given in terms of the
relative errors of the real counterparts of these intrinsics, e.g. their bound for the relative error in
complex

√
is 2ϵ + 1.5Esqrt, where Esqrt is the relative error bound for real

√
. [3] proposed a high

speed implementation of complex
√
which preserved the accuracy of [5]. For complex log [5] gives

the relative error bound of 3.886ϵ+Elog, where Elog is the relative error bound for real log x , x ≫ 1.
For arcsin and arccos [6] give the relative error bound of 9.5ϵ . The relative error bound of a fused
multiply-add (FMA) for complex multiplication was recently estimated as low as ϵ [14].
Based on these accuracy estimates, in this work a conservative relative error bound of 102ϵ

was considered acceptable for π , π/2 and 1, the magnitudes of the real or the imaginary parts
of the result values on the branch cuts. Another reason for choosing a high error bound is that
the Fortran 2008 standard is deliberately vague about the accuracy of floating point intrinsics, e.g.
for log on the branch cut it just says that the imaginary part of the result is ‘approximately π ’ or
‘approximately −π ’, depending on the cut side [9].

Where the real or the imaginary part of the result is predicted analytically to be ±0, it was
validated against zerop or zerom respectively, i.e. exact result values were expected for ±0.

Although C11 [11, App. G.6] specifies the return values of these 8 complex intrinsics on the
branch cuts, including points at infinity, and details which exceptions should be raised, Fortran
2008 has no such constraints [9, Clause 13.7]. Therefore, the electronic appendix contains concise
but full derivations of analytic expressions for the 8 intrinsics on the branch cuts, including points

, Vol. 1, No. 1, Article . Publication date: November 2018. 2018-11-30 13:03. Page 4 of 1–9.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

On quality of implementation of Fortran 2008 complex intrinsic functions on branch cuts 5

at infinity. These expressions are used as a reference to validate the values returned by the Fortran
2008 intrinsics.
A summary of the test results is given in Sec. 3. The detailed results can be found in the electronic

appendix, together with the reference conformal maps of the branch cuts for the 8 intrinsics. The
reader can use the maps, which are similar to Fig. 1, as a graphical aid in visualising the locations
of the test points.
In the following, where ± occurs in both the argument and the result, the result has the same

sign as the argument.

2.1 LOG

The behaviour of LOG was checked on the branch cut at 8 points: z = −∞ ± i0, z = −h ± i0,
z = −1± i0 and z = −t ± i0. The top and the bottom boundaries of the cut are mapped tow = u+ iπ
andw = u − iπ respectively.

2.2 SQRT

The behaviour of SQRT was checked on the branch cut at 10 points: z = −∞ ± i0, z = −h ± i0,
z = −1 ± i0, z = −t ± i0 and z = −0 ± i0. The top boundary of the cut is mapped onto the positive
imaginary axis, and the bottom boundary of the cut is mapped onto the negative imaginary axis.

2.3 ASIN

The behaviour of ASIN was checked on 12 points: z = ±∞ ± i0, z = ±h ± i0 and z = ±1 ± i0.
w = arcsin z maps a plane with 2 cuts along the real axis, x ≤ −1 and x ≥ 1 to an infinite strip of
width π along the imaginary axis, −π/2 ≤ u ≤ π/2. The left cut, x ≤ −1 is mapped onto the left
boundary of the strip, u = −π/2. The right cut, x ≥ 1 is mapped onto the right boundary of the
strip, u = π/2.

2.4 ACOS

The behaviour of ACOS was checked on the same 12 points as of ASIN.w = arccosz has 2 branch
cuts, both on the real axis, at x ≤ −1 and x ≥ 1. For x ≤ −1, the top boundary of the cut, y = +0,
is mapped tow = π − ib and the bottom boundary of the cut, y = −0, is mapped tow = π + ib. For
x ≥ 1, the top boundary of the cut, y = +0, is mapped tow = +0− ib, and the bottom boundary of
the cut, y = −0, is mapped to w = +0 + ib. In all cases b ≥ 0.

2.5 ATAN

The behaviour of ATAN was checked on 16 points: z = ±0 ± i∞, z = ±0 ± ih, z = ±0 ± i1 and
z = ±0 ± i(1 + ϵ). The last 4 values are interesting because they are likely to be used as the best
substitute for ±0± i1 on systems which do not support ±∞.w = arctan z maps a plane with 2 cuts
along the imaginary axis, y ≤ −1 and y ≥ 1 to an infinite strip along the imaginary axis of width
π and centred on zero.

Note that ℑ arctan(±0 ± ih) is subnormal (C11 uses the term subnormal instead of the earlier
denormal), e.g. for REAL64 the smallest normal number is ≈ 2.2×10−308 while |ℑ arctan(±0± ih) | ≈
5.6×10−309 (see the electronic appendix for full details). On systemswith no support for subnormals
the correct result is ℑ arctan(±0 ± ih) = ±0, with the correct sign. On the other hand, on systems
with no support for subnormals, a subnormal return value is not acceptable, because such value,
k , would violate the expected inequalities |k | > 0 and |k | < t [9].

C11 defines arctan(±0± i1) = ±0 ± i∞ [11, Annex G.6]. The expressions given in the electronic
appendix are different: arctan(±0 ± i1) = ±π/2 ± i∞. However, it is easy to show [2, Eqn. 4.21.39]
that a more relaxed expression: arctan(±0 ± i1) = ±q ± i∞, where q = +0 or 0 < q ≤ π/2,

2018-11-30 13:03. Page 5 of 1–9. , Vol. 1, No. 1, Article . Publication date: November 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 A. Shterenlikht

is sufficient to satisfy the identity tan(arctanz) = z. Hence the tests use the relaxed expression
above to validateℜ arctan(±0 ± i1).

2.6 ASINH

The behaviour of ASINH was checked on 12 points: z = ±0 ± i∞, z = ±0 ± ih and z = ±0 ± i1.
w = arcsinh z maps a plane with 2 cuts along the imaginary axis, y ≤ −1 and y ≥ 1 to an infinite
strip of width π along the real axis, −π/2 ≤ v ≤ π/2. The bottom cut, y ≤ −1 is mapped onto the
bottom boundary of the strip, v = −π/2. The top cut, y ≥ 1 is mapped onto the top boundary of
the strip, v = π/2.

2.7 ACOSH

The behaviour of ACOSHwas checked on 10 points: z = −∞± i0, z = −h± i0, z = −1± i0, z = +0± i0
and z = 1 ± i0. w = arccoshz maps a plane with a single cut along the real axis at x ≤ 1 onto a
semi-infinite strip of width 2π , running along the real axis, u ≥ 0. The tests check that (1) the top
side of the cut at x ≤ −1 is mapped onto the top boundary of the strip, u = +0 and u > 0,v = π ;
(2) the top side of the cut at −1 ≤ x ≤ 1 is mapped onto the end of the strip at u = +0,v = +0
and 0 < v ≤ π ; (3) the bottom side of the cut at −1 ≤ x ≤ 1 is mapped onto the end of the strip at
u = +0,v = −0 and −π ≤ v < 0, and (4) the bottom side of the cut at x ≤ −1 is mapped onto the
bottom boundary of the strip, u = +0 and u > 0,v = −π .

2.8 ATANH

ATANH was verified on 16 points: z = ±∞ ± i0, z = ±h ± i0, z = ±1 ± i0 and z = ±(1 + ϵ) ± i0.
w = arctanh z maps a plane with 2 cuts along the real axis, x ≤ −1 and x ≥ 1 onto a infinite strip
of width π centered on 0 and running along the real axis.
The behaviour of ATANH on the branch cutsmirrorsmany features of that of ATAN, since arctan z =
−i arctanh(iz). C11 defines arctanh(±1 ± i0) = ±∞± i0 [11, Annex G.6]. The expressions given in
the electronic appendix are different: arctanh(±1 ± i0) = ±∞ ± iπ/2. However, it is easy to show,
using [2, Eqn. 4.35.36], that a more relaxed expression: arctanh(±1 ± i0) = ±∞± iq, where q = +0
or 0 < q ≤ π/2, is sufficient to satisfy the identity tanh(arctanhz) = z. Hence the tests use the
relaxed expression above to validate ℑ arctanh(±1 ± i0).
Clearly the sameqmust be taken for arctan(±0±i1) = ±q±i∞ and for arctanh(±1±i0) = ±∞±iq,

for the identity arctan z = −i arctanh(iz) to hold.

3 SUMMARY OF THE RESULTS AND DISCUSSION

The detailed test results are given in the electronic appendix and at https://cmplx.sourceforge.io.
The main conclusion is that the quality of implementation varies significantly between the 8 com-
pilers tested.
Most compiler documentation referred to during this work indicates that evaluation of the 8

complex intrinsics is done via external calls, typically to libm. Therefore, the diversity of results
between compilers is surprising. Although in some cases identical failures are seen, e.g. with Cray
and Oracle for arcsinh for REAL32 and REAL64 kinds, or with Cray and GCC for REAL128 kind for
all intrinsics, in general different failure patterns are seen in each compiler. This indicates that not
all vendors use the same algorithms and/or math libraries.
Only a single compiler has passed all 96 tests for all 3 IEEE floating point types. Another compiler

has passed all 96 tests for REAL32 and REAL64 kinds.
As mentioned in the introduction, both LOG and SQRT Fortran intrinsics accepted complex argu-

ments at least as far back as FORTRAN66, and perhaps even earlier. Therefore it was surprising to
find that one compiler failed several log tests, and 4 out of 8 compilers showed multiple failures

, Vol. 1, No. 1, Article . Publication date: November 2018. 2018-11-30 13:03. Page 6 of 1–9.

https://cmplx.sourceforge.io

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

On quality of implementation of Fortran 2008 complex intrinsic functions on branch cuts 7

in
√

tests with REAL32 and REAL64 kinds, including overflow, wrong sign and NaN. Given that

all CPUs used in this work are meant to fully support IEEE arithmetic with REAL32 and REAL64

kinds (except possibly support for subnormals, which might be implemented in software) and had
hardware instructions for single and double precision

√
, we speculate that the problems are likely

in compiler implementations of complex
√
.

Many failures of type "n", were obtained. These are failures where NaN values were produced.
None of these 8 intrinsics should produce NaN results on branch cuts, including points at infinity.
Hence, such failures are obviously completely unacceptable. This is the most obvious failure type,
both to the programmer and to the compiler or library developers. The vendors should be able to
find and fix all such failures easily.
Another frequently observed failure type was "o", overflow, i.e. when ±∞ results were produced

instead of the correct finite values. These are most likely caused by overflow in the intermediate
computations in the math library. These failures are more dangerous to the programmer, because
they can be hidden by consecutive calculations.
In our opinion the most dangerous type of failure to the programmer is type "s", where the sign

of the real or the imaginary part of the result, or both, is wrong. Such failures will likely cause
unexpected results further down in the calculations, which will be hard to debug. Expressions
carefully derived in the electronic appendix are intended as a reference and a debugging aid.
Other failure types were seen less often. Failure of type "z", where a zero result was obtained

instead of the correct non-zero normal value was seen only together with other failure types,
overflow and NaN. We therefore recommend the vendors to focus on resolving failure types "n"
and "o" first. Failures of types "d", where a subnormal result was obtained while the processor did
not support subnormals, were seen only in a single compiler. Likewise, failures of type "m", where
themagnitude of the real or the imaginary part was clearly wrong, were peculiar to a single vendor.
Finally, a single vendor erroneously printed +0 in formatted output for −0 internal representa-

tion. Since the tests are currently done using only the internal representations of the result values,
and not the printed values, such compiler behaviour did not result in test failure. However, the
users reading the wrongly signed zero values in print can be misled. Hence, we flag such tests as
"д", to alert the user.
It is important to emphasise that only failures of type "n", where NaN results were produced,

can be interpreted as compiler non-conformance with the standard. This is because Fortran 2008,
or any previous Fortran standard, requires very little in terms of accuracy of floating point calcula-
tions. Descriptions of many intrinsics have only the phrase ‘processor-dependent approximation’,
e.g. the result of arccosh(X) is defined as ‘a value equal to a processor-dependent approximation
to the inverse hyperbolic cosine function of X’, where ‘processor’ is defined as a ‘combination of a
computing system and mechanism by which programs are transformed for use on that computing
system’ [9], i.e. it includes the compiler, the libraries, but also the runtime environment and the
hardware. Therefore, we interpret the test results only as ‘quality of implementation’.

4 RECOMMENDATIONS FOR A FUTURE FORTRAN STANDARD

Fortran 2008 and the draft 2018 standards [9, 12] prohibit LOG from accepting a zero argument,
likely because the imaginary part of log(±0 ± i0) is mathematically undefined. It is proposed that
future Fortran standards allow log(±0 ± i0) with the return values used by C11 [11, Annex G.6]:

log(−0 + i0) = −∞ + iπ ; log(+0 + i0) = −∞ + i0; log(conj(z)) = conj(log(z)) (3)

2018-11-30 13:03. Page 7 of 1–9. , Vol. 1, No. 1, Article . Publication date: November 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 A. Shterenlikht

Allowing log(±0± i0) would be useful to the programmer, because it will make the fundamental

identity za = exp(a logz) valid for all z. An immediately useful example is
√
−0 ± i0:

√
−0 ± i0 = exp(

1

2
log(−0 ± i0)) = exp(

1

2
(−∞ ± iπ)) = exp(−∞) (cos

π

2
± i sin π

2
) = +0 ± i0 (4)

5 CONCLUSIONS

96 tests for complex Fortran 2008 intrinsics LOG, SQRT, ACOS, ASIN, ATAN, ACOSH, ASINH and ATANH

on branch cuts were designed for this work. Only 2 compilers passed all tests with IEEE binary32
and binary64 types and only a single compiler passed all tests with all 3 IEEE floating point types.
Based on this limited testing, the user is advised to deploy inverse trigonometric and hyperbolic
intrinsics,

√
and log on branch cuts with caution, using extensive testing of the algorithms on

known cases. Unfortunately the need to use special code for calculations on branch cuts has not
yet disappeared completely. We expect the quality of implementation in all compilers to improve
in line with customer demands. The immediate future work will include checks for exceptions, and
also for additional IEEE capabilities added in the Fortran 2018 standard. Finally, we welcome any
feedback on our tests, such as bug reports or results from other compilers or compiler versions.
These can be submitted via https://cmplx.sourceforge.io.

6 ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

We acknowledge the use of several computational facilities for this work: The ARCHER UK Na-
tional Supercomputing Service, project eCSE05-05; Advanced Computing Research Centre of The
University of Bristol and The STFC Hartree Centre. The STFC Hartree Centre is a research collab-
oration in association with IBM providing High Performance Computing platforms funded by the
UK’s investment in e-Infrastructure.

REFERENCES

[1] ANSI X3.9-1966. 1966. FORTRAN Standard.

[2] DLMF 2018. NIST Digital Library of Mathematical Functions. Release 1.0.19 of 2018-06-22. http://dlmf.nist.gov/

F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V.

Saunders, eds.

[3] M. D. Ercegovac and J.-M.Muller. 2007. Complex square root with operand prescaling. Journal of VLSI signal processing

49, 1 (Oct. 2007), 19–30. https://doi.org/10.1007/s11265-006-0029-2

[4] D. Goldberg. 1991. What every computer scientist should know about floating-point arithmetic. Comput. Surveys 23,

1 (March 1991), 5–48. https://doi.org/10.1145/103162.103163

[5] T. E. Hull, T. F. Fairgrieve, and P. T. P. Tang. 1994. Implementing Complex Elementary Functions Using Exception Han-

dling. ACM Transactions of Mathematical Software 20, 2 (Dec. 1994), 215–244. https://doi.org/10.1145/178365.178404

[6] T. E. Hull, T. F. Fairgrieve, and P. T. P. Tang. 1997. Implementing the complex arcsine and arccosine func-

tions using exception handling. ACM Transactions of Mathematical Software 23, 3 (Sept. 1997), 299–335.

https://doi.org/10.1145/275323.275324

[7] IEEE Std 754-1985. 1985. IEEE Standard for Floating-Point Arithmetic.

[8] ISO/IEC 1539-1:2004. 2004. Information technology – Programming languages – Fortran – Part 1: Base language.

[9] ISO/IEC 1539-1:2010. 2010. Information technology – Programming languages – Fortran – Part 1: Base language.

[10] ISO/IEC 9899:1999. 1999. Programming languages – C.

[11] ISO/IEC 9899:2011. 2011. Information technology – Programming languages – C.

[12] ISO/IEC DIS 1539-1. 2018. Information technology – Programming languages – Fortran – Part 1: Base language.

[13] ISO/IEC/IEEE 60559:2011. 2011. Information technology – Microprocessor Systems – Floating-Point arithmetic.

[14] C.-P. Jeannerod, P. Kornerup, N. Louvet, and J.-M. Muller. 2017. Error bounds on complex floating-point multiplication

with an FMA. Math. Comp. 86, 304 (March 2017), 881–898. https://doi.org/10.1090/mcom/3123

, Vol. 1, No. 1, Article . Publication date: November 2018. 2018-11-30 13:03. Page 8 of 1–9.

https://cmplx.sourceforge.io
http://dlmf.nist.gov/
https://doi.org/10.1007/s11265-006-0029-2
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/178365.178404
https://doi.org/10.1145/275323.275324
https://doi.org/10.1090/mcom/3123

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

On quality of implementation of Fortran 2008 complex intrinsic functions on branch cuts 9

[15] W. Kahan. 1987. Branch Cuts for Complex Elementary Functions, or Much Ado About Nothing’s Sign Bit. In The State

of the Art in Numerical Analysis, A. Iserles and M. J. D. Powell (Eds.). Clarendon Press, Oxford.

[16] W. Kahan. 1997. The John von Neumann lecture. In 45th SIAM annual meeting.

https://people.eecs.berkeley.edu/~wkahan/SIAMjvnl.pdf

[17] H. Kober. 1952. Dictionary of Conformal Representations. Dover.

[18] P. Lopez-Crespo, R. L. Burguete, E. A. Patterson, A. Shterenlikht, P. J. Withers, and J. R. Yates. 2009. Study of

a Crack at a Fastener Hole by Digital Image Correlation. Experimental Mechanics 49, 4 (Aug. 2009), 551–559.

https://doi.org/10.1007/s11340-008-9161-1

[19] P. Lopez-Crespo, A. Shterenlikht, E. A. Patterson, J. R. Yates, and P. J. Withers. 2008. The stress intensity of mixed

mode cracks determined by digital image correlation. Journal of Strain Analysis for Engineering Design 43, 8 (2008),

769–780. https://doi.org/10.1243/03093247JSA419

[20] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres.

2010. Handbook of Floating-Point Arithmetic. Birkhäuser, Boston.

[21] N. I. Muskhelishvili. 1953. Some Basic Problems of the Mathematical Theory of Elasticity; translated from the Russian

by J.R.M. Radok (3 ed.). Groningen, Noordhoff.

[22] M. L. Overton. 2001. Numerical Computing with IEEE Floating Point Arithmetic. SIAM.

[23] H. Tada, P. C. Paris, and G. R. Irwin. 2000. The Stress Analysis of Cracks Handbook (3 ed.). ASME.

[24] A. Turner. 2015. Parallel software usage on UK national HPC facilities 2009-2015. ARCHER white papers, EPCC,

Edinburgh, UK. http://archer.ac.uk/documentation/white-papers/app-usage/UKParallelApplications.pdf

2018-11-30 13:03. Page 9 of 1–9. , Vol. 1, No. 1, Article . Publication date: November 2018.

https://people.eecs.berkeley.edu/~wkahan/SIAMjvnl.pdf
https://doi.org/10.1007/s11340-008-9161-1
https://doi.org/10.1243/03093247JSA419
http://archer.ac.uk/documentation/white-papers/app-usage/UKParallelApplications.pdf

	Abstract
	1 Introduction
	2 Tests
	2.1 LOG
	2.2 SQRT
	2.3 ASIN
	2.4 ACOS
	2.5 ATAN
	2.6 ASINH
	2.7 ACOSH
	2.8 ATANH

	3 Summary of the results and discussion
	4 Recommendations for a future Fortran standard
	5 Conclusions
	6 Electronic appendix
	Acknowledgments
	References

