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Open-access global Digital Elevation Models (DEM) have been crucial in enabling flood
studies in data-sparse areas. Poor resolution (>30 m), significant vertical errors and the
fact that these DEMs are over a decade old continue to hamper our ability to accurately
estimate flood hazard. The limited availability of high-accuracy DEMs dictate that dated
open-access global DEMs are still used extensively in flood models, particularly in data-
sparse areas. Nevertheless, high-accuracy DEMs have been found to give better flood
estimations, and thus can be considered a ‘must-have’ for any flood model. A high-
accuracy open-access global DEM is not imminent, meaning that editing or stochastic
simulation of existing DEM data will remain the primary means of improving flood
simulation. This article provides an overview of errors in some of the most widely used
DEM data sets, along with the current advances in reducing them via the creation of new
DEMs, editing DEMs and stochastic simulation of DEMs. We focus on a geostatistical
approach to stochastically simulate floodplain DEMs from several open-access global
DEMs based on the spatial error structure. This DEM simulation approach enables an
ensemble of plausible DEMs to be created, thus avoiding the spurious precision of
using a single DEM and enabling the generation of probabilistic flood maps. Despite this
encouraging step, an imprecise and outdated global DEM is still being used to simulate
elevation. To fundamentally improve flood estimations, particularly in rapidly changing
developing regions, a high-accuracy open-access global DEM is urgently needed, which
in turn can be used in DEM simulation.

Keywords: digital elevation models, open-access, geostatistics, flood, stochastic simulation, floodplains, hazards

INTRODUCTION

Digital Elevation Models (DEM) are a gridded digital representation of terrain, with each pixel
value corresponding to a height above a datum. Since the pioneering work of Miller and Laflamme
(1958), DEMs have grown to become an integral part of a number of scientific applications. DEMs
can be created from ground surveys, digitizing existing hardcopy topographic maps or by remote
sensing techniques. DEM’s are now predominantly created using remote sensing techniques with
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Smith and Clark (2005) observing the benefits that a large
spatial area can be mapped by fewer people at a lower cost.
Remotely sensing techniques include photogrammetry (Uysal
et al., 2015; Coveney and Roberts, 2017), airborne and spaceborne
Interferometric Synthetic Aperture Radar (InSAR) and Light
Detection And Ranging (LiDAR). Spaceborne InSAR is the most
common technique to create global DEMs and is the technology
behind the most widely used open-access global DEM; the
Shuttle Radar Topography Mission (SRTM). An overview of
free and commercial global DEMs is given in Figure 1. Despite
being acquired in 2000, SRTM is still the most popular global
DEM because of its accessibility, feature resolution, vertical
accuracy and a lower amount of artifacts and noise compared
to alternative global DEMs (Rexer and Hirt, 2014; Jarihani et al.,
2015; Sampson et al., 2016; Hu et al., 2017). Yet, recently released
products such as MERIT and TanDEM-X 90 could change that.
Commercial DEMs (Planet Observer, 2017; Takaku and Tadono,
2017; InterMap, 2018) are often prohibitively costly and have
a lack of comparison studies. Airborne LiDAR has a higher
precision and accuracy owing to its ability to penetrate vegetation
and its reduced vulnerability to scatter but is largely limited to
a handful of countries and can be expensive to acquire. These
characteristics are conducive in creating a high-quality (vertical
error <1 m) ‘bare-earth DEM,’ where objects (e.g., buildings
and vegetation) have been removed from the elevation model.
Such bare-earth DEMs are essential for applications, such as
flood modeling, that rely on the accurate derivation of surface
characteristics (e.g., slope).

Characteristics of DEM Errors
DEM errors occur in both the horizontal and vertical directions.
Errors propagate from the input data used in creating a DEM
right through to calculating surface derivatives and using DEMs
in complex applications (Hutchinson and Gallant, 2000; Fisher
and Tate, 2006). Whatever their source, DEMs can appear to
provide a definitive and plausible representation of topography
which can often lull the user into a false sense of security
regarding their accuracy, with many users unaware of DEM
errors or how to treat them (Wechsler, 2003, 2007). Whilst
accuracy statistics such as RMSE provide an indication of
DEM accuracy, they assume error to aspatial (Hunter and
Goodchild, 1997; Carlisle, 2005; Fisher and Tate, 2006; Wechsler,
2007). Invoking Tobler’s First Law of Geography, whereby
he noted that “nearby things are more similar than distant
things” (Tobler, 1970), we know error varies spatially so DEM
error is spatially autocorrelated. Indeed, Holmes et al. (2000)
observe that “although global (average) error is small, local
error values can be large, and also spatially correlated.” The
spatial variation of DEM error is most frequently estimated by
calculating accuracy statistics of areas disaggregated by slope
and/or landcover class, and more rarely spatial structure of
error.

Wise (2000) categorized DEM errors as systematic, blunders
or random. These types of errors derive from: (a) deficient
spatial sampling and/or age of data; (b) processing errors such
as interpolation or numerical errors; (c) measurement errors
from poor positional inaccuracy, faulty equipment or observer

bias (Wechsler, 2007). Systematic errors occur in the DEM
creation procedure by processing techniques that can cause
bias or artifacts. Blunders arise from human error (Wise, 2000)
or equipment failure (Fisher and Tate, 2006). Random errors
occur in any system of measurement due to the wealth of
measurement and operational tasks performed to create a DEM
(Wise, 2000; Fisher and Tate, 2006), and remain even after known
blunders and systematic errors are removed (Wechsler, 2007).
An example of random error is speckle noise (multiplicative
noise in a granular pattern) (Rodriguez et al., 2006; Farr et al.,
2007). Sources of systematic errors and blunders relevant to flood
modeling derive from interpolation techniques (Desmet, 1997;
Wise, 2007; Bater and Coops, 2009; Guo et al., 2010), erroneous
sink filling (Burrough and McDonnell, 1998), hydrological
correction (Callow et al., 2007; Woodrow et al., 2016), deficient
spatial sampling causing urban features not to be resolved
(Gamba et al., 2002; Farr et al., 2007), slope and aspect (foreslope
vs backslope) (Toutin, 2002; Falorni et al., 2005; Shortridge and
Messina, 2011; Szabó et al., 2015), striping caused by instrument
setup (Walker et al., 2007; Tarakegn and Sayama, 2013) and
vegetation (Carabajal and Harding, 2006; Hofton et al., 2006;
Shortridge, 2006; Weydahl et al., 2007; LaLonde et al., 2010).

The aforementioned errors propagate into errors in surface
derivatives including, but not limited to, slope (Holmes et al.,
2000), aspect (Januchowski et al., 2010), curvature (Wise, 2011),
drainage basin delineation (Oksanen and Sarjakoski, 2005) and
upslope contributing area (Wu et al., 2008). As many models
rely on these surface derivatives (e.g., change in slope is the
dominant control on flow in flood models), error propagation
from DEMs can substantially affect results of models that use
these surface derivatives. Yet, taking flood models as an example,
sensitivity analysis has largely focussed on hydraulic parameters
and has under-represented DEM errors (Wechsler, 2007). Davis
and Keller (1997) aptly sum up the problem of DEM error with
their remark that ‘landscapes are not uncertain, but knowledge
about them is.’

Flood Inundation Models and DEM Error
Topography is arguably the key factor for the estimation of
flood extent (Horritt and Bates, 2002), but typically flood models
use a limited number of DEMs and instead choose to explore
the uncertainty associated with other hydraulic parameters
(Wechsler, 2007). Studies that do use multiple DEMs either
resample DEMs to a coarser resolution to explore the effect
of resampling strategies and/or scale (Horritt and Bates, 2001;
Neal et al., 2009; Fewtrell et al., 2011; Saksena and Merwade,
2015; Savage et al., 2016b; Komi et al., 2017), or compare flood
extents using different DEM products (Li and Wong, 2010;
Jarihani et al., 2015; Bhuyian and Kalyanapu, 2018). Generally
speaking, the quality of flood predictions increases with higher
resolution DEMs. Higher resolution DEMs are more important
when modeling urban environments (Fewtrell et al., 2008) so
buildings can be captured. Resolution can be less important for
rural environments with Savage et al. (2016a) concluding that
running simulations finer than 50 m had little performance gain
without occurring additional unnecessary computational cost.
Too much detail can induce spuriously precise results which
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FIGURE 1 | (A) Overview of Existing Global DEMs (free and commercial). (B) Rank Histograms for an ensemble of 2500 DEMs of the Ba catchment in Fiji, simulated
from the MERIT DEM using semi-variograms of spatial error structure by landcover class. All Pixels and the two landcover classes with the most pixels (Mosaic
Cropland/Natural Vegetation and Mangroves) are shown.

does not represent the uncertainties in making flood predictions
(Dottori et al., 2013; Savage et al., 2016a). In data-sparse regions,
a limited number of global DEM products dictates that only
a single DEM is used, with this most commonly being SRTM

(Yan et al., 2015). Whilst understandable, using a single DEM
leads to a dangerous situation where spuriously precise estimates
of flood extent are presented which do not assess the impact of
uncertain topography. DEM simulation overcomes this obstacle
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by making available a catalog of statistically plausible DEMs at the
native resolution of the global DEM from which it is simulated
from.

CURRENT ADVANCES – CORRECTING
DEM ERROR

Here we identify three categories of approaches to correct DEM
error: (1) DEM editing; (2) New DEMs created with improved
sensing technologies and (3) Stochastic simulation of DEMs. This
article focuses on the third approach.

DEM Editing
DEM error can be reduced by editing – either manually or
systematically. Manual editing involves changing pixel values
based on additional information or expert judgement. We
speculate that this happens frequently but is seldom documented.
Systematic editing involves applying algorithms, additional
datasets and filters to reduce error. For example, a DEM
can be hydrologically corrected through algorithms such as
AGREE (Hellweger, 1997), ANUDEM (Hutchinson, 1989), outlet
breaching (Martz and Garbrecht, 1999), Priority-Flood (Barnes
et al., 2014) and stream burning (Saunders, 1999). Namely,
the HydroSHEDs global hydrography dataset makes use of
hydrological correction techniques to create invaluable maps
such as flow direction, river networks and catchment masks
(Lehner et al., 2008). DEMs have also been edited to correct errors
from vegetation (Baugh et al., 2013; Pinel et al., 2015; Su et al.,
2015; O’Loughlin et al., 2016; Ettritch et al., 2018; Zhao et al.,
2018) and to compensate for the positive bias in coastal areas
due to vegetation and buildings that lead to an underestimation
of coastal flood exposure [e.g., CoastalDEM (Kulp and Strauss,
2018)].

The recent release of the MERIT (Multi-Error-Removed-
Improved-Terrain) DEM is the most comprehensive error
removal from SRTM to date. Errors are reduced by separating and
removing absolute bias, stripe noise, speckle noise and vegetation
bias, with the most significant improvements reported in flat
regions (Yamazaki et al., 2017). Compared to SRTM, MERIT
has fewer artifacts (Hirt, 2018) and a better performance in
flood models compared to SRTM (Chen et al., 2018). Whilst a
significant improvement on SRTM, MERIT is still fundamentally
based on SRTM data and is thus limited by the errors in SRTM.
The next new edited DEM will be NASADEM (Crippen et al.,
2016) set to be released in 2018, but again this is a reprocessing of
SRTM.

New DEMs
The most widely used open-access global DEM (SRTM) is
almost two decades old. Advances in satellite technology, image
processing and data storage capabilities, make creating new,
more accurate DEMs entirely possible. Two new global DEMs
have been recently released, namely optically derived ALOS
AW3D30 (Tadono et al., 2014) (∼30 m resolution) and the SAR
derived TanDEM-X 90 (Rizzoli et al., 2017) (∼90 m resolution).
Both of these products are technically digital surface models,

so should only be used with caution in flood models. Looking
to the future, new techniques are being explored to create new
DEMs. One such example of applying a new technique is the
creation of a 2 m pan-Arctic DEM (ArcticDEM)1 using stereo
auto-correlation techniques to overlap pairs of high-resolution
optical imagery. Additionally, Ghuffar (2018) demonstrated that
a 5 m DEM can be generated from Planet Labs cubesat derived
PlanetScope imagery using Semi Global Matching. Alternatively,
existing DEMs can be fused together to create new products
(de Ferranti, 2014; Yue et al., 2017; Pham et al., 2018). For
example ASTER and SRTM have been fused together to create the
global EarthEnv DEM (Robinson et al., 2014). High Resolution
(<10 m) open-access LiDAR data is becoming increasingly
available through initiatives such as OpenTopography2, with
New Zealand the latest country to release LiDAR data for free.
Despite this encouraging step, we optimistically estimate open-
access LiDAR data covers just 0.005% of the earth′s land area
based on data from OpenTopography and an extensive search
of national mapping agencies. Global LiDAR coverage is some
way off, with the limited amount of LiDAR data that is currently
available almost exclusively found in developed countries.

DEM Simulation
Stochastic simulation assumes that a DEM is only a single
realization amongst a host of potential realizations. DEMs are
simulated by altering pixel values in accordance with the spatial
error structure. A single true DEM is not created. Instead
realizations provide a bound within which the true value is
likely to lie. Therefore, DEM error is not reduced as such, but
the bounds of error are identified. This idea is relatively well
known in the field of geostatistics (Goovaerts, 1997; Hunter and
Goodchild, 1997; Deutsch and Journel, 1998; Kydriakidis et al.,
1999; Holmes et al., 2000). Using an ensemble of simulated DEMs
has been shown to greatly affect the characterization of surface
derivatives (Fisher, 1991; Veregin, 1997; Holmes et al., 2000;
Endreny and Wood, 2001; Raaflaub and Collins, 2006), landslide
hazard (Davis and Keller, 1997; Murillo and Hunter, 1997;
Darnell et al., 2008) and flood inundation estimation (Wilson
and Atkinson, 2005; Hawker et al., 2018). Research in this area,
especially in the flood community, has been largely stagnant for
the past decade which seems a shame given the improvement in
computational resources and the number of DEMs now available.
Here we demonstrate the benefits of DEM simulation in flood
inundation modeling based on the recently published work of
Hawker et al. (2018).

DEM Simulation
In Hawker et al. (2018), DEM simulation is carried out by first
quantifying the spatial error structure of a global DEM, and then
using the fitted error covariance function to simulate plausible
versions of the DEM. The fitted error covariance function was
calculated for SRTM and MERIT DEMs by fitting a semi-
variogram to difference maps (i.e., SRTM/MERIT – reference
LiDAR DEM) of 20 floodplain locations. Semi-variograms for

1https://www.pgc.umn.edu/data/arcticdem/
2http://opentopography.org/
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all locations and by landcover class were produced, thus making
DEM simulation possible for any floodplain SRTM/MERIT
location, with the work available through the R Package
DEMsimulation. For more details we refer the reader to Hawker
et al. (2018). It must be noted that only a limited number of semi-
variograms are produced, but is nevertheless useful in creating an
ensemble of DEMs.

We test the quality of DEM simulations produced by
simulating MERIT DEM by landcover semi-variograms by
plotting rank histograms for an ensemble of 2500 DEMs of the
Ba catchment in Fiji. Rank histograms (or ‘Talagrand’ diagrams)
(Anderson, 1996; Hamill and Colucci, 1997; Talagrand et al.,
1997) are a common tool used to evaluate ensemble forecasts
in meteorology, and work by ranking the verification (in our
case LiDAR data) relative to the corresponding value in the
ensemble in ascending order. An ideal ranked histogram is flat
since the observation is indistinguishable from any ensemble
member. Typically, a U-shaped rank histogram suggests under-
variability in the ensemble, a dome shape over-variability,
and excessive population of the extreme ranks bias. Yet,
ranked histograms are notoriously difficult to evaluate and can
lead to misinterpretations if done uncritically (Hamill, 2001).
Nevertheless, we produce rank histograms by taking the mean
of LiDAR values which fall within each ensemble pixel for the
Ba catchment in Fiji (Figure 1). The rank histogram (Figure 1B)
of all pixels suggests a positive bias in ensemble members as the
ranks are clustered to the left. Despite the vegetation correction
in MERIT, the rank histogram of mangrove covered pixels shows
a large positive bias, whilst cropland has a more uniform shape.

To compensate for errors in observations (LiDAR), we added
random observational noise as suggested by Hamill (2001), but
this made little difference to the shape and thus is not presented
here. Additionally, we compute 3 goodness-of-fit measurements:
Pearson X2; Jolliffe-Primo (JP) slope and JP convexity, with
the null hypothesis that the rank histogram is flat (Jolliffe
and Primo, 2008). These statistics confirm the stronger bias
in mangroves (JP Slope) and suggest possible under-sampling
with the relatively high JP convexity values. All these results are
statistically significant with p-values of virtually 0. Moreover, less
than 3% of pixels within the single MERIT DEM were within
the error of the LiDAR (≈50 mm), whilst this was 97% for the
ensembles. Therefore, the reliability of the DEM simulation is
deemed satisfactory but can still suffer from systematic errors
from the global DEM product being used. A higher-accuracy
global DEM would therefore make this approach even more
effective.

Simulated DEMs and Flood Inundation Predictions
To demonstrate the usefulness of using simulated DEMs in flood
predictions we expand upon work published in Hawker et al.
(2018). We simulate a total of 7500 DEMs to use in a LISFLOOD-
FP Neal et al. (2012) flood model of Ba, Fiji (Figure 2A) for
a 50 year return period flood event (Archer et al., 2018). The
Ba catchment is predominantly agricultural floodplain, with
mangroves present at the coast. DEMs are either simulated using
MERIT or SRTM DEMs, and using either an average floodplain
semi-variogram or semi-variograms disaggregated by landcover.

Flood predictions are compared to four models that use a single
DEM – LiDAR at 30 m and 90 m resolution and MERIT and
SRTM at 90 m resolution. We assume the LiDAR 30 m model
is the benchmark prediction in lieu of a lack of observation data.
Flood depth errors are compared against the LiDAR 30 m model
are plotted for the deterministic approach using the MERIT DEM
and the stochastic approach using an ensemble of simulated
DEMs (Figure 2B). Whilst the DEM ensemble approach can
overpredict flood extent, flood depths are often more accurate
as indicated by the more neutral colors of the DEM ensemble
flood map given in Figure 2B). Further analysis of predicted flood
depth (Figures 2C–F) indicate the benefit of using ensembles of
simulated DEMs in predicting correct water depths. For example,
in location 2, the MERIT DEM does not flood, whilst the flood
depth in SRTM is large (>4.8 m), but for the ensembles of DEMs
the distribution of predicted flood depths are more closely aligned
with the flood depths predicted in the LIDAR models. The results
also highlight the differences in predictions between DEMs, so we
would encourage modelers to use multiple DEMs even if DEM
simulation is not used. Yet by using an ensemble of simulated
DEMs, we can learn about the distribution of potential flood
extent and flood depth, and thus can avoid the spurious precision
when using a single DEM.

FUTURE DIRECTIONS

In this article, we have attempted to reinvigorate the idea
of DEM simulation and highlight its value for flood studies.
Despite repeated calls to produce a new high-accuracy open
access global DEM (Schumann et al., 2014; Simpson et al.,
2015), this unfortunately does not seem forthcoming. Ever-
increasing computing power has made even global flood
simulations possible (Sampson et al., 2015), while flood modelers
also often run multiple models to explore model parameter
sensitivities. However, the impact of DEM error has been largely
overlooked in lieu of a lack of suitable stochastic DEM data.
DEM simulation overcomes this restriction, making it possible
for flood modelers to use a catalog of DEMs. Working in
tandem with systematic DEM editing (e.g., MERIT), DEM
simulation can fill the gap until a much-needed new high-
accuracy open access DEM is produced. Even when this long-
awaited DEM is eventually produced, DEM simulation will still
be an invaluable approach for exploring the effect of DEM error
in flood inundation estimates as long as good estimates of the
spatial error structure can be made across a sufficient number
of locations. We therefore encourage scientists to embrace
geostatistics to simulate DEM ensembles and call for increased
reporting of spatial dependence by DEM vendors and scientists
alike.

DATA AVAILABILITY STATEMENT

The MERIT dataset can be downloaded after sending
a permission request to the developer (Dai Yamazaki,
yamadai@rainbow.iis.u-tokyo.ac.jp) from http://hydro.iis.u-
tokyo.ac.jp/~yamadai/MERIT_DEM/, and is free for research
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FIGURE 2 | Maximum flood water depth at four locations in Ba, Fiji for a 50-year return period event. (A) Overview of study area, with locations of four random
locations to investigate differences in water depth. (B) Average flood depth for models run with MERIT DEM and simulated versions of the MERIT DEM simulated
using semi-variograms per landcover class against the LIDAR 30 m model. (C) Maximum water depth distribution of each DEM ensemble simulated by different sets
of semi-variograms for location 1. (D) Maximum water depth distribution of each DEM ensemble simulated by different sets of semi-variograms for location 2. (E)
Maximum water depth distribution of each DEM ensemble simulated by different sets of semi-variograms for location 3. (F) Maximum water depth distribution of
each DEM ensemble simulated by different sets of semi-variograms for location 4. MERIT Avg refers to MERIT DEM simulated using an ‘average’ floodplain
semi-variogram, MERIT LC refers to MERIT DEM simulated using semi-variograms by landcover class, SRTM LC refers to SRTM DEM simulated using
semi-variograms by landcover class.
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and education purposes. SRTM data can be freely downloaded
from https://earthexplorer.usgs.gov/. The LiDAR dataset is
available from The Secretariat of the Pacific Community′s
Applied Geoscience and Technology Division (SPC SOPAC).
LISFLOOD-FP is available for non-commercial purposes from
http://www.bristol.ac.uk/geography/research/hydrology/models/
lisflood/downloads/. The code to simulate DEMs can be found at
https://github.com/laurencehawker/demgenerator.
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