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Abstract

The paper proposes a Trust Relationship-based Conflict Detection and Elimination decision making (TR-

CDE) model, applicable for Large-scale Group Decision Making (LSGDM) problems in social network

contexts. The TR-CDE model comprises three processes: a trust propagation process; a conflict detec-

tion and elimination process; and a selection process. In the first process, we propose a new relationship

strength-based trust propagation operator, which allows to construct a complete social network by con-

sidering the impact of relationship strength on propagation efficiency. In the second process, we define

the concept of conflict degree and quantify the collective conflict degree by combining the assessment

information and trust relationships among decision makers in the large group. We use social network

analysis and a nonlinear optimization model to detect and eliminate conflicts among decision makers. By

finding the optimal solution to the proposed nonlinear optimization model, we promote the modification

of the assessments from the DM who exhibits the highest degree of conflict in the process, as well as

guaranteeing that a sufficient reduction of the group conflict degree is achieved. In the third and last

process, we propose a new selection method for LSGDM that determines decision makers’ weights based

on their conflict degree. A numerical example and a practical scenario are implemented to show the

feasibility of the proposed TR-CDE model.

Keywords: Decision processes, Large-scale group decision making, Conflict detection and elimination,

Trust propagation operator, Social network analysis

1. Introduction

Large-Scale Group Decision Making (LSGDM) refers to the selection of the best option from a set of

feasible alternatives, predicated on the preferences of a large number of decision makers (DMs) [1]. It is

a common form of decision making problems that has recently attracted widespread research attention
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[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. In LSGDM problems, DMs often represent different interest groups and are

diverse in their status, education, expertise, and understanding of the problem at hand. Hence, they tend

to have strongly different preferences on the available decision alternatives. Such discrepancies in opinions

of DMs could cause intra-group conflicts, which are a kind of disharmony relationship among DMs, and

can potentially lead to resignations, unmotivated DMs and non-cooperation [11]. Moreover, intra-group

conflict is not conducive to the overall decision process. It could lead to social unrest situations that may,

for example, greatly impact the reputation of a country or society on behalf of whom the large group acts.

Consequently, the decisions made by the group could ultimately become influential at a considerable scale

[12].

To eliminate the conflict among DMs by reducing it under an acceptable degree for the decision making

events, a frequently used approach consists in undertaking a Consensus Reaching Processes (CRP), aimed

at obtaining a collective solution as close as possible to unanimous agreement [6, 13, 14, 15, 16, 17, 18].

It is widely believed that conflicts among DMs derive from non-conformity in their individual preferences

towards alternatives. For this reason, many decision making models focus primarily on obtaining a

reasonable degree of consensus. Consensus measures can be defined either (i) based on the distance

between each DM’s preference and the collective preference [19, 20], or (ii) predicated on the distance

between DMs’ preferences [5, 21, 22]. These models clearly adopt the principle that eliminating differences

between DMs’ opinions leads to higher-quality group decisions.

Interestingly, most consensus-based approaches regard DMs as independent individuals who have no

relationships with each other. In practice, however, most DMs in an LSGDM problem are stakeholders

or have some type of relationships and expertise in the problem being addressed. This implies, in turn,

that they may have already developed some social relationships with some other DMs who participate in

the same LSGDM problem, thereby influencing their opinions on the reliability of other DMs’ judgments

[23].

There is wide support among decision-making researchers for distinguishing two categories of conflict:

task conflict and relationship conflict [24, 25, 26, 27, 28, 29]. Where DMs involved in LSGDM have

relationships with one another, both dissension between preferences (task conflict) and disharmonious

relationships among DMs (relationship conflict) are cornerstone factors of intra-group conflict. Existing

works show correlations between the two kinds of conflict [24, 30, 31, 32]: that is, if A trusts B, then A is

more likely to accept and recognize B’s opinion, even if it differs from A’s. This implies that conflict may

not necessarily occur between DMs with rather distinct opinions if they trust each other. Conversely,

highly similar opinions cannot ensure the absence of conflict between two DMs if they distrust each

other. Therefore, when DMs’ relationships are arranged in a social network structure characterized by

diverse social relationships, traditional LSGDM models − which focus exclusively on analyzing preference

information for consensus reaching − are no longer feasible and sufficient in some practical situations and

2
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real-world domains. In other words, social relationship information should be properly integrated (along

with preferential information) in the process of measuring the group’s overall level of harmony (i.e., the

absence of intra-group conflict) to develop models focused on conflict elimination.

To detect and eliminate conflict defined with both social relationships and preferential information,

it is necessary to obtain complete information on the relationships among DMs. Social Network Anal-

ysis (SNA) is a theoretical tool to study relationships between individuals, groups, organizations and

societies [33]. Recent LSGDM literature has introduced approaches to studying how social relationships

influence collective decision making processes [34, 35, 36]. These methods treat information among DMs

as non-transitive. Such social networks are incomplete because some relationship information cannot be

inferred for DMs who do not know one another. To obtain complete information for a social network,

an increasingly large body of research is devoted to investigating how to propagate relation information

among members in a social organization [37, 38, 39]. These studies have endeavored to obtain a complete

social network by introducing a trust propagation operator, which is used to generate a trust relation

between two indirect nodes/individuals via some mediators, founded on the hypothesis that trust in-

formation can be fully propagated by mediators. Indeed, relationship strength, which is defined as the

intimacy/closeness degree between two nodes [40] or the contact time and frequency of two nodes [41] in

a social network, is an important indicator of information spreading and propagation. If the relationship

between two individuals is strong, they are more likely to share information and influence each other’s

opinions. On the contrary, if the relationship is weak, the efficiency of information propagation is likely

to be lower [42, 43, 44]. Therefore, in developing SNA-based decision models, the impact of relationship

strength on trust propagation efficiency should be also considered in the process of calculating “indirect”

trust degrees via a mediator.

In summary, despite the extensive prior research proposing numerous LSGDM models, they still suffer

from a number of limitations. Concretely, our interest lies in investigating the following three challenges

for LSGDM problems in a social network-driven setting:

(1) Only a small number of these models consider the characteristics and inherent diversity of social

relationships among DMs.

(2) Traditional consensus reaching LSGDM models which only consider the impact of preference dis-

agreement on conflict [6, 16, 45, 46], are not realistically applicable for the LSGDM problems where

DMs have well-defined relationships with each other.

(3) In the existing SNA-based models, the relationship propagation operators do not consider the impact

of relationship strength on the efficiency of the propagation.

Based on the motivations outlined above, we draw on SNA to propose a novel Trust Relationship-

based Conflict Detection and Elimination decision making (TR-CDE) model for LSGDM scenarios. An

important innovation in TR-CDE model is considering both the preference inconformity and the relation-

ship disharmony as the causal factors of conflict. Since it is infeasible for DMs to evaluate a priori their

3
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relationships with other DMs they do not know, a trust propagation process is necessary to derive the

complete social network from the known relationship information. Therefore, our cornerstone contribution

of a TR-CDE model comprises the following three processes:

(1) Trust propagation process. In this process, by introducing the Einstein product operator, and

based on the trust propagation operator proposed by Wu [39], we develop a new relationship strength-

based trust propagation operator which considers the relationship strength between pairs of DMs. Based

on this, a novel multi-path relationship strength-based trust propagation operator is proposed. We show

that this propagation operator surpasses previous methods by considering the influence of relationship

strength on propagation efficiency and synthesizing all the propagation paths to obtain comprehensive

relationship information. By using the trust propagation operator, information on the complete social

network structure is obtained for the subsequent processes. An algorithm termed “relationship strength-

based trust propagation algorithm” (Algorithm 1) is drawn to describe the details of the process.

(2) Conflict detection and elimination process. As intuitionistic fuzzy sets (IFSs) can suitably repre-

sent the uncertainty and hesitation of decision makers’ assessment information [6, 47, 48, 49], we consider

the use of IFSs to represent DMs’ assessment information on alternatives in the LSGDM process. By

integrating social network information with assessment consensus information, a conflict network is de-

veloped, which facilitates visualizing conflicts among DMs. The “key” DMs who hamper group harmony

(i.e. the absence of group conflict) are detected, and an opinion modification plan is computed for them

accordingly, by building a nonlinear optimization model with the aim of guaranteeing as much reduction

in the group conflict degree as possible throughout an iterative process. In this way, the conflicts among

DMs are detected and eliminated from the decision making process. The conflict detection and elimi-

nation process is dynamic, hence DMs can modify their assessment to reach higher collective agreement

stepwise. The process also constitutes an innovative and feasible tool for handling practical LSGDM

situations, as it tries to reach a high level of harmony based on both social relationships and preference

consistency, rather than simply improving the degree of consensus among preferences. To summarize this

process, we present an algorithm termed “conflict detection and elimination algorithm” (Algorithm 2).

(3) Selection process. It is proposed that conflict information should be introduced into the selection

process. By using this information to determine DMs’ importance weights, the influence of DMs with a

high conflict degree will be further reduced so as to ensure fair and less biased collective decisions.

A numerical example is likewise implemented to show the feasibility of the proposed TR-CDE model.

Moreover, to demonstrate the effectiveness of the conflict detection and elimination process, we apply the

TR-CDE model in a practical scenario to compare against several other LSGDM models. The comparison

experiment shows that a greater effectiveness is achieved by the proposed TR-CDE model in eliminating

conflict in LSGDM.

The remainder of this paper is organized as follows. In Section 2, we introduce IFSs and SNA as two

4
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paramount concepts in the remainder of the paper. The three parts of the proposed TR-CDE model are

then introduced in the following three sections. Beginning with the trust propagation process in Section

3. First, we propose a new single-path trust propagation operator considering the impact of relationship

strength on propagation efficiency. To this aim, we introduce a multi-path trust propagation operator. In

this way, we can obtain the completed social network. In Section 4, we introduce the conflict detection

and elimination process that integrates the complete social network with assessment information to form

the conflict network; by identifying the key DMs who are causing the presence of group conflict, thereby

eliminating such conflict accordingly. Subsequently, section 5 is devoted to introducing the selection

process, in which DMs’ weights are derived from the conflict network and the optimal selection for the

LSGDM problem is calculated. In Section 6, we present a numerical example and practical scenario to

illustrate and validate the feasibility of the proposed TR-CDE approach through its application to an

LSGDM problem. In Section 7, we draw some conclusions and summarize the paper’s innovations.

2. Preliminaries

In this section, we first introduce the basic concepts of IFSs and an information aggregation operator

for intuitionistic fuzzy values. Then, SNA is briefly introduced, along with several SNA-related concepts.

2.1. Intuitionistic fuzzy sets

Due to their appropriateness to represent the hesitancy exhibited by DMs, IFSs are considered a

suitable means to represent assessment information; hence, they have been widely adopted in recent

research [50, 51, 52]. Therefore, this study utilizes IFSs to represent DMs’ assessment information on

alternatives.

As a generalization of a fuzzy set, the concept of IFS was introduced by Atanassov [53] as follows:

Definition 2.1. Let X be a non-empty set, then we term:

A = {〈x, µA(x), νA(x)〉|x ∈ X}

as an IFS, where µA(x) and νA(x) represent the membership degree and the non-membership degree of

the element x in X to A, respectively.

The above statement implies µA : (x) → [0, 1], x ∈ X → µA(x) ∈ [0, 1], νA : (x) → [0, 1], x ∈ X →

νA(x) ∈ [0, 1]. For each IFS A, if πA(x) = 1− µ(A) − νA(x), then πA(x) is called the hesitation degree (or

intuitionistic index) of x to A. Obviously, πA(x) ∈ [0, 1]. If πA(x) = 0 for all x ∈ X, then A is reduced to

a fuzzy set; if µA(x) = νA(x) = 0 for all x ∈ X, then the IFS A is completely intuitionistic.

To simplify the notation of IFS, α = 〈µα, να〉 is defined as an intuitionistic fuzzy value. It is used to

represent the element x in an IFS, here µα ∈ [0, 1], να ∈ [0, 1], 0 ≤ µα + να ≤ 1. For instance, supposing

5
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an IFS A = 〈x1, 0.4, 0.2〉, 〈x2 , 0.2, 0.7〉, 〈x3 , 0.4, 0.4〉, then the elements αx1
= 〈0.4, 0.2〉, αx2

= 〈0.2, 0.7〉

and αx3
= 〈0.4, 0.4〉 are the intuitionistic fuzzy values of that IFS.

The intuitionistic fuzzy weighted average (IFWA) operator proposed by Xu [54], is one of the extant

aggregation operators for IFSs. IFWA is defined as follows.

Definition 2.2. Let αj = 〈µαj
, ναj

〉 (j = 1, 2, · · · , n) be a set of intuitionistic fuzzy values, and consider

the mapping IFWA: Θ̃n → Θ̃, then

IFWAω(α1, · · · , αn) =


1−

n∏

j=1

(1− µαj
)ωj ,

n∏

j=1

ν
α
ωj
j


 (1)

is called the IFWA operator, where ω = (ω1, ω2, · · · , ωn)
T is the weight vector of αj(j = 1, 2, · · · , n),

meeting the condition ωj ∈ [0, 1](j = 1, 2, · · · , n) and
∑

ωj = 1. In particular, if ω = ( 1
n
, 1
n
, · · · , 1

n
), then

the IFWA operator is reduced to the intuitionistic fuzzy averaging (IFA) operator.

2.2. Social network analysis

SNA studies the relationships between social entities, such as members of a group, corporations, or na-

tions [55]. It provides a framework that allows, for instance, to examine the structural and location-based

properties of the social group, including centrality, prestige, and structural balance [23]. Consequently,

SNA can be utilized to model the relationships among a group of people. The three main elements in an

SNA are: the set of actors, the relationships among them, and the actor attributes. We refer to important

network concepts in a unified manner, using the following three representation schemes (see Table 1):

• Sociometric: relational data are presented as a two-dimensional matrix, called a sociometric or

adjacency matrix.

• Algebraic: this notation distinguishes distinct relations and presents combinations of relations.

• Graph theoretical: the network is viewed as a graph, consisting of nodes joined by edges.

Table 1. Different representation schemes in social network analysis.

Sociometric Algebraic Graph theoretical

A =





















e1 e2 e3 e4 e5 e6
e1 0 1 1 1 1 0
e2 0 0 0 0 1 0
e3 0 1 0 0 0 0
e4 0 0 1 0 1 1
e5 0 0 1 0 0 1
e6 0 0 1 0 0 0





















e1Re2 e1Re3
e1Re4 e1Re5
e2Re5 e3Re2
e4Re3 e4Re5
e4Re6 e5Re3
e5Re6 e6Re3

Due to the transitivity of information, if a node A trusts B, and B trusts C, then A will most likely

trust C even if they do not know each other. That is, there exists a potential trust relationship from A

to C. Some related literature divides the relationships into three types, as illustrated in Fig.1.

• Direct Relationship As the top path in Fig.1 shows, if there is an edge from A to B in the social

network, then A has a direct relationship with B. In this case, A may interact with B in real life,

enabling him/her to exactly evaluate B.
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Fig. 1. An example of social network to illustrate types of relationships.

• Indirect Relationship As the middle path in Fig.1 shows, if there is no edge from A to B in

the social network, but A can build an edge to B through several mediators (C1, · · · , Cm), then A

has an indirect relationship with B. In this case, A does not typically know B, but we can obtain

reliable relationship information from A to B by the direct relationship information between their

mediators.

• Irrelevant Relationship As the bottom path in Fig.1 shows, if there is neither a direct nor indirect

relationship between A and B, then A has an irrelevant relationship with B.

Any social network has at least one of the the three types of relationship mentioned above. The nodes

and the edges between them form the structure of the social network. For a social network with m nodes,

we introduce several important concepts in SNA:

• Density of social network: this represents the ratio of the number of direct pairwise relationships

with respect to the maximum possible number of direct relationships. If there are n directed edges

in a social network with m nodes, then the density is ρ = n
m(m−1) .

• In− degree and out − degree A node’s in-degree is the number of edges that start from other

nodes and end in that node. Similarly, a node’s out-degree is the number of edges that start from

that node and end in the others.

3. Trust propagation process

In this paper, we introduce social network information in LSGDM problems and study the impact of

social relationships on the intra-group conflicts. To study the conflict among DMs, first, it is necessary

to obtain their complete social network. The Einstein product operator has been found to be suitable for

trust propagation [39]. Based on the Einstein product operator, we first propose a single-path relationship

strength-based trust propagation operator with one mediator. Then, we extend the operator and propose

a trust propagation operator applicable to paths with multiple mediators. Finally, the algorithm for

multi-path trust propagation operator is devised.
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3.1. Basic concepts of the relationship strength-based trust propagation in LSGDM problems

In the LSGDM problem, there are m DMs that are indexed by E = {e1, e2, · · · , em}. This subsection

presents the trust propagation process applied to obtain the complete social network of DMs.

Direct relationship information can be gathered, for instance, through a questionnaire in which DMs

evaluate other DMs whom they know. In this paper, we consider relationship strength as an important

factor of propagation efficiency. Thus, a DM ei will evaluate other DMs ej (j = {1, 2, · · · ,m}, j 6= i)

that he/she knows with a tuple of the form:

λi,j = (ti,j, si,j).

Where ti,j represents the trust degree of ei on ej , satisfying the condition 0 ≤ ti,j ≤ 1. If λi,j = 0,

it implies that ei fully distrusts ej ; conversely, if λi,j = 1, we have ei fully trusts ej. si,j represents the

degree of strength of the relationship from ei to ej , which satisfies the condition 0 ≤ si,j ≤ 1. Relationship

strength is the quantitative expression of the contact frequency among DMs: the bigger its value, the

closer the relationship of the two DMs, and the more relevant and meaningful the trust information (given

by t) becomes. We assume that a DM’s evaluation of him-/herself is λi,i = (1, 0), which implies a DM

cannot propagate his information to him-/herself.

(a) Incomplete social network. (b) Complete social network.

Fig. 2. The two types of the social network.

Every DM gives evaluation information about his/her acquainted DMs. However, in LSGDM prob-

lems, the number of DMs is large, so it is common for some DMs to be unable to give an exact evaluation

of other DMs whom they do not know. For the sake of illustration, considering the small group example

shown in Fig.2(a), we can obtain the direct relationships of λ1,2, λ1,3, and λ3,1, but the other relationships

λ2,1, λ2,3, and λ3,2 remain unknown. We can use an initial matrix (or incomplete) matrix (A) to represent

the incomplete social network as follows:

A =




(1, 0) (0.8, 0.9) (0.4, 0.7)

(−, 0) (1, 0) (−, 0)

(0.9, 0.5) (−, 0) (1, 0)


 .

To obtain the full relationship information, we should build a relationship propagation mechanism

and compute the indirect relationship information via the known direct relationships, as Fig.2(b) shows.
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It should be noted that trust can only be propagated by the relationship where s > 0, and we have s = 0

for all the indirect relationships.

3.2. Single-path relationship strength-based trust propagation

In a social network, information is transitive, therefore trust can be propagated by one or more

mediators. We define the set of nodes and connections across which information is transmitted, thereby

forming a propagation path. Taking Fig.3 as an example: e1 → e2 → · · · → ek is a trust propagation path

from e1 to ek with (k− 2) mediators. The propagation paths do not contain any loops, in other words, a

propagation path does not involve any repeated nodes in it.

Fig. 3. An example of social network to illustrate types of relationships.

Related studies [56] show that the information strength wanes on the propagation process. Since

the relationship strength s represents the closeness between two DMs, a DM will be more likely to

share his/her information with the DMs with whom they have closer relationships. Put another way,

propagation efficiency must be deemed as a function of relationship strength. In this paper, we define the

propagation efficiency p as follows.

Definition 3.1. Suppose that the relationship information from ei to ej is λi,j = (ti,j , si,j), then the

propagation efficiency from ei to ej is defined as:

p(s) = 1− cos
πsi,j
2

.

Theorem 3.1. The value of p is in the interval of [0, 1].

Proof. For si,j being the relationship strength and in the interval of [0,1], which is the domain of definition

for function p(s). Then, we can have 0 ≤ πs
2 ≤ π

2 . For the function y = cos(x), y is monotone decreasing

when x is in the interval [0, π2 ]. Thus, we can easy obtain that the fuction p(s) is strictly monotonic

increasing function in the domain. As cos(0) = 1, cos(π2 ) = 0, therefore, we can conclude that the value

of p(s) is in the interval of [0, 1].

A plot representing the values taken by p(s) across the domain [0,1], is shown in Fig.4. In addition, p

is a convex function of s, which implies that the increment of p accentuates as s increases.

Suppose that the trust information of e1 to e3 is unknown in the initial social network. Let us consider

the simplest situation of only one propagation path with one mediator e2 between the two DMs e1 and

e3. In this case, the relationship between e1 and e2 and that between e2 and e3 are direct relationships,

the values of which are known as: λ1,2 = (t1,2, s1,2), λ2,3 = (t2,3, s2,3).
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Fig. 4. Propagation efficiency p as a function of the relationship strength s.

There is a single propagation path from e1 to e3, which can be denoted as e1 → e2 → e3. Referring to

the Einstein product operator E⊗, we can obtain the trust value of e1 towards e3 under the assumption

that the information can be fully propagated:

E⊗(t1,2, t2,3) = tf1,3 =
t1,3t2,3

1 + (1− t1,3)(1 − t2,3)
. (2)

In Eq.(2), tf1,3 the fully propagated trust value from e1 to e3.

Theorem 3.2. The propagation operator exhibits the following properties:

• Commutativity: E⊗(t1,2, t2,3) = tf1,3 =
t1,2t2,3

1+(1−t1,2)(1−t2,3)
=

t2,3t1,2
1+(1−t2,3)(1−t1,2)

= E⊗(t2,3, t1,2).

• Boundary Conditions:

Full trust propagation: if t1,2 = 1, we have tf1,3 = E⊗(1, t2,3) =
1×t2,3

1+(1−1)×(1−t2,3)
= t2,3;

Similarly, if t2,3 = 1, we have tf1,3 = t1,2.

Full distrust propagation: if t1,2 = 0, we have tf1,3 = E⊗(0, t2,3) =
0×t2,3

1+(1−0)×(1−t2,3)
= 0;

Similarly, if t2,3 = 0, we have tf1,3 = 0.

Considering the propagation efficiency, we can use a tree map (Fig.5(a)) to show the trust propagation.

(a) With one mediator. (b) With k mediators.

Fig. 5. The single-path trust propagation path with different numbers of mediators.

In the tree, only the path e1 → e2 → e3 can propagate trust information from e1 to e3. In this case, we

use Eq.(2) to calculate the trust value t13. In the tree map, the node S represents a stranger individual,

such that those paths ending in S imply that trust cannot be propagated to e3. Using mathematical

expectation, we can calculate the trust value from e1 to e3 as follows.

t1,3 = p1,2 × p2,3 × tf1,3 + (1− p1,2)× tS + p1,2 × (1− p2,3)× tS .

The trust value towards a stranger (not known user by her/him) is tS = 0; therefore, we simplify the

above equation as:
t1,3 = p1,2 × p2,3 × tf1,3 = (1− cos

πS1

2
)× (1− cos

πS2

2
)×

t1,2t2,3
1 + (1− t1,2)(1 − t2,3)

. (3)
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Consider now the case when the propagation path can involve more than one mediator, as depicted in

Fig.5(b). We can now extend the single-path propagation operator by Eq.(2) to deal with k−1 mediators,

under the assumption that the information can be fully propagated.

tfA,B =
2
∏k

i,j=1 ti,j∏k
i,j=1(2− ti,j) +

∏k
i,j=1 ti,j

. (4)

Considering the propagation efficiency, we have:

pA,B =

k∏

i,j=1

pi,j. (5)

In Eq.(5), pAB is the overall propagation efficiency for the path between A and B. Taking Fig.5(b) as

an example, we deduce the trust propagation operator as Eq.(6):

tA,B = pA,B × tfA,B =

k∏

i,j=1

(1− cos
πsij
2

)×
2
∏k

i,j=1 ti,j∏k
i,j=1(2− ti,j) +

∏k
i,j=1 ti,j

. (6)

According to the discussion introduced formerly, the value of tAB lies strictly in the interval of [0, 1]. In

addition, when trust is propagated from one node to another, the indirect relationship strength decreases.

That is, the more mediators in the trust propagation path, the closer the value of relationship strength s

approaches to 0. Therefore, according to Eq. (6), when the propagation path is long enough, the value

of tAB closes to 0. In other words, its influence on the trust degree can eventually become negligible [57],

when there are a certain number of mediators involved in the propagation path.

3.3. Multi-path trust propagation

In some social networks, there may exist more than one possible path to obtain an indirect social

relationship between two nodes eA and eB . Trust propagation under this situation is termed multi-path

trust propagation. Consider the example shown as the following incomplete social network matrix:

A =




(1, 0) (0.8, 0.9) (0.4, 0.7) (0.9, 0.7)

(−, 0) (1, 0) (0.4, 0.6) (0.3, 0.4)

(0.9, 0.5) (−, 0) (1, 0) (0.1, 0.1)

(0.7, 0.4) (−, 0) (−, 0) (1, 0)


 ,

to obtain the trust value of t21, we notice that there are three paths to obtain his/her trust value on eB ,

they are: Path 1: e2 → e3 → e1; Path 2: e2 → e4 → e1; Path 3: e2 → e3 → e4 → e1. We use a tree

diagram to show the propagation paths, as shown in Fig.6:

Fig. 6. Multi-path trust propagation. Fig. 7. Furcate node.
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When there are multiple paths for an indirect relationship, we define the overall trust value for the

indirect relationship as the mathematical expectation of trust values for all propagation paths, that is:

tAB =
k∑

i=1

ppathi

AB × tf,pathi

AB . (7)

Where pathi represents the overall propagation efficiency for path i, and tf,pathi

AB is the fully-propagated

trust value from eA to eB .

In the cases where some edges connecting nodes appear in several different paths, such as e2 in Fig.6,

we refer to those (pairs of) nodes as furcate nodes. Taking e2 in Fig.6 as an example, let us suppose that

the propagation efficiency to the following mediators e3 and e4 is 0.9 and 0.7, respectively. That indicates

p23 + p24 = (1− cosπ·s23
2 ) + (1− cosπ·s24

2 ) > 1, which may result in sAB > 1. To avoid this situation, we

should normalize the propagation efficiency within the unit interval.

Suppose that there is a furcate node eC , as depicted in Fig.7, that is followed by n branches: we make

the following judgement to obtain the propagation efficiency for each branch.

• If
∑n

i=1(1− cosπ·sCi

2 ) ≤ 1, let pCi = 1− cosπ·sCi

2 for ∀i = {1, 2, · · · , n}.

• Otherwise, if
∑n

i=1(1− cosπ·sCi

2 ) > 1, let pCi =
1−cos

π·sCi
2∑n

i=1
(1−cos

π·sCi
2

)
for ∀i = {1, 2, · · · , n}.

We execute this judgment to normalize the propagation efficiency whenever there is a furcate node.

Based on this, we propose a relationship strength-based trust propagation algorithm (Algorithm 1) to

obtain the indirect or irrelevant relationship information from eA to eB .

Algorithm 1 Relationship strength-based trust propagation algorithm

Step 1 Determine whether there exists at least one path from eA to eB .
Yes, turn to Step 2.
No, turn to Step 7.

Step 2 Calculate the fully-propagated trust value (tf,path1

AB , · · · , tf,pathk

AB ) for each path, by Eq.(4);
Step 3 Identify whether there are furcate nodes in the paths.

Yes, turn to Step 4.
No, turn to Step 5.

Step 4 For every furcate node eC , do the following.
If

∑n
i=1(1− cosπ·sCi

2 ) ≤ 1, let pCi = 1− cosπ·sCi

2 for ∀i = 1, 2, · · · , n.

Otherwise, if
∑n

i=1(1− cosπ·sCi

2 ) > 1, let pCi =
1−cos

π·sCi
2∑n

i=1(1−cos
π·sCi

2
)
for ∀i = 1, 2, · · · , n.

Step 5 Calculate the propagation efficiency for each path by Eq.(5) to obtain ppath1

AB , · · · , ppathk

AB .
Step 6 Calculate tAB by Eq.(7), Output λm,n = (tab,0).
Step 7 Output λAB = (0, 0). End.

By applying the trust propagation process, as summarized in Algorithm 1, we can obtain the rela-

tionship information for the indirect relationships and irrelevant relationships. Thus, the missing data in

the initial social network is completed. We use the following matrix, termed the complete social network

matrix B, to represent the social relationships among DMs:
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B =




λ1,1 · · · λ1,m

...
. . .

...

λm,1 · · · λm,m


 =




(t11, s11) · · · (t1m, s1m)

...
. . .

...

(tm1, sm1) · · · (tmm, smm)


 .

4. Conflict detection and elimination in LSGDM problems

In the previous section, we introduced a relationship strength-based trust propagation operator to

complete DMs’ pairwise relationship information across a social network. In this section, we propose a

method that, by combining the complete social network information with DMs’ assessments on alterna-

tives, allows for detecting the conflicts between DMs. The conflict network mapped thereby shows the

distribution of existing conflicts among the DMs. By analyzing the structure of the conflict network, we

can detect the key DMs in the decision making process, i.e. DMs whose importance in their roles can po-

tentially help to reduce group conflict. Accordingly, some effective suggestions for modifying preferences

and eliminating conflict, are provided to to the identified DMs for improving harmony by reducing the

conflict level. Together with the conflict detection and elimination algorithm (Algorithm 2), the conflict

detection and elimination process is presented in Section 4.3.

4.1. Problem and data formulation

Let us suppose an LSGDM problem in which there aremDMs and we index them byE = {e1, e2, . . . , em}.

Those DMs give their assessments on a set of alternatives X = {x1, x2, . . . , xn}, one of which shall be

chosen as the solution for the LSGDM problem. The assessment information of an arbitrary DM ei ∈ E

can be denoted as a vector Di = {di1, d
i
2, . . . , d

i
n}. As noted above, IFSs can well represent DMs’ assess-

ment information. Therefore, without loss of generality in this paper we consider that the assessment

information of an arbitrary DM ei is in the form of an IFS comprising n intuitionistic fuzzy values:

Di = {〈µi
1, ν

i
1〉, 〈µ

i
2, ν

i
2〉, . . . , 〈µ

i
n, ν

i
n〉}, (1 ≤ i ≤ m).

In Di, a DM ei can express his/her satisfaction with alternative xj by assigning a larger value to the

membership degree µi
j than to the non-membership degree νij . Conversely, if he/she is not satisfied with

the alternative, the value of νji should be larger than µi
j. Moreover, if a DM ei has no obvious preference

on xj, he/she can express their hesitation by assigning a small number on both µi
j and νij , so that the

hesitancy degree π becomes larger. Accordingly, a n ×m group decision matrix (D) with the following

structure is obtained by combining the individual IFSs.

D = (DT
1 ,D

T
2 , . . . ,D

T
m) =




〈µ1
1, ν

1
1 〉 · · · 〈µm

1 , νm
1 〉

...
. . .

...

〈µ1
n, ν

1
n〉 · · · 〈µm

n , νm
n 〉


 .
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In addition, by applying the previously defined trust propagation operator, we obtain a complete

social network matrix B with the following structure:

B =




(t11, s11) · · · (t1m, s1m)

...
. . .

...

(tm1, sm1) · · · (tmm, smm)


 .

As mentioned earlier, when the DMs involved in LSGDM problems have relationships with one another,

two important factors of intra-group conflict are preference nonconformity (task conflict) and relationship

disharmony (relationship conflict). Therefore, in the next subsections, we describe the process of com-

bining both the group decision matrix D and the complete social network matrix B to derive a conflict

network for DMs, which is subsequently analyzed to detect and eliminate conflicts among DMs.

4.2. Formation of conflict network

Due to the differences in their educational background, status and interests, DMs’ assessments on

alternatives in are usually diverse in many LSGDM situations. We define the similarity degree δ of

assessment information for a pair of DMs, i.e. the degree to which the preferences of ei and ej is similar.

Definition 4.1. The similarity degree δij for each pair of DMs (ei and ej) is defined as:

δij = 1−
1

2n

n∑

k=1

(
| µi

k − µj
k | + | νik − νjk |

)
. (8)

Where µi
k and νik represent ei’s intuitionistic fuzzy value assessment on alternative xk.

The similarity degree of all DM pairs can be integrated into a similarity matrix (S) as S = (δij)m×m.

As Eq.(8) shows, δij ∈ [0, 1], and the higher the value of δ, the lower the disagreement or divergence level

among their individual preferences. Clearly, S is a symmetric matrix in which the elements on the main

diagonal are 1.

In addition, when DMs are in a social network, relationships between them would either aggravate

or alleviate the previously computed divergence that stems from assessment information. That is, when

there is a certain assessment divergence between DMs ei and ej , ei is more liable to have conflict with ej ,

if ei distrusts ej. Conversely, if ei trusts ej , then ei would be more willing to accept ej ’s opinion. Thus,

we define the disharmony degree cij between two DMs ei and ej as follows:

Definition 4.2. The disharmony degree between two DMs ei and ej is

cij = δij × (1− tij). (9)

After computing disharmony degrees for all DMs, the conflict information among DMs can be inte-

grated into a matrix called Conflict Information Matrix (CIM). Thus, we have CIM = (cij)m×m. Since
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both a DM’s trust value for him-/herself (tii) and the similarity degree equal 1, the elements on the

leading diagonal of CIM(cij) are 0, which naturally complies with the situation that a DM would not

conflict with him-/herself.

A reasonable threshold θ(0 < θ < 1) is set to distinguish whether conflict exists between two DMs. For

two DMs ei and ej , if their disharmony degree cij meets the condition of cij > θ, then they are assumed to

have conflict. Conversely, if cij ≤ θ, we consider that the assessment divergence and disharmony between

ei and ej is not significant enough to cause conflict.

Definition 4.3. We use the cut matrix of CIM Cθ to show the distribution of conflicts between DMs.

The cut matrix Cθ is defined as follows.

Cθ = (cij(θ)m×m), where cij(θ) =





1, for cij > θ,

0, for cij ≤ θ.

(10)

According to Cθ, we can construct a conflict network, in which there exists a directed edge from ei

to ej , if Cij(θ) = 1. Similarly as with ordinary social networks, the nodes in the conflict network have

in-degree and out-degree, which can be easily obtained from Cθ.

• In− degree of a node ei in the conflict network Cθ is Ii =
∑m

j=1 cji(θ).

• Out− degree of a node ei in the conflict network Cθ is Oi =
∑m

j=1 cij(θ).

4.3. Conflicts detection and elimination process

After obtaining the conflict network, we can easily visualize the distribution of conflicts between DMs.

The following steps are undertaken to analyze the characteristics of the network and further decrease the

occurrence of conflicts. Based on the in-degree and out-degree of a conflict network, we define the conflict

degree from the perspective of individuals and the entirety of the group, respectively.

Definition 4.4. We define the conflict degree Ω of a DM ei as:

Ωi =
Ii +Oi

2m
.

For those DMs with high Ωi, further measures should be taken to decrease their negative influence in

the LSGDM process.

Similar to the notion of (preference-based) consensus degree in the decision making process [5], we

utilize a parameter ρ to describe the (conflict-based) consensus degree of the entire large group organized

under a social network structure.

Definition 4.5. Given its resemblance to the concept of density of a social network, ρ is defined as the

density of conflict in a group, as follows:

ρ =

∑m
i=1Ωi

m
.
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Obviously, we should control ρ under a reasonable threshold Φ (0 < Φ < 0.5) before making the

final selection, both to decrease the occurrence of conflict and to ensure an optimal alternative selection

process is made. On the other hand, those DMs with low similarity degree to each other contribute more

to ρ. In practice, this means that modifying their assessment or evaluation information would be more

effective in decreasing ρ than modifying the other DMs’ assessments. Therefore, we identify the DM ek

with the highest conflict degree, of which Ωk = max{Ω1,Ω2, . . . ,Ωm}, as the one who should modify their

assessment information on alternatives under the guidance of a moderator [5, 58, 59, 60].

Whereas the modified assessment information of ek can be represented by D
′

k= (〈µk′

1 , ν
k′

1 〉, 〈µk′

2 , ν
k′

2 〉,

. . . , 〈µk′

n , ν
k′

n 〉), we provide some reasonable guidelines about the nature of the modification process. The

following guidelines are adopted:

• Maximally eradicate in-degrees and out-degrees of DMs to decrease the overall conflict degree.

• Because the elements in D
′

k are intuitionistic fuzzy values, they should meet the conditions: 0 ≤

µk′

j ≤ 1, 0 ≤ νk
′

j ≤ 1, and 0 ≤ µk′

j + νk
′

j ≤ 1.

• For convenience in expression, the accuracy of assessment is limited to one decimal place.

Based on these guidelines, and aiming to guarantee that the group conflict degree ρ decreases as much

as possible at each iteration, we build a nonlinear optimization model following the guidelines described

above to compute the modification orientation of ek’s assessment matrix:

max Hk = ρ− ρ′,

s.t.






0 ≤ µk′

j ≤ 1, 0 ≤ νk
′

j ≤ 1, and

0 ≤ µk′

j + νk
′

j ≤ 1,

µk′

j , νk
′

j ∈ {0, 0.1, 0.2, . . . , 0.9, 1},

j ∈ {1, 2, . . . , n}.

(11)

In the above optimization model, ρ′ is the overall conflict degree after the DM ek modifies his/her

assessment information on alternatives.

Theorem 4.1. An optimal solution is existed for the nonlinear optimization problem (11).

Proof. As mentioned in the constraint condition that µk′

j , ν
k′

j ∈ {0, 0.1, 0.2, . . . , 0.9, 1}, thus, for any

j ∈ {1, 2, . . . , n}, the intuitionistic fuzzy value 〈µk′

j ν
k′

j 〉 has 10! possible values. Therefore, for the

optimization problem (11), the number of feasible points are (10!)n. That is, there might be no more

than (10!)n values of Hk, which represents the reduction of group conflict degree between two continuous

iterations. In other words, Hk has a maximum value. Therefore, an optimal solution exists for the

nonlinear optimization problem (11).

As the analyses presented in Theorem 4.1 and its proof show, the proposed nonlinear optimization

model (11) constitutes an efficient tool to decrease the group conflict degree ρas well as fostering a certain

preference modification for the DM who presents a great conflict relation in the LSGDM problem.
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Using MATLAB to solve the problem defined above, we can obtain the recommended assessment

information for ek, which can be represented by D
′

k= (〈µk′

1 , ν
k′

1 〉, 〈µk′

2 , ν
k′

2 〉, . . . , 〈µk′

n , νk
′

n 〉). A moderator

is introduced in the LSGDM process to invite the DM to accept the modification scheme. Accordingly,

• If ek agrees to modify his/her assessment from Dk to D
′

k following the advice from the moderator,

we calculate the new conflict degree ρ of the entire group, to determine whether ρ ≤ Φ. If ρ meets

this condition, we proceed to determine the weights of DMs and make the final selection. Otherwise,

calculate Ω for all DMs and determine the DM (besides ek) with the highest Ω. By computing the

nonlinear optimization model (11), we can determine how the DM should modify his/her assessment.

• If ek disagrees to modify his/her assessment, identify the DM (besides ek) with the highest Ω. By

using the optimization model (11), determine how the DM should modify his/her assessment.

To clearly present the steps of the overall conflict detection and elimination process, we provide the

following algorithm (Algorithm 2) to illustrate this process.

Algorithm 2 The proposed conflict detection and elimination algorithm

Step 1 Let the iteration round be T = 1.Input group decision matrix (D(T=1)), complete social
network matrix B, and the maximum cycle time Tmax.

Step 2 If T ≤ Tmax, use Eq.(8) to obtain similarity matrix S.
Else, turn to Step 10.

Step 3 Use Eq.(9) to obtain conflict information matrix (CIM).
Step 4 Use Eq.(10) to obtain conflict network, and let i = 1.
Step 5 Calculate conflict degree Ω(T ) for all DMs, and calculate group conflict degree ρ.
Step 6 Let σ : {1, 2, . . . , n}→{1, 2, . . . , n} be a permutation such that Ωσi

≥Ωσi+1
for i = {1, 2, . . . ,m}.

Step 7 If ρ ≤ Φ, turn to Step 11;
Else, if σi ≤ m, turn to Step 8; otherwise, turn to Step 10.

Step 8 Use Eq.(11) to compute the modification scheme for the key DM ei.
Step 9 If the key DM agrees with the modification plan, let T = T +1, and update the group decision

matrix D(T ) by replacing the modification scheme D
′

i in it. Then, turn to Step 2.
Else, let i = i+ 1, and turn to Step 7.

Step 10 Decision making failed, end .
Step 11 Output D, end.

5. Selection process

After eliminating the conflicts among DMs, the value of ρ is intuitively decreased. If ρ meets the

condition of ρ ≤ Φ, we consider that a sufficient level of harmony has been reached among DMs. In this

situation, a high-quality (i.e., low-conflict) large group decision can be made via the selection process,

which involves determining DMs weights and ranking the alternatives. Accordingly, in this section we

propose a selection method based on conflict to determine DM weights and subsequently rank alternatives

predicated on the collective preference information.

The prior modification process normally results in some changes to DMs’ assessment information. We
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assume that the final group decision matrix is represented by:

D =




d1
′

1 · · · dm
′

1

...
. . .

...

d1
′

n · · · dm
′

n


 =




< µ1
′

1 , ν1
′

1 > · · · < µm′

1 , νm′

1 >

...
. . .

...

< µ1
′

n , ν1
′

n > · · · < µm′

n , νm′

n >


 .

It should be noted that some DMs’ assessment information may remain unchanged. Meanwhile, we

can compute the conflict degree of each DM, referring to Section 3.3 as Ω = {Ω1,Ω2, . . . ,Ωm}.

To minimize the risk of making a wrong decision, many LSGDM models assign low weights to DMs

with a low trust degree or consensus degree[5, 16, 38, 39]. As the conflict degree combines trust and

assessment information, it is reasonable to use it as the basis for calculating DMs’ weights. Therefore, in

order to decrease the influence of the conflict among DMs, we define the weights of DMs as below.

Definition 5.1. Combining the conflict degree Ωi for the DM ei, we define the weight of DM ei as:

ωi =
Ωmax − Ωi∑m

j=1(Ωmax − Ωi)
. (12)

Remark 5.1. It can be easily seen that for DM ei, the lower his/her conflict degree Ωi is, the higher

the corresponding weight ωi is. Moreover, if DM ei exhibits the maximum conflict degree Ωmax, his/her

resulting weight calculated by Eq. (12) is zero. In essence, the definition of DMs’ weights can well decrease

the negative effect of their conflicts. DMs’ weights are utilized in the following IFWA operator, which is

an exponential operation with ωi. Thus, even a DM ei shares the weight as ωi = 0, the contribution of

his/her opinion utilized by IFWA operator is not zero.

Thus, we obtain the weight vector ω = (ω1, ω2, . . . , ωm) for all DMs. The weight vector of DMs

should meet the conditions: ωi ∈ [0, 1] and
∑m

i=1 ωi = 1. Moreover, there is no less than one element with

the zero value in the weight vector ω.

Based on the above calculated DM weights, we aggregate the assessment information on alternatives

xi into a group assessment using the IFWA operator (see Eq.(1)):

ḋi = IFWAω(d
1′

i , . . . , d
m′

i ) =


1−

m∏

j=1

(1− µj′

i )
ωj ,

m∏

j=1

νj
′

i

ωj


 . (13)

Where µj′

i and νj
′

i are the membership and non-membership degrees of ej with respect to alternative xi.

In Eq.(13), the DMs’ assessment information is aggregated into group assessment information:

ḋ = {ḋ1, ḋ2, . . . , ḋn}.

Where ḋi = 〈µi, νi〉 (ḋi ∈ ḋ) represents the group assessment on alternative xi. Using the score function
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[54] of IFSs as follows, we can obtain the scores of alternatives:

si = µi − νi.

Finally, we rank the alternatives in decreasing score order, such that the optimal solution to the

LSGDM problem is given by the alternative xj satisfying sj = max{s1, s2, . . . , sn}.

6. Illustrative examples

In this section, we first apply the proposed TR-CDE decision making model to a numerical example

(Section 6.1) to show how the model works and demonstrate its feasibility. We then apply our model in a

practical LSGDM scenario mainly focused on the conflict detection and elimination process, with the aim

of demonstrating that our model is practicable in solving LSGDM problems (Section 6.2). In addition,

to show its effectiveness and added value, we compare our model against several other LSGDM models.

The behaviors of parameters of TR-CDE model are presented in Section 6.3.

6.1. Numerical example

The main purpose of this subsection is to show the TR-CDE model’s feasibility in solving LSGDM

problems in a social network context, characterized by existing social relationships among participants.

Thus, we first implement the TR-CDE model in a simple decision making problem, containing three

alternatives xi(i = 1, 2, 3) and 10 DMs ek(k = 1, 2, . . . , 10), to clearly illustrate how the TR-CDE model

works. All DMs adopt IFSs to evaluate the alternative xi, and they also assess those DMs with whom

they have social relationships, in the form of pairs (t, s). In the trust propagation process, we consider

that information wanes across this process.

Before showing the numerical example in detail, below we draw some explanations and assumptions

for the parameter settings.

i It is assumed that any propagation path with strictly more than two mediators is irrelevant. That

is, to obtain the complete trust network, there are no more than two mediators utilized in any trust

propagation path in this experiment. The main reason is that, as the value of relationship strength

s belongs to [0,1], according to Definition 3.1 and Eq. (5), the more mediators involved in, the

lower the propagation efficiency pA,B becomes. Thus, in this experiment, there are no more than

two mediators involved in the relationship strength-based trust propagation operator.

ii In the conflict detection and elimination process, the threshold to distinguish whether conflict exists

between two DMs is set as θ = 0.09. As shown in Eq. (10), if the disharmony degree cij meets

the condition that cij > θ (0 < θ < 1), the DMs ei and ej are regarded as having conflict, and

cij(θ) = 1. Thus, we can conclude that the higher the value of θ is, the less conflict relationships are

reflected in the conflict information matrix Cθ. The value of θ can be set according to the values of
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obtained disharmony degree cij(i 6= j). In this paper, we set θ = 0.09 to dismiss sufficiently weak

conflicts (with a low disharmony degree). The detail is shown in Section 6.1.3.

iii The DMs are asked to decrease their conflict level towards a minimum harmony level of Φ = 0.30

before selection. As mentioned in Section 4.3, 0 < Φ < 0.5 and if ρ < Φ the conflict detection and

elimination process ends. The upper bound for Φ is 0.5, which means that if no more than half of

DMs in the decision making session present conflicts, a sufficient consensus level has been reached.

The lower the value of Φ is, the less conflict relationships are allowed for achieving the consensus.

Therefore, we set Φ as 0.3, which lies within a reasonable range.

vi The maximum number of iteration rounds (T ) for the conflict elimination process is set to be

Tmax = 6. It is necessary to set the maximum iteration round Tmax, since time-efficiency is a key

factor in iterative decision processes. If consensus is reached within Tmax rounds, the process is

deemed effective. The setting for Tmax depends on the temporal cost allowed in the decision making

session, which is shown in the following definition.

Definition 6.1. We suggest that

Tmax = p(1 − β) ·mq,

where β ∈ (0, 1) is the urgency level, fixed by a representative of the group depending on the nature

of the problem. The more urgent the LSGDM problem is, the higher the value of β can be set. Thus,

the lower the value of Tmax is, which can guarantee the decision should be made in less iterations.

The value of β should be set higher. Based on this rule, as the decision making event is not an

urgent event, we set β = 0.4, thus, Tmax as 6 in this numerical example.

6.1.1. Initial data

Every DM evaluates the other DMs they know with a pair of the form (t, s), where t is the trust

degree and s is the relationship strength. We collect the relationship information and obtain the initial

social network matrix B, as shown in Table 2.

Table 2. The initial social network matrix containing social relationship pairs (t, s).

DMs e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
e1 (1, 0) (0.8, 0.1) (0.6, 0.4) (0.2, 0.7) (0.6, 0.2) (0, 1) (−, 0) (0.2, 0.1) (−, 0) (0.7, 0.2)
e2 (−, 0) (1, 0) (−, 0) (0.9, 0.1) (0.1, 0.8) (0.4, 0.5) (0.1, 0.8) (0.7, 0.2) (0.2, 0.8) (−, 0)
e3 (−, 0) (−, 0) (1, 0) (0.3, 0.7) (−, 0) (0.3, 0.5) (0.7, 0.2) (−, 0) (0.7, 0.2) (0.3, 0.5)
e4 (0.1, 0.9) (0.2, 0.8) (0.4, 0.5) (1, 0) (0.8, 0.1) (−, 0) (0.1, 0.8) (0.6, 0.2) (0.4, 0.2) (−, 0)
e5 (0.7, 0.2) (0.7, 0.2) (0.8, 0.5) (0.2, 0.1) (1, 0) (0.4, 0.6) (1, 0) (0.7, 0.2) (−, 0) (0.1, 0.8)
e6 (0.4, 0.1) (−, 0) (0.6, 0.3) (0.7, 0.2) (0.8, 0.1) (1, 0) (0.8, 0.1) (0.5, 0.3) (1, 1) (0.3, 0.7)
e7 (1, 1) (0.3, 0.7) (−, 0) (0.2, 0.7) (1, 1) 0.4, 0.6 (1, 0) (1, 1) (−, 0) (−, 0)
e8 (−, 0) (0.7, 0.2) (0.4, 0.2) (0.4, 0.3) (−, 0) (0.7, 0.1) (0.4, 0.5) (1, 0) (−, 0) (−, 0)
e9 (0.9, 0.1) (0.3, 0.7) (0.6, 0.4) (0.3, 0.4) (0.1, 0.7) (0.7, 0.2) (0.9, 0.1) (−, 0) (1, 0) (0.2, 0.8)
e10 (0.7, 0.1) (1, 1) (0.1, 0.9) (−, 0) (0.7, 0.1) (−, 0) (0.9, 0.8) (0.8, 0.8) (0.4, 0.8) (1, 0)

Meanwhile, DMs provide their assessments with intuitionistic fuzzy values. We collect the assessment

information as described in Section 4.1 and obtainthe group decision matrix D(T=1), as shown in Table 3.
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Table 3. The initial group decision matrix D(T=1).

DMs x1 x2 x3
e1 〈1, 0〉 〈0.4, 0.6〉 〈0.1, 0.9〉
e2 〈0.4, 0.5〉 〈0.1, 0.8〉 〈0, 0.8〉
e3 〈0.8, 0.1〉 〈0.7, 0.2〉 〈0.3, 0.5〉
e4 〈0.1, 0.6〉 〈0.9, 0〉 〈0.5, 0.5〉
e5 〈0.9, 0.1〉 〈0.3, 0.3〉 〈0.1, 0.8〉
e6 〈0.5, 0.4〉 〈0.6, 0.2〉 〈0.9, 0.1〉
e7 〈0.5, 0.5〉 〈0.3, 0.2〉 〈0.4, 0.6〉
e8 〈0.2, 0.7〉 〈0.6, 0.4〉 〈0.8, 0.1〉
e9 〈0.5, 0.3〉 〈0.8, 0.1〉 〈0.2, 0.6〉
e10 〈0.6, 0.4〉 〈0.4, 0.5〉 〈0.5, 0.5〉

6.1.2. Trust propagation process

As Table 2 shows, the trust values t1,7, t1,9, t2,1, t2,3, t3,1, t3,2, t3,5, t3,8, t4,6, t4,10, t5,9, t6,2, t7,3, t7,9,

t7,10, t8,1, t8,5, t8,9, t8,10, t9,8, t10,4, and t10,6 are missing. We take the computation of t2,1 (i.e. the level

of trust from e2 to e1) as an example to show how the proposed trust propagating operator works.

Referring to Table 2, we can draw a tree diagram (see Fig.8) comprising all the paths from e2 to e1

with at most two mediators between them.

Fig. 8. Tree diagram showing propagation paths from e2 to e1.

As Fig.8 shows, there are six branches describing participants about whom e2 supplied direct trust

information (e2 → e4, e2 → e5, e2 → e6, e2 → e7, e2 → e8, and e2 → e9), constituting the trust

propagation paths from e2 to e1. We next calculate the propagation efficiency p from one DM to another.

Then, according to relationship strength-based trust propagation operator (see Algorithm 1), we normalize

the propagation efficiency for the furcate DMs. The values of p (including normalized p) are presented

on the edges. Using Eq.(2) and Eq.(6), we calculate the full propagated trust values for all the paths,

shown alongside the terminal node of each path. It should be noted that the relationship information for
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e2 with respect to e6 is 1, according to the full distrust propagation, the trust value for all the paths on

this branch is 0. Therefore, for convenience, we can omit the calculation.

Following this, we calculate the trust value for each branch. Taking the branch e2 → e8 as an example,

the trust value for this branch is: 0.0199× (0.2085× 0.8436× 0.0141 + 0.5884× 1× 0.1352 + 0.2058× 1×

0.2373) = 2.617 × 10−3.

By summing all the trust values for each branch together, we obtain the trust value from e2 to

e1 of t2,1 = 0.02029. Similarly, the trust values are computed for other indirect relationships: t1,7 =

0.2178, t1,9 = 0.1223, t2,1 = 0.0203, t2,3 = 0.4032, t3,1 = 0.0592, t3,2 = 0.2687, t3,5 = 0.4572, t3,8 =

0.3111, t4,6 = 0.1782, t4,10 = 0.2004, t5,9 = 0.1673, t6,2 = 0.1792, t7,3 = 0.2243, t7,9 = 0.1578, t7,10 =

0.2433, t8,1 = 0.4552, t8,5 = 0.0034, t8,9 = 0.5224, t8,1 = 0.1231, t9,8 = 0.4722, t10,4 = 0.1930, and

t10,6 = 0.0853. We thereby obtain the complete social network, which is the basis for the following

conflict detection and elimination process.

6.1.3. Conflict detection and elimination

In this application example, we use MATLAB to simulate the conflict detection and elimination

process, and to compute the result over the course of the decision process. We first set the iteration T=1,

and compute the similarity matrix by Eq.(8) based on D(T=1), as shown in Table 4.

Table 4. The similarity matrix SM in the iteration round T = 1.

DMs e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
e1 1.00 0.63 0.80 0.50 0.87 0.55 0.65 0.50 0.68 0.78
e2 0.63 1.00 0.57 0.53 0.70 0.52 0.75 0.53 0.68 0.82
e3 0.80 0.57 1.00 0.70 0.77 0.72 0.78 0.60 0.82 0.68
e4 0.50 0.53 0.70 1.00 0.47 0.68 0.75 0.73 0.82 0.55
e5 0.87 0.70 0.77 0.47 1.00 0.52 0.72 0.43 0.65 0.85
e6 0.55 0.52 0.72 0.68 0.52 1.00 0.77 0.85 0.73 0.60
e7 0.65 0.75 0.78 0.75 0.72 0.77 1.00 0.68 0.87 0.77
e8 0.50 0.53 0.60 0.73 0.43 0.85 0.68 1.00 0.65 0.55
e9 0.68 0.68 0.82 0.82 0.65 0.73 0.87 0.65 1.00 0.73
e10 0.78 0.82 0.68 0.55 0.85 0.60 0.77 0.55 0.73 1.00

By Eq.(9), we compute the conflict information matrix CIM (Table 5).

Table 5. The conflict information matrix (CIM) in the iteration round T = 1.

DMs e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
e1 0.00 0.04 0.04 0.20 0.02 0.23 0.14 0.20 0.12 0.05
e2 0.18 0.00 0.13 0.02 0.13 0.15 0.11 0.07 0.14 0.13
e3 0.09 0.16 0.00 0.11 0.05 0.10 0.03 0.14 0.02 0.08
e4 0.23 0.19 0.09 0.00 0.05 0.13 0.11 0.05 0.03 0.11
e5 0.02 0.04 0.02 0.19 0.00 0.13 0.00 0.08 0.11 0.12
e6 0.14 0.20 0.06 0.05 0.04 0.00 0.02 0.04 0.13 0.08
e7 0.00 0.09 0.08 0.10 0.00 0.07 0.00 0.00 0.07 0.05
e8 0.14 0.07 0.12 0.08 0.26 0.02 0.10 0.00 0.09 0.12
e9 0.01 0.12 0.03 0.08 0.12 0.04 0.01 0.10 0.00 0.09
e10 0.05 0.00 0.10 0.11 0.04 0.11 0.06 0.11 0.09 0.00

We can obtain a statistic result from Table 5, which is drawn in Fig.9. As there are 10 DMs involved

in the decision making event, there exist 90 valid values of disharmony degrees, cij (i 6= j), for the 90
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DM pairs in CIM . The value of cij(i 6= j) ranges from 0 to 0.26. In order to dismiss some DM pairs

with low disharmony degrees, which are regarded as having weak influence, we consider keeping half of

the conflict information among the 90 DM pairs (that is 45) in this example, which follows the absolute

majority principle in terms of amount of non-conflicting participants versus conflicting participants. It

can be easily seen in Fig.9, there are 47 DMs, which is the closest number with 45, sharing a disharmony

degrees not lower than 0.09. Thus, we choose 0.09 to be the value of the threshold θ in the numerical

example.

Fig. 9. Number of DMs with different level of disharmony degree cij(i 6= j).

According to Table 5, the conflict network can be detected with Eq.(10), as shown in Table 6. Thus,

we obtain the conflict degree Ω for DMs: Ω(T=1)={0.56,0.61,0.50,0.61,0.39,0.50,0.28,0.56,0.56,0.56}. The

group conflict degree is ρ = 0.51, which exceeds the threshold Φ = 0.30.

Table 6. The cut matrix (Cθ) in the iteration round T = 1.

DMs e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
e1 0 0 0 1 0 1 1 1 1 0
e2 1 0 1 0 1 1 1 0 1 1
e3 1 1 0 1 0 1 1 0 0 1
e4 1 1 0 0 0 1 1 0 0 1
e5 0 0 0 1 0 1 0 0 1 1
e6 1 1 0 0 0 0 0 0 1 0
e7 0 0 0 1 0 0 0 0 0 0
e8 1 0 1 0 1 0 1 0 0 1
e9 0 1 0 0 1 0 0 1 0 1
e10 0 0 1 1 0 1 0 1 1 0

Therefore, the intra-group conflict should be reduced before proceeding to make a group decision. e2

has the highest conflict degree, thus being the target DM in this round. Using Eq.(11) to compute the mod-

ification plan, we can get the suggested assessment information vectorD
′

2 = {〈0.1, 0.1〉, 〈0.4, 0.5〉, 〈0.2, 0.7〉}.

The DM e2, guided by the moderator, agrees with the modification plan, then we replace the D2 with

the modified assessment vector D
′

2 and update the group decision matrix D.

In the second round, T=2, we calculate the SM based on the updated D(T=2), and output CIM ,

shown in Table 7. We calculate the cut matrix of CIM , and further obtain the conflict degree Ω for
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Table 7. The conflict information matrix (CIM) in the iteration round T = 2.

DMs e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
e1 0.00 0.03 0.04 0.20 0.02 0.23 0.14 0.20 0.12 0.05
e2 0.13 0.00 0.08 0.02 0.10 0.13 0.11 0.06 0.10 0.10
e3 0.09 0.10 0.00 0.11 0.05 0.10 0.03 0.14 0.02 0.08
e4 0.23 0.13 0.09 0.00 0.05 0.13 0.11 0.05 0.03 0.11
e5 0.02 0.03 0.02 0.05 0.00 0.13 0.00 0.08 0.11 0.12
e6 0.14 0.17 0.06 0.06 0.04 0.00 0.02 0.04 0.13 0.08
e7 0.00 0.09 0.08 0.10 0.00 0.07 0.00 0.00 0.07 0.05
e8 0.14 0.06 0.12 0.13 0.26 0.02 0.10 0.00 0.09 0.12
e9 0.01 0.09 0.03 0.08 0.12 0.04 0.01 0.10 0.00 0.09
e10 0.05 0.00 0.10 0.09 0.04 0.11 0.06 0.11 0.09 0.00

DMs: Ω(T=2)={0.56, 0.50, 0.4, 0.61, 0.39, 0.50, 0.28, 0.56, 0.50, 0.56}. The group conflict degree ρ is 0.50,

which still exceeds the threshold Φ = 0.30. e4 shows the highest conflict degree and becomes the key DM.

Computing the modification plan, we obtain D
′

4 = {〈0.7, 0.2〉, 〈0.5, 0.4〉, 〈0, 0.8〉}. The DM e4 agrees to

modify his/her assessment information, so the group decision matrix is updated to D(T=3) and the third

iteration begins, T=3. The CIM for T=3 is shown in Table 8.

Table 8. The conflict information matrix (CIM) in the iteration round T = 3.

DMs e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
e1 0.00 0.03 0.04 0.05 0.02 0.23 0.14 0.20 0.12 0.05
e2 0.13 0.00 0.08 0.01 0.10 0.13 0.11 0.06 0.10 0.10
e3 0.09 0.10 0.00 0.07 0.05 0.10 0.03 0.14 0.02 0.08
e4 0.06 0.08 0.06 0.00 0.01 0.16 0.11 0.09 0.03 0.09
e5 0.02 0.03 0.02 0.19 0.00 0.13 0.00 0.08 0.11 0.12
e6 0.14 0.17 0.06 0.05 0.04 0.00 0.02 0.04 0.13 0.08
e7 0.00 0.09 0.08 0.10 0.00 0.07 0.00 0.00 0.07 0.05
e8 0.14 0.06 0.12 0.08 0.26 0.02 0.10 0.00 0.09 0.12
e9 0.01 0.09 0.03 0.08 0.12 0.04 0.01 0.10 0.00 0.09
e10 0.05 0.00 0.10 0.11 0.04 0.11 0.06 0.11 0.09 0.00

By calculating the cut matrix of CIM , we can obtain the conflict degree Ω for DMs as Ω(T=3) =

{0.44, 0.44, 0.33, 0.22, 0.33, 0.50, 0.28, 0.61, 0.50, 0.44}. Similarly, we calculate the group conflict degree

and obtain ρ = 0.41, which is less than the value with T=2, but it is still higher than the preset threshold

Φ = 0.30. Thus, the process continues. e8 is the key DM. We compute the modification plan, which is

D
′

8 = {〈0.6, 0.3〉, 〈0.9, 0〉, 〈0.3, 0.6〉}. e8 agrees to modify his assessment information.

Therefore, the group decision matrix is updated as D(T=4), after which T=4. Following this, the CIM

for T=4 is achieved and is showed in Table 9.

Table 9. The conflict information matrix (CIM) in the iteration round T = 4.

DMs e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
e1 0.00 0.03 0.04 0.05 0.02 0.23 0.14 0.13 0.12 0.05
e2 0.13 0.00 0.08 0.01 0.10 0.13 0.11 0.05 0.10 0.10
e3 0.09 0.10 0.00 0.07 0.05 0.10 0.03 0.05 0.02 0.08
e4 0.06 0.08 0.06 0.00 0.01 0.16 0.11 0.05 0.03 0.09
e5 0.02 0.03 0.02 0.05 0.00 0.13 0.00 0.05 0.11 0.12
e6 0.14 0.17 0.06 0.06 0.04 0.00 0.02 0.08 0.13 0.08
e7 0.00 0.09 0.08 0.10 0.00 0.07 0.00 0.00 0.07 0.05
e8 0.09 0.05 0.05 0.08 0.15 0.05 0.06 0.00 0.02 0.10
e9 0.01 0.09 0.03 0.08 0.12 0.04 0.01 0.02 0.00 0.09
e10 0.05 0.00 0.10 0.09 0.04 0.11 0.06 0.09 0.09 0.00
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For T=4, we have Ω for DMs as Ω(T=4) = {0.39, 0.44, 0.22, 0.17, 0.33, 0.50, 0.22, 0.22, 0.39, 0.44}, the

group conflict degree is ρ = 0.33, which exceeds the threshold Φ = 0.30. Thus, we obtain that e6 is the

key DM, and compute the modification plan, which is D
′

6 = {〈0.2, 0.7〉, 〈0.3, 0.6〉, 〈0.2, 0.3〉}. The DM

e6 agrees to modify his assessment information. Therefore, let T=5 and we update D(T=4) to D(T=5).

Following this, the CIM for T=5 is showed in Table 10.

Table 10. The conflict information matrix (CIM) in the iteration round T = 5.

DMs e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
e1 0.00 0.03 0.04 0.05 0.02 0.23 0.14 0.13 0.12 0.05
e2 0.13 0.00 0.08 0.01 0.10 0.07 0.11 0.05 0.10 0.10
e3 0.09 0.10 0.00 0.07 0.05 0.13 0.03 0.05 0.02 0.08
e4 0.06 0.08 0.06 0.00 0.01 0.14 0.11 0.05 0.03 0.09
e5 0.02 0.03 0.02 0.05 0.00 0.12 0.00 0.05 0.11 0.12
e6 0.14 0.09 0.08 0.05 0.04 0.00 0.02 0.19 0.17 0.08
e7 0.00 0.09 0.08 0.10 0.00 0.07 0.00 0.00 0.07 0.05
e8 0.09 0.05 0.05 0.08 0.15 0.06 0.06 0.00 0.02 0.10
e9 0.01 0.09 0.03 0.08 0.12 0.05 0.01 0.02 0.00 0.09
e10 0.05 0.00 0.10 0.09 0.04 0.11 0.06 0.09 0.09 0.00

For T=5, we have Ω for DMs as Ω(T=5) ={0.39,0.33,0.22,0.17,0.33,0.44,0.22,0.28,0.39,0.44}, the group

conflict degree is ρ = 0.32, which exceeds the threshold Φ = 0.30. Thus, we again set e6 as the key DM,

and compute the modification plan, which is D
′

6 = {〈0.1, 0.6〉, 〈0.3, 0.2〉, 〈0.7, 0.2〉}. However, the DM e6

refuses to make compromises this time. Therefore, we turn to e10, and compute the modification plan for

him, which is D
′

10 = {〈0, 0〉, 〈0.3, 0.6〉, 〈0.6, 0.3〉}. The DM e10 also refuses to make compromise. Thus, we

turn to the DM with the third largest conflict degree, that is e1, and compute the modification plan as

follows: D
′

1 = {〈0.6, 0.4〉, 〈0.4, 0.5〉, 〈0.5, 0.5〉}. Through persuasion by the moderator, e1 finally changes

his/her assessment information, and the group decision matrix D is updated. Let the iteration round be

T=6, the CIM for this round is calculated as shown in Table 11.

Table 11. The conflict information matrix (CIM) in the iteration round T = 6.

DMs e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
e1 0.00 0.02 0.06 0.06 0.05 0.10 0.07 0.12 0.10 0.03
e2 0.07 0.00 0.08 0.01 0.10 0.07 0.11 0.05 0.10 0.10
e3 0.015 0.10 0.00 0.07 0.05 0.13 0.03 0.05 0.02 0.08
e4 0.07 0.08 0.06 0.00 0.01 0.14 0.11 0.05 0.03 0.09
e5 0.04 0.03 0.02 0.05 0.00 0.11 0.00 0.05 0.11 0.12
e6 0.06 0.09 0.08 0.05 0.04 0.00 0.02 0.10 0.17 0.08
e7 0.00 0.09 0.08 0.10 0.00 0.07 0.00 0.00 0.07 0.05
e8 0.08 0.05 0.05 0.08 0.15 0.06 0.06 0.00 0.02 0.10
e9 0.01 0.09 0.03 0.08 0.12 0.05 0.01 0.02 0.00 0.09
e10 0.03 0.00 0.10 0.09 0.04 0.11 0.06 0.09 0.09 0.00

We calculate the conflict degree for individuals and the group. The individual conflict degree is

Ω(T=6) = { 0.22, 0.28, 0.22, 0.17, 0.33, 0.39, 0.17, 0.28, 0.39, 0.44 } and the group conflict degree is

ρ = 0.29. As the group conflict degree is less than the preset threshold Φ = 0.30, the ending condition is

met. We output the final group decision matrix D(T=6) as shown in Table 12.
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Table 12. The final group decision matrix D(T=6).

DMs x1 x2 x3
e1 〈0.6, 0.4〉 〈0.4, 0.5〉 〈0.5, 0.5〉
e2 〈0.1, 0.1〉 〈0.4, 0.5〉 〈0.2, 0.7〉
e3 〈0.8, 0.1〉 〈0.7, 0.2〉 〈0.3, 0.5〉
e4 〈0.7, 0.2〉 〈0.5, 0.4〉 〈0, 0.8〉
e5 〈0.9, 0.1〉 〈0.3, 0.3〉 〈0.1, 0.8〉
e6 〈0.2, 0.7〉 〈0.3, 0.6〉 〈0.2, 0.3〉
e7 〈0.5, 0.5〉 〈0.3, 0.2〉 〈0.4, 0.6〉
e8 〈0.6, 0.3〉 〈0.9, 0〉 〈0.3, 0.6〉
e9 〈0.5, 0.3〉 〈0.8, 0.1〉 〈0.2, 0.6〉
e10 〈0.6, 0.4〉 〈0.4, 0.5〉 〈0.5, 0.5〉

6.1.4. Selection process

Through the conflict detection and elimination process, the group conflict degree has been reduced

below a reasonable threshold. This implies that the DMs have reached sufficient mutual acceptance of

other DMs’ assessments. Therefore, the decision group moves on to the selection process.

According to Eq. (12), we calculate DMs’ weights obtain the weight vector, as follows:

ω = {0.1429, 0.1071, 0.1429, 0.1786, 0.0714, 0.0357, 0.1786, 0.1071, 0.0357, 0}.

As DM e10 shares the maximum conflict degree Ω10 = 0.44, thus we have Ωmax = Ω10 = 0.44.

According to Eq. (12), the weight for e10 is zero.

Using Eq.(13), we obtain the group assessment on each alternative, as ḋ1 = 〈0.63, 0.23〉, ḋ2 =

〈0.56, 0.35〉, ḋ3 = 〈0.28, 0.61〉. The scores of the alternatives are: s1 = 0.40, s2 = 0.21, and s3 = −0.33.

We can get s1 ≻ s2 ≻ s3. Therefore, s1 is the final choice for the LSGDM problem.

6.1.5. Discussion

In the trust propagation process illustrated in this example, we consider the number of mediators for

each path as strictly no more than two for propagation to occur. The indirect relationship information is

calculated stepwise with the proposed trust propagation operator. Finally, we obtain the complete social

network, constituting the necessary data foundation for the subsequent conflict removal process.

In the conflict detection and elimination process, we utilize MATLAB to simulate the optimization

problem. By obtaining the cut matrix of CIM , we gain clear insight into the distribution of conflicts

across the group. Calculating the conflict degree of participants enables the DMs who significantly hamper

the group harmony to be identified and targeted for assessment modification. By solving the nonlinear

optimization model proposed in Eq.(11), we derive the optimal modification plan for the key DM. Under

the guidance of a moderator, the group conflict is decreased stepwise. The variation trends in the conflict

degree for individuals (Ω) and the overall group (ρ) per round are presented in Fig.10.

As described in the objective function of the nonlinear optimization problem, which is to maximize

the decrease of group conflict degree ρ, the group conflict degree ρ is decreased stepwise, it is implied
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Fig. 10. The variation trend of conflict degree for individuals (Ω)/group (ρ).

in Fig.10. Meanwhile, for the majority of DMs, their individual conflict degree Ω also decreases in the

process, except for DM e8 in the iteration round T = 3. It is an acceptable result, as the objective function

guarantees a decrease of group conflict ρ. After six iterations, the aggregated group conflict degree ρ had

dropped from 0.51 to 0.29, which demonstrates that the proposed TR-CDE decision making model can

efficiently eliminate conflict.

6.2. Practical scenario

As mentioned in [4, 61], the number of DMs in the LSGDM problem is typically assumed to be no

less than 20. In this subsection, we apply the TR-CDE model to a practical LSGDM scenario with 20

DMs and make some comparisons with some other representative LSGDM models.

6.2.1. Calculation process for the TR-CDE model

The LSGDM scenario is described as follows. A department that is responsible for a certain river

basin in China plans to build a large hydropower station. A village comprising 20 families, is located

nearby the selected site and will need to be relocated. The government proposes four alternative relocation

compensation schemes for these families: 1) money-dominant scheme; 2) housing-dominant scheme; 3)

job-dominant scheme; and 4) lowland-dominant scheme. To ensure scientific decision making, each family

nominates a representative, and the 20 representatives must collectively decide which scheme is the most

acceptable one for the villagers. We use X = {x1, x2, x3, x4} and E = {e1, e2, . . . , e20} to represent the

alternative set and DM set, respectively. The thresholds for the case are: each path comprises no more

than one mediator, θ = 0.09, β = 0.5 and conflict threshold Φ = 0.30. Then we have the maximum

iteration Tmax = 10.

The 20 DMs’ evaluation is shown in the group decision matrix in Table 13.
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Table 13. The initial group decision matrix D(T=1).

DMs x1 x2 x3 x4
e1 〈0.1, 0.7〉 〈0.7, 0.1〉 〈0.1, 0.3〉 〈0.8, 0.1〉
e2 〈0.9, 0.1〉 〈0.3, 0.5〉 〈0.4, 0.5〉 〈0, 0.4〉
e3 〈0.5, 0.5〉 〈0.2, 0.2〉 〈0.3, 0.7〉 〈0.3, 0.7〉
e4 〈0.8, 0.2〉 〈0.1, 0.9〉 〈0.3, 0.5〉 〈0.3, 0.4〉
e5 〈0.4, 0.5〉 〈0.7, 0.3〉 〈0, 0.4〉 〈0.1, 0.9〉
· · ·
e16 〈0.6, 0.3〉 〈0.4, 0〉 〈0.2, 0.6〉 〈0.2, 0.8〉
e17 〈0.3, 0〉 〈0.1, 0.5〉 〈0.7, 0.1〉 〈0.1, 0.6〉
e18 〈0.4, 0.4〉 〈0.1, 0.6〉 〈0.1, 0.3〉 〈0, 0.8〉
e19 〈0.4, 0.1〉 〈0.7, 0.1〉 〈0, 0.1〉 〈0.1, 0.4〉
e20 〈0.6, 0.2〉 〈0.2, 0.7〉 〈0.3, 0.3〉 〈0.3, 0.5〉

Those DMs evaluate the other DMs they know, forming the following initial social network matrix

(Table 14).

Table 14. The initial social network matrix containing social relationship pairs (t, s).

DMs e1 e2 e3 e4 e5 e6 e7 · · · e12 e13 e14 e15 · · · e20
e1 (0,1) (0.5,1) (0.1,0.1) (−,0) (0.3,0.6) (0.1,0.9) (0.7,0.2) . . . (0.8,0.9) (0.5,0.6) (−,0) (0.6,1) . . . (0.6,0.2)
e2 (0.3,0.9) (0,1) (0.7,0.3) (0.4,0.6) (0.1,0.7) (−,0) (−,0) . . . (0.1,0.3) (0.5,0.4) (0.8,0.5) (0.1,1) . . . (0.7,0.6)
e3 (0.5,0.1) (0.7,0) (0,1) (0.1,0.9) (0.6,0.6) (0.9,0.9) (0.4,0.1) . . . (0.9,0.3) (0.1,0.1) (0.2,0.4) (−,0) . . . (0.4,0.4)
e4 (−,0) (0.2,0.8) (−,0) (0,1) (0.3,0.9) (0.9,0.7) (0.1,0.5) . . . (0.1,0.9) (−,0) (0.1,0.2) (0.1,0.5) . . . (0.9,0.1)
e5 (0.9,0.6) (0.7,0.8) (0.5,09) (0.2,0.2) (0,1) (0.3,0.6) (0.8,0.3) . . . (0.4,0.3) (0.9,0.5) (0.9,0.5) (0.5,0.9) . . . (0.9,0.4)
e6 (−,0) (0.2,0.9) (0.1,0.7) (0.3,0.4) (0.8,0.7) (0,1) (0.3,0.3) . . . (0.6,0.1) (0.1,0.3) (0.9,0.3) (0.1,0.2) . . . (0.8,0.3)
· · · · · · · · ·
e19 (0.4,0.7) (0.6,0.2) (0.7,0.1) (0.6,0.6) (0.4,0.5) (0.2,0.9) (0.7,0.1) . . . (−,0) (0.5,0.3) (1,0.7) (0.5,0.8) . . . (1,0.6)
e20 (0.6,0.2) (0.6,0.2) (0.6,0.7) (0.4,0.1) (0.2,0.6) (0.4,1) (0.6,0.3) . . . (0.3,0.1) (0.1,1) (0.5,0.9) (0.4,0.7) . . . (0,1)

For the sake of space efficiency, we calculate the complete social network directly by the proposed

trust propagation operator, showed in Table 15.

Table 15. The completed social network matrix.

DMs e1 e2 e3 e4 e5 e6 e7 · · · e12 e13 e14 e15 · · · e20
e1 (0,1) (0.5,1) (0.1,0.1) (0.2, 0) (0.3,0.6) (0.1,0.9) (0.7,0.2) . . . (0.8,0.9) (0.5,0.6) (0.2, 0) (0.6,1) . . . (0.6,0.2)
e2 (0.3,0.9) (0,1) (0.7,0.3) (0.4,0.6) (0.1,0.7) (0.3, 0) (0.2, 0) . . . (0.1,0.3) (0.5,0.4) (0.8,0.5) (0.1,1) . . . (0.7,0.6)
e3 (0.5,0.1) (0.7,0) (0,1) (0.1,0.9) (0.6,0.6) (0.9,0.9) (0.4,0.1) . . . (0.9,0.3) (0.1,0.1) (0.2,0.4) (0.2, 0) . . . (0.4,0.4)
e4 (0.4, 0) (0.2,0.8) (0.2, 0) (0,1) (0.3,0.9) (0.9,0.7) (0.1,0.5) . . . (0.1,0.9) (0.2, 0) (0.1,0.2) (0.1,0.5) . . . (0.9,0.1)
e5 (0.9,0.6) (0.7,0.8) (0.5,09) (0.2,0.2) (0,1) (0.3,0.6) (0.8,0.3) . . . (0.4,0.3) (0.9,0.5) (0.9,0.5) (0.5,0.9) . . . (0.9,0.4)
e6 (0.2, 0) (0.2,0.9) (0.1,0.7) (0.3,0.4) (0.8,0.7) (0,1) (0.3,0.3) . . . (0.6,0.1) (0.1,0.3) (0.9,0.3) (0.1,0.2) . . . (0.8,0.3)
· · · · · · · · ·
e19 (0.4,0.7) (0.6,0.2) (0.7,0.1) (0.6,0.6) (0.4,0.5) (0.2,0.9) (0.7,0.1) . . . (0.2, 0) (0.5,0.3) (1,0.7) (0.5,0.8) . . . (1,0.6)
e20 (0.6,0.2) (0.6,0.2) (0.6,0.7) (0.4,0.1) (0.2,0.6) (0.4,1) (0.6,0.3) . . . (0.3,0.1) (0.1,1) (0.5,0.9) (0.4,0.7) . . . (0,1)

To compare with the traditional CRP-based method, we calculate the consensus degree (c) and detect

the key DM based on DMs’ consensus degree for each iteration. The simulation results for the conflict

detection and elimination process are shown in Table 16.

In Table 16, we use “Y” to represent that the key DM chooses to accept the modification, while

“N” means that he/she rejects the change. In addition, the TR-CDE model treats the DM with highest

conflict degree as the key DM, similarly as extant CRP models that designate the DM with the lowest

consensus degree.
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Table 16. Comparison of the TR-CDE model and the traditional CRP.

TR-CDE model Traditional CRP model
Iteration Key DM/Choice ρ Key DM c

1 e12/N 0.423 e7 0.691
e4/Y

2 e7/Y 0.410 e7 0.693
3 e12/N 0.376 e12 0.712

e9/Y
4 e19/Y 0.350 e12 0.722
5 e15/Y 0.326 e12 0.731
6 e6/Y 0.310 e12 0.737
7 0.279 e12 0.751

After the conflict detection and elimination process, we can obtain the conflict degree for each DM:

Ω(T=7) = {0.53, 0.21, 0.26, 0.26, 0.39, 0.16, 0.13, 0.34, 0.21, 0.39, 0.45, 0.50, 0.18, 0.29, 0.34, 0.18, 0.16, 0.24, 0.24, 0.10}.

Meanwhile, the updated group decision matrix is obtained as shown in Table 17.

Table 17. The updated group decision matrix D(T=7).

DMs x1 x2 x3 x4
e1 〈0.1, 0.7〉 〈0.7, 0.1〉 〈0.1, 0.3〉 〈0.8, 0.1〉
e2 〈0.9, 0.1〉 〈0.3, 0.5〉 〈0.4, 0.5〉 〈0, 0.4〉
e3 〈0.5, 0.5〉 〈0.2, 0.2〉 〈0.3, 0.7〉 〈0.3, 0.7〉
e4 〈0.3, 0.6〉 〈0.3, 0.5〉 〈0.5, 0.4〉 〈0.3, 0.6〉
e5 〈0.4, 0.5〉 〈0.7, 0.3〉 〈0, 0.4〉 〈0.1, 0.9〉
· · ·
e16 〈0.6, 0.3〉 〈0.4, 0〉 〈0.2, 0.6〉 〈0.2, 0.8〉
e17 〈0.3, 0〉 〈0.1, 0.5〉 〈0.7, 0.1〉 〈0.1, 0.6〉
e18 〈0.4, 0.4〉 〈0.1, 0.6〉 〈0.1, 0.3〉 〈0, 0.8〉
e19 〈0.5, 0.3〉 〈0.6, 0.3〉 〈0.5, 0.4〉 〈0.1, 0.6〉
e20 〈0.6, 0.2〉 〈0.2, 0.7〉 〈0.3, 0.3〉 〈0.3, 0.5〉

Following this, in the selection process, the DMs’ weights are calculated based on their conflict degree:

ω = {0, 0.0635, 0.0536, 0.0536, 0.0278, 0.0734, 0.0794, 0.0377, 0.0635, 0.0278,

0.0159, 0.0060, 0.0694, 0.0476, 0.0377, 0.0694, 0.0734, 0.0575, 0.0575, 0.0853}.

As mentioned in Remark 5.1, the DM e1 shares the maximum conflict degree 0.53, thus, the weight

for e1 is zero calculated by Eq (12).

Using the IFWA operator, the following group assessment on alternatives is obtained:

ḋ1 = 〈0.83, 0.05〉; ḋ2 = 〈0.75, 0.06〉; ḋ3 = 〈0.41, 0.15〉; ḋ4 = 〈0.38, 0.45〉.

The scores of the alternatives are: s1 = 0.78, s2 = 0.69, s3=0.26, and s4 = −0.07. Thus, we can

obtain that s1 ≻ s2 ≻ s3 ≻ s4. Therefore, s1 is the final selected decision for the LSGDM problem.

6.2.2. Some comparisons with other models

In this subsection, to validate the feasibility of the proposed TR-CDE model, we compare the results

derived therefrom with those produced by other representative group decision making models or methods.

The analysis is based on the same practical scenario. The assessment information on alternatives and

the relationship information are denoted by 〈µ, ν〉 and (t, s), respectively. However, some of the following
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methods use other forms of information. Therefore, we make some minor changes in each aggregation

method to suit each case.

(1) When the influence of relationships among DMs on the decision making process is not considered,

we can utilize the the intuitionistic fuzzy average operator [54] on the obtained final group decision

matrix D, shown on Table 17, to calculate the group assessment on alternatives. The difference

in this comparison is in the selection process. The obtained group assessment on alternatives are

ḋ1 = 〈0.75, 0.07〉; ḋ2 = 〈0.67, 0.08〉; ḋ3 = 〈0.35, 0.21〉; ḋ4 = 〈0.37, 0.46〉. So, the ranking result is

s1 ≻ s2 ≻ s3 ≻ s4.

(2) When the DMs are in a social network context, trust information is considered. The decision making

model proposed by Wu [35], uses the incomplete trust network to calculate the trust degree for each

DMs and determine their weights. Its main difference with our model lies in the utilization of trust

degree solely in the social network, without taking the relationship strength into consideration.

Trust is a type of relationship among DMs, which is regarded as transitive in the proposed TR-

CDE model. Combining the relationship strength s, the provided incomplete trust network can be

extended to a complete trust social network. The completed trust network is used to calculate the

disharmony degree cij between two DMs (as shown in Eq.(9)) in TR-CDE model. Thus, the weights

are calculated by the individual conflict degree Ω, which is indirect with the trust relationship.

Nevertheless, in the decision making model in [35], the transitive of DMs’ trust relationships and

the relationship strength are ignored: the DMs’ weights are defined based on both the trust degree

and consensus degree.

We set β (which is the parameter in the decision making model proposed by Wu [35]), and the

parameter to control the degree of consensus and trust is 0.5 in the decision making model of [35].

The decision result derived from this method is: ḋ1 = 〈0.68, 0.10〉; ḋ2 = 〈0.81, 0.12〉; ḋ3 = 〈0.38, 0.19〉;

ḋ4 = 〈0.36, 0.48〉. Thus, the ranking result can be obtained: s2 ≻ s1 ≻ s3 ≻ s4.

(3) The model proposed by Wu [39] is applicable to the decision making problem in which the DMs

are in a social network context and the trust information is transitive. The concepts of trust degree

and distrust degree are utilized in the trust propagation operator, although it does not consider the

relationship strength s, to obtain the complete trust social network.

By implementing the method in [39] on this practical scenario, we can have ḋ1 = 〈0.69, 0.10〉, ḋ2 =

〈0.84, 0.12〉, ḋ3 = 〈0.38, 0.17〉, ḋ4 = 〈0.37, 0.46〉 and the alternative ranking result s2 ≻ s1 ≻ s3 ≻ s4.

6.2.3. Discussion

In this subsection, we applied the proposed TR-CDE model in a practical LSGDM scenario. The

relationship information is completed through the relationship strength-based trust propagation operator.

In the conflict detection and elimination process, the group conflict degree is decreased from 0.42 to 0.28.
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To identify the relation between the group conflict degree and consensus degree, we calculate the consensus

degree for each iteration. Table 16 clearly shows that as the group conflict degree falls, the consensus

degree rises. This indicates that the proposed TR-CDE decision making model can improve the consensus

degree by conflict elimination.

We also apply some other group decision models to the practical scenario, and find a largely identical

group assessment. The main difference in ranking alternatives concerns x1 and x2. Our model and the

method (1) both find that x1 is more optimal than x2, whereas the methods (2) and (3) leads to the

opposite case. The difference between the proposed TR-CDE model and the compared method (1) is the

aggregation operator in selection process. In addition, the main differences among TR-CDE model and

the compared methods (2) and (3) are utilizations of trust degree and the way to obtain the complete

trust network. Both two methods fail to consider the relationship strength in the trust propagation,

which can not guarantee the propagation efficiency. This is arguably the reason why the methods (2)

and (3) select alternative x2 as the solution. As mentioned before, x1 represents the money-dominant

scheme and x2 represents housing-dominant scheme. In the reality, people show a strong preference on

the money-dominant scheme or money and housing-dominant scheme compared with housing-dominant

only scheme.

Thus, these comparison results can mainly be attributed to the unique features in the TR-CDE model:

1) the relationship strength-based trust propagation operator; 2) the mechanism for conflict detection and

elimination process; and 3) the conflict-driven weight determination method. Overall, the proposed model

introduces a reasonable trust propagation operator, which considers about the influence of relationship

strength on propagation efficiency. The TR-CDE model’s feasibility in detecting and eliminating conflicts

among DMs in LSGDM has been demonstrated and validated.

6.3. The behaviors of parameters

In this subsection, we introduce some discussion and practical guidelines for decision groups on setting

such parameters depending on the specific problem being tackled.

In order to better explain the meaning and the setting influence of the conflict threshold Φ on LSGDM

events, we list the values of group conflict degree ρ in each iteration of the numerical example and the

practical scenarios in Table 18.

In the two experiments, the conflict threshold is set the same as Φ = 0.3. It means that within the

limited iterations Tmax, when the calculated group conflict degree is less that the threshold, the acceptable

consensus is reached and the final decision can be made. As the results recorded in Table 18, if we set

the value of Φ higher than 0.3, we can make the final decision within a few iterations. Such as, if we

set Φ = 0.42 in the two experiments, we can chose the final decision with the two group conflict degrees

are 0.41 after three iterations and two iterations, respectively. In other words, the higher the value of

conflict threshold is, the less iterations are needed and the higher the group conflict degree is allowed
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Table 18. The group conflict degree ρ in each iteration.

The numerical example The practical scenario
iteration(T) ρ ρ

T = 1 0.51 0.423
T = 2 0.50 0.410
T = 3 0.41 0.376
T = 4 0.33 0.350
T = 5 0.32 0.326
T = 6 0.29 0.310
T = 7 - 0.279

before making the final decision in the LSGDM event. A smaller number of iterations implies a reduction

in the temporal cost. However, the higher value of group conflict degree means the higher dissatisfaction

among DMs, which may lead to some other serious group events.

On the other hand, if we set Φ = 0.28 in the two experiments, the numerical example can not reach

the consensus in the limited 6 iterations. That is, the lower the conflict threshold is, the more iterations

are needed for the LSGDM event.

Furthermore, we implement the TR-CDEmodel on the numerical example with different θ = {0.05, 0.06,

. . . , 0.08, 0.10, . . . , 0.14} within 6 iterations. All the detected key DMs accept the suggested modifications.

Combining the results with θ = 0.09, the group conflict degrees are recorded in Table 19.

Table 19. The group conflict degree ρ in each iteration with different threshold θ.

iteration(T) θ = 0.05 θ = 0.06 θ = 0.07 θ = 0.08 θ = 0.09 θ = 0.10 θ = 0.11 θ = 0.12 θ = 0.13 θ = 0.14

T = 1 0.69 0.63 0.60 0.54 0.51 0.42 0.39 0.29 0.22 0.16

T = 2 0.68 0.62 0.56 0.49 0.50 0.33 0.32

T = 3 0.63 0.61 0.54 0.47 0.41 0.28 0.27

T = 4 0.59 0.59 0.44 0.44 0.33

T = 5 0.58 0.57 0.38 0.40 0.32

T = 6 0.57 0.51 0.31 0.36 0.29

From Table 19, comparing the group conflict degree ρ in the iteration T = 1, we can conclude that

the lower the threshold θ is, the more conflicts present in the LSGDM event, which represent the initial

conflict level. When θ is set less than 0.10, the value of ρ is more than 0.5. Within 6 iterations, we can

learn that the lower the value of θ is, the more difficult to reach the preset conflict threshold Φ within

limited iterations. On the contrary, the higher the θ is, the less conflicts are detected in the consensus.

With the same assessment matrix, when the value of θ is set more than 0.11, the initial group conflict is

less than Φ = 0.30, and the consensus is reached directly. This means the more conflicts are ignored. It

will increase the risk for the occurrence of DMs’ dissatisfied events. Thus, we suggest to set θ at the half

level of the initial CIM , which means to remain half of the disharmonies as the detected conflicts in the

decision making events.

Besides, Tmax (which is determined by the urgency level β), the threshold θ to cut the disharmony

level, and the acceptable conflict degree level Φ are the three important parameters in the TR-CDE model.

From Table 19, we can easily summary that these three parameters can mutually restrict and influence

each other, which is reflected in the following aspects.
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• To reach the same Φ, with different θ, the TR-CDE model needs different numbers of iterations T .

By setting different urgency levels β, we can obtain different values of Tmax. The more urgency the

LSGDM is, the higher the value of β should be set and the lower the value of Tmax is. If T ≤ Tmax,

the consensus is reached; if T > Tmax, the TR-CDE model fail. As T represents the cost of the

decision making process, we can set Tmax much higher, which means setting β much lower, within

an acceptable range.

• With the same Tmax, the initial group conflict present differently with different values of θ. It implies

that the initial conflict level is different in the LSGDM event. The higher the value of θ is, the lower

initial conflict level is for the LSGDM event. In this situation, the consensus can be achieved or not

is depended on level of Φ. Within limited iterations, if the initial conflict level is high, the possible

achieved conflict level may be high. It implies that, in that situation, the higher value of Φ is set,

the more possibility the consensus can be reached. If the initial conflict level is low, even though a

lower value of Φ is set, it is possible to reach the consensus with the limited Tmax iteration.

• Once the value of θ is fixed, the initial conflict performance of the LSGDM event is certain. Except

for the DMs’ actions, the higher Tmax is, the lower group conflict degree can be reached, which

means the lower Φ can be set. On the other hand, the lower Φ is, the more iterations are required

to reach the consensus, which means to make the TR-CDE model succeed, a large value of Tmax is

needed to be set.

7. Conclusion

We proposed a TR-CDE model for resolving LSGDM problems where some intra-group social relation-

ships exist among participating decision makers. Since both the relationship and assessment information

are causative factors of conflict, the TR-CDE model focuses on conflict detection and elimination, in con-

trast to conventional LSGDM models incorporating consensus reaching approaches. The model comprises

three processes:

(1) Trust propagating process. It is proposed to obtain the complete social network where some

indirect relationship information cannot be directly obtained. For this purposes, a new relationship

strength-based trust propagation operator is proposed. The proposed operator is an effective and

reasonable solution with the following characteristics: 1) it considers the impact of relationship

strength on the propagating efficiency, since the information cannot be fully propagated in practice;

and 2) it can suitably handle the situation of multiple propagation paths to obtain an indirect

relationship. Based on the relationship strength-based trust propagation operator, we can obtain

the completed social network.

(2) Conflict detection and elimination process. The assessments are represented by IFSs, which

can faithfully express the uncertainty and hesitation of DMs. Combining the obtained completed
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social network and the assessment information, the corresponding conflict network can be well

established. Based on the conflict network, an SNA-based conflict detection and elimination process

is implemented. This can effectively identify the conflict relationships among DMs and serves to

decrease group conflict degree by reducing the conflict degree of key DMs identified towards an ideal

level. By building a nonlinear optimization model, which guarantees the group conflict degree can

present the maximum reduction in every iteration, modification plans are obtained for the key DMs,

thereby efficiently and quickly reducing the conflict below the desired threshold.

(3) Selection process. In this process, the conflict degree is used to determine each DM’s importance

weight, taking both trust and consensus on assessment into consideration, thereby making the weight

determination more reasonable.

In conclusion, we have successfully demonstrated the proposed TR-CDE model’s efficiency and feasi-

bility in solving LSGDM problems in a social network context.

Aside from the shown advantages of TR-CDE model, there are some limitations can be further con-

sidered in the future works for LSGDM scenarios. From the numerical example we find that the trust

values calculated by the proposed method are generally low, we contribute this to over-counting the in-

formation loss as well as overlooking the influence of trust value on propagation efficiency during the

propagation. The option for the DM exhibiting the highest conflict level in the decision making process

is to accept the modification which is calculated by solving the nonlinear optimization model (11) or to

reject the modification without the partial acceptation. Therefore, in the future studies, we can focus on

developing a more efficient trust propagation operator, and develop the conflict elimination optimization

model which can eliminate the group conflict degree, as well as providing more options for the DMs who

present conflict in LSGDM events and favoring those DMs who behave more cooperatively during the

conflict reduction process.
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