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Abstract 

Iridescence in shade-dwelling plants has previously been described in only a few plant groups, 

and even fewer where the structural colour is produced by intracellular structures. In contrast 

to other Selaginella species, this work reports the first example in the genus of structural colour 

originating from modified chloroplasts. Characterisation of these structures determines that 

they form 1-dimensional photonic multilayers. The Selaginella bizonoplasts present an 

analogous structure to recently reported Begonia iridoplasts, however unlike Begonia species 

that produce iridoplasts, this Selaginella species was not previously described as iridescent. 

This therefore raises the possibility of widespread but unobserved and uncharacterised 

photonic structures in plants. 

 

Introduction 

Chloroplasts are green - most of the time. The presence of thylakoids, grana, constituent 

proteins, and green pigments are largely consistent between chloroplasts, particularly across 

land plants. There are however exceptions to this rule such as in the chloroplasts of certain 

algae and marine bacteria1. Another exception is when chloroplasts produce structural colour. 

This mechanism of colour generation is caused neither by pigmentation nor fluorescence, but 

by structures on the sub-micron scale. As light interacts with these structures select bandwidths 
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of the electromagnetic spectrum are either reflected or transmitted. As a result, extremely vivid 

colours can be produced, most typically exemplified by the wings of butterflies2 or the elytra 

of beetles.3,4 Recently it has also been demonstrated that structural colour can play a role in 

photosynthetic systems5,6,7.  

Initial investigations by David Lee into plant species such as Begonia, Phyllagathus 

and Trichromanes8,9 discovered periodic thylakoid membrane arrangements, and suggested 

that these structures were responsible for the blue colouration seen on the leaves of these deep-

shade adapted understory plants. More recent investigations into many species of Begonia have 

characterised these iridescent chloroplasts (termed iridoplasts), and established the blue colour 

is the result of the highly periodic thylakoid arrangements forming a multilayer photonic 

structure6,10. Further to this, the photonic phenomenon of slow-light created by the multilayer 

has been suggested to enhance the absorption of green wavelengths and play a role in increasing 

quantum yield in low light conditions by 5-10%6. 

The presence of these highly periodic thylakoid arrangements is also present in another 

tropical understory plant, Selaginella erythropus11. The chloroplasts in this lycophyte are large 

and fill the majority of the volume of the epidermal cells. The chloroplast size reflects an 

adaptation to increase light capture in the deep-shade environments of the tropical understory. 

These bizonoplasts are so named due to the two distinct regions of thylakoid membranes and 

grana within the same chloroplast. The lower region, away from the microphyll surface, 

demonstrates a standard arrangement of grana, however the upper region, closest to the 

microphyll surface, has a highly ordered structure similar to the periodic photonic crystal 

organisation of thylakoid membranes originally investigated by David Lee and recently 

characterised in Begonia8,9,6. Previous work has investigated the development of these 

bizonoplasts11,12,13 but reports a distinct lack of structural colour. The Selaginella genus is 

already known for producing a range of photonic structures such as in the multilayers of the 



microphyll cell wall14,15 and opal structures in the spores16. This work looks at the potential of 

a third type of photonic structure in Selaginella by characterising the regular periodic structures 

in the chloroplasts of Selaginella erythropus. 

 

Material and Methods 

Growth conditions 

S. erythropus plants were initially purchased from Siamgreenculture17 and cultivated within 

the department of Biological Sciences at the University of Bristol while being grown in 

humidity controlled environments. Humidity was kept at 85%, temperature at 25C, and 

lighting was provided by a mixture of cool and warm white fluorescent bulbs (Sylvania F36W 

840/830). The incident light levels had a photosynthetic photon fluence rate (PPFR) of 2.88 

µmol.m-2.s-1 over the waveband 400-700 nm with associated spectra demonstrated in Figure 

S1. Lighting was measured on a calibrated Flame-S-UV-VIS Spectrometer (Ocean Optics, 

USA) and a calibrated LI-COR Quantum Sensor (LI-250A). The microphylls measured in all 

experiments were well developed, beyond five leaves from the stem apex. The leaves were 

photographed with a Nikon D3200 (Fig. 1a), and low magnification microscopy with a VHX-

1000E Digital Microscope (Keyence) (Fig S8). 

Transmission Electron Microscopy 

We measured chloroplasts ultrastructure from transmission electron microscopy (TEM) 

images. A general protocol was followed for the preparation of samples as previously 

reported6. Imaging was performed using a Tecnai T12 microscope (FEI) and analysis was 

conducted using Fiji18. 

Cryo-Scanning Electron Microscopy 

Microphylls were removed and quickly frozen in a liquid nitrogen slush close to the freezing 

point of liquid nitrogen (-210C). Fracturing, sputter coating with platinum for two minutes, 



and transfer to a Quanta 400 scanning electron microscope (FEI) were under a vacuum at -

145C. Samples were sublimed for 3 minutes at -95C before sputter coating. 

Epi-Illumination Microscopy 

We measured reflective properties of individual cells with a custom-made white light epi-

illumination reflectance microscope. White light illumination (Thorlabs OSL-1) was 

collimated and focussed onto the sample with a high-numerical aperture (0.75) lens (Zeiss 

63x). The reflected light was then collected into an optical fibre (Thorlabs M92L01) in a 

confocal configuration or passed to a camera sensor. This allows easy switching between 

spectral measurements and imaging. Fourier image spectroscopy is also possible in this setup 

which allows for spectral characterisation across the entire numerical aperture of the lens, and 

hence spectral reflectance measurements as a function of angle19. 

Transfer Matrix Method Model 

Inputting the details of the layer by layer structure found in the upper region into a Transfer 

Matrix Model20 allowed the modelling of light interactions with the layered thylakoid structure 

of the bizonoplast. The inputs required are the refractive index of the layers and the dimensions 

of the structure. Refractive index values were obtained from established literature values for 

the thylakoid membranes21, while structural dimensions were from TEM observations. The 

refractive index values contain both real and imaginary components to account for the strong 

optical dispersion of thylakoid membranes (Figure S7). Refractive index values for the stroma 

and lumen were from published values21. These values assume a non-dispersive medium with 

indices of 1.35 for both the stroma and lumen. 

Results and Discussion 

Plant development and structural morphology 

S. erythropus develops with a distinctive arrangement of microphylls. Along the stems there 

are two different microphyll morphologies: those towards the centre of the stems which are 



smaller and overlap the larger microphylls towards the edge. The blue colouration of the 

microphylls can be visually observed apart from in those of the first two or three recently 

developed microphylls (Figure 1a, S8). The colour is dependent on the angle of observation 

and the lighting environment during development. Plants grown in medium to bright light 

conditions exhibit limited structural colour, whereas low light conditions (5 µmol.m-2.s-1) result 

in observable blue colouration. Transmission Electron Microscopy (TEM) demonstrated the 

distinct bi-zonal arrangement of the singular chloroplast in each epidermal cell, as previously 

reported11. The layered thylakoid structure towards the dorsal side of the microphyll consists 

of periodic arrangements of 2-3 thylakoid membranes closely packed and a spacing in the 

stroma before the arrangement repeats itself up to ~20 times. Measurements of the dimensions 

were calculated from transmission electron microscopy (TEM) images (Figure 2). Thylakoid 

membranes (LT) show a thickness of 4.28 ± 0.55 nm (n=29) and a lumen thickness (LL) of 5.20 

± 0.68 nm (n=40), and the spacing of the stroma (LS) between these stacked thylakoids is 81.52 

± 5.68 nm (n=56). The overall periodic length as measured by TEM for a combined thylakoid 

stack and associated stroma (Λ) is 130 ± 7 nm (n=74) (Figure 3a). Cryo-Scanning Electron 

Microscopy (Cryo-SEM) was conducted in order to compare the size of the period spacing 

observed under TEM. The measurements performed demonstrated a periodic spacing of 156 ± 

10 nm which is larger than that obtained by TEM observations (Figures S9, S10). Cryo-

preservation however is a more robust morphological technique which limits the shrinking 

which can occur during the dehydration steps involved in chemical fixation22, but lacks the 

resolution of TEM which can distinguish single thylakoid membranes and help understand the 

ultrastructure. Our cryo-SEM measurements demonstrate a period which is 20% longer than 

when measured by TEM. This compares with previous work which uses atomic force 

microscopy to measure thylakoid membrane thicknesses of 19.5 nm23. A stack of three of these 

membranes (58.5 nm) would constitute a larger grana size by 19.6% when compared to our 



TEM measurements (48.9 nm) (Figure S2). The similarity in size contrast between the two 

techniques gives us confidence to say that a period of 156 ± 10 nm as measured by cryo-SEM 

is more indicative of the natural spacing contributing to the structural colour production. 

From previous reports we can see how the development of the structural region in 

bizonoplasts is highly plastic with the lighting environment influencing the formation of a 

periodic upper zone of thylakoid stacks. When grown in high light (450-500 µmol.m-2.s-1) there 

is a complete shift in chloroplast morphology to produce multiple chloroplasts with no sign of 

a dimorphic ultrastructure12. In contrast, low light (15-30 µmol.m-2.s-1) environments, 

indicative of the typical light regime experienced, encourage the development of the 

characteristic dimorphic ultrastructure12,13. The intensity experienced in the high light growth 

conditions previously reported (450-500 µmol.m-2.s-1) would seem exceedingly high in 

comparison to the light levels typically experienced in the tropical understory24, however 

effective growth appears unaffected. This would suggest that light level acclimatisation of the 

plant plays a central role in chloroplast development within this species. This is also supported 

by recent work which looks at how mature bizonoplasts react when exposed to high light 

without prior high light acclimatisation. When exposed, despite the high light being 

considerably lower (75 µmol.m-2.s-1) than that used by Sheue et al.12, the plants demonstrated 

signs of light stress with bleaching, growth inhibition, and chloroplast disintegration13. These 

findings further support that suggestion that bizonoplasts are likely to be an adaption to very 

low-light environments similar to that observed in Begonia6 – hence to simulate an accurate 

developmental environment experiments were conducted under low-light conditions. In fact, 

it is this particularly plastic development of chloroplast morphology which has likely led to the 

dismissal of structural colour present in Selaginella erythropus. In our experience, optimum 

growth conditions (with respect to rate of new microphyll production) agrees with that of 

Ghaffar et al.13 at a light level of 15 µmol.m-2.s-1, however light levels below this (1-5 µmol.m-



2.s-1) still obtain substantial microphyll production while the development of blue colouration 

is more obvious.  

 

Structural colour characterisation and modelling 

Epi-illumination microscopy allows for the reflected light to be observed. By capturing images 

with the epidermis and the chloroplasts at different focal planes we can see that the blue 

colouration originates from the chloroplast structure within the cell (Figures 1g, 1h) which is 

in contrast to structural colour originating from the cell wall in other Selaginella species 

(Figures 1b-c, 1e-f, S11). An optical model informed through our morphological studies and 

literature values for cellular refractive indices was constructed. The use of a Transfer Matrix 

Method (TMM) model predicts a peak in reflectance in the blue region of the visible spectrum 

(Figure 3b), alongside an angular dependence with the dominant wavelengths of reflection 

decreasing with angle (Figure S6). To confirm whether the blue colouration of S. erythropus is 

a result of this mechanism we performed both normal incidence and angular dependence 

measurements of the reflection. The wavelength for the measured peak of reflectance at normal 

incidence is 450 nm, positioned well within the blue region of the visible light spectrum (Figure 

3b, S3, S4), while angular measurements demonstrate a slight shift towards lower wavelengths 

with angle (Figure S5). Experimental uncertainties required in the optical model will however 

produce differences between the bizonoplast dimensions predicted by theory and experimental 

values. Fine tuning of the parameters allowed for a fit where the peak in reflectance of the 

optical model and experimental measurements aligned - these values suggest a period of 164 

nm which is obtained from a homogeneous expansion of the lattice by 5.1%. This expansion 

predicted by the model could be produced by small differences in the real refractive index of 

the membranes and those found in nature. Other sources of error could be due to a non-planar 

surface morphology of the leaf or inhomogeneous contraction of dimensions in TEM sample 



preparation. In general, and considering the complexity of the real system, the agreement is 

outstanding. 

Contrary to previous reports11,13, our observations and measurements of the reflected 

light from individual chloroplasts has enabled us to demonstrate that blue structural colour is 

produced by the bizonoplasts. This emphasises the need for suitable techniques to characterize 

structural colour in intracellular organelles; structural colour can be subtle and inconspicuous 

to the human eye with no necessity to be visually detectable in the leaf.  

Our model and reflectance measurements demonstrate that the presence of the photonic 

multilayer structure increases reflectance in the blue region of the spectrum around 450 nm. 

The effect of this is a decrease in the transmittance and/or absorbance in this region of the 

spectrum. This influence of the multilayer structure on the photonic behaviour of the 

bizonoplast appears counter intuitive – a deep-shade plant, presumably adapted to harvesting 

as much light as possible should in theory want to limit the reflection of useful wavelengths of 

light (i.e. those absorbed by the photosynthetic pigments). Despite this, structural colour in 

deep-shade plants is now understood to be widespread; such other examples include iridoplasts 

in many Begonia species8,6, as well as in Phyllagathis rotundifolia25 and Trichomanes elegans9. 

In addition, there are examples of multilayers in the cuticle of Teratophyllum rotundifoliatum27, 

Selaginella willdenowwii, and Selaginella uncinata26,14,15 which similarly produce blue 

structural colour.  

Blue iridescence and the influence it might have on photosynthesis in deep-shade plants 

has been discussed with respect to Selaginella willdenowii. Lee et al. proposed that the waxy 

cuticle, which is the origin of the structural colour in this species, acts as an anti-reflective 

coating (similar to the coatings found on camera lenses)25. This anti-reflective coating would 

lead to greater absorption of longer, red, wavelengths of light which are more prevalent than 

shorter wavelengths in the deep-shade tropical understory. To test this, Thomas et al. 



characterised the optical behaviour of S. willdenowii, and modelled the layered cuticle. The 

results of this demonstrated the layered cuticle does not effectively enhance red light 

transmission into the microsphylls. It also appears to be a poor evolutionary strategy when far 

simpler and more efficient anti-reflective systems could have developed15. The possible 

adaptive advantage of this system is still unknown and further investigation should be 

conducted, however recent work has demonstrated that iridescence can disrupt the visual 

systems of insects28 and hence could play a role in the prevention of herbivory. In contrast to 

the striking iridescence of S. willdenowii, the subtle colouration produced by the chloroplast 

structure of S. erythropus hints perhaps more directly at a photosynthetic function, as has been 

demonstrated in the equally deep-shade adapted, Begonia pavonina.  

Jacobs et al. characterised and modelled the iridoplasts from B. pavonina as one-

dimensional photonic crystals, demonstrating a higher photosynthetic efficiency by increasing 

the quantum yield by 5-10%6. The reason for this increase in yield is suggested to be due to the 

periodic spacing of the grana stacks which locally increases the intensity of green wavelengths 

of light.  The photonic environment set up by a periodically spaced arrangement of contrasting 

refractive indices leads to a reduction in the group velocity of wavelengths at the photonic band 

edge29. In this case, the increased reflection in blue wavelengths, means that light at slightly 

longer green wavelengths exhibits a localised higher electric field at the stacked thylakoid 

regions. It should not be surprising that this effect could also be present in the periodic stacked 

thylakoid regions of S. erythropus since the species inhabits similar deep-shade habitats rich in 

green wavelengths of light while also containing the photonic environment suitable for 

structurally produced colour in the blue spectrum. Future work with S. erythropus will look to 

examine if the photosynthetic performance in this upper stacked region is modified. 

Perhaps what is most interesting is the range of similarities and difference exhibited by 

iridescent chloroplasts in very different plant groups – the parent clade of Selaginella, 



Lycopodiophyta, diverged from all other vascular plants 376 - 407 Mya30-32. This apparent 

convergent evolution to arrive at very similar chloroplast structures suggests a selective 

pressure which comes from the environments which Begonias and Selaginella erythropus 

inhabit. The chloroplasts in these taxonomically distinct plants have developed thylakoid 

arrangements which are so alike that they produce very similar structural colour effects. In fact, 

the structural colour seen in Begonia and S. erythropus is quite different to other forms of 

structural colour in plants: due to the colour being produced within the cell, the colour is not 

as vivid as that seen in other examples of structural colour which is produced by the cuticle. 

This subtle point is why it is easy to overlook examples of intracellular structural colour – for 

example many species of Begonia, despite at first appearance looking green with no hint of 

blue colouration do contain iridoplasts which when observed under reflection microscopy 

produce blue structural colour6. There are reports of structures similar to the iridoplasts of 

Begonia and bizonoplasts of S. erythropus both in other species of Selaginella and in a range 

of species from the brown algae, ferns and flowering plants11. While iridescence has not been 

reported in all of these species, our results suggest that this does not preclude them from having 

similar photonic properties. 

Conclusion 

The bizonoplasts in Selaginella erythropus present a unique chloroplast structure with two 

distinct regions. This structure acts as a photonic one-dimensional multilayer resulting in an 

increased reflection in the blue region of the visible spectrum. We have demonstrated this 

through an optical model based on electron microscopy observations as well as direct 

measurements of the reflected light. The subtle nature of the blue reflection means that it is not 

easily visually observable, and examples from the literature suggest that this overlooked 

phenomenon could be more widespread than currently realised. Blue structural colour as 

demonstrated in this system is a growing area of research in plants with numerous examples 



now present in diverse plant species from deep-shade environments. However, despite the 

expanding literature there is still limited understanding of the evolutionary benefits of structural 

colour in these environments. Furthermore S. erythropus is one of only a few characterised 

systems in which this blue structural colour is produced by modifications to the chloroplast 

ultrastructure. While it may initially appear counter-intuitive nature to reflect away 

photosynthetically active radiation, it should not be too surprising that it could be advantageous 

to manipulate the photonic environment of the chloroplast to enhance photosynthetic efficiency 

to adapt to different light scenarios. It is well known that chloroplasts typically have very 

plastic behaviour to ensure photosynthesis is managed in the most efficient manner – 

expanding this to envision systems which use photonic multilayers could be another example 

of such adaptation to difficult environmental conditions which now requires further 

investigation. 



 

Figure 1: a-c) Photographs of S. erythropus, S. uncinata, and S. willdenowii demonstrating the blue colouration present in the 

Selaginella genus. d) TEM image of two epidermal cells and a demonstration of the approximate vertical positions where d) 

and e) observations were performed. Scale bar = 5µm; e + f) Reflection microscopy images demonstrating the reflection from 

the cell walls of S. uncinata and S. willdenowii respectively; g) + h) Reflection microscopy images focused at the source of the 

blue colouration (d) and at the cell wall (e). Scale bar = 10µm.  
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Figure 2: a) TEM image of an epidermal cell of S. erythropus with the majority of the cell volume being the bi-zonal chloroplast. 

The white dashed line differentiates the upper periodically stacked thylakoid region from the lower typical thylakoid structure.  

Scale bar = 5µm. b) TEM image of the location of the layered thylakoid region alongside starch grains. Scale bar = 0.5µm. c) 

A higher magnification image of a layered thylakoid region. The dark regions are the thylakoid membranes. Scale bar = 

100nm; Table) Structure dimensions as determined by TEM and Cryo-SEM. 
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Figure 3: a) Sketches showing the parameters used in the optical model when defining the photonic structure. Λ, full repeating 

period; Ls, stroma spacing between stacked thylakoids; LL, lumen thickness; LT, thylakoid membrane thickness. b) Calculated 

reflectance from optical model and typical reflectance as measured from area highlighted in c). c) Reflection image from epi-

illumination microscope (scale bar = 10µm).  
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