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SUMMARY

We consider the problem of approximating the product of n expectations with respect to a common

probability distribution µ. Such products routinely arise in statistics as values of the likelihood in latent 15

variable models. Motivated by pseudo-marginal Markov chain Monte Carlo schemes, we focus on unbi-

ased estimators of such products. The standard approach is to sample N particles from µ and assign each

particle to one of the expectations. This is wasteful and typically requires the number of particles to grow

quadratically with the number of expectations. We propose an alternative estimator that approximates each

expectation using most of the particles while preserving unbiasedness, which is computationally more ef- 20

ficient when the cost of simulations greatly exceeds the cost of likelihood evaluations. We carefully study

its properties, showing that in latent variable contexts the proposed estimator needs only O(n) particles

to match the performance of the standard approach with O(n2) particles. We demonstrate the procedure

on two latent variable examples from approximate Bayesian computation and single-cell gene expression

analysis, observing computational gains by factors of about 25 and 450 respectively. 25

Some key words: latent variables; Markov chain Monte Carlo; pseudo-marginal; approximate Bayesian computation.

1. INTRODUCTION

Let X be a random variable with probability measure µ on a measurable space (X,X ), and let L1(µ)
be the class of integrable, real-valued functions, i.e. L1(µ) = {f :

∫
X
|f(x)|µ(dx) < ∞}. For a sequence

of non-negative potential functions G1, . . . , Gn ∈ L1(µ), we consider approximations of products of n 30

expectations

γ =
n∏

p=1

E{Gp(X)} =

n∏
p=1

µ(Gp), (1)

where we denote µ(f) =
∫
X
f(x)µ(dx) for f ∈ L1(µ). These arise, e.g., as values of the likelihood func-

tion in latent variable models. We concentrate on unbiased approximations of γ; these can be used,

e.g., within pseudo-marginal Markov chain methods for approximating posterior expectations. Pseudo-

marginal methods (Beaumont, 2003; Andrieu & Roberts, 2009) are a variation of classical Metropolis– 35
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Hastings algorithms, where the target density function is replaced by an unbiased estimator while still

preserving the correct invariant distribution.

To motivate this general problem, and because our main result in the sequel relates to latent variable

models, we provide the following generic example of such a model.

Example 1 (Latent variable model). Let g be a Markov transition density and Y1, . . . , Yn be indepen-40

dent and identically distributed Y-valued random variables distributed according to the probability density

function ν where ν(y) = E{g(X, y)} =
∫
E
g(x, y)µ(dx). That is, the Yp are independent and distributed

according to g(Xp, ·) where Xp ∼ µ. For observations y1, . . . , yn, respectively, of Y1, . . . , Yn, we can

write
∏n

p=1 ν(yp) =
∏n

p=1 E{g(X, yp)} =
∏n

p=1 E{Gp(X)} = γ, where the potential functions are de-

fined via Gp(x) = g(x, yp), for p ∈ {1, . . . , n}.45

Remark 1. To see that γ can be viewed as a value of the likelihood function, let θ ∈ Θ be a statisti-

cal parameter and let {(µθ, gθ) : θ ∈ Θ} be parameterized families of distributions and Markov transi-

tion densities. The likelihood function L is then L(θ) =
∏n

p=1 νθ(yp) where νθ(y) = Eθ{gθ(X, y)} =∫
E
gθ(x, y)µθ(dx), and clearly L(θ) is of the form (1) for any θ ∈ Θ.

The focus of this paper is approximations of γ using N independent and µ-distributed random vari-50

ables ζ = (ζ1, . . . , ζN ), which we will refer to throughout as particles. A straightforward approach to

constructing an unbiased approximation of γ is to approximate each expectation E{Gp(X)} = µ(Gp)
independently using M particles, where N = Mn. That is, we define

γN
simple =

n∏
p=1

1

M

M∑
i=1

Gp(ζ(p−1)M+i). (2)

The following lack-of-bias, consistency, second moment and variance properties are easily established.

PROPOSITION 1. We have E(γN
simple) = γ, γN

simple → γ in probability as N → ∞ and55

E{(γN
simple/γ)

2} =

n∏
p=1

[1 + {µ(Ḡ2
p)− 1}/M ], (3)

where Ḡp = Gp/µ(Gp) for each p ∈ {1, . . . , n}. Also, var(γN
simple) is finite and converges to 0 as M →

∞ if and only if

max
p∈{1,...,n}

µ(G2
p) < ∞. (4)

The approximation γN
simple is straightforward to compute and analyze since it is a product of averages of

independent random variables. However, each particle is only used to approximate one of the expectations

in the product, and in situations where these particles are expensive to obtain this may be wasteful. An60

alternative approach is to use

γN
biased =

n∏
p=1

1

N

N∑
i=1

Gp(ζi), (5)

which is consistent and not wasteful, but also not unbiased in general.

PROPOSITION 2. We have γN
biased → γ in probability as N → ∞ but E(γN

biased) �= γ in general.

We propose in the sequel an approximation γN
recycle that is unbiased like γN

simple but similar to γN
biased in

that it uses most of the particles to approximate each expectation in the product while remaining compu-65

tationally tractable. The approximation γN
recycle can be viewed as an unbiased approximation of γN

perm, the

rescaled permanent of a particular rectangular matrix of random variables, which is never worse in terms of

variance than γN
simple but is very computationally costly to compute in general. The approximation γN

recycle

is an extension of the importance sampling approximation of the permanent of a square matrix proposed

by Kuznetsov (1996) to the case of rectangular matrices. While it is possible for γN
recycle to have a higher70
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variance than γN
simple, we show that in many statistical scenarios it requires far fewer particles to obtain a

given variance, e.g. in the latent variable setting described above. In particular, under weak assumptions,

one needs to take N = O(n) to control the relative variance of γN
recycle but one requires N = O(n2) to

control the relative variance of γN
simple. Ultimately, this provides large computational savings when the

cost of simulating from µ is much greater than the cost of evaluating each Gp. 75

2. THE ASSOCIATED PERMANENT AND ITS APPROXIMATION

An alternative approximation of γ which uses the particles ζ = (ζ1, . . . , ζN ) is obtained by first rewrit-

ing γ in (1) as γ =
∏n

p=1 E{Gp(X)} = E{∏n
p=1 Gp(Xp)}, with X1, . . . , Xp independent µ-distributed

random variables. Indeed, γN
biased is a V-statistic of order n for γ, and the corresponding U-statistic for γ

is 80

γN
perm =

∑
k∈P (N,n)

|P (N,n)|−1
n∏

p=1

Gp(ζkp
), (6)

where P (N,n) = {k ∈ {1, . . . , N}n : ki = kj ⇐⇒ i = j} is the set of n-permutations of N , whose

cardinality is |P (N,n)| = N !/(N − n)!. We observe that γN
perm is exactly |P (N,n)|−1

times the per-

manent of the rectangular matrix A (see, e.g., Ryser, 1963, p. 25) with entries Aij = Gi(ζj) since

then perm(A) =
∑

k∈P (N,n)

∏n
p=1 Ap,kp =

∑
k∈P (N,n)

∏n
p=1 Gp(ζkp). The approximation γN

perm is un-

biased and consistent since it is a U-statistic and moreover it is less variable than γN
simple in terms 85

of the convex order (see, e.g., Shaked & Shanthikumar, 2007, Section 3.A), defined by X �cx Y if

E{φ(X)} ≤ E{φ(Y )} for all convex functions φ : R → R such that the expectations are well-defined.

Since x 
→ x2 is convex, X �cx Y implies var(X) ≤ var(Y ). Convex-ordered families of random vari-

ables also allow one to order the asymptotic variances of associated pseudo-marginal Markov chains

(Andrieu & Vihola, 2016, Theorem 10). We now state basic properties of γN
perm, which can be compared 90

with Proposition 1.

THEOREM 1. We have E(γN
perm) = γ, γN

perm �cx γN
simple and γN

perm → γ in probability as N →
∞. Given K ∼ Uniform{P (N,n)}, it holds that E{(γN

perm/γ)
2} = E{∏n

p=1 Ḡp(ζp)Ḡp(ζKp)}. Also,
var(γN

perm) is finite and var(γN
perm) → 0 as N → ∞ if and only if (4) holds.

Theorem 1 suggests that γN
perm is a superior approximation of γ in comparison to γN

simple. However, 95

computing γN
perm is equivalent to computing the permanent of a rectangular matrix, which has no known

polynomial-time algorithm. In fact, computing the permanent of a square matrix is #P-hard (Valiant,

1979). Using an extension of the importance sampling estimator of the permanent of a square matrix due

to Kuznetsov (1996), we define the following unbiased approximation of γN
perm and hence γ,

γN
recycle =

n∏
p=1

1

N − p+ 1

N∑
j=1

Gp(ζj)I (j /∈ {K1, . . . ,Kp−1}) , (7)

where K = (K1, . . . ,Kn) is a random variable with values in {1, . . . , N}n whose distribution given ζ is 100

defined by the sequence of conditional probabilities

pr (Kp = i | ζ,K1, . . . ,Kp−1) ∝ Gp(ζi)I (i /∈ {K1, . . . ,Kp−1}) . (8)

In (8) we take Gp(ζi)/
∑N

j=1 Gp(ζj)I (j /∈ {K1, . . . ,Kp−1}) to be 1 when the denominator is equal to

0, in which case Kp | (ζ,K1, . . . ,Kp−1) ∼ Uniform({1, . . . , N} \ {K1, . . . ,Kp−1}). The choice of the

conditional distribution of Kp when
∑N

j=1 Gp(ζj)I (j /∈ {K1, . . . ,Kp−1}) = 0 is in some sense arbitrary,

as in any case γN
recycle = 0 whenever this happens. We now state basic properties of γN

recycle, which can be 105

compared with Theorem 1.
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THEOREM 2. We have E(γN
recycle | ζ) = γN

perm, E(γN
recycle) = γ, γN

perm �cx γN
recycle and γN

recycle → γ
in probability as N → ∞. Given a vector of independent random variables S = (S1, . . . , Sn) with Sp ∼
Uniform({p, . . . , N}) for p ∈ {1, . . . , n}, it holds E{(γN

recycle/γ)
2} = E{∏n

p=1 Ḡp(ζp)Ḡp(ζSp)}. Also,
var(γN

recycle) is finite and var(γN
recycle) → 0 as N → ∞ if and only if110

max
p∈{1,...,n}, B⊆{1,...,p}

µ
(
Gp

∏
j∈B

Gj

)
< ∞. (9)

COROLLARY 1. If maxp∈{1,...,n} µ(Gn+1
p ) < ∞ then var(γN

recycle) → 0 as N → ∞.

Remark 2. While (4) is sufficient for γN
perm and γN

simple to have finite variance converging to 0 as N →
∞, this is not sufficient in general for γN

recycle, which requires (9) instead.

The estimator γN
simple uses only N/n out of N particles to estimate each expectation in the product; in

contrast γN
recycle uses N − p particles for the pth expectation µ(Gp). In this sense, the latter recycles most115

of the particles for each term, and we therefore refer to γN
recycle as the recycled estimator. While Remark 2

implies that it is not possible for var(γN
recycle) ≤ var(γN

simple) in general, we show in the coming section

that var(γN
recycle) can be orders of magnitude smaller than var(γN

simple) in many statistical settings. Let

us first provide a result motivated by approximate Bayesian computation applications, in which it is often

the case that the potential functions are indicator functions. In this case, it is always true that γN
recycle has120

a smaller variance than γN
simple.

PROPOSITION 3. Let A1, . . . , An ∈ X satisfy µ(Ap) > 0 for p ∈ {1, . . . , n} and let Gp = IAp for p ∈
{1, . . . , n}. Then E{(γN

recycle/γ)
2} ≤ E{(γN

simple/γ)
2}.

We observe also that an algorithm computing γN
recycle by accumulating averages and drawing Kp for

p = 1, . . . , n does not need to construct the matrix of potential function evaluations A, but can construct125

each row one at a time without any recomputation. This makes the algorithm feasible to implement even

for values of n and N such that storing A would exhaust memory on a typical computer.

In the supplementary material, we compare γN
recycle and γN

biased in terms of mean squared error, and the

results suggest that they are of the same order so that there is no appreciable bias-variance tradeoff.

3. SCALING OF THE NUMBER OF PARTICLES WITH n IN LATENT VARIABLE MODELS130

We investigate the variance of γN
recycle in comparison to γN

simple in the large n regime. In particular,

we show that only N = O(n) particles are required to control the relative variance of γN
recycle in some

scenarios in which N = O(n2) particles are required to control the relative variance of γN
simple. In the

supplement, we also show that this cannot always be true, in some situations N = O(n2) is a lower

bound on the number of particles required to control the relative variance of γN
perm, and therefore γN

recycle.135

To simplify the presentation, we define cp = µ(Ḡ2
p)− 1, for p ∈ {1, . . . , n}. We will occasionally make

reference to the following assumption when considering the large n regime

0 < inf
p≥1

cp ≤ sup
p≥1

cp < ∞. (10)

We begin by observing that from Proposition 1, if (10) holds and M =
⌈
αnβ

⌉
, where �x
 denotes the

least integers greater or equal than x, then the second moment of γN
simple/γ is bounded above as n → ∞

if and only if α > 0 and β ≥ 1. Since N = Mn, this implies that to stabilize the relative variance of140

γN
simple in the large n regime one must take N = O(n2).

The second moment of γN
recycle/γ is more complex to analyze because it involves interactions be-

tween different potential functions. However, if a mutual independence condition is satisfied, the follow-

ing proposition implies that N = �αn
 with α > 1 is sufficient for E{(γN
recycle/γ)

2} to be uniformly

bounded over n, for example by exp {c/ (α− 1)} with c = supp≥1 cp.145
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PROPOSITION 4. Assume G1(X), . . . , Gn(X) are mutually independent when X ∼ µ. Then

E
{(

γN
recycle/γ

)2}
=

n∏
p=1

{1 + cp/(N − p+ 1)} . (11)

The assumption of mutual independence in Proposition 4 is very strong in statistical settings. However, we

show now that in latent variable models the expected second moment of γN
recycle/γ is very similar to (11),

where the expectation is with respect to the law of the independent and identically distributed random

variables Y1, . . . , Yn ∼ ν and we denote it by EY . For the remainder of this section, we denote by Ḡ1 the 150

random function x 
→ g(x, Y1)/ν(Y1) for Y1 ∼ ν. We begin by verifying that, for latent variable models,

a finite expected second moment for Ḡ1(X) when X ∼ µ is sufficient for var(γN
recycle) to be finite.

PROPOSITION 5. In the setting of Example 1, assume that EY {µ(Ḡ2
1)} < ∞. Then (9) holds almost

surely. Also, if Y1, . . . , Yn are independent and identically distributed random variables with common
distribution ν0 that is absolutely continuous with respect to ν, then (9) holds almost surely. 155

Remark 3. The condition EY {µ(Ḡ2
1)} < ∞ is not very strong, but is not always satisfied. For example,

if µ is Uniform(0, 1) and g(x, ·) is Uniform(0, x) for each x ∈ (0, 1) then simple calculations show that

EY {µ(Ḡ2
1)} = ∞. See Remark A4 in the supplementary material for further details and references.

The following Theorem is our main result in terms of applicability to statistical scenarios. It sug-

gests that when considering the expected second moment of γN
recycle/γ, it is as if the random variables 160

G1(X), . . . , Gn(X) are mutually independent on average, and allows easy comparison with the corre-

sponding expected second moment of γN
simple/γ.

THEOREM 3. In the setting of Example 1, and letting EY denoting expectation with respect to
Y1, . . . , Yn,

EY

[
E
{(

γN
recycle/γ

)2}]
=

n∏
p=1

{1 + C/(N − p+ 1)} , C = EY

{
µ(Ḡ2

1)
}− 1. (12)

In the setting of Example 1, it is straightforward to obtain from Proposition 1 that 165

EY [E{(γN
simple/γ)

2}] = (1 + C/M)
n

, where C is as in Theorem 3. Hence, one requires N = �αn

for α > 1 to control the expected relative variance of γN

recycle but one requires M = O(n) and hence

N = O(n2) to control the expected relative variance of γN
simple when 0 < C < ∞. In addition, it is

clear that EY [E{(γN
recycle/γ)

2}] < EY [E{(γN
simple/γ)

2}] for any N that is an integer multiple of n > 1.

Theorem 3 can be combined with Markov’s inequality to bound the probability of var(γN
recycle/γ) 170

being large. In particular, since E{(γN
recycle/γ)

2} ≥ 0, we obtain that if N = �αn
 with α > 1 then

prY [E{(γN
recycle/γ)

2} ≥ λ exp{C/(α− 1)}] ≤ λ−1.

In Section 2 of the supplementary material we provide additional scaling analysis for var(γN
recycle) and

var(γN
simple) in two alternative scenarios, where the potential functions exhibit, respectively, negative and

positive correlation (see Propositions A1-A3). 175

4. EXAMPLE APPLICATIONS

4·1. Adaptive pseudo-marginal random-walk Metropolis

We consider Bayesian inference in two latent variable model applications, employing γN
recycle or γN

simple

to approximate L(θ) in a pseudo-marginal adaptive random-walk Metropolis Markov chain. The likeli-

hood estimators are not simple averages and have a variance that decreases initially more rapidly than 180

O(1/N), so the results of Sherlock et al. (2017) are not relevant and we follow Doucet et al. (2015)

and Sherlock et al. (2015) and choose N such that the relative variance of the estimator is close to 2.

While the relative variance typically varies with θ, if the posterior distribution for θ is reasonably con-

centrated near the true parameter θ0, in practice one can often choose N so that the estimator has a
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relative variance of around 2 at some point close to θ0. Following Haario et al. (2001), the adaptation185

of the Markov chain involves tuning the covariance matrix of the proposal so that it is approximately

q(θ, θ′) = N (θ′; θ, d−1/22.38Σ), where Σ is the posterior covariance matrix.

Using γN
perm instead of γN

simple to approximate each L(θ) in a pseudo-marginal Markov chain can only

decrease the asymptotic variance of ergodic averages of functions ϕ with varπ(ϕ) < ∞. This is a conse-

quence of Andrieu & Vihola (2016, Theorem 10) and Theorem 1. Using γN
recycle does not have the same190

guarantee in general, but Theorem 3 suggests that if the estimators perform similarly for a set of θ with

large posterior mass, then this should result in greatly improved performance over γN
simple for large n. The

results of the following simulation studies are in agreement with such theoretical considerations.

4·2. Approximate Bayesian computation: g-and-k model

Approximate Bayesian computation is a branch of simulation-based inference used when the likelihood195

function cannot be evaluated pointwise but one can simulate from the model for any value of the statis-

tical parameter. While there are a number of variants, in general the methodology involves comparing a

summary statistic associated with the observed data with summary statistics associated with pseudo-data

simulated using different parameter values (see Marin et al., 2012, for a review). When the data are mod-

elled as n observations of independent and identically distributed random variables with distribution µ, it200

is commonplace to summarize the data using some fixed-dimensional summary statistic independent of

n, for computational rather than statistical reasons. This summarization, or dimension reduction, can in

principle involve little loss of information about the parameters—in exponential families sufficient statis-

tics of fixed dimension exist and could be computed or approximated—but in practice this is not always

easy to achieve. An alternative approach that we adopt here is to eschew dimension reduction altogether205

and treat the model as a standard latent variable model using noisy approximate Bayesian computation

(Fearnhead & Prangle, 2012). This may be viewed as an alternative to the construction of summaries us-

ing the Wasserstein distance recently proposed by Bernton et al. (2017). A possible outcome is that less

data may be required to achieve a given degree of posterior concentration; a theoretical treatment of this

is beyond the scope of this paper.210

We consider the g-and-k distribution, which is a common example application for approximate

Bayesian computation methods. The supplementary material details the simulation set-up, which follows

Allingham et al. (2009). Here n = 100 and the likelihood L(θ) is equivalent to γ(θ) =
∏n

p=1 µθ(Gp),
where Gp are potential functions and µθ follows a g-and-k model with parameter θ. In order to have

a relative variance of γN
recycle(θ0) of roughly 2, it was sufficient to take N = 80n = 8000 whereas for215

γN
simple(θ0) we required N = 80n2 = 800000. Using both estimators resulted in very similar Markov

chains, but the computational cost of using the simple estimator was over 24 times greater; it took 18.1
hours to simulate a simple chain and 44 minutes to simulate a recycled chain of length 106. In the supple-

ment, we plot posterior density estimates associated with the recycled chain and provide effective sample

sizes for each component. Finally, we observe that the posterior distribution for θ places most of its mass220

near θ0 despite using n = 100; in contrast Allingham et al. (2009) used n = 105 and our estimated poste-

riors show more concentration overall and better identification of the g parameter than their Figure 3. This

suggests that this type of latent variable approach may be preferable to dimension-reducing summaries in

some independent and identically distributed models.

4·3. Poisson-Beta model for gene expression225

We now consider a model for single-cell gene expression levels originally proposed in Peccoud & Ycart

(1995). Section 3·3 of the supplement contains a description of the model together with the simulation

set-up. Collaborators working on an extension of this model and facing computational difficulties were a

major motivation for this paper, whose methodology is now used in Tiberi et al. (2018). Here n = 1000
and the likelihood function values L(θ) are exactly of the form described in Remark 1, with Gaussian230

potential functions Gp and Poisson-Beta distribution µθ. In order to have a relative variance of γN
recycle(θ0)

of roughly 2, it was sufficient to take N = 40n = 4× 104 whereas for γN
simple(θ0) we required N =

40n2 = 4× 107. Using both estimators resulted in very similar Markov chains, but the computational
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cost of using the simple estimator was approximately 440 times greater; it took 2.8 hours to simulated a

recycled chain of length 106 and a simple chain of equal length was only feasible to simulate by using a 235

parallel algorithm on a much more powerful 18-core processor, which still took 1.93 days. Using the same

processor as the rest of the simulations would have taken approximately 52.5 days. The recycled estimator

is particularly suitable here because the latent variables are discrete so that by avoiding recomputations,

the number of potential function evaluations grows sub-linearly with N .

5. DISCUSSION 240

We have demonstrated that the use of the recycled estimator proposed here successfully reduces com-

putational time for Bayesian inference using pseudo-marginal Markov chain Monte Carlo from days or

months to hours in some cases. Relating the results on numbers of samples required to common notions

of asymptotic time complexity, however, requires some care. For a given relative variance in the setting

of Theorem 3, one can choose α such that the following approximately holds. The number of samples 245

required for the recycled estimator is αn and the number of function evaluations is slightly less than αn2

while for the simple estimator we require αn2 samples and αn2 function evaluations. The computational

time for the recycled estimator can be expressed as αn(cs + ncg + ncr) where cs is the cost of sampling

from µ, cg the cost of evaluating a potential function, and cr is the problem-independent time per parti-

cle associated with sampling from (8). For the simple estimator, the computational time is αn2(cs + cg) 250

and so the recycled estimator is (cg + cs)/(cg + cr) times faster than the simple estimator as n → ∞,

so that the improvement depends almost entirely on the relative differences between cs, cg and cr. For

sophisticated latent variable models, it is common for cs to be orders of magnitude larger than cg .

There are alternative unbiased approximations of the permanent of a rectangular matrix that could be

used in place of the approach due to Kuznetsov (1996). In particular, it is straightforward to extend the 255

algorithm of Kou & McCullagh (2009) to the rectangular case, or to use the Godsil–Gutman estimator

(Godsil & Gutman, 1981; Friedland et al., 2004). We provide empirical comparisons of their variance in

the supplementary material, which indicate very little improvement and potentially a much larger variance

in the case of the Kou–McCullagh estimator; the most important issue in their use is that they require the

n×N matrix of potential function evaluations to be constructed, which can exhaust memory for large 260

applications. Another alternative unbiased approximation of γ is to average multiple versions of γN
simple

by randomly reassigning the particles to different potential functions, but we show in Remark A2 of the

supplement that this would scale poorly with n. It would be of interest to obtain accurate, lower bounds

for the second moment of γN
perm, particularly in the setting of Example 1 to complement Theorem 3.

This would determine whether more computationally expensive approximations of the permanent, such 265

as Wang & Jasra (2016), are worth pursuing in this context. We have been able to show that in the setting

of Proposition 4, E{(γN
perm/γ)

2} ≥ ∏n
p=1(1 + cp/N), so that significant improvement over γN

recycle is

impossible, but the argument did not extend naturally to the setting of Theorem 3.

One can define γN
recycle alternatively by choosing a permutation σ of {1, . . . , n} according to

any distribution and re-ordering the G1, . . . , Gn as Gσ(1), . . . , Gσ(n). The corresponding condition 270

to (9), if the distribution for σ places mass on every possible permutation of {1, . . . , n}, is then

maxp∈{1,...,n}, B⊆{1,...,n} µ(Gp

∏
j∈B Gj) < ∞.

One can define a recycled estimator of a product of n expectations, each with respect to a different

distribution. Let µ1, . . . , µn denote the distributions, take a common dominating probability distribution

µ̃ and define, for each p ∈ {1, . . . , n}, G̃p = Gp · dµp/dµ̃ so that µ̃(G̃p) = µp(Gp). That is, one can 275

re-express the product of expectations as a product of expectations all with respect to µ̃. The recycled

estimator could be useful when µ̃(G̃2
p)/µ̃(G̃p)

2 is not too large for any p ∈ {1, . . . , n}.

Finally, it would be interesting to see if the use of the recycled estimator in the context of pseudo-

marginal Markov chain Monte Carlo could be combined with the methodology of Deligiannidis et al.

(2018) to bring further improvements. 280
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recycle,

γN
biased and γN

perm, additional information for the example applications, links to software to reproduce the

simulations and proofs of the theoretical results.
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