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Abstract Climate models predict that the Hadley circulation will expand poleward in a warmer climate,
a trend which may cause significant changes in global precipitation patterns. However, recent studies
have disagreed as to how strongly changes in the Hadley circulation and changes in the hydrological
cycle (specifically the latitude at which precipitation balances evaporation) are related. Here we analyze
dynamical and hydrological measures of the Southern Hemisphere edge of the tropics using simulations
from the fifth Coupled Model Intercomparison Project (CMIP5) and four reanalysis data sets. In simulations
with an abrupt quadrupling of atmospheric CO2 concentrations, all models show a poleward expansion in
both metrics. However, there is a large spread among models; the ratio of the hydrological to dynamical
expansions varies from 0.6 to 1.4. We show that this model spread can be largely explained by differences
in internal variability, which in turn is related to the mean state of models. Differences in mean states
among reanalyses are similar to those of models, and so reanalyses do not help constrain uncertainty in
model trends.

1. Introduction

Global climate models robustly predict that the Hadley circulation will expand poleward in response to
increasing greenhouse gas concentrations (Frierson et al., 2007; Lu et al., 2007), most notably in the Southern
Hemisphere (SH). As well as this large-scale circulation change, models also project significant changes to the
global hydrological cycle, including a drying and poleward migration of the subtropical dry zones (Collins
et al., 2013; Neelin et al., 2006). Several studies have proposed that much of the hydrological response to
warming can be explained by thermodynamics, through an enhancement of moisture flux divergence result-
ing from a Clausius-Clapeyron increase in water vapor concentrations (Chou & Neelin, 2004; Held & Soden,
2006; Mitchell et al., 1987). However, recent work has argued that hydrological changes may also be caused
by the direct radiative effect of increasing CO2 (Bony et al., 2013; He & Soden, 2017) as well as by changes in
atmospheric dynamics, in particular, the poleward expansion of the Hadley circulation (Previdi & Liepert, 2007;
Seager et al., 2010; Scheff & Frierson, 2012a, 2012b). The relative roles of these dynamic and thermodynamic
processes in governing future hydrological changes remain an area of significant uncertainty.

Previous studies have investigated the relationship between the edge of the Hadley cell and the edge of the
subtropical dry zones, but these studies have reached seemingly opposing conclusions. Solomon et al. (2016)
showed there to be a strong positive interannual correlation between these two metrics in reanalysis data,
except during austral winter. On the other hand, Davis and Birner (2017) analyzed a different set of reanaly-
ses and argued that there is no significant interannual relationship. Modeling studies that have investigated
shifts of the Hadley cell and subtropical dry zones under greenhouse warming scenarios have also reached
somewhat conflicting conclusions. A number of studies have reported a strong, approximately one-to-one,
relationship between the magnitude of the shift of the Hadley cell and that of the subtropical dry zones (Lu
et al., 2007; Polvani et al., 2011; Quan et al., 2014). However, Solomon et al. (2016) showed, using simulations of
the Community Earth System Model (CESM), that the projected poleward shift of the Hadley cell is about twice
that of the subtropical dry zones as the climate warms. It is unclear to what extent these contrasting results
arise from differences in the models or reanalyses studied, differences in the forcing scenarios, or differences
in the dynamical and hydrological metrics used.
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Here we aim to address these issues by investigating the relationship between the Hadley circulation and
the extent of the subtropical dry zones in both reanalysis data and climate model simulations. We limit our
study to the SH since there the circulation is better approximated by zonal means (Schmidt & Grise, 2017)
and the effects of land-sea temperature contrast, which may significantly affect the hydrological and dynam-
ical responses to increasing CO2 (He & Soden, 2017; Shaw & Voigt, 2015), are less important. We aim to
address the following questions: (1) How consistent is the interannual relationship between the Hadley cell
edge and the subtropical dry zones among climate models and reanalyses? (2) How robust is the relative
response of the Hadley cell and subtropical dry zones to greenhouse warming among climate models? (3)
Can biases in model climatologies (i.e., in their mean state or variability) explain differences in, and there-
fore be used to constrain, their greenhouse warming response? The climate model simulations, reanalysis
data, and metrics studied are discussed in the following section. Section 3.1 addresses internal variability
(question 1), section 3.2 addresses the response to greenhouse warming (questions 2 and 3), and conclusions
are presented in section 4.

2. Data and Methodology

In our analysis we use simulations from 23 coupled climate models from the Coupled Model Intercomparison
Project phase 5 (Taylor et al., 2012). CMIP5 data are freely available from the Program for Climate Model Diag-
nosis and Intercomparison (PCDMI) at Lawrence Livermore National Laboratory and from the UK Centre for
Environmental Data Analysis. The 23 models selected here are the same as those used by Grise and Polvani
(2016), and are listed in Figure 3. For each model, we examine two different forcing scenarios: (1) Preindustrial
control simulations (>200 years of unforced variability), (2) abrupt 4 × CO2 simulations (150 year simulations
in which atmospheric CO2 concentrations are abruptly quadrupled at the start of the simulation).

In addition, we analyze four contemporary “third-generation” reanalyses, using data from the post-1979
satellite era. Specifically we use data from the National Centers for Environmental Prediction (NCEP) Cli-
mate Forecast System Reanalysis (CFSR; Saha et al., 2010) (data from 1979 to 2010), the European Centre for
Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim; Dee et al., 2011) (data from 1979 to 2016),
the Japanese Meteorological Agency 55 year reanalysis (JRA-55; Kobayashi et al., 2015) (data from 1979 to
2013), and the National Aeronautics and Space Administration (NASA) Modern Era Retrospective Analysis for
Research and Applications 2 (MERRA2; Gelaro et al., 2017) (data from 1980 to 2016). There are many differ-
ences in the construction of these reanalysis data sets, and a detailed description is given by Fujiwara et al.
(2017). One of the more significant differences is the fact that CFSR is the only reanalysis with a coupled ocean,
while the others use prescribed sea surface temperatures. Also of relevance for the following analysis is the
fact that, unlike other reanalyses, MERRA-2 enforces a consistency between global evaporation, precipitation,
and changes in atmospheric total water mass storage (Bosilovich et al., 2017).

For both model and reanalysis data, we calculate the following two zonal mean metrics:

1. Poleward boundary of the Hadley circulation (𝜙Ψ500=0): The latitude at which the zonal mean meridional
mass stream function at 500 hPa, Ψ500, crosses zero, indicating the boundary between the thermally direct
overturning circulation in the tropics and the thermally indirect overturning circulation in midlatitudes.

2. Poleward edge of the subtropical dry zone (𝜙P−E=0): The latitude at which zonal mean precipitation, P, bal-
ances evaporation, E (i.e., P − E = 0), indicating the transition from net evaporation in the subtropics to net
precipitation in midlatitudes.

Following Grise and Polvani (2016), both metrics are first estimated using each model’s native horizontal res-
olution, then a linear function is fit to the model data points surrounding this estimate, and then this function
is used to refine the metric to 0.01∘ resolution. A similar linear interpolation technique is also applied to
reanalysis data, following Davis and Rosenlof (2012). Annual or seasonal mean values of the𝜙Ψ500=0 and𝜙P−E=0

metrics are computed from the relevant annual or seasonal mean fields, rather than by averaging monthly
mean values of the metrics. We find this distinction to be somewhat important; for instance, the correlation of
reanalysis annual mean 𝜙Ψ500=0 calculated from annual mean fields with that calculated from monthly mean
values ranges from 0.97 (JRA-55) to just 0.54 (MERRA2). This choice of using annual or seasonal mean fields is
consistent with Solomon et al. (2016), but differs from Davis and Rosenlof (2012) and Davis and Birner (2017)
who use averages of monthly mean values.
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Figure 1. (a) Correlation coefficient, r, of annual and seasonal means of
𝜙P−E=0 with 𝜙Ψ500=0 in 23 CMIP5 preindustrial control simulations and four
reanalysis data sets. (b) As in Figure 1a but for the regression coefficient, m,
calculated by a least squares fit of a linear relationship of the form
𝜙P−E=0 = m𝜙Ψ500=0 + c.

3. Results
3.1. Internal Variability
We begin by examining the interannual relationship between 𝜙Ψ500=0

and 𝜙P−E=0 in the 23 CMIP5 model preindustrial control simulations and
four reanalysis data sets. We calculate both the interannual correlation, r
(Figure 1a), of annual and seasonal mean values of 𝜙Ψ500=0 and 𝜙P−E=0, as
well as the regression coefficient, m (Figure 1b), calculated by a linear least
squares fit of a relationship of the form𝜙P−E=0 = m𝜙Ψ500=0+c. Therefore, m
is the expected shift of𝜙P−E=0 for a 1∘ shift in𝜙Ψ500=0. In order to isolate the
interannual variability in these metrics, reanalysis values are shown after
removing a linear trend. Relative to the other reanalyses, CFSR displays a
significantly weaker correlation between𝜙Ψ500=0 and𝜙P−E=0 for the annual
mean and each season except austral spring (SON). This weaker relation-
ship in CFSR appears to arise predominantly from its hydrological 𝜙P−E=0

metric; the average correlation of CFSR annual mean𝜙P−E=0 with the other
three reanalyses is just 0.6, while the CFSR 𝜙Ψ500=0 is in better agreement
with the other reanalyses, with a mean correlation of 0.8 (Figure S1 in the
supporting information). Furthermore, the discrepancy between 𝜙P−E=0 in
CFSR and in other reanalyses becomes particularly prominent after 1998
(Figure S2). Previous studies have attributed different drivers of tropical
expansion during the period from 1979 to the late 1990s, when the ozone
hole was expanding and global mean surface temperature increasing, and
the “hiatus” period from the late 1990s, when temperature rise slowed
and the ozone hole remained roughly constant (Adam et al., 2014; Waugh
et al., 2015). However, we find that changes in the variability or trends of
the tropical edge metrics between these two periods are not consistent
among reanalyses, as may be expected if they were the result of common
drivers. Rather, we propose that the jump in CFSR 𝜙P−E=0 after 1998 is the
result of the introduction of advanced microwave sounding unit (AMSU)

radiances into the assimilation at this time. Indeed, a sharp increase in CFSR global mean water mass imbal-
ance around 1998 was documented and attributed to AMSU assimilation by Saha et al. (2010). For this reason,
for the remainder of this study we use CFSR data from 1979 to 1998 only (Figure 1, solid green circles), which
have values of r in better agreement with the other reanalyses than the full 1979–2016 period (Figure 1, open
green circles).

Interestingly, CFSR was included in the analysis of Davis and Birner (2017), who proposed that there is not a sig-
nificant interannual correlation between 𝜙Ψ500=0 and 𝜙P−E=0, but it was not included by Solomon et al. (2016),
who showed there to be a strong correlation. Hence we propose that the anomalously weak relationship seen
in CFSR is a major cause of these apparently conflicting conclusions (differences in the time averaging used in
these two studies, as noted in section 2, also contribute to this discrepancy, though to a much lesser extent;
N. Davis, personal communication, 2017).

All models show a statistically significant correlation (p < 0.01) between 𝜙Ψ500=0 and 𝜙P−E=0 both for the
annual mean and for each season, with the exception of the FGOALS-s2 model for JJA. There is, however, a
large spread in the correlation among models; for the annual mean, correlations range from 0.44 (CNRM-CM5)
to 0.82 (IPSL-CM5A-LR). Models also show a seasonal cycle in the relationship, with the correlation between
𝜙Ψ500=0 and 𝜙P−E=0 being greatest in austral summer and lowest in winter, consistent with Polvani et al. (2011)
and Solomon et al. (2016). In comparison, reanalyses show a slightly delayed seasonal cycle, with the high-
est correlation in austral autumn. Overall, there is good agreement between the interannual variability of
reanalyses and models for annual mean values, since all reanalyses fall within the model spread; however, this
agreement does not hold for seasonal values.

3.2. Response to CO2 Quadrupling
We next examine the simulated annual mean response of 𝜙P−E=0 and 𝜙Ψ500=0 to an abrupt quadrupling of
CO2 concentrations in the 23 CMIP5 models. All models show a poleward shift in both metrics (Figure 2a),
but there is a large range in their magnitudes, from about 0.5∘ to 3∘ latitude. The majority of this spread
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Figure 2. (a) Annual mean 𝜙′
P−E=0 and 𝜙′

Ψ500=0
following an abrupt quadrupling of CO2 concentrations at year 0 in 23

CMIP5 models. (b) Ratio of annual mean 𝜙′
P−E=0∕𝜙

′
Ψ500=0

. Values are smoothed with a decadal running mean. Thin lines
show the 23 individual CMIP5 models and thick lines show the multimodel mean.

has been attributed to differences in models’ global mean surface temperature response, specifically their
equilibrium climate sensitivity (Davis et al., 2016; Grise & Polvani, 2016); models that have a larger temperature
rise simulate a larger poleward shift of both 𝜙P−E=0 and 𝜙Ψ500=0. However, Grise and Polvani (2017) showed
that these two metrics respond to increasing CO2 on different time scales. This is seen here in that 𝜙′

P−E=0
is on average smaller than 𝜙′

Ψ500=0 over the first 50 years following CO2 quadrupling (here primes denote
anomalies from the climatology of the control simulation), and is a result of 𝜙′

P−E=0 approximately tracking
global mean surface temperature rise, while 𝜙′

Ψ500=0 responds more rapidly as the result of the direct radiative
effects of increased CO2 (Grise & Polvani, 2017) or the fast adjustment of sea surface temperature patterns
(Ceppi et al., 2017). The difference in time scales is further highlighted in Figure 2b, which shows that the ratio
𝜙′

P−E=0∕𝜙
′
Ψ500=0 increases over the first 50 years before equilibrating near a value of 1. However, models also

show a large spread in this ratio; some models have 𝜙′
P−E=0 almost 50% larger than 𝜙′

Ψ500=0, while others show
𝜙′
Ψ500=0 almost 50% larger than 𝜙′

P−E=0. It is this large spread in the relative rates of expansion of 𝜙P−E=0 and
𝜙Ψ500=0 that has, to our knowledge, not yet been investigated, and will be the focus of the following analysis.

Our hypothesis is that the model spread in the relative shifts of 𝜙P−E=0 and 𝜙Ψ500=0 in response to increasing
CO2 can be explained through differences in the models’ internal variability. This is examined in Figure 3,
which shows the relationship between the models’ annual mean interannual regression coefficients, m (as
shown in Figure 1b), and the ratio of the responses to abrupt CO2 quadrupling, 𝜙′

P−E=0∕𝜙
′
Ψ500=0. Importantly,

the internal variability, m, can be seen to explain a large fraction of the intermodel variance in the relative
responses (about 60% of the variance over the first 20 years of the simulations and about 40% from years 50 to
150). Note that the MPI-ESM-P, MPI-ESM-LR, and FGOALS-s2 models have been excluded from the correlations
shown in Figure 3 because neither MPI-ESM-P or MPI-ESM-LR show the 𝜙′

P−E=0∕𝜙
′
Ψ500=0 ratio increasing with

time as shown by all other models, and since FGOALS-s2 is a clear outlier from other models. However, the
correlations remain significant if these models are included (r = 0.63 for years 0–20, and r = 0.37 for years
50–150). The interannual correlation coefficient, r, is also correlated with the 𝜙′

P−E=0∕𝜙
′
Ψ500=0 ratio, but this

relationship is weaker than that with m (r = 0.41 for years 0–20, and r = 0.46 for years 50–150). Hence, we
propose that m, rather than r, is the more important measure of interannual variability for determining the
response to increasing CO2.

All models except FGOALS-s2 have m < 1, indicating that for the models’ internal variability, a given shift of
𝜙Ψ500=0 is accompanied by a smaller shift in 𝜙P−E=0. The initial response to increasing CO2 is closely related to
this interannual variability (Figure 3a), as seen by the fact that almost all models also have 𝜙′

P−E=0∕𝜙
′
Ψ500=0 < 1

and the best fit line (dashed) lies close to the 1:1 line (solid), with a small vertical offset. Over time, this off-
set grows such that for years 50–150 of the simulations, about half of the models have 𝜙′

P−E=0∕𝜙
′
Ψ500=0 > 1

(Figure 3b). This again illustrates the different time scales of the responses of 𝜙P−E=0 and 𝜙Ψ500=0 to increasing
CO2. Despite this time dependence of 𝜙′

P−E=0∕𝜙
′
Ψ500=0, at all times the internal variability m explains a large

fraction of the spread between models. This is further highlighted in Figure S3, which shows best fit lines as
in Figure 3 but for the responses averaged over consecutive 20 year periods (again excluding the MPI-ESM-P,
MPI-ESM-LR, and FGOALS-s2 models). Here the ratio of𝜙′

P−E=0∕𝜙
′
Ψ500=0 can again be seen to increase over time
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Figure 3. Ratio of annual mean shift of 𝜙P−E=0 to annual mean shift of 𝜙Ψ500=0, for (a) years 0–20 and (b) years 50–150 of the 4 × CO2 experiment in 23 CMIP5
models. Values are plotted against the regression coefficient, m, calculated from the CMIP5 control simulations. A linear best fit is shown (dashed), along with the
correlation coefficient, r, and a 1:1 line (solid). The MPI-ESM-P, MPI-ESM-LR, and FGOALS-s2 models are outliers and have been excluded from the linear fit.

and stabilize after about 60 years. The best fit lines are approximately parallel, and the regression coefficients
for each time period (see legend) are all statistically significantly greater than zero (p < 0.05, according to a
two-tailed t test).

Having shown that the models’ internal variability is crucial in determining their relative responses of 𝜙′
P−E=0

and𝜙′
Ψ500=0 to greenhouse warming, we next study possible causes for these differences in internal variability.

A candidate for such a cause is intermodel differences in their climatological mean state. The relationship
between the models’ mean distance between the Hadley cell edge and subtropical dry zone edge, ⟨𝜙Ψ500=0⟩−
⟨𝜙P−E=0⟩ (here angle brackets denote the climatological mean), and their interannual relationship m is shown
in Figure 4a (circles). The value of ⟨𝜙Ψ500=0⟩−⟨𝜙P−E=0⟩ varies greatly among models (range of about 4∘ latitude)
and is statistically significantly correlated with m. While the correlation in Figure 4a shows that other factors
must also be responsible for generating the intermodel variance in m (⟨𝜙Ψ500=0⟩− ⟨𝜙P−E=0⟩ explains just 22%
of the intermodel variance), the idea that models in which ⟨𝜙Ψ500=0⟩ and ⟨𝜙P−E=0⟩ are closer show a nearer
to one-to-one interannual relationship is physically intuitive. For instance, if the response of P − E to a given
shift of 𝜙Ψ500=0 were localized near 𝜙Ψ500=0 then one would expect a larger impact on 𝜙P−E=0 if 𝜙P−E=0 is close
to 𝜙Ψ500=0, but little impact if the two are far apart. However, we also find that the magnitude of the P − E
response to a given 𝜙Ψ500=0 shift varies substantially among models and is generally smaller for larger values
of ⟨𝜙Ψ500=0⟩− ⟨𝜙P−E=0⟩ (not shown). This also goes some way to explaining the correlation shown in Figure 4a,
but the physical mechanism behind this is unclear and a topic for future investigation.

Figures 4b and 4c show that ⟨𝜙Ψ500=0⟩ − ⟨𝜙P−E=0⟩ is also statistically significantly correlated with both the
initial (years 0–20) and long-term (years 50–150) responses of𝜙′

P−E=0∕𝜙
′
Ψ500=0 to abrupt CO2 quadrupling. This

relationship would be expected given the relationship between m and𝜙′
P−E=0∕𝜙

′
Ψ500=0 shown in Figure 3. Note

also that individually, ⟨𝜙P−E=0⟩ is significantly correlated with m, though its correlation with𝜙′
P−E=0∕𝜙

′
Ψ500=0 not

statistically significant for either time period, and ⟨𝜙Ψ500=0⟩ is not correlated with either m or 𝜙′
P−E=0∕𝜙

′
Ψ500=0

(Figure S4). Hence, ⟨𝜙Ψ500=0⟩ − ⟨𝜙P−E=0⟩ appears to be the most important climatological mean metric.

We have established that there are significant differences in the interannual relationship of𝜙P−E=0 and𝜙Ψ500=0

among reanalyses (Figure 1). However, it may be possible to use the climatological mean state from reanalyses,
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Figure 4. Relationship between the climatological mean distance between the Hadley cell edge and the edge of the subtropical dry zones, ⟨𝜙Ψ500=0⟩ − ⟨𝜙P−E=0⟩,
and (a) the regression coefficient, m for interannual variability in 23 CMIP5 models and five reanalyses, (b) the initial response (years 0–20 average) of
𝜙′

P−E=0∕𝜙
′
Ψ500=0

to an abrupt quadrupling of CO2, and (c) the long-term response (years 50–150 average). Correlation coefficients, r, for the relationship among
models, are shown in each plot along with the p value for the null hypothesis that is r = 0 following a two-tailed t test. Best fit lines are also shown (dashed).
Colored tick marks in Figures 4b and 4c indicate the values of reanalysis climatological means, and the dashed tick mark shows an observational estimate. The
FGOALS-s2 model (shown in gray) is not included in the correlations.

along with the model-derived relationships shown in Figure 4 to constrain the projected response to increased
CO2. Figure 4a also includes values derived from the four reanalysis data sets. The reanalysis values of
⟨𝜙Ψ500=0⟩ − ⟨𝜙P−E=0⟩ span about 2∘ latitude, a large fraction of the intermodel spread. Note that the differ-
ences among reanalyses are consistent throughout the 1979–2009 period and are not a result of different
trends among reanalyses or internal variability (Figure S2). The largest contributor to this spread comes from
⟨𝜙P−E=0⟩ rather than ⟨𝜙Ψ500=0⟩, for which reanalyses are in much better agreement.

Motivated by this uncertainty, we also calculate an independent estimate of 𝜙P−E=0 following Allen et al.
(2014), using precipitation data from the Global Precipitation Climatology Project (GPCP; Adler et al., 2003)
and evaporation data from the Woods Hole Oceanographic Institution (WHOI) Objectively Analyzed air-sea
Flux (OAFlux) project (Yu & Weller, 2007). The WHOI OAFlux data are only available over the global oceans,
so does not include evaporation from land; however, there is little land area near 𝜙P−E=0 in the SH, so this
bias should have a relatively small effect. This method gives a value of ⟨𝜙P−E=0⟩ of 39∘S (time series shown in
Figure S2), which is equatorward of all four reanalyses but closest to CFSR. However, CFSR has the lowest inter-
annual correlation with the observationally derived 𝜙P−E=0 estimate (0.4), while the other three reanalyses
each have a correlation of 0.7. It is therefore not possible to straightforwardly conclude which of the reanal-
yses is in best agreement with this observational estimate. An estimate of ⟨𝜙Ψ500=0⟩ − ⟨𝜙P−E=0⟩ which uses
the observational value of ⟨𝜙P−E=0⟩ and the multireanalysis mean of ⟨𝜙Ψ500=0⟩ is also indicated in Figures 4b
and 4c (labeled “obs”). This estimate is lower than any reanalysis or model value, and using the model-derived
relaltionship between the mean state and response to CO2 increases would tend to favor a larger value of
𝜙′

P−E=0∕𝜙
′
Ψ500=0. Overall, however, the large spread between reanalyses and observational estimates means

that these do not provide a strong constraint on the models’ internal variability or CO2-induced trends.

4. Conclusions and Discussion

In this study we have focused on the relationship between the SH Hadley cell edge, 𝜙Ψ500=0, and the sub-
tropical dry zone edge, 𝜙P−E=0, as well as climate model projections of their relative rates of expansion under
increased CO2 concentrations. In other words, we have asked how much will the subtropical dry zones shift
for a given shift in the Hadley cell? Our main findings are as follows:

1. There is a large spread in both the climatology and interannual variability of 𝜙Ψ500=0 and 𝜙P−E=0 among
reanalyses. These differences are largely responsible for the conflicting conclusions of Solomon et al. (2016)
and Davis and Birner (2017), who studied slightly different sets of reanalyses.

2. Models show a large spread in the relative rates of poleward expansion of𝜙Ψ500=0 and𝜙P−E=0 under increas-
ing CO2 concentrations. Some models have the shift in 𝜙P−E=0 almost 50% larger than 𝜙Ψ500=0, while others
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project a 𝜙Ψ500=0 shift almost 50% larger than 𝜙P−E=0. As shown by Grise and Polvani (2017), 𝜙P−E=0 is seen
to shift on a slower time scale than 𝜙Ψ500=0 in almost every model.

3. The diversity of responses among models can be largely explained by the differences in their internal vari-
ability. Models with a higher ratio of𝜙P−E=0∕𝜙Ψ500=0 on interannual time scales also have a higher ratio under
CO2-forced changes.

4. Differences in internal variability are, in turn, related to the mean state of models. Models in which the
mean value of 𝜙P−E=0 is further equatorward and therefore closer to 𝜙Ψ500=0 show a nearer to one-to-one
interannual relationship between the two, and hence project larger 𝜙P−E=0 changes relative to 𝜙Ψ500=0 as
the climate warms.

Solomon et al. (2016) showed that the expected shift of 𝜙Ψ500=0 is approximately twice that of 𝜙P−E=0 under
greenhouse gas increases using the CESM model. We can now put that result into wider context, with a
greatly expanded ensemble of climate models. The majority of models show that the short-term response to
increased CO2 concentrations gives a larger 𝜙Ψ500=0 change than 𝜙P−E=0 (Figure 3a), although there is a large
spread among models with several showing almost equal shifts. However, over the longer term, about half
of models show 𝜙′

Ψ500=0 >𝜙′
P−E=0 and half show 𝜙′

P−E=0 >𝜙′
Ψ500=0 (Figure 3b). Given this model diversity, we

cannot place confidence in the result of Solomon et al. (2016) that the expected shift of the subtropical dry
zones is less than that of the Hadley cell; indeed the result appears to be both time scale and model depen-
dent. Furthermore, reanalysis or observational estimates do not significantly reduce this uncertainty. While
the 4×CO2 simulations analyzed here are highly idealized, the different time scales for the responses of𝜙Ψ500=0

and 𝜙P−E=0 can also be seen in simulations with more realistic, steady increases in CO2 concentrations (Grise
& Polvani, 2017).

The large differences among reanalyses in their climatological mean values of𝜙P−E=0 is perhaps not surprising
given that global precipitation and evaporation are poorly constrained by observations, so that the underlying
physical model used for the reanalysis plays a significant role in determining these values. Nonetheless, we
have shown here that relative rates of the dynamical and hydrological expansion of the tropics are related
to mean state and interannual variability of the atmosphere in climate models. As observational estimates of
the mean state and variability improve in the future this relationship may provide an ever more useful tool to
constrain climate model projections.
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