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Abstract—Datacenter (DC) design has been moved towards
the edge computing paradigm motivated by the need of bringing
cloud resources closer to end users. However, the Software
Defined Networking (SDN) architecture offers no clue to the
design of Micro Datacenters (MDC) for meeting complex and
stringent requirements from next generation 5G networks. This
is because canonical SDN lacks a clear distinction between
functional network parts, such as core and edge elements.
Besides, there is no decoupling between the routing and the
network policy. In this paper, we introduce Residue Defined
Networking Architecture (RDNA) as a new approach for enabling
key features like ultra-reliable and low-latency communication
in MDC networks. RDNA explores the programmability of
Residues Number System (RNS) as a fundamental concept to
define a minimalist forwarding model for core nodes. Instead of
forwarding packets based on classical table lookup operations,
core nodes are tableless switches that forward packets using
merely remainder of the division (modulo) operations. By solving
a residue congruence system representing a network topology,
we found out the algorithms and their mathematical properties
to design RDNA’s routing system that (i) supports unicast
and multicast communication, (ii) provides resilient routes with
protection for the entire route, and (iii) is scalable for 2-tier
Clos topologies. Experimental implementations on Mininet and
NetFPGA SUME show that RDNA achieves 600 ns switching
latency per hop with virtually no jitter at core nodes and sub-
millisecond failure recovery time.

Index Terms—Network architecture, Ultra-reliable, Low-
latency, Datacenter.

I. INTRODUCTION

CURRENT networks have evolved toward complex sys-
tems that are becoming too expensive, complicate to

manage and highly susceptible to vendor lock-in. In this
sense, the network research community has debated the “clean-
slate” versus “evolutionary” approach designs for the Internet
architecture [1]. Insights from both approaches can help guide
the ongoing evolution of network architectures. Before adopt-
ing disruptive ideas, though, we need to provide incremental
solutions to support specific forthcoming applications.

A recent research challenge is posed by the need of dealing
with demands emerging from the next 5th Generation (5G)
mobile communications network. It is expected that networks
evolve to support 5G requirements, having agility and de-
pendability in provisioning connectivity across their process-
ing elements, keeping in mind ultra-reliable and low-latency

communications. Datacenters appear as the last element in
the chain between end-users and services to provide end-to-
end management, deployment capability for traffic engineering
purposes, flexibility, and scalability.

For this new scenario, ITU has defined enhanced Mobile
BroadBand (eMBB), Ultra-Reliable and Low-Latency Com-
munication (URLLC), and massive Machine Type Commu-
nications (mMTC) [2]. Compared to the current network
technology, 5G is expected to provide 100-fold increase in
throughput (mainly for eMBB) and in the number of connected
devices per km2 (due to mMTC), whereas latency should be
reduced 30-50 times, especially for URLLC clients.

To meet these new requirements, Datacenter designs have
shifted to support edge computing (EC), emerging as a mean to
bring cloud resources closer to end users [3]. Two basic goals
motivate such architectural change: (i) offload the network
core and the cloud from localized demands; and (ii) mitigate
latency-related issues for real-time applications. In addition,
edge computing modules are expected to provide Software
as a Service (SaaS) to clients by having data processing in
an always-on status and no need to wait for allocation of
resources, software initiation, and specific configurations.

Caching and multicasting, data aggregation and analyt-
ics may also benefit from EC mediating traffic dynamics
between air interfaces and cloud-based virtualized services.
Beyond the expected human-oriented multicasting such as
video applications, 5G will bring a discussion about ephemeral
ad hoc multicasting from point-to-multipoint communication
frequently present in mMTC [4].

Thus, the challenge to design a Datacenter network needs
to consider at least two building blocks [5]: (i) the underlying
hardware representing the networking data plane and (ii) the
software that controls the overall behavior of the network,
representing the control plane. In this context, the Software
Defined Networking (SDN) key concept is to decouple the
networking data plane from the control plane: the latter holds
the network intelligent decisions while the former merely hosts
executive tasks based on tables to process incoming flows.

Unfortunately, in the current SDN architecture, there is
no easy way to implement the functionalities to meet the
requirements for 5G networks. We argue that this is so due
to no clear distinction between two functional network parts:
core and edge elements. There is no decoupling between the
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routing and the network policy, which means that when an
SDN controller decides the actions to be applied to a flow,
it also has to select a path for this flow, setting states on
all the intermediate switches pro-actively or reactively (i.e.
in a stateful approach). Moreover, an OpenFlow (the de facto
standard for SDN) enabled switch is clearly far from a simple
design, requiring to support lookups of hundreds of packets
per second and complex actions that have to be specified by
size limited multiple tables [6] hosted by expensive and power
hungry Ternary Content Addressable Memories (TCAMs) [7].

In this paper, we propose RDNA (Residue-Defined Net-
working Architecture), an approach that explores the Residues
Number System (RNS) [8] as a fundamental concept to
facilitate and enhance network programmability. Differently
from other works in the literature, such as [9], [10], [11], [12],
RDNA main contribution involves a minimalist forwarding
model for the core nodes. Instead of forwarding packets based
on traditional table lookup operations, the core nodes are
tableless switches that forward packets using merely remainder
of the division (modulo) operations. By solving residues con-
gruence system from RNS, representing a network topology,
we found out the algorithms and their mathematical properties
to design RDNA. The key features of RDNA are described
below:
• Tableless Packet Forwarding: every switch in the

RDNA processes packets based on a simple and deter-
ministic modulo operation, rather than looking up for an
entry per potential destination. A route between a pair of
hosts in RDNA is defined as the remainder of the division
between a route-ID and a set of local switch-IDs.

• Source Routing for Traffic Engineering: Unlike the
conventional hop-by-hop routing, based on universal or
hierarchical target addresses, source routing uncouples
the routing logic from data plane which simplifies for-
warding elements offering source route control for traffic
engineering.

• Protection Mechanism by Programmable Residues:
Source routing takes long time to recover from fail-
ures [13], RDNA addresses this problem rerouting pack-
ets directly in the data plane as a faster alternative
to controller-based route restoration. We demonstrate a
protection mechanism along the entire route with an
extremely fast failure reaction by using programmable
residues forwarding paths. As soon as a core switch de-
tects a link failure, it triggers an emergence precomputed
route, which is already embedded into the packet header.

• Multicast Communication: This is the major extension
added to our previous work [14], RDNA supports multi-
cast communication by computing the residues relying
on polynomial encoding, which is more scalable than
classical congruence system used in other related works,
such as [15], [16].

• Scalable for 2-tier Clos networks: We carry out an
RDNA scalability analysis considering 2-tier Clos net-
work topologies as a reference. This topology covers
the majority of Enterprise Datacenter (EDC) or Micro
Datacenter (MDC) deployments [3] to achieve efficient
processing in EC applications [17].

The rest of the paper is organized as follows. In Section II
we present the main concepts of RDNA and its design. In
Section III we analyze the scalability of RDNA and benchmark
it against other traditional approaches in literature. Section IV
presents RDNA implementation in an emulated environment
(Mininet) and in an experimental testbed using NetFPGA
SUME. Section V discusses related work and Section VI
summarizes this paper with our conclusions, final remarks and
future research directions.

II. RDNA: RESIDUE-DEFINED NETWORKING
ARCHITECTURE

Built upon the principles of SDN, RDNA is composed by
the following elements: i) the RDNA Controller, a logically-
centralized controller which defines the programmable net-
work configuration and its policies; ii) the Edge switches, that
embed a compact encoding route-ID into packets; and iii) the
Core switches, which are tableless and forward packets by
computing a modulo operation from a route-ID information
embedded into each packet. Thus, our architecture makes a
clear separation between the edge and core switches to form
two foundational blocks towards a pragmatic SDN design
pattern. This separation allows to push the complexity to
the network edge while keeping the network core extremely
simple. Figure 1 illustrates the main elements of RDNA.
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Figure 1. Design of RDNA.

RDNA Controller: It is a central entity that is aware of
the complete network topology, which is discovered by using
the Link Layer Discovery Protocol (LLDP). This component
is responsible to: (i) define the policy, assigning functions
(e.g. route protection) to specific flows; (ii) select network
route for each flow; (iii) calculate the route-ID (Ri) between
each pair of hosts (or even virtual machines) and; (iv) send
these Ri information to the edge switches in order to install
it in flow packets. Besides, it can provide an Application
Programming Interface (API) to support communication with
external requests.

Core Switches: The idea behind the core switches is to
replace the traditional lookup table operation by a tableless
forwarding mechanism. The core switches operate only using
residues operations, i.e. remainder of the division, based on
switch-IDs and on the route-ID information embedded into
packets. The switch-IDs, denoted by (Si), are received from
the RDNA Controller during the bootstrap phase. The set of
Si are not arbitrary numbers. They need to be:
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Figure 2. RDNA Routing System.

• Pairwise primes, that is, any pair of numbers that has no
common positive divisors other than 1.

• Larger than the number of physical interfaces on the
respective core switch.

These simple requirements allow us to provide a unique
route-ID (Ri) per path across the RDNA-enabled fabric. Ri

calculation exploits RNS properties and is detailed later in
Section II-A.

Edge Switches: They are the elements in charge of storing
flow states and mapping the Ri received from the RDNA
Controller into flow packets. This mapping means that a Ri

has to be embedded into flow packets by the edge element. For
example, if edge switches are OpenFlow enabled, fine grained
control entries (per-flow states) should be installed on it.

Either a reactive or a proactive approach can be used here. In
the first case, rules are installed when the ingress edge switch
forwards the first packet to the RDNA Controller via packet-in
operations requesting the route mapping. In the second case,
the RDNA Controller pre-computes the route and installs in
advance the incoming per-flow state via flow-mod for a route
between source and destination.

A. RDNA Routing System

We formally define the RDNA network domain as a set S
of n switches in a desired path, so that S = Si|i = 1, 2, · · · , n.
Let P be a set of outgoing ports P = {p1, p2, · · · , pk}, where
pi is an arbitrary integer representing a physical port number
(i.e. the outgoing port for the flow packets) on a switch Si.

In order to make the congruence system solvable, n integers
S1, S2, · · · , Sn need to be pairwise relatively primes. Then,
there exists a unique integer R such that 0 ≤ R <

∏n
i=1 Si

that solves the congruence system shown in Equation 1:
< R >S1

≡ p1
< R >S2

≡ p2
...

< R >Sn
≡ pk

(1)

We can rewrite Eq. 1 in a simple form as < a >b ,
a modulo b. For example, for a = 12 and b = 5, we have
< 12 >5= 2, hence, 2 is the remainder of the division between
12 and 5.

Let M be
M =

n∏
i=1

Si (2)

The Chinese Remainder Theorem (CRT) [18], which is the
basis of RDNA routing system, states that it is possible to
reconstruct R, calculated through its residues in a RNS [8],
as:

R =<
∑
i∈S

pi ·Mi · Li >M (3)

where,
Mi = M

Si
(4)

Li = < M−1i >Si
(5)

Eq. (5) means that Li is the modular multiplicative inverse
of Mi. In other words, Li is an integer number such that:

< Li ·Mi >Si
= 1 (6)

In terms of computation complexity, the CRT algorithm is
O(len(M)2), as demonstrated in [19], where M is calculated
by Equation 2.

B. RDNA Encoding for Unicast Communication

To illustrate this concept, consider the scenario shown in
Figure 2, where host1 wishes to communicate with host56.
By using any routing algorithm (not shown here for the sake
of clarity), the RDNA Controller selects an end-to-end path
across the network according to the EDC policies, as presented
in Figure 2 (Step I). For instance, it chooses the route to
be set through the switches S = {37, 53, 47} composing
what we call the primary route. In this case, the switches’
output ports are P = {14, 3, 13}. Then, it computes a Primary
Route Identification (PRI), e.g. PRI = 86446. The RDNA
Controller sends the route-ID to the edge switches to install it
in their respective flow-tables. Subsequently, the ingress edge
switch is responsible for embedding PRI into each packet (e.g.
into one of its header fields) coming from src host to dst host
(Step II).

Once the packet has entered into the core, at every switch
the packet arrives to, the remainder of the division between
the packets’ PRI (R = 86446) and the respective switch-ID
is computed in order to define the appropriate output port to
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forward it. Thus, as shown in Figure 2, when S37 receives a
packet with route-ID (R = 86446), it forwards the packet to
port < 86446 >37= 14 (Step III); then, S53 forwards it to
port < 86446 >53= 3 (Step IV); after, S47 forwards it to
port < 86446 >47= 13 (Step V), reaching the egress edge
switch that removes the route-ID from the packet (Step VI)
and delivers it to dst host (as can be seen in Figure 2).

C. RDNA Encoding for Resilient Routing

In the case of link failure, one traditional approach is route
restoration. It consists on notifying the controller to recal-
culate the route excluding the faulty link from the available
paths. The problem is how to react quickly after a failure
detection, avoiding the intrinsic latency to communicate with
the controller. A typical mechanism for fast failure reaction
is route protection through deflection. Deflection routing
techniques are conceptually simple and allow every switch
to independently decide which packets to forward to any
available link [20].

Deflection routing is a probabilistic routing technique that
may form transient loops [20]. To overcome this drawback,
RDNA offers deterministic resilient routing based on a net-
work protection mechanism along the whole route. Our fast
failure reaction mechanism uses an Emergency Route Identi-
fication (ERI). ERI is computed to represent a set of switches
necessary to bypass a failure in the primary route.

To illustrate this concept, consider the scenario shown in
Figure 3. As in the previous scenario, host1 wishes to com-
municate with host56. So, Steps I, II and III are repeated, but,
as part of the Step I, the RDNA Controller has also calculated
the ERI as a unique value that composes a protection route
for the whole primary route. In this example, we have ERI =
117555379, which sets the switches S = {37, 53, 47, 41, 59}
(with their output ports P = {15, 1, 13, 15, 3}) as the protec-
tion route. Thus, both PRI and ERI needs to be embedded into
incoming packets at the edge switch.

Now, in this scenario, there is a failure link between S37

and S53. Before packet forwarding, switch S37 checks the
connection link to the next hop. As it is not available, it
must overwrite the current PRI with the ERI. Then, using the
overwritten PRI, S37 recalculates the remainder of the division
in order to properly forward the packet. In this example,

using route-ID (R = 117555379), S37 forwards packet to port
< 117555379 >37= 15 (Step IV). When S59 receives a packet
with route-ID (R = 117555379), it forwards the packet to port
< 117555379 >59= 3 (Step V). Then, when S47 receives a
packet with route-ID (R = 117555379), it forwards the packet
to port < 117555379 >47= 13 (Step VI). Note that S59 and
S47 are unaware of the re-routing. It works just like an ordinary
packet forwarding. Finally, the packet reaches the egress edge
switch, which removes the route-IDs from the packet (Step
VII) and delivers it to the destination host.

As previously mentioned, this approach allows fast recovery
for the whole primary route. For example, if a failure occurs
in the link between S53 and S47 instead, S53 executes Step
IV, thus, overwriting PRI and forwarding the packet to port
< 117555379 >53= 1. When S41 receives a packet with
route-ID (R = 117555379), it forwards the packet to port
< 117555379 >41= 15. Then, when S59 receives a packet
with route-ID (R = 117555379), it forwards the packet to port
< 117555379 >59= 3 (Step V). Finally, when S47 receives a
packet with route-ID (R = 117555379), it forwards the packet
to port < 117555379 >47= 13 (Step VII), allowing the packet
to reach the edge switch, which removes the route-ID from the
packet (Step VII) and delivers it to the destination host.

It is worth mentioning that the RDNA proposal does not
really require core switches to be SDN enabled. The modulo
operation and replacement of PRI by ERI are the only key
functions that must be supported. Nevertheless, SDN would
enable core switches to notify failures to controllers or to
support dynamic switch-IDs registration and reconfiguration.

D. RDNA Encoding for Multicast Communication

In order to implement multicast routing, supporting one-to-
many or many-to-many communication patterns, EDCs may
use native IP multicast [21], [22]. However, this solution is not
effective because switches might not reconfigure IP multicast
groups at the required rates [23].

RDNA approach for multicast communication constructs
the multicast tree based on the encoding of the bitmaps
that represent the set of ports to which the packets must
be forwarded to (on each switch). However, the fundamental
problem in this case is how to select pairwise primes Si

such that each Si must be larger than the number of possible
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Figure 4. RDNA source routing multicast using RNS and polynomial expression over the 2-tier Clos Network topology.

combinations of output ports to construct the multicast tree.
For instance, consider an EDC 2-tier Clos Network topology
where Spine = 2 and Leaf = 4, with 16 ports per switch.
In this case, we should find 6 primes larger than 215 (the
incoming port is not included).

In order to address this scalability problem, instead of using
the modulo operation to directly compute the bitmaps for
packet forwarding [15], [16], the modulo is used to get the
coefficients of a specific polynomial function. The calculation
of the polynomial function (to be made at Step I) and its
coefficients are further detailed.

To explain how the RDNA multicast works, Figure 4
shows a green virtual machine (VM) instantiated on host1.
In this example, this VM wants to establish a multicast group
allowing it to send data to all other green VMs (instantiated
on the other physical hosts).

For the EDC of Figure 4, consider that three multicast iden-
tifiers, denoted by X1 = 151597755, X2 = 25946839, and
X3 = 22803158, were computed as part of Step I. On Step
II, these identifiers are embedded into the packet, which is then
forwarded to the first core switch S37. As part of Step III, this
switch calculates the modulo operation between Xi and S37,
obtaining < 151597755 >37= 23, < 25946839 >37= 34,
and < 22803158 >37= 21. Then, it calculates the polynomial
function f(37) = (23×372)+(34×37)+21 = 32766, which
corresponds to the bitmap (0111111111111110b), where the
“1” bits specify the output ports for the packet to be forwarded.

When the packet arrives at S53 (Figure 4), the core
switch reads its header and computes the module with the
same X1, X2, X3, obtaining < 151597755 >53= 0, <
25946839 >53= 0, and < 22803158 >53= 14 (Step IV).
Calculating the polynomial expression, the core switch S53

obtains f(53) = (0 × 532) + (0 × 53) + 14 = 14, which
represents the bitmap (1110b).

Still in Figure 4, when the packet arrives at S41, S43

and S47, the same process happens, but the bitmap must be

(0011111111111111b) to form the desired multicast tree. So,
they calculate the module with the same X1, X2, X3 obtaining
their own coefficient values: for S41, < 151597755 >41=
9, < 25946839 >41= 30, < 22803158 >41= 24; for
S43, < 151597755 >43= 8, < 25946839 >43= 37, <
22803158 >43= 0; and for S47, < 151597755 >47= 7,
< 25946839 >47= 19, < 22803158 >47= 27 (Step V, VI
and VII).

1) Computing the Polynomial Function and its Coefficients:
The first step to calculate the RDNA multicast encoding is to
determine, at bootstrap phase, the polynomial degree and the
Si for every switch.

The Pseudocode 1 presents a simple algorithm to get the
polynomial degree d. This algorithm searches the minimum
value of d (starting from 1) so that the polynomial result is
high enough to represent the whole range of bitmaps at every
core switch. So, for each switch, given its switch-ID (Si) and
the number of physical ports p, we compute the degree d using
as coefficients the maximum possible value of the module for
Si (i.e. Si−1)1 (Line 2). For instance, in the case of the core
switch S37, which has 16 ports, the degree 2 will satisfy this
condition (f(37) = (36× 372) + (36× 37) + 36 > 215).

After getting the polynomial degree d, the RDNA controller
also needs to compute the polynomial coefficients for each
multicast tree to be configured on the topology. In the case
of Figure 4, these coefficients are (a3, a2, a1) from f(i) = a3
× i2 + a2 × i + a1. They will be used by every switch to
calculate the resulting bitmap.

Pseudocode 2 shows our algorithm to figure out the coeffi-
cients for every Si. In (Line 16), the RDNA Controller has Si,
the degree of the polynomial function and the required bitmap
as its input. For instance, the algorithm receives as input 37,
2 and 0111111111111110b. Then, starting from the largest

1The theorem of Euclidean division states that a remainder r of a division
computation is an integer such that 0 ≤ r < b, where b is the divisor [13].
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Pseudocode 1 Computing the polynomial degree.
1: function DEGREE(Si, p)
2: fcoef ← Si − 1;
3: decimal← 0;
4: d← 1 . Polynomial degree
5: maximum← 2p−1

6: Seek ← False
7: while Seek = False do
8: decimal← decimal + (fcoef + (fcoef.(Sd

i )))
9: if decimal ≥ maximum then

10: Seek ← True
11: else
12: d← d+ 1
13: return d . Polynomial degree found
14: end function

Pseudocode 2 Computing the polynomial coefficients.
1: coefvalues = Null; . Coefficient list in Si

2: function COEF(Si, exponent, decimal)
3: tmpvalue← 0;
4: limit← (Si − 1); . Limit for coefficient
5: for c ∈ range(limit,-1, -1) do
6: tmp← c · (Sexponent

i );
7: if decimal ≥ tmp then
8: tmpvalue← (decimal − tmp);
9: Break;
10: if tmpvalue ≥ 0 then
11: coefvalues← c;
12: else
13: coefvalues← 0;
14: return tmpvalue
15: end function
16: function GET COEF(Si, degree, bitmap)
17: decimal← int(bitmap, 2) . Convert binary
18: for exp ∈ range(degree,-1, -1) do
19: if (decimal < Si) then
20: if (len(list) = degree) then
21: coefvalues← decimal;
22: Break;
23: else
24: coefvalue← 0;
25: else
26: tempwish← Coef(Si, exp, decimal)
27: if tempwish ≥ 0 then
28: decimal← tempwish
29: return coefvalues . List coefficients
30: end function

degree (i2), the algorithm searches for the maximum value of
a3, so that (a3 × 372) ≤ 32766 = 0111111111111110b. In
this case, the value 23×372 = 31487 is less than 32766. Then
23 is added in the coefficient list coefvalues.

For the next term, (i1), the same logic is applied, but using
1279 (32766− 31487) as a limit. The algorithm searches for
the maximum value of a2, so that (a2 × 37) ≤ 1279. In this
case, the value 34, (34×37 = 1258) is added to the coefficient
list coefvalues, and the remainder 21 (1279−1258) is directly
used as the last coefficient (i0), ending the algorithm for the
coefficients at S37.

The same process occurs for S41, S43, S47 and S53, and
the resulting matrix is Πji, showed in Figure 4 (Step I).
The columns represent the coefficients list for the set of core
switches composing the multicast tree: S37, S41, S43, S47, and
S53, respectively.

The last step is to compute Xi, based on Chinese Remain-
der Theorem [18] (CRT). However, for the RDNA multicast
communication, the output ports denoted by pi are now

replaced by the coefficients of the polynomial Πji that will
produce the required bitmaps for Si. Note that Xi represents
the residue while Li is the modular multiplicative inverse of
Mi. This action concludes the RDNA encoding in Step I
presented in Figure 4 as follows:

M = 37 · 41 · 43 · 47 · 53 = 162490421
M1 = 4391633,M2 = 3963181,M3 = 3778847,
M4 = 3457243,M5 = 3065857
L1 =< 4391633−1 >37= 23, L2 =< 3963181−1 >41= 20
L3 =< 3778847−1 >43= 37, L4 =< 3457243−1 >47= 36
L5 =< 3065857−1 >53= 14
X1 =< L1 ·M1 ·Π11 + L2 ·M2 ·Π12 + L3 ·M3 ·Π13+

L4 ·M4 ·Π14 >M +L5 ·M5 ·Π15 >M

X1 =< 4391633 · 23 · 23 + 3963181 · 20 · 9+
3778847 · 37 · 8 + 3457243 · 36 · 7+
3065857 · 14 · 0 >M

X1 =< 2323173857 + 713372580 + 1118538712+
871225236 + 0 >162490421= 151597755

III. RDNA SCALABILITY ANALYSIS

In this section, we analyze the scalability of RDNA. Our
basic assumption is that EDC network topology is based on
2-tier Clos networks, specially because the multi-stage Clos
networks are topologies commonly found in micro Datacenters
supporting tens of thousands of physical servers [17], [24],
[25]. In a 2-tier Clos Spine-Leaf architecture, the number of
uplinks from the leaf switches is equal to the number of spine
switches v. Thus, the total number of physical connections
is the number of leaf switches l multiplied by the number of
spine switches. Therefore, every lower-tier switch is connected
to each top-tier switch in a full-mesh topology so that the
RDNA controller may explore the v existing disjoint routes
for load balancing and traffic engineering [26].

The scalability analysis is structured in three parts. The
first part, described in Section III-A, consists of an analytical
evaluation of RDNA scalability for EDC operating in unicast
communications. The second (Section III-B) is devoted to
evaluate the scalability of RDNA protection mechanism for
failure recovery. In the third part, described in Section III-C,
we tackle the RDNA scalability for multicast communications.

In order to benchmark RDNA to other existing schemes,
COXcast approach [15] was selected because of its similarity
to RDNA, relying on an equivalent source routing approach for
Datacenter networks with tableless core switches. Basically,
COXcast constructs the unicast path and multicast tree by
encoding the corresponding output port bitmap of each inter-
mediate node. The bitmap is obtained by the module operation
using a common identifier and a node-specific key (i.e. prime
number), so that the packets are routed to multiple receivers
without requiring header modification. The difference is that
RDNA uses the modulo operation to get the coefficients of
a specific polynomial function, whereas COXcast uses the
modulo operation directly to compute the bitmaps for packet
forwarding.

A. Unicast Communication

For the sake of comparison, we assume the same set of
topologies used in [15] which includes 23 different fan-outs of
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Table I
HEADER SIZE (BYTES) FOR TYPICAL EDC CONFIGURATIONS USING

2-TIER CLOS NETWORKS.

2-tier setting Ports Physical hosts RDNA
(PRI)

RDNA
(ERI) COXcast

16 56 2 4 5
24 88 4 7 8Spine = 02 Leaf = 04
32 120 2 4 11
16 96 2 4 5
24 160 3 5 8
32 224 3 4 11
48 352 3 5 17

Spine = 04 Leaf = 08

96 736 3 5 35
16 120 3 5 5
24 216 3 5 8
32 312 3 5 11
48 360 4 6 17

Spine = 06 Leaf = 12

96 1080 4 6 35
16 160 3 5 5
24 288 3 5 8
32 416 3 5 11
48 672 4 6 17

Spine = 12 Leaf = 16

96 1440 4 6 35
16 128 3 5 5
24 256 3 5 8
32 384 3 5 11
48 640 4 6 17

Spine = 08 Leaf = 16

96 1408 4 6 35

2-tier Clos Networks. The length of a unicast path is computed
between two hosts considering the shortest path (n = 3). The
maximum number of Bytes required by RDNA encoding for
unicast (R) can be computed as follows:

R =

(
log2

(
M =

∏n
i=1 Si

))
8

(7)

Equation (7) states that the higher the value of M , the
larger the maximum required bit length. Recall that PRI is
the Primary Route ID that varies as a function of the number
of switches in the path n and switch-IDs (Si).

As shown in Table I, RDNA is significantly more scalable
than COXcast, reducing in 4.5 times the header size for unicast
communication, on average. For some cases, this reduction
is even higher (from 35 to 4 Bytes). The reason for this is
that COXcast requires large pairwise prime numbers for the
switch-ID, which increases the packet overhead, as can be seen
in some topologies having switches with more than 96 ports.

B. Unicast Communication with Failure Recovery

Our analysis assumes an end-to-end protection of the entire
route, thus, any failure occurred at any point along the primary
route (PRI), will cause traffic to be moved to an emergency
route (ERI) until the primary route be re-established. Taking
again the Figure 3, consider the src as host1 and the dst
as host56. PRI is set using the switches S = {37, 53, 47}
with output ports P = {14, 3, 13} and ERI is set using the
switches S = {37, 53, 47, 41, 59} with output ports P =
{15, 1, 13, 15, 3}.

As shown in Table I, RDNA is able to support failure
recovery to protect the entire route with header size varying
from 3 to 7 Bytes in all evaluated topologies. This full
protection is a worst case scenario for RDNA ERI encoding,
which corresponds to the maximum number of Bytes required
by ERI (Equation 7).

For full protection used by ERI, RDNA Controller needs
to find the disjoint paths with the minimal hop-count. Thus,

we have been inspired by an algorithm called Suurballe
[27], whose computation time is twice greater than Dijkstra’s
algorithm [28]. Suurballe algorithm allows the use of the same
Leaf and Spine switches, as long as they have the same final
host, as destination, through the union of common switches
(Si) into the emergency route.

Hence, if a failure happens in the link between S37 and
S53, S37 will use port 15 (ERI), then S37→S59, S59→S47

and S47→dst, which corresponds to one of the emergency
routes encoded in ERI (S = {37, 59, 47}). If a failure
occurs in the link between S53 and S47, S53 will use port
1, then S53→S41, S41→S59, S59→S47 and S47→dst, which
corresponds to another emergency route encoded in ERI
(S = {37, 53, 41, 59, 47}).

As can be seen in Table I, the RDNA encoding fits at the
12 Bytes of the Ethernet header. The PRI and ERI can be
embedded in the packet (e.g. into the Ethernet header fields),
thus, its bit length does not affect the total packet overhead.
Assuming that Ethernet standard at the core is essentially
for framing purposes, RDNA can use Ethernet header bits
to encode PRI and ERI. As COXcast does not describe any
failure recovery approach, it was not included in our analysis.

C. RDNA Multicast Communication

For the multicast communication, the focus of our analysis
is on understanding how RDNA multicast header is affected by
the network size and the multicast group size. The scalability
analysis for RDNA multicast covers 23 different configurations
of 2-tier Clos network topology.

1) Impact of the network size: RDNA multicast relies on
a polynomial function so that there is an optimal trade-off
between the set of prime numbers Si and the polynomial
degree d. In order to find the optimal value, i.e. the smallest
header size, we formulated the problem as a linear program-
ming model, as follows:

minimize Xd+1
j =

(
log2

(∏n
i=1 Si

))
8

·
(
d+ 1

)
minimize Si

subject to
m∑

d=1

(
Si − 1 +

(
Si − 1 ·

(
Sd
i

)))
≥ 2pi−1

i, j, d ≥ 1, m ≤ 14

Si ∈ N | i is prime > pi,

(8)

where the multi-objective function aims to minimize the
header size Xd+1

j and Si. The residues Xd+1
j are subject to∑m

d=1 that needs to be equal or greater than the maximum
value for representing all the bitmaps 2pi−1, i.e. higher than
the number of physical output ports pi at switch Si. Finally,
we have limited the maximum polynomial degree m to 14 in
order to limit the RDNA header size to the Ethernet header
size.

Figure 5 illustrates the optimization process, taking as ex-
ample the largest network configuration, which is Spine = 08,
Leaf = 16, Port = 96, limiting the x-axis to 50k (50021).
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Figure 5. Analysis of the set prime numbers for Spine = 08, Leaf = 16,
Port = 96.

For such network topology, this means that we have to select
24 Si. However, the bigger is Si (↑) the smaller is the
polynomial degree d (↓). So if we go from the left to the right,
the size of prime numbers increases as the polynomial degree
decreases. Note that there are two minimal sets of 24 prime
numbers that require 200 Bytes for the RDNA header size.
The first choice starts at 727 [727, 733, 739, 743, 751, 757,
761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839,
853, 857, 859, 863, 877, 881] (pink square), and the second at
3761 [3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823,
3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911,
3917, 3919, 3923, 3929, 3931] (pink arrow). Given that the
Si are lower in the first set, it is then chosen.

After the optimization process, we compare RDNA against
the results presented in [15], that includes COXcast, Xcast4,
and Xcast6 for various 2-tier Clos network sizes varying from
Spine = 2, Leaf = 4 and Port = 16 until Spine = 8,
Leaf = 16 and Port = 96.

As shown in Table II, as the network size grows, the
multicast tree header scales well using occasionally 200 Bytes
in the worst case, but it is mostly less than 100 Bytes.
Moreover, RDNA multicast reduces the header size in all
cases. On average, the RDNA reduces header sizes in 12%
compared to COXcast, but it can reach up to 50% in some
cases, e.g. Spine = 8, Leaf = 16 with Port = 16. This
is due to the fact that COXcast needs to take huge prime
numbers to represent the node-specific “key” in such way that
the remainder of division gives the output ports as a bit array,
not integers. The difference between COXcast and RDNA
is significantly higher whenever the number of ports (node
degree) is low.

2) Impact of the multicast group size: We have assumed
that the members of the multicast group are distributed to each
container/VM placed in each physical host, given that an EDC
has a non sparse distribution of the VMs (or containers) in
their physical servers [29]. Hence, the multicast group size is
incremented sequentially one-by-one until achieving all hosts
in each network configuration.

For instance, in the RDNA multicast example, presented at
Figure 4, host1 is the source, then host2 is added as group
member, following by host3, and so on and so forth until all

Table II
MAXIMUM OVERHEAD (IN BYTES) VERSUS NETWORK SIZE

2-tier setting Ports RDNA COXcast Xcast4 Xcast6
16 9 10 12 1,008
24 14 14 380 1,520Spine = 02 Leaf = 04
32 18 18 508 2,032
16 18 22 508 2,032
24 27 30 764 3,056
32 35 38 1,020 4,080
48 54 54 1,532 6,128

Spine = 04 Leaf = 08

96 104 106 3,068 12,272
16 26 36 764 3,056
24 39 48 1,148 4,592
32 52 60 1,532 6,128
48 75 84 2,300 9,200

Spine = 06 Leaf = 12

96 154 156 4,604 18,416
16 34 47 1,020 4,080
24 51 63 1,532 6,128
32 68 79 2,044 8,176
48 100 111 3,068 12,272

Spine = 06 Leaf = 16

96 200 207 6,140 24,560
16 34 51 1,020 4,080
24 51 67 1,532 6,128
32 68 83 2,044 8,176
48 100 115 3,068 12,272

Spine = 08 Leaf = 16

96 200 211 6,140 24,560

the hosts have been included as group members. The results
are depicted in Figures 6(a) and 6(b) for the largest network
configuration.

Figure 6(a) shows that RDNA header size is scalable as
the multicast group increases for different number of physical
ports. If the group size is set to 100 members, the header size
keeps lower than 35 Bytes for all configurations. Increasing
the group size to 150 members, only the configuration with
96 ports is larger than 32 Bytes (25). In other words, the
increase of 50% in the multicast members leads to just a small
increment in the header size. For instance, if we increase the
group size to 350 members, the header size keeps below 64
Bytes but now with 3.5 times more members in the multicast
group. Larger increments occur every time that a spine switch
needs to be added to allow communication with a new leaf into
the multicast group. Also, RDNA has substantially reduced the
header facing up to COXcast, as presented in Figure 6(b).
Comparing the size of groups lower than 100 members,
RDNA header keeps smaller than 24 Bytes until 55 members,
whereas COXcast needs 25 Bytes for all configurations. Larger
increments in the header size occur for higher node degrees,
e.g. a new leaf with 96 ports allows 88 members (96−8 leaf-
spine connections) into the multicast group 2.

To summarize, the results make evident that RDNA mul-
ticast is more scalable than the Xcast family so that RDNA
has the potential to support the emerging demands for EDCs
designs. In addition, we have seen that the RDNA multicast
header is clearly more affected by the network size (specially
when node degrees are high) than by the number of members
in the multicast group, assuming that the multicast group
distribution is not sparse.

2GroupSize = [(p−v)× l]−1 where, p is the number of physical ports
in each leaf switch, v is the number of spine switches, and l is the number
of leaf switches, minus the source −1.
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Figure 6. Required multicast header varying the number of ports to 2-tier Clos Network setting, where (a) RDNA multicast and (b) COXcast.
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IV. RDNA IMPLEMENTATION

For validation purposes, an RDNA prototype was imple-
mented and evaluated. In this prototype, the RDNA Controller
was developed as an application on top of Ryu [30]. Regarding
the Edge switches, OpenFlow 1.3 enabled switches were used
in the Mininet [31] emulation platform.

For the core switches, two prototypes of RDNA forwarding
mechanism were implemented in two different platforms:
• Open vSwitch [32] (OvS), modifying its version 2.5.
• Field-Programmable Gate Array (FPGA) hardware using

the NetFPGA SUME platform.

A. RDNA on Open vSwitch and Mininet Platform

When a packet arrives at the ingress edge switch, the packet
is sent to the RDNA Controller which selects the primary and
emergency routes among all pre-calculated paths between the
source and destination. Then, the RDNA Controller installs
OpenFlow rules at the ingress and egress switches.

As an example, Table III details the flow rules installed at
the edges switches with the corresponding actions for setting
a flow between host1 and host56, as previously illustrated in
Figure 3. In this prototype, MAC address fields have been
used to embed PRI and ERI into packets’ header. So, in the
ingress edge switch, the OpenFlow rule includes an action to

add the route-IDs to packets’ header, and an action to forward
packets to the next hop in the core network. In the egress edge
switch, the rule includes an action to rewrite the original MAC
addresses, and an action to forward packets to the dst host.
Flow entries at the edge switches are based on the destination
IP address (plus optional VLAN or tenant identifiers).

The original Open vSwitch (OvS) implementation was mod-
ified to take advantage of the OpenFlow 1.3 Fast Failover [33]
structure. Thus, when the switch receives a packet, it checks if
the port is available, then PRI is used. However, if the switch
port is not available, the core switch checks if PRI is different
from ERI. If it is the case, it replaces PRI by ERI. From now
on, the new route-ID is used to bypass the failed link. For the
subsequent switches along the route, they just keep doing the
modulo operation until the packets reach the edge. Only in the
cases where another failure occur, packets will be forwarded
to the RDNA Controller.

B. Impact of Fast Failure Reaction on TCP Throughput

In order to evaluate the efficiency of the recovery to link
failures, we select different recovery techniques including
reactive/proactive protection mechanisms. We aim to to eval-
uate the granularity of failure recovery time and its impact
on the TCP throughput. The experiments are carried out in
Mininet where the network topology illustrated by Figure 3
was implemented. Each experiment was repeated 30 times and
we plot the average results with a 95% confidence interval.
During the experiments, links are disconnected using the Linux
ifdown command to emulate link failures.

The failure recovery mechanisms considered for this anal-
ysis are the following:
• No protection: The controller waits for a switch link

failure notification. After notification, it updates in a
reactive mode the flow table rules for all the switches
that belong to the selected path. This is our baseline.

• Partial protection: The controller installs proactively a set
of protection entries only into the switches S37 and S53

using the OpenFlow Fast Failover (FF) resources [34]. In
case of a failure on the primary route, a new entry should
be added to switches S41 and S59 via controller.

• Full protection: OpenFlow FF rules are installed configur-
ing all the switches to have an emergency route to protect
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Table III
FLOW TABLE ENTRIES IN THE EDGE SWITCHES.

Flows Direction Edge switches Match Action

Ingress MAC DST: 00:00:00:00:00:56 and
MAC SRC: 00:00:00:00:00:01

SetField(eth dst=00:00:00:01:51:AE,
eth src=00:00:07:01:C0:B3), output = 4Forward

Flow Egress MAC SRC: 00:00:07:01:C0:B3 and
IP DST: 10.0.0.56

SetField(eth dst=00:00:00:00:00:56,
eth src=00:00:00:00:00:01), output = 1

Ingress MAC DST: 00:00:00:00:00:01 and
MAC SRC: 00:00:00:00:00:56

SetField(eth dst=00:00:00:00:82:39,
eth src=00:00:07:37:2B:52), output = 4Backward

Flow Egress MAC SRC: 00:00:07:37:2B:52 and
IP DST: 10.0.0.1

SetField(eth dst= 00:00:00:00:00:01,
eth src= 00:00:00:00:00:56), output = 5

Input Ports

Input 3 Parser

Crossbar switch

Output 3

Switch Allocator

Input 2 Parser Output 2

Input 1 Parser Output 1

Input 0 Parser Output 0

(a) (b)

Figure 8. (a) router architecture, (b) Experimental testbed setup 10Gbps.

the flow of a failure in any link of the entire route. This
is the upper bound scenario on failure recovery time.

• RDNA: Flows are installed only at edge switches. Core
switches react to a link failure just by replacing PRI by
ERI rewriting the packets’ header. Output ports are then
computed according to the modulo operation of the ERI,
steering the flow seamlessly through the emergency route.

Figure 7 presents the results (rate at 1 Gbps) for a failure
in the S37→S53 link (see Figure 3) comparing the different
failure recovery mechanisms. Clearly, the worst case scenario
is the reactive recovery as it depends on the communica-
tion with the control plane. Despite the reduction on fail-
ure recovery time by the Fast Failover, TCP throughput is
drastically affected because the route had not been entirely
protected. Moreover, although fast failover is an interesting
local protection mechanism, there is additional burden to the
administrators who have to add specific entries at every switch
along the route, in both forward and backward paths.

In contrast, the Full protection leads to a significant reduc-
tion on recovery time, not affecting the performance of TCP
throughput. It is clear that RDNA has provided the same TCP
performance as Full protection mechanism, but with much less
complexity, since there is no need to add flow entries in every
switch along the route.

Another important point is the limitation imposed by TCAM
table size. Assuming an OpenFlow switch HP ProCurve
J9451A [35], where flow tables of 1500 entries are available,
for setting a protected flow is necessary 2 forward entries and
2 backward entries via OpenFlow group table resources FF
for supporting the Full protection mechanism [34]. It means
that only ( 15004 = 375) simultaneous protected flows could
be served. Therefore, considering the protection provided by
OpenFlow FF features, only 375 VMs instanced on Datacenter
take advantage of protection mechanisms. Though, RDNA

core switch is tableless, and edge switches run as software,
hence, they do not have such a strong constraint due to the
flow-table sizes. Besides, this result has shown that (i) using
packet rewrite actions at edge switches (insert and remove PRI
and ERI) and (ii) triggering emergency routing only by the
switch which has detected its local link failure; has enabled
RDNA to offer equivalent carrier-grade failure recovery time.

C. RDNA Implementation on FPGA Platform

A previous NetFPGA implementation, but aimed at power
consumption analysis at 1Gbps, for our tableless forwarding
scheme can be found in [7]. Herein, Figure 8(a) shows the
RDNA router architecture with four input/output ports imple-
mented on a NetFPGA SUME. This implementation supports
wormhole (WH) routing [36] which is a packet switching
technique to reduce buffer space and latency. In WH switching,
packets arriving at the input port are routed immediately to
the output port as soon as the port is free. In this scenario,
switch allocator is used to set the output ports based on route-
ID (i.e., PRI or ERI) extracted from the packets by input
ports parsers. Note that 10Gbps Ethernet MAC and PCS/PMA
modules (Xilinx IP cores) are not represented in Figure 8(a).

The experimental setup is shown in Figure 8(b). It comprises
4 NetFPGA SUME boards to evaluate the core network in
the proposed RDNA architecture, as previously illustrated in
Figure 9. Each SUME FPGA board supports 4 optical small-
form factor pluggable (SFP+) transceivers at 10Gbps line
rate. Moreover, each board is configured to perform the steps
described in Section II based on the received PRI or ERI value
within each packet, with the corresponding defined switch
pairwise prime values. As it is also shown in Figure 8(b),
two different Anritsu traffic analyzers (MD1230B, MT1100A)
were used to generate and monitor the traffic. The traffic
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Figure 9. Topology full mesh with 4 core switches: (a) without failure (3 hops); (b) link failure S5 to S7 (3 hops) and (c) link failure S7 to S11 (4 hops).
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Figure 10. Header format for FPGA experiments.
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Figure 11. RDNA core switch latency: (a) no failure and (b) with failure.

analyzer performs the edge switch operation, i.e., ingress and
egress on the programmable packet.

Figure 10 shows the extended high-level packet header
format used in this experimental setup. Instead of using MAC
address fields for embedding PRI and ERI, here we insert the
route-IDs from the 31st byte in order to make it evident that
the RDNA architecture is actually protocol agnostic. In this
case, it is necessary to wait for only 30 Bytes to be received
(which takes 4 clock cycles in FPGA logic at 156.25Mhz, i.e.
25.6ns) to be able to read the route-IDs and to compute the
modulo operation.

D. RDNA Low Latency and Fast Failure Reaction

In this setup, each FPGA has four 10Gbps Ethernet inter-
faces (see Figure 8(b)) and the used validation scenario is a
full mesh topology, as shown in Figure 9. Due to the limitation
on the number of FPGA cards, only the core network is
considered in our testbed.

Figure 11(a) shows the latency measurements varying the
number of hops x = 1 · · · 3 in the core network. As can be
seen, the latency for an RDNA Core switch is around 600ns
per hop. To get the exact latency contribution of each hop, we
have to subtract the 500ns from the total cumulative latency
measured in the traffic analyzer loopback (B2B), i.e. no device
under test with packet length of 1518 Bytes.

It is worth mentioning that the cumulative latency D at
RDNA core may be computed as D = (x × 600 + 500)ns,
where x is the number of hops. An important observation is
that the latency variability (jitter) is in order of tens of nanosec-
onds (ns), showing a potential packet-switched network with
circuit switching like guarantees.

For the cases of link failures, depicted in Figure 9(b)(c),
there are two different cases with 3 and 4 hops, respectively.

Table IV
TECHNICAL SPECIFICATION.

Model SFP+ 10G Processor Memory OpenFlow
CORSA
DP2100 Up to 32 Intel Core 16GB DDR3,

120GB HD 1.3

NetFPGA
SUME Up to 4 Virtex-7 FPGA 4GB DDR3

SODIMM -

Note that there is no link failure detection mechanism im-
plemented internally in the FPGA. It would be necessary to
use additional components (e.g. power meters) in order to
detect the link failure. Instead, we have decided to emulate
link failures with a special programmable packet. Along with
PRI and ERI (previously shown in Figure 10), an additional
1 Byte field was used to carry the ID of the switch that will
emulate the link failure. Upon receiving this special packet,
the switch whose ID matches the switch-ID carried by the
packet (e.g. 5 as in the example shown in Figure 9(b)) triggers
the emergency route configuration by overwriting PRI with
ERI in the received packet. In this case, the switch where the
link failure is emulated introduces a delay of 25.6ns (4 clock
cycles) to perform the overwriting process.

Figure 11(b) shows how fast is the failure reaction as it just
consists of replacing PRI by ERI (25.6ns) and recomputing
the modulo (6.4ns) to steer the packets to the emergency port.
The latency is 2332ns for 3 hops and 2932ns for 4 hops.
An important remark is that for the latency measured within
the RDNA core we do not consider the failure detection time
contribution to the latency, thus the measured latency is clearly
a pure failure reaction time.

E. Performance of RDNA Switch versus OpenFlow Switch
In order to compare the packet forwarding performance

between RDNA and a traditional OpenFlow switch, we evalu-
ated the RDNA core switch implemented on NetFPGA SUME
versus a high performance OpenFlow switch designed by
Corsa 3. Corsa’s DP2100 is a SDN switching and routing
platform that has 100G of non-blocking throughput, with
hardware architected with Programmable Processing Units,
powerful search engines, DDR3 memory, and is considered
a first class ASIC based fabric. Table IV briefly describes the
specifications of the switches used in this evaluation.

For this scenario, our benchmark follows RFC 2544 [37]
that suggests the latency measures varying the Ethernet frame
sizes (64, 128, 256, 512, 1024, 1280, 1518). RDNA Switch S5

was selected as a device under test, while for Corsa’s switch
a simple match-action entry was added, i.e. all packets that
arrive in the input port are forwarded to the output port with
the lowest latency serving as a lower bound test.

3https://www.corsa.com/products/dp2100/
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Figure 12. Packet forwarding latencies for RDNA core switch and Corsa
OpenFlow switch, varying the packet size for 1 hop.

Figure 12 shows the comparison results. For RDNA, the
forwarding latency was around 1µs regardless of packet sizes,
whereas for Corsa’s OpenFlow switch, the latency was one or-
der of magnitude greater than RDNA, achieving 11µs rising to
15µs (36%) for packet size of 64 and 1518 Bytes, respectively.

In regard to the differences on latency variability, the cut-
through design on RDNA switch explains its characteristics
towards a potentially circuit-like switching approach. For
the Corsa switch, however, it relies on store-and-forward
approach, therefore, the packet size has an impact on packet
forwarding time, which means increase in latency by 36% even
in the latency lower bound scenario. Although this approach
is common for OpenFlow switches, which must wait for the
identification of the flow [38], this is not effective in terms of
latency guarantees in the forwarding mechanism.

V. RELATED WORK

This section reviews related work in three different areas:
packet forwarding based on labels, resilient routing, and mul-
ticast communication.

A. Packet forwarding based on labels

In literature there have been numerous proposals that make
packet forwarding based on labels including Multiprotocol
Label Switching (MPLS) [9], Virtual Local Area Network
(VLAN), KeyFlow [16], and SDN-based architectures [10],
[11], [12]. MPLS is a well-known source-routing protocol that
forwards packets by writing and matching on labels attached to
packets. Unlike RDNA that is tableless in the core, MPLS tags
instruct the packet to travel hop-by-hop along a label-switched
path with Label Distribution Protocol (LDP) forwarding tables.

Path Switching [11] proposes an alternative to MPLS for
source routing which has the advantage of encoding forward-
ing information in a fixed amount of existing space in packet
headers. However, there is only a high-level proof-of-concept
with no experimental validation or testbed deployment so that
it lacks evidence of its viability.

Segment Routing (SR) [39] is a proposal in which packets
can be forwarded using SR forwarding tables and segment-IDs
attached to packets. An ordered list of segments is encoded as
a stack of labels. For packets processing, SR requires to rewrite

Table V
RECOVERY TIME WITH PROTECTION MECHANISMS [42].

Network Convergence
Protocol >250 ms Sub 250 ms 50 - 150 ms ≈550µs

STP (802.1D) X
RSTP (802.1w) X
MSTP (802.1s) X
RPVST+ X
EtherChannel (LACP
802.3ad) X

Flex Links X
MPLS Fast Reroute [41] X
RDNA X

the segment-ID using pop operations per SR node (top of the
stack is considered the active segment-ID), whereas MPLS
performs label swaps where the tag is swapped out for a new
tag. In contrast, RDNA computes a simple modulo operation
without swapping or pop operations per node in the core.
RDNA allows to steer a flow through any path and service
chain while maintaining per-flow state only at the edge nodes.

Although there have been other works that use CRT [18],
[40] for proposing new routing schemes, our previous work
KeyFlow [16] introduced a fabric-based model for core net-
work architectures. RDNA, though, has driven its attention
to EDC in which topologies are indubitably different. For
instance, common EDC network topologies have two tiers (leaf
and spine), where there are multiple paths available with the
same length. Moreover, KeyFlow does not consider hardware
implementations, failure recovery issues and multicast com-
munications.

B. Resilient routing

A second bunch of work has been dedicated to fast failure
reaction in order to provide resilient routing. In table V,
we present an analysis of failure recovery time including a
list of protocols that provide protection mechanisms. This
shows a guidance for the resiliency protocol guarantees to
meet the application protection requirements. One of the
reasons for recovery times being greater than 50ms is the
long time to update distributed tables. In the case of MPLS
Fast Reroute [41], it still requires the support of a signaling
protocol such as LDP for MPLS enabled switches. Thanks to
the simplicity of replacing PRI by ERI triggered only by the
switch where the failure is detected, RDNA allows ultra-fast
failure recovery without table updates or additional control
messages.

Comparing to our previous work KAR [13], the difference is
on the deflection guided mechanism to drive packets to their
destination under the presence of link failure. However, to
define a full protection path along the entire route, the length
of the bits required to support guided deflections may increase
considerably. RDNA has extended it to support deterministic
routing with programmable protection, but also differs funda-
mentally on the alternative paths encoding. Rather than using
guided deflections, RDNA relies on two segments (route-IDs)
allowing to protect the entire route. Also, as suggested by our
FPGA prototype implementation, RDNA is easily supported in
hardware-based devices. There is no need for a new protocol
as it may be implemented by reusing the existing header fields
to compactly encode the path attached to packets.
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C. Multicast communication

Multicast has been broadly studied in the context of wide-
area networks [43]. EDC, however, differs in many ways from
the wide-area profile given that a single administrative domain
has control over the entire topology and it is no longer needed
to run the decentralized protocols like IGMP and PIM.

RDNA multicast is not the first system to build the multicast
tree based on a specific encoding scheme. Previous works [44],
[45], [46] have encoded link identifiers inside packets using
bloom filters. BIER [47] encodes group members as bit strings.
However, these approaches are complex to implement and they
are not able to process multicast traffic at line rate [23].

In Elmo [23], despite its design operating at line rate by
means of modern programmable data planes, network states
are required at intermediary switches tables. Also, it depends
on control plane notification to recover from network failures.

RDNA differs from all proposals available in the literature,
relying on polynomial function orchestrated by the CRT [18],
which allows us to reduce the overhead to represent a mul-
ticast tree at 2-tier Clos network topologies. Hence, RDNA
takes advantage of the topology characteristics to encode its
residues forwarding graphs and actions to be performed by
edge switches. Our analysis shows that a 200-byte header
is sufficient to support huge multicast groups. Furthermore,
RDNA is inexpensive to implement on modern programmable
switches and supports the EDC requirements.

VI. CONCLUSION

This work proposed and experimentally proved the prin-
ciples of RDNA: a tableless, protected source-routed traffic
engineering capable, and topology-independent solution for
ultra-reliable low-latency EDC with native multicast function-
ality. An extensive scalability analysis investigated 23 types
of 2-tier Clos network benchmarking RDNA with existing
approaches. Our evaluation quantifies the RDNA encoding
for unicast, resilient routing and multicast communication,
considering micro datacenters topologies as a reference design.
Experimental results show that RDNA achieves low-latency
(600 ns) in the core at 10 Gbps and virtually no jitter.

In an RDNA domain, a programmable network configura-
tion and its policy can be seamlessly applied; for instance,
service connectivity protection as policy is expressed by the
RDNA controller that instructs the edge nodes installing the
flows with their actions. For this case, our prototype demon-
strated that RDNA is able to offer carrier grade protection
achieving ultra-reliable communication with sub-milliseconds
for failure recovery.

As future works, we intend to investigate operational factors
of RDNA, such as power consumption aspects as in [7] and
then devote efforts to enable slicing to be supported for multi-
tenant solutions over EDCs. Another important enabler for 5G
networks over RDNA to be implemented is Network Functions
Virtualization (NFV) [48]. Evolving RDNA to accommodate
convergent networks, i.e., integration fiber-wireless tailored to
EDC infrastructures [49], is yet to be exploited.
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