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Abstract: We establish a new connection between moments of n × n random matri-
ces Xn and hypergeometric orthogonal polynomials. Specifically, we consider moments
ETr X−s

n as a function of the complex variable s ∈ C, whose analytic structure we
describe completely. We discover several remarkable features, including a reflection
symmetry (or functional equation), zeros on a critical line in the complex plane, and
orthogonality relations. An application of the theory resolves part of an integrality con-
jecture of Cunden et al. (J Math Phys 57:111901, 2016) on the time-delay matrix of
chaotic cavities. In each of the classical ensembles of random matrix theory (Gaus-
sian, Laguerre, Jacobi) we characterise the moments in terms of the Askey scheme of
hypergeometric orthogonal polynomials. We also calculate the leading order n → ∞
asymptotics of themoments and discuss their symmetries and zeroes.We discuss aspects
of these phenomena beyond the random matrix setting, including the Mellin transform
of products and Wronskians of pairs of classical orthogonal polynomials. When the
random matrix model has orthogonal or symplectic symmetry, we obtain a new duality
formula relating their moments to hypergeometric orthogonal polynomials.
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1. Introduction

In this paper we present a novel approach to the moments of the classical ensembles of
randommatrices.Much of randommatrix theory is devoted tomomentsETr Xk

n (k ∈ N)
of random matrices of finite or asymptotically large size n. The Gaussian, Laguerre,
and Jacobi unitary ensembles have been extensively studied and virtually everything is
known about the moments as functions of the matrix size n. In particular, for the GUE,
ETr Xk

n is a polynomial in n. This fact is a consequence of Wick’s theorem, it is usually
called ‘genus expansion’, and it is at the heart of several successful theories such as the
topological recursion [5,33]. For example, the 4-th moment of GUE matrices of size n
is

1

n
ETr X8

n = 14n4 + 70n2 + 21.

In contrast to thewealth of results onmoments as functions of the size n, less attention
has been devoted to them as functions of the order k. One of the consequences is that
some remarkable properties have been somehow missed. The theory described in this
paper is intended to fill this gap. By looking at the moments as functions of k, we gain
access to additional structure. Several results contained in this paper are in fact facets
of the same phenomenon, which appears to be a new observation: moments ETr Xk

n
of classical matrix ensembles, if properly normalized, are hypergeometric orthogonal
polynomials as functions of k. For example, for a GUE random matrix of size n = 4

1

(2k − 1)!!ETr X2k
4 = 4

3
k3 + 4k2 +

20

3
k + 4,
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and this polynomial is actually aMeixner polynomial. In fact, themoments are essentially
Meixner polynomials as functions of (n − 1), too.

During our investigation it became natural to consider complex moments ETr Xk
n

(k ∈ C) or, equivalently, averages of spectral zeta functions of random matrices.

1.1. Spectral zeta functions of random matrices. There exist various generalizations
of the Riemann ζ -function, associated with operator spectra and which are generically
called spectral zeta functions.

Consider a compact operator A on a separable Hilbert space. Then AA∗ is a nonneg-
ative operator, so that |A| = AA∗ makes sense. The singular values of A are defined as
the (nonzero) eigenvalues of |A|. If A is self-adjoint with discrete spectrum λ1, λ2, . . . ,
the singular values are |λ1|, |λ2|, . . . . The Dirichlet series representation of the Riemann
zeta function ζ(s) suggests to define the spectral zeta function ζA(s) of the operator A
as the maximal analytic continuation of the series

∑

j≥1

|λ j |−s

(this is also called Minakshisundaram–Pleijel [67] zeta function of A). In this sense, the
Riemann ζ(s) is the spectral zeta of the integer spectrum λ j = j . Several authors have
posed the question of how the ‘spectral’ properties of Riemann’s zeta function carry
over (or not) to various spectral zeta functions [79]; classical properties of the Riemann
zeta function are:

(1) Functional equation: the function ξ(s) = π−s/2�(s/2)ζ(s) satisfies ξ(1−s) = ξ(s);
(2) Meromorphic structure: ζ(s) is analytic in C \ {1};
(3) Special values: trivial zeros ζ(−2 j) = 0 for j = 1, 2, . . . ;
(4) Complex zeros of ζ(s) and the Riemann hypothesis (RH): the complex Riemann

zeros are in the critical strip 0 < Re(s) < 1 and enjoy the reflection symmetries
along the real axis and the line Re(s) = 1/2. It is conjectured (RH) that the nontrivial
zeros all lie on the critical line Re(s) = 1/2.

Let Xn be a n×n randomHermitianmatrix, and denote by λ1, . . . , λn its eigenvalues.
Assume that, with full probability, 0 is not in the spectrum of Xn (this is certainly true for
the classical ensembles of randommatrices). We proceed to define the averaged spectral
zeta function ζXn (s) as the maximal analytic continuation of

E ζXn (s) = ETr |Xn|−s = E

n∑

j=1

|λ j |−s .

Note that E ζXn (s) is not a random function. Much of the paper is devoted to pointing
out the analytic structure of E ζXn (s) when Xn comes from the Gaussian, Laguerre or
Jacobi ensembles.

1.2. Time-delay matrix of chaotic cavities. Random matrix theory provides a mathe-
matical framework to develop a statistical theory of quantum transport. This theory is
believed to apply in particular tomesoscopic conductors confined in space, often referred
as quantum dots, connected to the environment through ideal leads. For these systems,
Brouwer, Frahm, and Beenakker [17], showed that the proper delay times are distributed
as the inverse of the eigenvalues of matrices Xn in the Laguerre ensemble (the size n
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being the number of scattering channels) with Dyson index β ∈ {1, 2, 4} labelling the
classical symmetry classes, and parameter α = n.

The moments of the proper delay times have been studied using both random
matrix theory [25,27,28,43,44,58,64–66,75,76] and semiclassical scattering orbit the-
ory [13,52,72,73]. Of course, the subject ofmoments on rather generalmatrix ensembles
has been extensively studied. There is, however, one important complication here: the
moments of the time-delay matrix are singular spectral linear statistic on the Laguerre
ensemble. (Invariant randommatrix ensembles with singular potentials received consid-
erable interest in recent years inmathematical physics, see, e.g.Refs. [3,9,14,16,21,62].)

In [25,27,28], it was conjectured that the 1/n-expansion of the cumulants of power
traces for the time-delay matrix of quantum dots has positive integer coefficients. In this
paper we prove that the conjecture is true for the first order cumulants, i.e. the moments,
when β = 2 (systems without broken time reversal symmetry).

1.3. Mellin transform of orthogonal polynomials. The averaged zeta function is related
to the Mellin transform of the one-point correlation function1. In the classical unitary
invariant ensembles, by using the well-known determinantal formulae and Christoffel-
Darboux formula, the one-point correlation function can be written as a Wronskian

ρ(2)
n (x) =

n−1∑

j=0

ψ2
j (x) = kn−1

kn
Wr(ψn−1(x), ψn(x)),

whereψ j (x) are the normalized Hermite, Laguerre or Jacobiwavefunctionswith leading
coefficient k j . (The superscript stands for β = 2.) The Mellin transform of a function
f (x) is defined by the integral

M [ f (x); s] =
∫ ∞

0
f (x)xs−1dx,

when it exists. We set f ∗(s) = M [ f (x); s]. Of course, E ζXn (s) = ρ
(2),∗
n (1− s). In all

instances in this paper, the Mellin transforms have meromorphic extensions to all of C
with simple poles (see Appendix B.1).

Bump and Ng [19] and Bump, Choi, Kurlberg, and Vaaler [20] made the remarkable
observation that the Mellin transforms of Hermite and Laguerre functions ψ j (x) form
families of orthogonal polynomials (OP’s) and have zeros on the critical line Re(s) =
1/2. (Jacobi functions were not considered by them.) A few years later, Coffey [22,23]
and Coffey and Lettington [24] pointed out that the polynomials described by Bump et
al. were hypergeometric OP’s and investigated other families.

Indeed, we show that for the classical matrix ensembles, the Mellin transform
ρ

(2),∗
n (s) of a Wronskian of two adjacent wavefunctions is a hypergeometric OP (up

to a factor containing ratios of Gamma functions). We stress that the proof does not go
along the lines of the method of Bump et al. They started from the orthogonality of the
classical wavefunctions which is preserved by theMellin transform (a unitary operator in
L2). In our case, by explicit computations, we identify a discrete Sturm–Liouville (S-L)
problem satisfied by ρ

(2),∗
n (s) (as a function of s) and this turns out to be the same S-L

of the classical hypergeometric OP’s. We remark that the Mellin transforms ρ
(2),∗
n (s)

1 See Section 3 for the definition of the one-point function and the important identity (3.4).
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of ρ
(2)
n (x) do have a probabilistic meaning (moments of random matrices). The Mellin

transforms ψ∗
j (s) studied in [19,20], while not unmotivated, do not have an obvious

probabilistic interpretation.
Once the analytic structure of theMellin transformofWr(ψn(x), ψn+1(x))was estab-

lished, it became natural for us to look for similar polynomial properties for Wronskians
of nonadjacent wavefunctions Wr(ψn(x), ψn+k(x)), k > 1. Such Wronskians do not
have a randommatrix interpretation. Nevertheless, they have a certain interest in mathe-
matical physics as they appear when applying Darboux and Crum [29] transformations
on a Schrödinger operator to generate families of exceptional orthogonal polynomials
[39,41,51,74].

1.4. Orthogonal and symplectic ensembles. The theory developed for the classical
ensembles of complex random matrices suggested to look for similar polynomial prop-
erties in the real and quaternionic cases (orthogonal and symplectic ensembles).

Now a fundamental insight came from recursion formulae satisfied by orthogonal
/ symplectic moments coupled with moments of the corresponding unitary ensembles
(see [55] in the Gaussian case and [28] in the Laguerre ensemble). It turns out that for
the classical ensembles of randommatrices with orthogonal and symplectic symmetries,
certain combinations of moments satisfy three term recursion formulae which, again,
correspond to the S-L equations defining families of hypergeometric OP’s. Therefore,
this combination ofmoments plays the role of the singlemoments in the unitary case: they
satisfy three term recursions, have hypergeometric OP factors, reflection symmetries,
zeros on a vertical line, etc.

The (single) moments of the symplectic ensembles do have polynomial factors, but
these do not belong to the Askey scheme. In the orthogonal cases, we use a novel duality
formula (based on the results by Adler et al. [2]) to write the moments of real random
matrices of odd dimension as quaternionic moments plus a remainder containing an
orthogonal polynomial factor.

Coupling this result with a classical duality between orthogonal and symplectic
ensembles, we discover a functional equation for moments of real random matrices.

1.5. Outline. The paper has the following structure:
• In Section 2 the physics motivations and application to quantum transport in chaotic

cavities are presented;
• In Section 3 we set some notation and we recall the definition of the classical

ensembles of random matrices and hypergeometric OP’s;
• In Section 4 we present the main results along with their proofs for the Gaussian,

Laguerre, and Jacobi unitary ensembles;
• In Section 5 we discuss the large-n asymptotics of the spectral zeta functions;
• In Section 6 we discuss the relation of our findings with earlier works on the Mellin

transform of classical orthogonal polynomials; then, we extend our results beyond
randommatrix theory by consideringMellin transforms of products andWronskians
of generic pairs of orthogonal polynomials;

• In Section 7 we discuss the extension of duality formulae between moments of
random matrices to higher order cumulants;

• In Section 8 we consider the classical orthogonal and symplectic ensembles and, in
particular, present a new duality formula relating their moments to hypergeometric
orthogonal polynomials.
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2. Motivation and Applications

One of the originalmotivations for this workwas tomake some progress on an integrality
conjecture for the 1/n-expansion of the Laguerre ensemble put forward in [25,27,28].
The problem originated from a random matrix approach to quantum transport in chaotic
cavities.

In this section, we will first present some of our findings on the Laguerre ensemble.
Then we will briefly review the connection between the Laguerre ensemble and the
time-delay matrix in chaotic cavities, and explain the applicability of our results to the
integrality conjecture.

2.1. The Laguerre ensemble: reciprocity law and spectral zeta function. Let Xn be a
randommatrix from the Laguerre Unitary Ensemble (LUE) with parameterm ≥ n. That
is, Xn is distributed according to

dP(X) = 1

Z
(det Xα) exp(−Tr X)dX (2.1)

on the space Pn of nonnegative Hermitian matrices, where dX is Lebesgue measure on
Pn � R

n2 , Z the normalizing constant, and α = m − n.
Consider for integer k ∈ N, the (inverse) moments

ETr X−k
n = E

n∑

j=1

λ−k
j , (2.2)

where λ1, . . . , λn are the eigenvalues of Xn . The above moments are finite if and only
if k ≤ α [53]. We will prove the following remarkable property of these moments.

Proposition 2.1 (Reciprocity law for LUE).

ETr X−(k+1)
n =

⎛

⎝
k∏

j=−k

1

α + j

⎞

⎠ETr Xk
n . (2.3)

The above identity can be verified using the recurrence relation for moments proved
by Haagerup and Thorbjørnsen [45] and extended to inverse moments in [28]. This
gives an explicit formula for the inverse moments given known identities for positive
moments. For instance,

ETr X0
n = n ETr X−1

n = n

α

ETr X1
n = n2 + αn ETr X−2

n = n2 + αn

(α − 1)α(α + 1)

ETr X2
n = 2n3 + 3αn2 + α2n ETr X−3

n = 2n3 + 3αn2 + α2n

(α − 2)(α − 1)α(α + 1)(α + 2)
.

It is natural to consider complexmoments or, equivalently, the averaged LUE spectral
zeta function defined as

EζXn (s) = ETr X−s
n = E

∑

j

λ−s
j , for Re(s) ≤ α, (2.4)
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Fig. 1. Expected LUE spectral zeta function (modulus) on the critical line s = 1/2 + i t

and by analytic continuation for other values of s. We list below a few remarkable
properties of the averaged LUE spectral zeta function.

(1) Functional equation: the reciprocity law (2.3) suggests to consider the function

ξn(s) = 1

�(1 + α − s)
E ζXn (s), (2.5)

so that (2.3) becomes the functional equation

ξn(1 − s) = ξn(s). (2.6)

(2) Analytic structure: it turns out that E ζXn (s) can be analytically extended to the
whole complex plane; In particular, ξn(s) is a polynomial of degree 2(n − 1).

(3) Special values: trivial zeros E ζXn (1 + α + j) = 0 for j = 1, 2, . . . ;
(4) Complex zeros and Riemann hypothesis: as for the Riemann zeta function, the set

of complex zeros is symmetric with respect to reflections along the real axis and
the critical line Re(s) = 1/2. It is tempting to ask whether a RH holds true for the
averaged LUE zeta function. Amusingly, the answer is ‘Yes’: the nontrivial zeros
of E ζXn (s) all lie on the critical line Re(s) = 1/2.

These facts are an immediate consequences of the main results presented in Section 4.
See Fig. 1 for a plot of the averaged LUE zeta function and Fig. 2 for an illustration of
the zeros.

Remark. For any fixed n, the function ζXn (s) is a finite sum of exponentials. Therefore,
without taking the average, ζXn (s) is a random analytic function inC and never vanishes.

2.2. Application to quantum transport in chaotic cavities. In [25,27], it was proposed
that, for β ∈ {1, 2}, the cumulants of the time-delay matrix of a ballistic chaotic cavity
have a 1/n-expansion with positive integer coefficients (similar to the genus expansion
of Gaussian matrices). The precise conjectural statement is as follows.

Consider the measure (2.1) with α = n, and the rescaled inverse power traces

τk(n) = nk−1 Tr X−k
n (k ≥ 0).
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Fig. 2. Zeros of ξn(s) for the LUE

It is known that the expectation of τk(n) has a 1/n-expansion

Eτk(n) =
∞∑

g=0

κg(k)n
−g.

Conjecture. ([28]) κg(k) ∈ N.

The conjecturewas supported by a systematic computation of certain generating func-
tions, and it is in agreement with the diagrammatic expansions of scattering orbit theory.
The integrality of the coefficients in the large-n expansion has been also conjectured in
the real case (LOE) [28], and for higher order cumulants [25,27].

The results reported in this paper resolve the conjecture in the complex case.

Theorem 2.2. The above conjecture is true.

Proof. To prove the Theorem we take advantage of the reciprocity law to use known
results for positive moments of the Laguerre ensemble.

Let Xn be in the LUE with parameter α = m − n. For k ≥ 0, from [46, Corollary
2.4] (see also [68, Exercise 12]) we read the formula

1

nk+1
ETr Xk

n =
∑

σ∈Sk
n#(σ )+#(γkσ−1)−(k+1)

(m
n

)#(σ )

, (2.7)

where Sk is the symmetric group, and for a permutation σ ∈ Sk , #(σ ) denotes the number
of cycles in σ . By γk we denote the k-cycle (1 2 3 . . . k). If m = cn with c > 0, the
above formula shows that 1

nk+1
ETr Xk

n is a polynomial in n−2 with positive coefficients
(see Lemma 4.5 below).

By the reciprocity law (2.3) with α = n (or, equivalently, c = 2)

Eτk+1(n) =
⎛

⎝
k∏

j=1

1

1 − j2

n2

⎞

⎠ 1

nk+1
ETr Xk

n . (2.8)
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The factor
∏k

j=1

(
1 − j2

n2

)−1
in (2.8) is a product of geometric series. Therefore, we

have

Eτk+1(n) =
∑

σ∈Sk

∞∑

i1,...,ik=0

⎛

⎝2#(σ )
k∏

j=1

j2i j

⎞

⎠ n#(σ )+#(γkσ−1)−(k+1)−2(i1+···+ik ), (2.9)

and this readily prove thatEτk has an expansion in n−2 with positive integer coefficients.
	


Remark. From (2.7) we see that, if c ∈ N, then 1
nk+1

ETr Xk
n (k ≥ 0 integer) has a

1/n-expansion with positive integer coefficients. The computation above shows that
the integrality of the coefficients for the LUE negative moments also holds whenever
c/(c−1) ∈ N. Therefore, c = 2 is the only case when all moments 1

nk+1
ETr Xk

n (k ∈ Z)
have integer coefficients in their large-n expansion.

3. Notation and Definitions

3.1. Classical ensembles of random matrices. We will consider expectations with
respect to the measures

1

Cn,β

n∏

j=1

wβ(x j )χI (x j )
∏

1≤ j<k≤n

|xk − x j |βdx1 · · · dxn (3.1)

for finite n and for any value of β ∈ {1, 2, 4}. The value of β corresponds to ensembles
of real symmetric (β = 1), complex hermitian (β = 2) or quaternion self-dual matrices
(β = 4). The function wβ(x) is the weight of the ensemble:

wβ(x) =

⎧
⎪⎨

⎪⎩

e−(β/2)x2/2, I = R,

x (β/2)(m−n+1)−1 e−(β/2)x , I = R+,

(1 − x)(β/2)(m1−n+1)−1 x (β/2)(m2−n+1)−1, I = [0, 1],
(3.2)

for Gaussian, Laguerre, and Jacobi, respectively.Cn,β is a normalization constant which
depends on the ensemble and is known explicitly [36]. For convenience we set α =
m − n > 0 in the Laguerre ensemble and α1 = m1 − n > 0, α2 = m2 − n > 0 in the
Jacobi ensemble.

We define the one-point eigenvalue density ρ
(β)
n (x) corresponding to (3.1) by

ρ(β)
n (x) = E

⎛

⎝
n∑

j=1

δ(x − x j )

⎞

⎠ . (3.3)

We will call (3.3) the eigenvalue density corresponding to the weightwβ(x) defining the
expectation over (3.1). The following identity easily follows from the definitions (3.3)
and (3.1):

ETr Xk
n =

∫

I
xkρ(β)

n (x) dx . (3.4)
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3.2. Hypergeometric orthogonal polynomials. We use the standard notation for hyper-
geometric functions

pFq

(
a1, . . . , ap
b1, . . . , bq

; z
)

=
∞∑

j=0

(a1) j · · · (ap) j
(b1) j · · · (bq) j

z j

j ! ,

where (q)n = �(q + n)/�(q). We need to introduce some families of hypergeometric
OP’s [50]. Recall that there are three types of hypergeometric OP’s:

(1) Polynomials of the first type are solutions of usual S-L problems for second order
differential operators: Jacobi P(α1,α2)

n (x) and its degenerations, Laguerre L(α)
n (x)

and Hermite Hn(x). They have a hypergeometric representation, but they are per-
haps better known by the Rodrigues-type formulae

Hn(x) = (−1)n ex
2 dn

dxn
e−x2 , (3.5)

L(α)
n (x) = 1

n! x
−αex

dn

dxn
xn+αe−x , (3.6)

P(α1,α2)
n (x) = 1

n!
(−1)n

(1 − x)α1xα2

dn

dxn
(1 − x)α1+nxα2+n . (3.7)

Note that the Jacobi polynomials considered in this paper are orthogonal with
respect to the measure (1 − x)α1xα2dx on the unit interval [0, 1];

(2) Polynomials of the second type are solutions of discrete S-L problems (three-terms
recurrence relations) with real coefficients: Racah Rn(λ(x);α, β, γ, δ), including
its degenerations Hahn Qn(x;α, β, N ), dual Hahn Rn(λ(x); γ, δ, N ), Meixner
Mn(x;β, c), etc. They can be represented as finite hypergeometric series

Rn(λ(x);α, β, γ, δ) = 4F3

(−n, n + α + β + 1,−x, x + γ + δ + 1
α + 1, β + δ + 1, γ + 1 ; 1

)
(3.8)

Qn(x;α, β, N ) = 3F2

(−n, n + α + β + 1,−x
α + 1,−N ; 1

)
(3.9)

Rn(λ(x); γ, δ, N ) = 3F2

(−n,−x, x + γ + δ + 1
γ + 1,−N ; 1

)
(3.10)

Mn(x;β, c) = 2F1

(−n,−x
β

; 1 − 1

c

)
, (3.11)

where λ(x) = x(x + γ + δ + 1). Note that some authors define the Meixner
polynomials as mn(x;β, c) = (β)nMn(x;β, c);

(3) Polynomials of the third type are solutions of discrete S-L problems with complex
coefficients: Wilson Wn(x2; a, b, c, d) including its degenerations, continuous
dual Hahn Sn(x2; a, b, c), continuous Hahn pn(x; a, b, c, d), Meixner–Pollaczek
P(λ)
n (x;φ), etc. They have the following hypergeometric representations:

Wn(x
2; a, b, c, d) = (a + b)n(a + c)n(a + d)n

× 4F3
(−n, n + a + b + c + d − 1, a + i x, a − i x

a + b, a + c, a + d ; 1
)

(3.12)

Sn(x
2; a, b, c) = (a + b)n(a + c)n 3F2

(−n, a + i x, a − i x
a + b, a + c ; 1

)
(3.13)
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pn(x; a, b, c, d) = in

n! (a + c)n(a + d)n

× 3F2
(−n, n + a + b + c + d − 1, a + i x

a + c, a + d ; 1
)

(3.14)

P(λ)
n (x;φ) = (2λ)n

einφ

n! 2F1

(−n, λ + i x
2λ ; 1 − e2iφ

)
. (3.15)

At the top of the hierarchy of hypergeometric orthogonal polynomials are theWilson and
Racah polynomials. In this paper, the parameter ranges are such that it is most natural to
consider the polynomials which appear as Wilson polynomials and their degenerations,
specifically continuous dual Hahn and Meixner–Pollaczek polynomials. The reader can
find the common notation and the most important properties of hypergeometric OP’s in
[50, Section 9].

4. Unitary Ensembles

It is known that the k-th moments of the classical unitary invariant ensembles of random
matrices Xn of dimension n are polynomials in n (or in 1/n after rescaling). Here we
show that the (completed) moments can also be seen as polynomials in the parameter
k. These polynomials are hypergeometric orthogonal polynomials OP’s belonging to
the Askey scheme [7]. The polynomial property suggests to consider complex moments
or, equivalently, averages of spectral zeta functions. For the three classical ensembles,
define

ζXn (s) = Tr |Xn|−s, Xn ∼ {GUE,LUE, JUE},
and

ξn(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

22s

� (1/2 − 2s)
E ζXn (4s) if Xn ∼ GUE ,

1

�(1 + α − s)
E ζXn (s) if Xn ∼ LUE ,

�(1 + α1 + α2 + 2n − s)

�(1 + α2 − s)
E

(
ζXn (s) − ζXn (s − 1)

)
if Xn ∼ JUE ,

when the expectations exist (s < 1/4, s < α + 1, and s < α2 + 1 for GUE, LUE, and
JUE, respectively) and by analytic continuation otherwise (see Appendix B.1).

We can now state the first result.

Theorem 4.1. For all n, ξn(s) is a hypergeometric orthogonal polynomial:

ξn(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i1−n

√
π

P(1)
n−1 (2x; π/2) if Xn ∼ GUE

1

�(n)�(α + n)
Sn−1

(
x2; 3

2
,
1

2
, α +

1

2

)
if Xn ∼ LUE

�(α1 + α2 + n + 1)

�(n)�(α2 + n)
(−1)n−1(α1 + n)

× Wn−1

(
x2; 3

2
,
1

2
, α2 +

1

2
,
1

2
− α1 − α2 − 2n

)
if Xn ∼ JUE ,
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where x = i(1/2 − s). In particular, ξn(s) satisfies the functional equation ξn(s) =
ξn(1 − s) in the LUE and JUE cases, and ξn(s) = (−1)n−1ξn(1 − s) for the GUE.
Moreover, all its zeros lie on the critical line Re(s) = 1/2.

Proof. See Theorems 4.2, 4.4 and 4.7 below. 	

The weights of the OP’s in Theorem 4.1 are

w(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣2
√

π�(2s)
∣∣2 if Xn ∼ GUE

∣∣∣∣
�(s)�(s + 1)�(s + α)

�(2s − 1)

∣∣∣∣
2

if Xn ∼ LUE

∣∣∣∣
�(s)�(s + 1)�(s + α2)

�(s + α1 + α2 + 2n)�(2s − 1)

∣∣∣∣
2

if Xn ∼ JUE .

For the GUE and LUE, the following orthogonality conditions hold

1

2π i

∫

1
2 +iR+

ξm(s)ξn(s)w(s)ds = hm δmn, (4.1)

where hm is an explicit constant depending on the ensemble (see Appendix C).
For an illustration of the zeros on the critical line, see Figs. 2 and 3. For the reader’s

convenience, the relation betweenmoments of the unitary ensembles and hypergeometric
OP’s is summarised in Table 1.

Remark. The orthogonality in the JUE is slightly different to the GUE and LUE cases.
First of all, the fourth parameter of the Wilson polynomial is negative. An orthogonality
relation in this case is far from obvious and was established by Neretin [71], see also
Appendix C. This fourth parameter also depends on n, therefore each ξn(s) belongs to
a distinct family of orthogonal polynomials obtained by fixing the fourth parameter. As
before, this orthogonality implies that the zeros lie on the line Re(s) = 1/2.

4.1. Gaussian unitary ensemble. The GUE is a classical orthogonal polynomial ensem-
ble. In particular, the correlation functions can be compactly and conveniently written
in terms of Hermite polynomials. It turns out that the complex moments are essentially
a Meixner–Pollaczek polynomial. The moments for GOE and GSE can be expressed
using known formulae relating the one-point correlation functions of the three Gaussian
ensembles.

Let Xn be a GUE random matrix of dimension n. Define QC

k (n) = ETr X2k
n for all

k ∈ C for which the expectation exists. It is known [47] that, for k ∈ N,

QC

k (n) = (2k − 1)!!
n∑

i=1

2i−1
(
n

i

)(
k

i − 1

)
, (4.2)

where (2k − 1)!! = 2k�(1/2 + k)/
√

π (this is equal to (2k − 1)(2k − 3) · · · 1 for
k ≥ 1 integer). For each k, the moment QC

k (n) is a polynomial in n with positive integer
coefficients:

QC

0 (n) = n
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Fig. 3. Zeros of ξn(s) for the JUE

Table 1. Relation between the correlation functions (in terms of classical OP’s) and the moments (given by
hypergeometric OP’s) of the classical unitary ensembles

Matrix ensembles Correlation functions Moments
(classical OP’s) (hypergeometric OP’s)

GUE Hermite Meixner–Pollaczek
LUE Laguerre continuous dual Hahn
JUE Jacobi Wilson

QC

1 (n) = n2

QC

2 (n) = 2n3 + n

QC

3 (n) = 5n4 + 10n2.

QC

4 (n) = 14n5 + 70n3 + 21n.

This fact is the well-known genus expansion for Gaussian complex matrices.
As observed in [81, Theorem 8], (4.2) can be written in terms of a (terminating)

hypergeometric series:

QC

k (n)

n (2k − 1)!! = 2F1

(−k, 1 − n
2 ; 2

)
. (4.3)

From this hypergeometric representation, we see that the moment QC

k (n), if properly
normalised, is a Meixner–Pollaczek polynomial in i(k + 1) of degree n − 1.

Theorem 4.2. If we write x = i(k + 1), then for Re(k) > −1/2

QC

k (n) = i1−n (2k − 1)!! P(1)
n−1(x; π/2). (4.4)

In particular, in−1QC

k (n)/(2k − 1)!! can be extended to an analytic function in C (a
polynomial), invariant up to a change of sign under reflection k → −2 − k, with
complex zeros on the vertical line Re(k) = −1.



1104 F. D. Cunden, F. Mezzadri, N. O’Connell, N. Simm

Proof. Consider the polynomials

qr (s) = i−r

1 + r
P(1)
r (is; π/2).

From the definition of Meixner–Pollaczek polynomials (3.15) of P(1)
n−1(x; π/2) and the

hypergeometric representation (4.3) we see that QC

k (n) = n (2k − 1)!! qk(n) when k is
a nonnegative integer. In order to prove the general complex case, we use a procedure
of analytic continuation from integer points to a complex domain via Carlson’s theorem
[6, Theorem 2.8.1]. A standard calculation in random matrix theory shows that, for
Re(k) > −1/2,

QC

k (n) =
∫ ∞

0
y2k

e−y2/2

√
2π

n−1∑

j=0

(
Hj (y/

√
2)

2 j j !

)2

dy,

where Hj denotes the Hermite polynomial (3.5) of degree j . This shows that QC

k (n) is

analytic in the half-plane Re(k) > −1/2. If we write
∑n−1

j=0(2
j j !)−2

(
Hj (y/

√
2)

)2 =
c2n−2y2n−2 + · · · + c1y + c0 for some constants ci , then

∣∣∣QC

k (n)

∣∣∣ =
∣∣∣∣∣∣

∫ ∞

0
y2k

e−y2/2

√
2π

2n−2∑

j=0

c j y
j dx

∣∣∣∣∣∣
≤

2n−2∑

j=0

∣∣c j
∣∣
∫ ∞

0
y2k+ j

e−y2/2

√
2π

dy.

We use now the elementary inequality a+by+cy2 ≤ (a+b)+(b+c)y2 for a, b, c, y ≥ 0.
Setting di = |c2 j−1| + 2|c2 j | + |c2 j+1| (with c−1 = c2n−1 = 0) we have then

∣∣∣QC

k (n)

∣∣∣ ≤
n−1∑

j=0

d j

∫ ∞

0
y2k+2 j

e−y2/2

√
2π

dy

=
n−1∑

j=0

d j
2k+ j−1

√
π

�(k + j + 1/2)

= 2k√
π

�(k + 1/2)
n−1∑

j=0

d j2
j−1

j−1∏

i=0

(k + 1/2 + i).

Therefore, in−1QC

k (n)/(2k − 1)!! = O(kn−1) as |k| → ∞ with Re(k) > −1/2. In

conclusion, QC

k (n)/(2k − 1)!! and the polynomial P(1)
n−1(i(k + 1); π/2) coincide on

nonnegative integers and their difference is O(ec|k|) for any c > 0. By Carlson’s theorem
the two functions coincide in the whole domain Re(k) > −1/2.

The polynomials qr (s) enjoy the symmetries

qr−1(s) = qs−1(r)

qr (−s) = (−1)r qr (s).

Therefore, QC

k (n) = n (2k − 1)!! qn−1(k + 1) = n (2k − 1)!! (−1)n−1qn−1(−k − 1)
thus explaining the reflection symmetry k → −2−k. Recall that theMeixner–Pollaczek
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polynomial form an orthogonal family with respect to a positive weight on the real line.
Therefore, the zeros of qr (s) are purely imaginary; they occur in conjugate pairs, with
zero included if r is odd. This proves that all the zeros of in−1QC

k (n)/(2k − 1)!! lie on
the line Re(k) = −1. 	

Remark. The polynomials qr (s) satisfy the difference equation

(s + 1)qr (s + 1) = 2(r + 1)qr (s) + (s − 1)qr (s − 1),

and the three-term recurrence

(r + 2)qr+1(s) = 2sqr (s) + rqr−1(s).

Since qr−1(s) = qs−1(r), these are in fact equivalent.
Recalling that QC

k (n) = n (2k − 1)!! qk(n), this yields the Harer–Zagier recursion
[47]

(k + 2)QC

k+1(n) = 2n(2k + 1)QC

k (n) + k(2k + 1)(2k − 1)QC

k−1(n), (4.5)

and the recursion in n

nQC

k (n + 1) = 2(k + 1)QC

k (n) + nQC

k (n − 1). (4.6)

The Meixner–Pollaczek polynomials can be thought as continuous version of the
Meixer polynomials [8]:

P(λ)
n (x; φ) = e−inφ (2λ)n

n! Mn(−λ + i x; 2λ, e−2iφ).

In fact, the normalized moment (4.3) is a Meixner polynomial (see (3.11)) in n − 1 of
degree k or, by symmetry, a Meixner polynomial in k of degree n − 1. The alternative
form of Theorem 4.2 using Meixner polynomials is the following.

Theorem 4.2′.

QC

k (n) = n (2k − 1)!! Mk(n − 1; 2,−1) = n (2k − 1)!! Mn−1(k; 2,−1). (4.7)

The first polynomials are

QC

k (1) = (2k − 1)!!
QC

k (2) = 2(2k − 1)!! · (k + 1)

QC

k (3) = 3(2k − 1)!! · 1
3

(
2k2 + 4k + 3

)

QC

k (4) = 4(2k − 1)!! · 1
3

(
k3 + 3k2 + 5k + 3

)

QC

k (5) = 5(2k − 1)!! · 1

15

(
2k4 + 8k3 + 22k2 + 28k + 15

)
.

Remark. ThenormalisedGUEmoments canbewritten as products ofmoments (2k−1)!!
of a standard Gaussian, times a Meixner polynomial

1

n
QC

k (n) = (2k − 1)!! Mk(n − 1; 2,−1).
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It is natural to ask whether the Meixner polynomials form moment sequences of some
randomvariables, so that one can ‘decompose’ theGUEone-point function asmultiplica-
tive convolution of a standard Gaussian and another probability distribution (product of
two independent random variables). In fact, Ismail and Stanton [48,49] considered the
problem of orthogonal polynomials as moments. It turns out that the Meixner polyno-
mials are moments of translated Beta random variables

(1 − c)1−β �(β)

�(x + β)�(−x)

∫ 1

c
tk (1 − t)x+β−1(t − c)−x−1dt = cnMk(x;β, c),

for Re(x) < 0 and Re(x + β) > 0. Note however that, in our setting, the Meixner
polynomials have nonnegative argument x = n − 1, so that this representation of the
one-point function as a ‘convolution’ is purely formal.

As a corollary of Theorem 4.2 we have the following two identities.

Corollary 4.3. Reflection formula:

1

n

1

(2k − 1)!!Q
C

k (n) = 1

k + 1

1

(2(n − 1) − 1)!!Q
C

n−1(k + 1). (4.8)

Convolution formula:

k∑

j=0

( j + 1)

(2 j − 1)!!
(k − j + 1)

(2(k − j) − 1)!!
QC

j (n)

n

QC

k− j (n)

n

= 1

4

1

(2(k + 2) − 1)!!

(
QC

k+2(2n + 1)

2n + 1
(k + 2 − 2n) +

QC

k+2(2n − 1)

2n − 1
(k + 2 + 2n)

)
.

(4.9)

Proof. The reflection formula follows from the hypergeometric representation in (4.3).
To prove (4.9) we start from the convolution property of the Meixner–Pollaczek poly-
nomials [4]

P(λ+μ)
k (x + y; φ) =

k∑

j=0

P(λ)
j (x; φ)P(μ)

k− j (y; φ).

It follows that

k∑

j=0

(i/2) j
√

π( j + 1)

�( j + 1/2)
QC

j (n)
(i/2)k− j√π(k − j + 1)

�(k − j + 1/2)
QC

k− j (n) = P(2)
k (2in; π/2).

To complete the proof we use the Forward Shift Operator for the Meixner–Pollaczek
polynomials [50, Sec. 9, Eq. (9.7.6)], the reflection formula (4.8), and the recursion
(4.6). 	

Remark. The reflection formula (4.8) relates expectations of power of traces when the
role of k and n is interchanged. We remark that these are not the only quantities invariant
under this type of reflection. The other main examples are moments of characteristic
polynomials. See the work of Mehta and Normand [61, Eq. (3.15)] and Forrester and
Witte [34, Eq. (4.43)]. A generalization of such a duality to all β was obtained in the
work of Desrosiers [30].
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4.2. Laguerre unitary ensemble. The moments of the Laguerre polynomial ensemble
(LUE) enjoy a polynomial property, too. They are (dual) Hahn polynomials (3.9)–(3.10),
or their continuous versions (3.13)–(3.14).

Let Xn be a LUE random matrix with parameter m. Denote α = m − n ≥ 0. Set
QC

k (m, n) = ETr Xk
n for all k ∈ C for which the expectation exists. Then QC

0 (m, n) = n
and, for k ∈ N, it is known that [46]

QC

k (m, n) = 1

k

k∑

i=1

(−1)i−1 (m − i + 1)k(n − i + 1)k
(k − i)!(i − 1)! . (4.10)

For any k ∈ N, QC

k (m, n) is a symmetric polynomial in m, n of degree k + 1, with
positive integer coefficients:

QC

1 (m, n) = mn

QC

2 (m, n) = m2n + mn2

QC

3 (m, n) = m3n + 3m2n2 + mn3 + mn

QC

4 (m, n) = m4n + 6m3n2 + 6m2n3 + mn4 + 5m2n + 5mn2.

In fact, for each positive integer n, QC

k (m, n) is a polynomial in k of degree 2(n−1). After
some manipulations, the moments (4.10) can be expressed in terms of a hypergeometric
function:

QC

k (m, n)

(k + α)! = mn

(1 + α)! 3F2

(
1 − k, 2 + k, 1 − n

2, 2 + α
; 1

)
. (4.11)

This formula can be extended for k ∈ C and satisfies QC

0 (m, n) = n.

Theorem 4.4. If we write k = i x − 1/2, then for Re(k) > −α − 1,

QC

k (m, n) = (k + α)!
(n − 1)! (m − 1)! Sn−1

(
x2; 3

2
,
1

2
, α +

1

2

)
, (4.12)

where Sn−1 denotes the continuous dual Hahn polynomial of degree n−1. In particular
this shows that QC

k (m, n)/(k + α)! can be extended to a polynomial invariant under the
reflection k → −1 − k (reciprocity law) and, moreover, its complex zeros lie on the
critical line Re(k) = −1/2.

Proof. Comparing (4.11) with the hypergeometric representation of continuous dual
Hahn polynomials (3.13) we get the result for k integer. The extension to complex k is
again an application of Carlson’s theorem. 	

An alternative formulation in terms of Hahn and dual Hahn polynomials (3.9)–(3.10) is
as follows.

Theorem 4.4′.

QC

k (m, n) = mn(2 + α)k−1Rn−1((k − 1)(k + 2); 1, 1,−2 − α) (4.13)

= mn(2 + α)k−1Qk−1(n − 1; 1, 1,−2 − α). (4.14)
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Remark. The difference equations / three-term recurrence relations for these polynomi-
als (see [50, Sections 9.5 and 9.6]) yield the Haagerup-Thorbjørnsen recursion [28,45]

(k+2)QC

k+1(m, n)=(2k+1)(2n+α)QC

k (m, n)+(k−1)(k2−α2)QC

k−1(m, n). (4.15)

If k is a positive integer, and we treat α as a parameter, then QC

k (m, n) is a polynomial
in n of degree k + 1. Moreover, we can write

QC

k (m, n) = i1−k

k
n(n + α)pk−1(in; 1, 1 − α, 1, 1 + α), (4.16)

where pk−1 denotes the continuous Hahn polynomial (3.14) of degree k − 1.
Note the alternative formula:

QC

k (m, n) = k!
(
n + k − 1

n − 1

)(
m + k − 1

m − 1

)
3F2

(
1 − k, 1 − n, 1 − m
1 − k − n, 1 − k − m; 1

)
.

If α is fixed and we write QC

k (m, n) = an Rn , where an = n(n + α), then

(k − 1)(k + 2)Rn = an+1Rn+1 − (an+1 + an−1)Rn + an−1Rn−1.

It is very natural to consider m dependent on n. An interesting situation (from the point
of view of the large-n limit) is the case m = cn with c > 0 and fixed. The next result
shows that the moments, as functions of n, are polynomials with all zeros on a vertical
line in the complex plane.

Lemma 4.5. Let m = cn and k a positive integer. Then, n−(k+1)QC

k (cn, n) is a polyno-
mial in n−2 of degree �(k − 1)/2� with positive coefficients.
Proof. From [46, Corollary 2.4] we have

1

nk+1
QC

k (cn, n) =
∑

σ∈Sk
c#(σ )n#(σ )+#(γkσ−1)−(k+1). (4.17)

For any permutation σ ∈ Sk , one has

(−1)k−#(σ ) = sgn(σ ).

Hence

(−1)k−#(σ )+k−#(γkσ−1) = sgn(σ )sgn(γkσ
−1) = sgn(γk) = (−1)k+1

and so

(−1)#(σ )+#(γkσ−1) = (−1)k+1.

Hence #(σ ) + #(γkσ−1) − (k + 1) is even and (4.17) is a polynomial in n−2. 	

Theorem 4.6. Fix c > 0. The zeros of the polynomials QC

k (cn, n) as a function of n are
purely imaginary and satisfy the interlacing property.

Proof. Let qk(n) = QC

k (cn, n)/n. Then for each k, qk(n) is a polynomial of degree k,
with positive coefficients, and only powers nk, nk−2, . . . (see Lemma 4.5). It follows
that if we define pk(x) = i kqk(−i x), then pk(x) is a polynomial of degree k, with
alternating signs, and satisfies the (Haagerup-Thorbjørnsen) recursion

(k+1)pk(x)=(c+1)(2k−1)xpk−1(x)−(k−2)((k−1)2 +(c−1)2x2)pk−2(x). (4.18)

It now follows from[57,Corollary 2.4] that {pk(x)} is a ‘Sturmsequence’ of polynomials.
Hence the pk’s have only real zeros, and they satisfy the interlacing property. 	
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4.3. Jacobi unitary ensemble. Let Xn be a JUE randommatrix of size n with parameters
α1 = m1 − n, α2 = m2 − n. It turns out that the suitable statistics in this ensemble are
differences of consecutive moments �QC

k (α1, α2, n), defined as

QC

k (α1, α2, n) = ETr Xk
n

�QC

k (α1, α2, n) = QC

k (α1, α2, n) − QC

k+1(α1, α2, n)

for all k ∈ C for which the expectations exist.

Theorem 4.7. In terms of Wilson polynomials, writing k = i x − 1/2, for Re(k) >

−α2 − 1,

�QC

k (α1, α2, n) = (k + α2)!
(k + α1 + α2 + 2n)!

(α1 + n) (α1 + α2 + n)!
(n − 1)! (α2 + n − 1)!

(−1)n−1Wn−1

(
x2; 3

2
,
1

2
, α2 +

1

2
,
1

2
− α1 − α2 − 2n

)
. (4.19)

This shows that�QC

k (α1, α2, n)((k+α1+α2)!/(k+α1)!) can be extended to a polynomial
invariant under the reflection k → −1− k (reciprocity law) and, moreover, its complex
zeros lie on the critical line Re(k) = −1/2.

In this case, our strategy is to look for a three-term recursion for �QC

k (α1, α2, n) when
k is an integer. In fact, adapting a method due to Ledoux [54, Eq. (30)–(31)], we find
the following recurrence relation for the JUE which is the analogue of the Harer–Zagier
and Haagerup–Thorbjørnsen recursions.

Proposition 4.8 (Three term recurrence relation for JUE). Let k ∈ Z. Then,

Rk�QC

k+1(α1, α2, n) + Sk�QC

k (α1, α2, n) + Tk�QC

k−1(α1, α2, n) = 0, (4.20)

with ‘initial conditions’

�QC

0 (α1, α2, n) = n(α1 + n)

α1 + α2 + 2n
(4.21)

�QC

1 (α1, α2, n) = n(α1 + α2 + n)(α1 + n)(α2 + n)

(α1 + α2 + 2n − 1)(α1 + α2 + 2n)(α1 + α2 + 2n + 1)
. (4.22)

The coefficient Rk, Sk , and Tk are given by

Rk(α1, α2, n) = (k + 2)((α1 + α2 + 2n)2 − (k + 1)2),

Sk(α1, α2, n) = −(2k + 1)(2n(α1 + α2 + n) + α2
2 + α1α2 − k(k + 1)),

Tk(α1, α2, n) = (k − 1)(α2
2 − k2).

Proof of Theorem 4.7. The proof is immediate when k is a nonnegative integer by
observing that (4.20) is the discrete S-L problem for Wilson polynomials, and by
checking the initial conditions. For k complex we can use the same method of
Theorem 4.2. 	
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Remark. Using the hypergeometric representation of Wilson polynomials (3.12) we
have the explicit formula

�QC

k (α1, α2, n) = �QC

1 (α1, α2, n)
(k + α2)!
(1 + α2)!

(1 + α1 + α2 + 2n)!
(k + α1 + α2 + 2n)!

× 4F3

(
1 − k, 2 + k, 1 − n, 1 − n − α1
2, 2 + α2, 2 − α1 − α2 − 2n ; 1

)
.

To our knowledge, this hypergeometric representation is new.

Remark. Ledoux [54] obtained a fourth order recursion for moment differences of the
Jacobi ensemble, but the ensemble he considers is shifted compared to ours. In our
notation, the moments L(k) considered in [54] can be written as

L(k) =
∫ 1

0
(2x − 1)kρ(2)

n (x)dx =
k∑

j=0

(
k

j

)
2 j (−1)k− j

∫ 1

0
x jρ(2)

n (x)

for which it is shown that L(k) − L(k + 2) satisfies a fourth order recursion. Using
(2x − 1)k − (2x − 1)k+2 = 4(2x − 1)k(x − x2) we obtain

L(k) − L(k + 2) =
k∑

j=0

(
k

j

)
2 j+2(−1)k− j�QC

j+1(α1, α2, n).

It follows that Ledoux’s moment differences can be expressed as a linear combination
of hypergeometric functions.

The difference of moments �QC

k (α1, α2, n) can alternatively be written in terms of
Racah polynomials.

Theorem 4.7′. The JUE difference of moments is (α1 + α2 + n /∈ Z)

�QC

k (α1, α2, n) = (−1)n−1n(n + α1)(n + α2)(n + α1 + α2)

× sin (π (α1 + α2 + 2n − 1))

sin (π (α1 + α2 + n))

(2 + α2)k−1

(α1 + α2 + 2n − 1)k+2
×Rn−1 ((k − 1) (k + 2) ; 1,−α1 − 2n, 1 − α1 − α2 − 2n, 1 + α1 + α2 + 2n) .

(4.23)

Using the recurrence relation (4.20), one can verify the following identity between
positive and negative moments (this is the analogue of (2.3)).

Proposition 4.9 (Reciprocity law for JUE).

�QC

−(k+1)(α1, α2, n) =
⎛

⎝
k∏

j=−k

α1 + α2 + 2n − j

α2 − j

⎞

⎠ �QC

k (α1, α2, n). (4.24)
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For instance, (α1 = m1 − n, α2 = m2 − n):

�QC

0 (α1, α2, n) = nm1

α1 + α2 + 2n

�QC−1(α1, α2, n) = nm1

α2

�QC

1 (α1, α2, n) = nm1m2(m1 + m2 − n)

(α1 + α2 + 2n)
(
(α1 + α2 + 2n)2 − 1

)

�QC−2(α1, α2, n) = nm1m2(m1 + m2 − n)

α2
(
α2
2 − 1

)

�QC

2 (α1, α2, n) = nm1m2(m1 + m2 − n) (m2(m1 + m2 − n) + nm1 − 2)

(α1 + α2 + 2n)
(
(α1 + α2 + 2n)2 − 1

) (
(α1 + α2 + 2n)2 − 4

)

�QC−3(α1, α2, n) = nm1m2(m1 + m2 − n) (m2(m1 + m2 − n) + nm1 − 2)

α2
(
α2
2 − 1

) (
α2
2 − 4

) .

4.4. Generating functions. It is sometimes convenient to define the moments of random
matrices in terms of their generating function. The first example of such a generating
function was constructed by Harer and Zagier for the GUE of fixed size n (see Eq. (4.25)
below). This convergent series is a rational function. As emphasised by Morozov and
Shakirov [69], from the point of view of randommatrices and enumeration problems, this
is a highly non-trivial result: a generating function for moments at all genera appears
to be rational. The generating function of covariances of the GUE computed in [69]
turns out to be again an elementary function. The generating function of higher order
cumulants of the GUE have been studied recently by Dubrovin and Yang [31] who
expressed them in terms of traces of 2 × 2 matrix-valued series.

One of the advantages of the representation of the moments in terms of hypergeo-
metric OP’s discussed in the present work, is that we can write explicit formulae for the
generating functions of themoments of GUE and LUE for fixed n and/or k. Remarkably,
these closed expressions are elementary functions.

Proposition 4.10. Let QC

k (n) and QC

k (m, n) be the moments of the GUE and LUE,
respectively. Then

GUE:

∞∑

k=0

QC

k (n)

(2k − 1)!! t
k = 1

2t

((
1 + t

1 − t

)n

− 1

)
(4.25)

∞∑

n=1

QC

k (n)

(2k − 1)!! z
n = z

1 − z2

(
1 + z

1 − z

)k+1

(4.26)

∑

n≥1,k≥0

QC

k (n)

(2k − 1)!! t
k zn = z

1 − z

1

(1 − t) − z(1 + t)
. (4.27)
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LUE:
∞∑

k=1

QC

k (m, n)

(k − 1)!
tk

k! = tet L(1)
n−1(−t)L(1)

m−1(−t). (4.28)

∞∑

n=1

QC

k (m, n)
(m − 1)!
(k + α)!

zn

n! = z

(1 − z)α+k+1
2F1

(−k, 1 − k
2 ; z

)
(4.29)

∑

n,m,k≥1

QC

k (m, n)

(k − 1)!
zn1z

m
2 t

k

k! = z1z2t

(1 − z1)2(1 − z2)2
exp

(
3z1z2 − 2(z1 + z2) + 1

(1 − z1)(1 − z2)
t

)
.

(4.30)

Proof. The sum (4.25) can be computed from (4.7) using the formula of the generating
function of Meixner polynomials [50, Eq. (9.10.11)]:

∞∑

k=1

k

n

QC

k (n)

(2k − 1)!! t
k−1 =

(
1 + t

1 − t

)n−1

.

The formula for generating function (4.25) follows from the identity

n

t

d

dt

∞∑

k=0

QC

k (n)

(2k − 1)!! t
k =

∞∑

k=1

k

n

QC

k (n)

(2k − 1)!! t
k−1.

The generating function (4.26) for fixed k, is a direct consequence of the repre-
sentation of the moments in terms of Meixner–Pollaczek polynomials (4.4) and their
generating function [50, Eq. (9.7.11)].

Finally, the joint generating function (4.27) is the resummation in n of (4.25) (or the
resummation in k of (4.26)).

For the LUE we use the generating series of continuous (dual) Hahn polynomials.
From the representation of the LUE moments as continuous Hahn (4.16), using [50, Eq.
(9.5.11)] we get

∞∑

k=1

QC

k (m, n)

nm (k − 1)!
tk−1

k! = 1F1

(
1 − n
2 ;−t

)
1F1

(
1 + m
2 ; t

)

= 1F1

(
1 − n
2 ;−t

)
1F1

(
1 − m

2 ;−t

)
et .

Note that the hypergeometric functions on the right-hand side are terminating series. In
fact, they are Laguerre polynomials [50, Eq. (9.12.1)], thus proving (4.28).

For (4.29) we use the representation in terms of continuous dual Hahn polynomi-
als (4.12) and the formula of the generating series [50, Eq. (9.3.11)]. We have

∞∑

n=1

QC

k (m, n)
(m − 1)!
(k + α)!

zn

n! = z

(1 − z)α−k 2F1

(
k + 2, k + 1

2 ; z
)

,

which is equal to (4.29) by Euler’s tranformation. Note that the hypergeometric series
is terminating. In fact, one could also write it in terms of Jacobi polynomials.

The joint generating series in (4.30) is a resummation of (4.28) over n and
m using the known formula for the generating function of Laguerre polynomials
[50, Eq. (9.12.10)]. 	
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Remark. The series (4.25) was computed by Harer and Zagier [47] using different meth-
ods. It is surprising that, although the three-term recurrence in k and the generating
function were known, nobody recognized the moments of the GUE as Meixner poly-
nomials. The generating function of the GUE for fixed k (Eq. (4.26)) does not seem to
appear in the previous literature. The joint series (4.27) appears in the work of Morozov
and Shakirov [69] who stressed the nontrivial fact that it is a rational function in both
variables.

The generating functions (4.28)–(4.29)–(4.30) for the LUE seem to be new. It is
remarkable, again, that these series sum to elementary functions.

5. Large-n Asymptotics of the Spectral Zeta Functions

It is a classical result that, after rescaling, the one-point function ρ
(β)
n (x) of the random

matrix ensembles considered in this paper weakly converges to a compactly supported
probability measure, as n goes to infinity. The limit ρ∞(x) is known as equilibrium
measure of the ensemble and does not depend on the Dyson index β. In formulae, for
all k ∈ N,

lim
n→∞

1

nk+1
ETr Xk

n =
∫

xkρ∞(x)dx .

This suggests to define the limit zeta function ζ∞(s) as the analytic continuation of∫ |x |−sρ∞(x)dx . The limit zeta functions for the classical ensembles turn out to be
meromorphic functions. For the LUE and JUE, ζ∞(s) has infinitely many nontrivial
zeros, and they all lie on a critical line.

We discuss the three classical ensembles separately. For notational convenience we
consider the GUE, LUE and JUE, although the results hold true for any β-ensemble.

5.1. Gaussian ensemble. The equilibrium measure is given by the semicircular law

ρ∞(x) = 1

2π

√
4 − x2 1x∈(−2,2). (5.1)

After a suitable rescaling, in the large-n limit, the integer moments converge to the
Catalan numbers:

lim
n→∞

1

nk+1
QC

k (n) =
∫

x2kρ∞(x)dx = 1

k + 1

(
2k

k

)
. (5.2)

This formula can be analytically continued and suggests to define the limit GUE zeta
function as the analytic continuation of

∫ |x |−sρ∞(x)dx :

ζ∞(s) = 2−s �
( 1−s

2

)
√

π �
(
2 − s

2

) . (5.3)

This function has alternating simple poles and zeros on the positive integers, with no
other zeros in the rest of the complex plane. The large-n limit is more interesting for
matrices in Laguerre and Jacobi ensembles.
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5.2. Laguerre ensemble. Let Xn be in the Laguerre unitary ensemble. Set α = m−n =
(c − 1)n, with c ≥ 1. Define the equilibrium measure

ρ∞(x) = 1

2πx

√
(x+ − x)(x − x−) 1x∈(x−,x+) (5.4)

where x± = (1 ± √
c)2 ≥ 0 (this is the celebrated Marchenko–Pastur distribution).

Then,

lim
n→∞

1

nk+1
QC

k ((c − 1)n, n) =
∫

R

xkρ∞(x)dx . (5.5)

Define the limit LUE zeta function as

ζ∞(s) =
∫

R

|x |−sρ∞(x) d x (5.6)

with ρ∞(x) in (5.4). From the finite-n functional equation ξn(s) = ξn(1 − s), we see
that a good definition for the limit n → ∞ is

ξ∞(s) = (x−x+)s/2ζ∞(s).

Proposition 5.1. Assume c > 1. Then, the functional equation ξ∞(s) = ξ∞(1 − s)
holds, and the zeros of the ζ∞(s) all lie on the critical line Re(s) = 1/2.

Proof. To prove the functional equation it suffices to use the change of coordinates
y = (x+x−)/x in the integral (5.6), and notice that x−x+ = (c − 1)2. Alternatively, a
calculation using Euler’s integral formula and Pfaff transformation, reveals that

ζ∞(s) = 1

16

(x+ − x−)2

(x−)s+1
2F1

(
3/2, s + 1

3 ; x− − x+
x−

)

= c(1 − c)−s−1
2F1

(
3
4 + 1

2

(
s − 1

2

)
, 3
4 − 1

2

(
s − 1

2

)

2
;− 4c

(1 − c)2

)
. (5.7)

Then apply Euler’s transformation formula to show the functional equation.
To show that the zeros of ξ∞(s) are on the critical line we use an argument based on

Sturm–Liouville theory (we borrowed this argument from a similar problem in a paper
by Biane [15]).

First, observe that the integral (5.6) can not vanish for s real. We want to show that
the zeros of

2F1

(
3
4 + μ, 3

4 − μ

2
;− 4c

(1 − c)2

)
,

where 2μ = s−1/2, lie on the imaginary axis. The function y(z) = 2F1(3/4+μ, 3/4−
μ; 2;−z) satisfies the hypergeometric equation

z(1 + z)y′′ + (2 + 5z/2)y′ + (9/16 − μ2)y = 0.

Thus, ifμ is such that y(4c/(1−c)2) = 0, then y(x) is a solution to the Sturm–Liouville
problem

(p(x)y′(x))′ + q(x)y(x) = μ2w(x)y(x)

on [4c/(1 − c)2,∞), with Dirichlet boundary conditions, where p(x) = x2(1 + x)1/2,
q(x) = (9/16)w(x) andw(x) = x(1+ x)−1/2. It then follows from the Sturm–Liouville
theory that the eigenvalues μ2 are real which can only happen if μ is real or purely
imaginary. Since we have excluded the real case, we conclude that 2μ = s − 1/2 is
purely imaginary: the zeros of ζ∞(s) all lie on the critical line Re(s) = 1/2. 	
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5.3. Jacobi ensemble. Let Xn be in the JUE.
Set α1,2 = (c1,2 − 1)n, with c1,2 ≥ 1. Then, the equilibrium measure is

ρ∞(x) = c1 + c2
2πx(1 − x)

√
(x+ − x)(x − x−) 1x∈(x−,x+) (5.8)

where x± =
(√

c1±√
c2(c1+c2−1)
c1+c2

)2
, and

lim
n→∞

1

nk+1
QC

k ((c1 − 1)n, (c2 − 1)n, n) =
∫

R

xk(1 − x)ρ∞(x) d x . (5.9)

Define the limit JUE zeta function as

ζ∞(s) =
∫

R

|x |−sρ∞(x) d x (5.10)

with ρ∞(x) in (5.8). Again, the finite-n functional equation ξn(s) = ξn(1− s), suggests
the definition of

ξ∞(s) = (x−x+)s/2 (ζ∞(s) − ζ∞(s − 1)) .

Proposition 5.2. Assume c1,2 > 1. Then, the functional equation ξ∞(s) = ξ∞(1 − s)
holds, and the complex zeros of ξ∞(s) all lie on the critical line Re(s) = 1/2.

Proof. Using Euler’s integral formula, we have

ζ∞(s) = c1 + c2
16

(x+ − x−)2

(x−)s+1
2F1

(
3/2, s + 1

3 ; x− − x+
x−

)
. (5.11)

The proof of Proposition 5.1 is easily adapted. 	


6. Beyond Random Matrices: Wronskians of Orthogonal Polynomials

6.1. Mellin transform of orthogonal polynomials. Bump and Ng [19] and Bump, Choi,
Kurlberg and Vaaler [20] made the remarkable discovery that the Mellin transforms of
Hermite and Laguerre functions have zeros on the critical line Re(s) = 1/2. Their proof
is based on the observation that the Mellin transform preserves orthogonality. Hence,
Mellin transforms of orthogonal polynomials are themselves orthogonal with respect to
some inner product. Later [22–24] it was noticed that those orthogonal functions are
hypergeometric OP’s (multiplied by some nonnegative integrable weight).

Consider, for concreteness, the Hermite polynomials Hn(x) and the normalised Her-
mite wavefunctions φn(x) = (2nn!√π)−1/2e−x2/2Hn(x). The following proposition
follows from the result of Bump et al. [19,20].

Proposition 6.1 (Mellin transform of Hermite functions). For all integers n ≥ 0

φ∗
2n(s) = in2n−1+ s

2
n!√

(2n)!√π
�

( s
2

)
P

(
1
4

)

n

(
−i

(s − 1/2)

2
; π

2

)

φ∗
2n+1(s) = in2n+

s
2

n!√
(2n + 1)!√π

�

(
s + 1

2

)
P

(
3
4

)

n

(
−i

(s − 1/2)

2
; π

2

)
.

The averaged spectral zeta function of unitary invariant ensembles of randommatrices
can be interpreted as Mellin transform of Wronskians of adjacent Hermite, Laguerre
or Jacobi wavefunctions. Given our results, it is natural to ask whether more general
Wronskians have the property that their Mellin transforms can be written in terms of
hypergeometric OP’s.
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6.2. Mellin transforms of products andWronskians of classical orthogonal polynomials.
In this section we will use repeatedly the properties (B.2)–(B.3)–(B.4) of the Mellin
transform.

The Wronskian of smooth functions f1(x) . . . , fm(x) is defined as

Wr( f1(x), . . . , fm(x)) = det
(
f (i−1)
j (x)

)m
i, j=1

.

Note the homogeneity property

Wr(g(x) f1(x), . . . , g(x) fm(x)) = (g(x))m Wr( f1(x), . . . , fm(x)).

Consider the Hermite, Laguerre and Jacobi polynomials defined in (3.5)–(3.6)–(3.7),
and the associated normalised wavefunctions

φn(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2nn!√π)−1/2e−x2/2Hn(x) (Hermite)

√
n!

�(n + α + 1)
xα/2e−x/2L(α)

n (x) χR+(x) (Laguerre)

√
n!(α1 + α2 + 2n + 1)�(α1 + α2 + n + 1)

�(α1 + n + 1)�(α2 + n + 1)

× (1 − x)α1/2xα2/2P(α1,α2)
n (x) χ[0,1](x) (Jacobi).

(6.1)

The wavefunctions are orthonormal
∫

I
φn(x)φm(x)dx = δn,m,

where I = R,R+, and [0, 1] for Hermite, Laguerre, and Jacobi, respectively. We set

ωn,�(x) = φn(x)φn+�(x)

Wn,�(x) = Wr(φn(x), φn+�(x)).

Theorem 6.2. Let φn(x) be Hermite wavefunctions (6.1). Then,

i) the Mellin transform of the products is

ω∗
n,�(s) = in2

�
2−s

√
n!

(n + �)!
�(s)

�
( s−�+1

2

) P

(
�+1
2

)

n

(
− is

2
; π

2

)
; (6.2)

ii) the Mellin transform of the Wronskians is

W ∗
n,�(s − 1) = 2�

s − 1
ω∗
n,�(s). (6.3)

Proof. Part i): Given the three-term recurrence of the Meixner–Pollaczek polynomials
[50, Sec. 9, Eq. (9.7.3)], it is sufficient to show that ω∗

n,�(s) satisfies the recurrence

√
(n + 1)(n + � + 1)ω∗

n+1,�(s) − sω∗
n,�(s) − √

n(n + �)ω∗
n−1,�(s) = 0. (6.4)
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Using the three-term recurrence of the Hermite functions
√
n + 1φn+1(x) − √

2xφn(x) +
√
nφn−1(x) = 0 (6.5)

we have
√

(n + 1)(n + � + 1)ωn+1,�(x) = 2x2ωn,�(x) +
√
n(n + �)ωn−1,�(x)

−√
2x

(√
n + �ωn,�−1(x) +

√
nωn−1,�+1(x)

)
.

We now take the Mellin transform of both sides. Using the equation

φ′
n(x) + xφn(x) − √

2nφn−1(x) = 0, (6.6)

we get
√

(n + 1)(n + � + 1)ω∗
n+1,�(s) = −M [

xω′
n,�(x); s

]
+

√
n(n + �)ω∗

n−1,�(s).

The fact thatM
[
xω′

n,�(x); s
]

= −sω∗
n,�(s) follows from integration by parts (or prop-

erty (B.4) of the Mellin transform, with m = 1). We have proved (6.4). To complete the
proof of (6.2) we compute the initial conditions

ω∗
0,�(s) = 2

�
2−s

√
�!

�(s)

�
( s−�+1

2

) , and ω∗
1,�(s) = 2

�
2−s

√
(� + 1)!

�(s)

�
( s−�+1

2

) s.

Part ii): Note that

Wn,�(x) = √
2(n + �)ωn,�−1(x) − √

2nωn−1,�+1(x)

where we have used the identity (6.6). Taking the Mellin transform of both sides, substi-
tuting the identity (6.2), and using the Forward Shift Operator for theMeixner–Pollaczek
polynomials [50, Sec. 9, Eq. (9.7.6)] we complete the proof of (6.3). 	


The following analogue of Proposition 6.1 for the Laguerre wavefunction is essen-
tially due to Bump et al. [20] and Coffey [22,23].

Proposition 6.3. Let φn(x) be Laguerre wavefunctions (6.1). Then

φ∗
n (s) = (−i)n2s+α/2

√
n!

�(n + α + 1)
�(s + α/2)P

( 1+α
2 )

n

(
1

i
(s − 1/2); π

2

)
.

Theorem 6.4. Let φn(x) be Laguerre wavefunctions. Then,

i) the Mellin transform of the products is

ω∗
n,�(s) = (−1)�

�(s)�(s + α)

�(s − �)
√
n!(n + �)!�(n + α + 1)�(n + � + α + 1)

×Sn
(
− (s − 1/2)2 ; � + 1/2, 1/2, α + 1/2

)
; (6.7)

ii) the Mellin transform of the Wronskians is

W ∗
n,�(s − 1) = �

s − 1
ω∗
n,�(s). (6.8)
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Proof. Given the three-term recurrence of the continuous dual Hahn polynomials [50,
Sec. 9, Eq. (9.3.4)], we need to show that ω∗

n,�(s) satisfies

√
An(n + 1)(n + α + 1) ω∗

n+1,�(s) = (An + Cn − �(� + 1) + s(s − 1))ω∗
n,�(s)

−√
Cn(n + �)(n + � + α)ω∗

n−1,�(s), (6.9)

with An = (n + � + 1)(n + � + α + 1) and Cn = n(n + α). Using the relations
√

(n + 1)(n + α + 1)φn+1(x) = (2n + α + 1 − x)φn(x) − √
n(n + α)φn−1(x), (6.10)

xφ′
n(x) = 1

2
(2n + α − x)φn(x) − √

n(n + α)φn−1(x), (6.11)

we have the identity

√
An(n + 1)(n + α + 1) ωn+1,�(x) = (An + Cn − �(� + 1))ωn,�(x) +

(
x2ω′

n,�(x)
)′

−√
Cn(n + �)(n + � + α)ωn−1,�(x).

Taking the Mellin transform of both sides and using (B.2)–(B.4) we get (6.9). The initial
conditions are

ω∗
0,�(s) =(−1)�

�(s)�(s + α)

�(s − �)
√

�(� + 1)�(α + 1)�(� + α + 1)
,

ω∗
1,�(s) =(−1)�

�(s)�(s + α)
(
s2 − s + (α + 1)(� + 1)

)

�(s − �)
√

�(� + 2)�(α + 2)�(� + α + 2)
.

These complete the proof of (6.7). Similarly to the Hermite case, Eq. (6.8) can be proved
by using (6.10)–(6.11), and the elementary properties of the Mellin transform (B.2)–
(B.4). 	


Using the very same method one can show that the Mellin transform of products and
Wronskians of two Jacobi wavefunctions is essentially a Wilson polynomial. The proof
follows the same lines as the Hermite and Laguerre cases and is omitted.

Theorem 6.5. Let φn(x) be Jacobi wavefunctions (6.1). Then,

i) the Mellin transform of the products is

ω∗
n,�(s) =

√
(α1 + α2 + 2n + 1)�(α1 + α2 + n + 1)

n!�(α1 + n + 1)�(α2 + n + 1)

×
√

(α1 + α2 + 2(n + �) + 1)�(α1 + α2 + n + � + 1)

(n + �)!�(α1 + n + � + 1)�(α2 + n + � + 1)

× (−1)n�(α1 + n + � + 1)
�(s)�(α2 + s)

�(s − �)�(α1 + α2 + 2n + � + 1)

× Wn

(
−

(
s − 1

2

)2

; � +
1

2
,
1

2
, α2 +

1

2
,−α1 − α2 − 2n − � − 1

2

)
,

(6.12)
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ii) the difference of Mellin transforms of the Wronskians is

W ∗
n,�(s) − W ∗

n,�(s − 1) = �

s − 1
ω∗
n,�(s). (6.13)

We can also calculate the Mellin transform of a single Jacobi wavefunction in terms
of a continuous Hahn polynomial. The interesting case turns out to be for weights with
slightly shifted parameters.

Theorem 6.6. Consider the functions

φ̃n(x) = x
α2−1
2 (1 − x)

α1−1
2 P(α1,α2)

n (x)χ[0,1](x). (6.14)

Then the Mellin transform can be written in terms of continuous Hahn polynomials:

φ̃∗
n (s) =

�
(
s + α2−1

2 + n
)

�
(
s + α1+α2

2 + n
)�

(
α1 + 1

2

)
(−i)n

× pn(−i(s − 1), (α2 + 1)/2,−(α1 + α2)/2 − n, (α2 + 1)/2,

− (α1 + α2)/2 − n).

(6.15)

These polynomials have zeros on the vertical lineRe(s) = 1 and satisfy an orthogonality
condition. They are invariant under the reflection s → 2 − s (up to a change of sign if
n is odd).

Proof. To identify the continuousHahn polynomial, one employs the standard expansion
of Jacobi polynomials and calculates the Mellin transform integrating term by term. The
result is a hypergeometric sum which can be identified with definition 3.13, leading to
(6.15). The difficulty in establishing the conclusion is that these polynomials are only
known to be orthogonal when the parameters have positive real part.

We proceed by expressing the right-hand side of (6.15) in terms of Wilson polyno-
mials and apply a result of Neretin [71]. We claim that for generic parameters a, b ∈ C,
we have

p2n(x, a, b, a, b) ∝ Wn(x
2, 0, 1/2, a, b) (6.16)

p2n+1(x, a, b, a, b) ∝ xWn(x
2, 1, 1/2, a, b) (6.17)

up to a constant independent of x . If a and b have positive real part, this follows by
writing the orthogonality condition for the Wilson polynomials with the parameters
given in (6.16) or (6.17). Use of the duplication formula for the Gamma function shows
that the weight reduces to |�(a + i x)|2 |�(b + i x)|2 which is the weight function for
continuous Hahn polynomials. If a or b have negative real part the identity follows
by analytic continuation. Now inserting (6.16) and (6.17) into (6.15) and applying the
orthogonality (C.2) completes the proof. 	


Going back to random matrices, we obtain exact ordinary differential equations for
the one-point functions of the classical ensembles. Denote by ρ

(2)
n (x) the one-point

function of the ensembles GUE, LUE, or JUE. As already discussed in the Introducion,
ρ

(2)
n (x) can be represented as the Wronskian of two adjacent wavefunctions.
The following proposition is a corollary of the previous theorems on Mellin trans-

forms of Wronskians. For GUE and LUE we recover a result obtained and used earlier
by Götze and Tikhomirov [42, Lemma 2.1 and Lemma 3.1]. For the JUE a similar result
does not seem to have been published.
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Proposition 6.7. The one-point correlation function ρ
(2)
n (x) satisfies the differential

equation Dρ
(2)
n (x) = 0, where

Dy =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y′′′ + (4n − x2)y′ + xy (GUE)

x2y′′′ + 4xy′′ + (x − a)(b − x)y′ +
(
1 + b

2
− α2

x

)
y, (LUE)

x2((1 − x)3y)′′′′ + x((4 + x)(1 − x)2y)′′ + (1 − x)A(x)y′ + B(x)y, (JUE)

where

a = m + n − √
4mn + 2, b = m + n +

√
4mn + 2,

and

A(x) = −
(
(α1 + α2)

2 − 2
)
x2 − 4nx(x − 1)(α1 + α2 + n) + 2α2x(α1 + α2) − α2

2 + 2,

B(x) = x2((α1 + 2n)2 − 4) − 6nx(α1 + n) + 2x − 2

+α2(2x − 1)(x − 1)(α1 + 2n) + 2n(α1 + n) − α2
2

x
(1 − x)3.

Proof. We present the proof for the GUE. The one-point function ρ
(2)
n (x) of the GUE

is proportional to the Wronskian of consecutive Hermite functions Wn−1,1(x/
√
2) =

Wr(φn−1(x/
√
2), φn(x/

√
2)). To prove the Theorem for the GUE it is therefore suffi-

cient to show that the function Wn,1(x) satisfies the third-order differential equation

W ′′′
n,1(x) + 4(2(n + 1) − x2)W ′

n,1(x) + 4xW ′′′
n,1(x) = 0.

The Harer–Zagier recurrence relation (4.5) for the moments of the GUE is in fact a
difference equation for the Mellin transform W ∗

n,1(s)

s(s + 1)(s + 2)W ∗
n,1(s) + 8(s + 2)(n + 1)W ∗

n,1(s + 2) − 4(s + 5)W ∗
n,1(s + 4) = 0.

(6.18)

Using the properties (B.2)–(B.4) of the Mellin transform we get the claim.
For the LUE and JUE the proof follows the same steps starting from the recurrence

relations (4.15) and (4.20). 	

Remark. It is natural to ask whether Wronskians of nonadjacent wavefunctions satisfy
similar differential equations. TheMellin transforms of thoseWronskians are essentially
hypergeometric OP’s (see Theorems 6.2, 6.4, and 6.5). Hence, they satisfy a discrete
Sturm–Liouville problem. Upon inversion of the Mellin transform this discrete problem
correspond to a differential equation.

We discuss, for concreteness the case of Wronskian of Hermite wavefunctions
Wn,�(x) = Wr(φn(x), φn+�(x)). Its Mellin transform is given in (6.2)–(6.3). From the
difference equation of Meixner–Pollaczek polynomials
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(� − s − 2)P

(
�+1
2

)

n

(
− i(s + 1)

2
; π

2

)
− 2(2n + s + 1)P

(
�+1
2

)

n

(
− i(s + 3)

2
; π

2

)

+ (� + s + 4)P

(
�+1
2

)

n

(
− i(s + 5)

2
; π

2

)
= 0,

the Mellin transform of the Wronskian satisfies the difference equation

s(s + 1)(s + 2)(s + 3)(� − s − 2)W ∗
n,�(s)

− 4(s + 2)(s + 3)(2n + � + 1)(s − � + 2)W ∗
n,�(s + 2)

+ 4((s + 4)2 − �2)(s − � + 2)W ∗
n,�(s + 4) = 0. (6.19)

This implies that, for generic n and �,Wn,�(x) satisfies a fifth-order differential equation.
When when � = 1, formula (6.19) simplifies as (6.18), which corresponds to the third-
order equation of Proposition 6.7.

6.3. Convolution of hypergeometric OP’s. If φn(x) are the Hermite, Laguerre, or Jacobi
functions and ωn,�(x) = φn(x)φn+�(x), by the convolution property (B.5) of the Mellin
transform, we have

1

2π i

∫ c+i∞

c−i∞
φ∗
n (s − u)φ∗

n+�(u)du = ω∗
n,�(s), (6.20)

with c in the fundamental strip of convergence of the Mellin transform. Note that φn(x)
is in L2(R+) so that the fundamental strip always contains the line 1

2 + iR. Given that φ
∗
n ,

φ∗
n+� and ω∗

n,� have hypergeometric OP’s factors, the above formula is a ‘convolution
formula’ for hypergeoemetric OP’s. Note that this is different from the usual (discrete)
convolutions formulas of orthogonal polynomials.

When φn(x) is a Hermite wavefunction, φ∗
n (s) has aMeixner–Pollaczeck polynomial

factor whose parameter depends on the parity of n. Using the explicit expressions in
Proposition 6.1 and Theorem 6.2 we can write the special cases of (6.20):

1

2π i

∫ 1
2 +i∞

1
2−i∞

�

(
s − u

2

)
�

(u
2

)
P

(
1
4

)

m

(
s − u − 1/2

2i
; π

2

)
P

(
1
4

)

n

(
u − 1/2

2i
; π

2

)
du

= 2�−m−n− 3
2 s+2i2r−m−n

√
π(2r)!
m!n!

�(s)

�
( s+1

2 − �
) P

(
�+ 1

2

)

2r

( s

2i
; π

2

)
(6.21)

1

2π i

∫ 1
2 +i∞

1
2−i∞

�

(
s − u + 1

2

)
�

(
u + 1

2

)
P

(
3
4

)

m

(
s − u − 1/2

2i
; π

2

)
P

(
3
4

)

n

(
u − 1/2

2i
; π

2

)
du

= 2�−m−n− 3
2 s i2r−m−n+1

√
π(2r + 1)!
m!n!

�(s)

�
( s+1

2 − �
) P

(
�+ 1

2

)

2r+1

( s

2i
; π

2

)
(6.22)

1

2π i

∫ 1
2 +i∞

1
2−i∞

�

(
s − u + 1

2

)
�

(u
2

)
P

(
3
4

)

m
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(
s − u − 1/2

2i
; π

2

)
P

(
1
4

)

n

(
u − 1/2

2i
; π

2

)
du

= 2�−m−n− 3
2 s+

3
2 i2r−m−n

√
π(2r)!
m!n!

�(s)

�
( s
2 − �

) P(�+1)
2r

( s

2i
; π

2

)
(6.23)

with r = min(m, n) and � = |m − n|.
In a similar way, from Proposition 6.3 and Theorem 6.4, the convolution prop-

erty (6.20) gives the identity

1

2π

1
2 +i∞∫

1
2−i∞

�
(
s − u +

α

2

)
�

(
u +

α

2

)
P

(
α+1
2

)

m

(
s − u − 1/2

i
; π

2

)
P

(
α+1
2

)

n

(
s − 1/2

i
; π

2

)
du

= (−1)mn+�

m!n!
�(s)�(s + α)

2s+α�(s − �)
Sr

(
−

(
s − 1

2

)2

; � +
1

2
,
1

2
, α +

1

2

)
(6.24)

with r = min(m, n) and � = |m − n|.

7. Higher Order Cumulants

It is tempting to look for reciprocity formulae for cumulants of higher order
(covariances, etc.). Write the moments as QC

k (m, n) = ETr Xk
n , second order

moments as QC

k,l(m, n) = ETr Xk
n Tr X

l
n , and covariances as CC

k,l = QC

k,l(m, n) −
QC

k (m, n)QC

l (m, n).
Positive and negative moments of LUE matrices satisfy recursion relations known as

loop equations. The following lemma can be proved using standard methods in random
matrix theory (see, e.g. [33] for similar loop equations for positivemoments of theGUE).

Lemma 7.1 (Loop equations for positive and negativemoments of LUE).For k1, . . . , kv

∈ N, the positive and negative moments satisfy the relations (loop equations):

k1−1∑

�=0

ETr X�
n Tr X

k1−�+1
n Tr Xk2

n · · ·Tr Xkv
n +

v∑

j=2

k jETr X
k1+k j−1
n

v∏

i=2
i �= j

Tr Xki
n

= ETr Xk1
n Tr Xk2

n · · ·Tr Xkv
n − αETr Xk1−1

n Tr Xk2
n · · ·Tr Xkv

n , (7.1)
k1−1∑

�=0

ETr X−�−1
n Tr X−k1+�

n Tr X−k2
n · · ·Tr X−kv

n +
v∑

j=2

k jETr X
−k1−k j−1
n

v∏

i=2
i �= j

Tr X−ki
n

= −ETr X−k1
n Tr X−k2

n · · ·Tr X−kv
n + αETr X−k1−1

n Tr X−k2
n · · ·Tr X−kv

n , (7.2)

provided they exist.
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Proposition 7.2 (Reflection symmetry for LUE covariances).

CC−k,−1 = CC

k,1

α2(α2 − 1) · · · (α2 − k2)
. (7.3)

Proof Note that QC

0 (m, n) = n, QC

1 (m, n) = mn and QC−1(m, n) = n/α. The proof
of (7.3) uses the loop equations (7.1)–(7.2) together with the reciprocity law (2.3) for
moments, as follows. By the loop equations,

QC

k,1(m, n) = mQC

k,0(m, n) + kQC

k (m, n) = QC

1 (m, n)QC

k (m, n) + kQC

k (m, n)

and

αQC−k,−1(m, n) = QC−k,0(m, n) + kQC−k−1(m, n) = mQC−k(m, n) + kQC−k−1(m, n).

The first gives

CC

k,1 = kQC

k (m, n).

Using QC−1(m, n) = n/α, the second gives

QC−k,−1(m, n) = QC−1(m, n)QC−k(m, n) + kQC−k−1(m, n)/α,

that is CC−k,−1 = kQC−k−1(m, n)/α. Now (2.3) gives

CC−k,−1 = kQC

k (m, n)

α2(α2 − 1) · · · (α2 − k2)
= CC

k,1

α2(α2 − 1) · · · (α2 − k2)

as required. 	

There exists also a precise reflection symmetry for the covariances of one-cut β-
ensembles at leading order in n. Suppose that the eigenvalues x1, . . . , xn of Xn have a
joint probability density proportional to

∏

1≤ j<k≤n

|xk − x j |β
n∏

i=1

e−nβV (xi )dxi (β > 0) (7.4)

on the real line. Special cases of one-cut β-ensembles are the Laguerre and Jacobi
ensembles defined by the weights (3.2) with α = (c− 1)n and α1,2 = (c1,2 − 1)n, with
c, c1, c2 > 0 (see discussion in Section 5). Denote the covariances by

Ck,l = ETr Xk
n Tr X

l
n − ETr Xk

nETr Xl
n . (7.5)

The two-point connected correlator

G2(z, w) = ETr
1

z − Xn
Tr

1

w − Xn
− ETr

1

z − Xn
ETr

1

w − Xn
(7.6)
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is the generating function of covariances of positive and negative moments

G2(z, w) =
∞∑

k,l=0

Ck,l z
−(k+1)w−(l+1) as z, w → ∞ (7.7)

=
∞∑

k,l=0

C−(k+1),−(l+1)z
kwl as z, w → 0. (7.8)

For one-cut β-ensembles the large n limit of G2(z, w) exists and depends only on
the edges of the cut [5,10,12,26,27], see Eq. (7.13) below. (On the other hand, for
multicut ensembles the asymptotics of G2(z, w) is more delicate due to the presence of
oscillating terms [1,11]). In the Laguerre ensemble set α = m − n = (c − 1)n, with
c > 1. The edges x± of the cut are strictly positive, see (5.4). In the Jacobi ensemble
set α1,2 = (c1,2 − 1), with c2 > 1, so that the cut [x−, x+] is contained in the interval
(0, 1], see (5.8).
Theorem 7.3 (Covariances of Laguerre and Jacobi ensembles at leading order in n). Let
Xn be in the Laguerre (resp. Jacobi) ensemble with c > 1 (resp. c2 > 1). Denote the
edges of the cut by 0 < x− < x+. Then, for all β > 0,

lim
n→∞C−k,−l =

(
1

x−x+

)k+l

lim
n→∞Ck,l . (7.9)

More explicitly:

lim
n→∞C−k,−l =

(
1

c − 1

)2(k+l)

lim
n→∞Ck,l (Laguerre) (7.10)

lim
n→∞C−k,−l =

(
c1 + c2
c2 − 1

)2(k+l)

lim
n→∞Ck,l (Jacobi). (7.11)

Proof By the one-cut property, the limit

G2,0(z, w) = lim
n→∞G(z, w), (7.12)

is given by the explicit formula

G2,0(z, w) = 1

β

1

(z − w)2

(
zw − (x− + x+)(z + w)/2 + x−x+√
(z − x−)(z − x+)(w − x−)(w − x+)

− 1

)
. (7.13)

Moreover, since the cut does not contain zero, the negative covariances limn→∞ C−k,−l
exist. From (7.13) it is easy to verify the following functional equation

G2,0

(
x−x+
z

,
x−x+
w

)
=

(
x−x+
zw

)2

G2,0(z, w). (7.14)

Using (7.7)–(7.8), the claim follows. 	
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8. Orthogonal and Symplectic Ensembles

We will now discuss analogous results for the orthogonal and symplectic ensembles of
random matrices, corresponding to averages over the density (3.1) with β = 1 or β = 4
respectively. Our aim will be to isolate the polynomial factors of the moments (Mellin
transforms), again for the Gaussian, Laguerre and Jacobi ensembles. These ensembles
are characterized by their joint eigenvalue distribution as in (3.1) with corresponding
weight functions (3.2). We will consider various expectation values of power of traces
with respect to (3.1) with β = 1 and 4.We will use the shorthand GSE and GOE to mean
Gaussian Symplectic Ensemble, GSE (β = 4), Gaussian Orthogonal Ensemble, GOE
(β = 1) and similarly for the Laguerre (LSE / LOE) and Jacobi (JSE / JOE) cases. As in
the complex case, we will denote by α = m − n in the Laguerre case, and α1 = m1 − n
and α2 = m2 − n in the Jacobi case, which we treat as fixed n-independent parameters.

Moments of real and quaternionic Gaussian ensembles have already received some
attention in the literature, however much less is known compared with the complex
case β = 2. One of the first explicit formulas was derived by Goulden and Jackson
[40] who were motivated by the fact that, for β = 1, moments of Gaussian matrices
describe the genus expansion of non-orientable surfaces. An important development was
achieved in the work of Ledoux [55] who discovered recursion relations for moments
of the GOE and GSE (which can be viewed as real and quaternionic analogues of the
Harer–Zagier recurrence relations). This was extended to the Laguerre ensemble in [27].
Results holding for complex moments were obtained in [64–66].

8.1. Recurrence relations and hypergeometric representations. We define

QR

k (n) = ETr X2k
n if Xn ∼ GOE

QH

k (n) = ETr X2k
n if Xn ∼ GSE

QR

k (m, n) = ETr Xk
n if Xn ∼ LOE

QH

k (m, n) = ETr Xk
n if Xn ∼ LSE

QR

k (α1, α2, n) = ETr Xk
n if Xn ∼ JOE

QH

k (α1, α2, n) = ETr Xk
n if Xn ∼ JSE

�QR

k (α1, α2, n) = QR

k (α1, α2, n) − QR

k+1(α1, α2, n)

�QH

k (α1, α2, n) = QH

k (α1, α2, n) − QH

k+1(α1, α2, n)

for all k ∈ C for which the expectations exist. Moments of the classical orthogonal
ensembles satisfy recursions similar to those of the unitary ensembles. To our knowl-
edge this was first noticed by Ledoux for the GOE [55] and extended to the LOE in
[28]. The first question is whether moments of orthogonal / symplectic ensembles enjoy
reflection symmetries and have orthogonal polynomial factors as in the unitary case. This
is not the case as can be ascertained from the following observation. The Harer–Zagier
recursion for moments QC

k (n) of the GUE is a three terms recursion in k which can be
interpreted as the discrete S-L problem of some families of hypergeometric (Meixner /
Meixner–Pollaczek) polynomials. Moments of the classical orthogonal ensembles sat-
isfy recursion formulae too. For the GOE, Ledoux [55] discovered that QR

k (n) sat-
isfy a five term recurrence relation which cannot be interpreted as a S-L equation (a
second order difference equation). In fact, Ledoux also found an alternative inhomo-
geneous recursion formula for QR

k (n) coupled with the moments of the GUE that is
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somewhat more convenient for some application. An analogue of this coupled recursion
was obtained later for the LOE [28].

These results suggest that suitable combinations ofmoments, rather than themoments
themselves, have nice hypergeometric polynomial factors similar to the unitary cases.

Moments of the symplectic ensembles can be analysed similarly given the duality
relations between moments of GSE, LSE and JSE of size n and the (formal) moments
of the GOE, LOE and JSE of size −2n

QH

k (n) = (−1)k+12−1QR

k (−2n) (8.1)

QH

k (m, n) = (−1)k+12−1QR

k (−2m,−2n) (8.2)

QH

k (α1, α2, n) = −2−1QR

k (−2α1,−2α2,−2n). (8.3)

For the GOE/GSE the duality was put forward by Mulase and Waldron in terms dia-
grammatic expansion of Gaussian integrals [70]. See also [18,55]. This duality between
orthogonal and symplectic Laguerre ensembles appeared in the paper of Hanlon, Stan-
ley and Stembridge [46, Corollary 4.2]. The duality in the Jacobi ensembles has been
observed by Forrester, Rahman and Witte [37, Eq. (4.15)]. See also [32] and [38,
Appendix B].

Theorem 8.1 The combinations of GOE and GSE moments

SRk (n) = QR

k+1(n) − (4n − 2)QR

k (n) − 8k(2k − 1)QR

k−1(n) (8.4)

SHk (n) = 2QH

k+1(n) − (16n + 4)QH

k (n) − 16k(2k − 1)QH

k−1(n) (8.5)

have Meixner polynomial factors:

SRk (n) = −3n(n − 1) (2k − 1)!! Mn−2(k; 3,−1) (8.6)

= −3n(n − 1) (2k − 1)!! Mk(n − 2; 3,−1) (8.7)

SHk (n) = −6n(2n + 1) (2k − 1)!! M2n−1(k; 3,−1) (8.8)

= −6n(2n + 1) (2k − 1)!! Mk(2n − 1; 3,−1). (8.9)

In particular, for any integer n, SRk (n)/(2k − 1)!! and SHk (n)/(2k − 1)!! are Meixner–
Pollaczek polynomials in x = −i(k + 3/2)

SRk (n)

(2k − 1)!! = −6in−2 P(3/2)
n−2 (x;π/2) (8.10)

SHk (n)

(2k − 1)!! = −6i2n−1 P(3/2)
2n−1 (x;π/2) (8.11)

invariant up to a change of sign under the reflection k → −3 − k, with complex zeros
on the vertical line Re(k) = −3/2.

Proof We first prove (8.6). We read from Ledoux paper [55, Theorem 3]

SRk (n) = QC

k+1(n) − (4n − 3)QC

k (n) − 2k(2k − 1)QC

k−1(n).

Using the polynomial property of QC

k (n), this remainder can be expressed as a sum of
two Meixner polynomials
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SRk (n) = 3n (2k − 1)!! (Mn−1(k; 2,−1) − Mn−1(k + 1; 2,−1)) .

The representation (8.6) in terms of a single Meixner polynomial follows using the
Forward Shift Operator [50, Eq. (9.10.6)].

To prove (8.8) the starting point is again a result in Ledoux paper [55, Theorem 5]

SHk (n) = QR

k+1(2n + 1) − (8n + 2)QR

k (2n + 1) − 8k(2k − 1)QR

k−1(2n + 1),

which can be written in the insightful form

SHk (n) = SRk (2n + 1).

The representation (8.8) is now a consequence of (8.6). Alternatively, by the duality
relation (8.1)

SHk (n) = (−1)k
(
QR

k+1(−2n) + (8n + 2)QR

k (−2n) − 8k(2k − 1)QR

k−1(−2n)
)

,

that is

SHk (n) = (−1)k SRk (−2n).

Using the self-duality of Meixner polynomials, we write

SHk (n) = (−1)k+16n(2n + 1) (2k − 1)!! Mk(−2n − 2; 3,−1).

Now we use the symmetry (−1)k+1Mk(−2n − 2; 3,−1) = Mk(2n + 1; 3,−1), and the
self-duality again to conclude the proof. 	

The S-L problem satisfied by the Meixner polynomials is a three term recursion formula
for SRk (n) and SHk (n),

(k + 3)SRk+1(n) = (2k + 1)(2n − 1)SRk (n) + k(2k + 1)(2k − 1)SRk−1(n) (8.12)

(k + 3)SHk+1(n) = (2k + 1)(4n + 1)SHk (n) + k(2k + 1)(2k − 1)SHk−1(n). (8.13)

These recursions, which are very similar to the Harer–Zagier formula, become five term
recurrences for the moments QR

k (n) (this is Ledoux recursion [55, Theorem 2]) and
QH

k (n).

Corollary 8.2

(k + 1)QR

k (n) = (4k − 1)(2n − 1)QR

k−1(n)

+ (2k − 3)(10k2 − 9k − 8n2 + 8n)QR

k−2(n)

− 5(2k − 3)(2k − 4)(2k − 5)(2n − 1)QR

k−3(n)

− 2(2k − 3)(2k − 4)(2k − 5)(2k − 6)(2k − 7)QR

k−4(n). (8.14)

(k + 1)QH

k (n) = (4k − 1)(4n + 1)QH

k−1(n)

+ (2k − 3)(10k2 − 9k − 32n2 − 16n)QH

k−2(n)

− 5(2k − 3)(2k − 4)(2k − 5)(4n + 1)QH

k−3(n)

− 2(2k − 3)(2k − 4)(2k − 5)(2k − 6)(2k − 7)QH

k−4(n). (8.15)



1128 F. D. Cunden, F. Mezzadri, N. O’Connell, N. Simm

Theorem 8.3 Set α = m − n, and consider the following combinations of moments for
the LOE and the LSE.

SRk (m, n) = QR

k+1(m, n) − 2(m + n − 1)QR

k (m, n)

−(1 − α2 + 4k(k − 1))QR

k−1(m, n) (8.16)

SHk (m, n) = 2QH

k+1(m, n) − (8m + 8n + 4)QH

k (m, n)

−(2 − 8α2 + 8k(k − 1))QH

k−1(m, n). (8.17)

Then, SRk (m, n and SHk (m, n) can be written in terms of dual Hahn polynomials (as
functions of k) or Hahn polynomials (as functions of n):

SRk (m, n)

(k + α)! = − 6

(n − 2)!(m − 2)! Sn−2

(
x2; 5

2
,
1

2
, α +

1

2

)
(8.18)

= −3nm(n − 1)(m − 1)

(α + 2)! Qk−2(n − 2; 2, 2,−3 − α) (8.19)

SHk (m, n)

(k + 2α)! = − 24nm

(2n)!(2m)! S2n−1

(
x2,

5

2
,
1

2
, 2α +

1

2

)
(8.20)

= −12nm(2n + 1)(2m + 1)

(2α + 2)! Qk−2(2n − 1; 2, 2,−3 − 2α) (8.21)

where k = i x − 1/2. In particular this shows that the polynomials SRk (m, n)/(k + α)!
and SHk (m, n)/(k +2α)! are invariant under the reflection k → −1−k (reciprocity law)
and, moreover, their zeros lie on the critical line Re(k) = −1/2.

Proof By the inhomogeneous recursion for moments of the LOE [28, Theorem 3.5],
SRk (m, n) is a combination of moments of the LUE

SRk (m, n) = 3

k − 1
((m + n − k − 1)QC

k (m − 1, n − 1) − QC

k+1(m − 1, n − 1)),

that can be expressed in terms of continuous dual Hahn polynomials

SRk (m, n) = 3(k + α)!
(k − 1)(m − 2)!(n − 2)!
×

(
(m + n − k − 1)Sn−2

(
x2; 3

2
,
1

2
, α +

1

2

)

−(m − n + k + 1)Sn−2

(
(x − i)2; 3

2
,
1

2
, α +

1

2

))
.

The final result (8.18) can be obtained by using the Forward Shift Operator of the contin-
uous dual Hahn polynomials [50, Eq. (9.3.7)]. From the hypergeometric representation
of Hahn polynomials we get (8.19).

For the symplectic moments, note that, by duality (8.2) between LOE and LSE
moments,

SHk (m, n) = (−1)k SRk (−2m,−2n).

This proves (8.21). We use the identity (3 − 2α)k−2Qk−2(−2n − 2; 2, 2,−3 + 2α) =
(−1)k(3+2α)k−2Qk−2(2n−1; 2, 2,−3−2α) and find (8.21). Now, this can be written
as a polynomial in k which can be cast as (8.20). 	
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Remark As in the Gaussian case, there is a reflection formula under the transformation
2m + 1 → −2m and 2n + 1 → −2n

SR(2m + 1, 2n + 1) = (−1)k SR(−2m,−2n). (8.22)

The S-L problem of continuous dual Hahn polynomials corresponds to the three term
recursions (in k)

(k + 3)SRk+1(m, n) = (2k + 1)(2n + α − 1)SRk (m, n) + (k − 2)(k2 − α2)SRk−1(m, n)

(8.23)

(k + 3)SHk+1(m, n) = (2k + 1)(4n + 2α + 1)SHk (m, n) + (k − 2)(k2 − 4α2)SHk−1(m, n)

(8.24)

which are similar to the Haagerup–Thorbjørnsen formula for the moments of the LUE.
Writing SRk (m, n) and SHk (m, n) in terms of the moments we obtain the following five
term recursions. To our knowledge these recursion formulae are new.

Corollary 8.4

(k + 1)QR

k (m, n) = AQR

k−1(m, n) + BQR

k−2(m, n) + CQR

k−3(m, n) + DQR

k−4(m, n).

(8.25)

with

A = (4k − 1)(m + n − 1)

B = −(4k − 6)(m + n − 1)2 + (k − 4)
(
(k − 2)2 − α2

)
+ (k + 1)

(
(2k − 3)2 − α2

)

C = −(m + n − 1)
(
(2k − 3)

(
(2k − 5)2 − α2

)
− (2k − 8)

(
(k − 2)2 − α2

))

D = −(k − 4)
(
(k − 2)2 − α2

) (
(2k − 7)2 − α2

)

and

(k + 1)QH

k (m, n) = AQH

k−1(m, n) + BQH

k−2(m, n) + CQH

k−3(m, n) + DQH

k−4(m, n)

(8.26)

with

A = (4k − 1)(2m + 2n + 1)

B = − (4k − 6)(2m + 2n + 1)2 + (k − 4)
(
(k − 2)2 − 4α2

)

+ (k + 1)
(
(2k − 3)2 − 4α2

)

C = − (2m + 2n + 1)
(
(2k − 3)

(
(2k − 5)2 − 4α2

)
− (2k − 8)

(
(k − 2)2 − 4α2

))

D = − (k − 4)
(
(k − 2)2 − 4α2

) (
(2k − 7)2 − 4α2

)
.
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Using methods similar to those in [28] it is possible to write a recursion formula for the
moments of the JOE. Denote

SRk (α1, α2, n) = (2k + 4 − α1 − α2 − 2n)(α1 + α2 + 2(n + k + 1))�QR

k+1(α1, α2, n)

+ 2(α1α2 − α1 − α2 + α2
2 − 4k(1 + k) − 2n + 2(α1 + α2)n + 2n2)�QR

k (α1, α2, n)

−(α2
2 − (1 − 2k)2)�QR

k−1(α1, α2, n).

Proposition 8.5 (Recursion for moments of the JOE) Set α1 = m1 − n and α2 =
m2 − n. Then the differences of adjacent moments �QR

k (α1, α2, n) of the JOE satisfy
the following inhomogeneous three term recursion

SRk (α1, α2, n)

= 3

k − 1

((
(α1 + α2)(α2−k − 1) + 2(α1+α2 − k − 1)n + 2n2

)
�QC

k (α1, α2, n − 1)

−(α1 + α2 + 2n)(α1 + α2 + 2n − k − 3)�QC

k+1(α1, α2, n − 1)
)
. (8.27)

As in the Gaussian and Laguerre cases, the above recursion formula suggests that
SRk (α1, α2, n), and not the moments themselves, have a nice polynomial property. This
is the content of the next theorem whose proof goes along the same lines as the Gaussian
and Laguerre cases.

Theorem 8.6 Set k = i x−1/2. The combination SRk (α1, α2, n) has aWilson polynomial
factor

SRk (α1, α2, n) = (−1)n−1 6

(n − 2)!
(α1 + n)(α1 + n − 1)(α1 + α2 + n)!

(α2 + n − 2)!
× (α2 + k)!

(α1 + α2 + k + 2n − 1)!Wn−2

(
x2; 5

2
,
1

2
, α2 +

1

2
,
3

2
− α1 − α2 − 2n

)
.

(8.28)

In particular, SRk (α1, α2, n)((α1 +α2 + k + 2n − 1)!/(α2 + k)!) is a polynomial of degree
2(n − 2) in k, invariant under the reflection k → −1− k, with zeros on the vertical line
Re(k) = −1/2.

8.2. Symplectic ensembles. The goal of this section is to establish the following poly-
nomial property for the moments of the symplectic ensembles.

Theorem 8.7 The rescaled moments

pHn (k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cn
1

�(k + 1/2)
QH

k (n) GSE

cn,m
2k

�(2α + k + 2)
QH

k (m, n) LSE

cn,α1,α2

�(1 + 2α1 + 2α2 + 4n + k)

�(2α1 + k + 2)
�QH

k (α1, α2, n) JSE

(8.29)
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are monic polynomials in k of degree 2(n − 1) in the GSE, and degree 4(n − 1) in the
LSE and JSE cases. The normalizing constants are

⎧
⎪⎪⎨

⎪⎪⎩

cn = 22(1−n)�(2n)
√

π

cn,m = �(2m)�(2n)

cn,α1,α2 = �(2n + 2α1)�(2α2 + 4)�(2n)

�(2α1 + 2α2 + 2n + 2)�(2α2 + 2n + 2)(2α2 + 2)
.

Proof We will discuss the Gaussian case in detail, as the Laguerre and Jacobi cases
follow a similar pattern. By [64–66, Eq. (33)], we have the explicit formula

QH

k (n) = 2−k−1QC

k (2n) − an

n∑

j=1

n− j∑

i=0

(
k

i

)(
k

i + j

)
(n − i − j + 1)(k−1/2) (8.30)

where QC

k (2n) denotes the moments of the GUE (see Section 4.1) and

an = �(n + 1)�(n)√
π�(2n)41−n

.

Although formula (8.30) was only stated in [64–66] for k ∈ N, it naturally defines a
meromorphic continuation to k ∈ C, as follows. As a function of k ∈ N, we have that
QC

2k(2n)/(�(k + 1/2)) is a polynomial of degree 2n − 1 in k (see equation (4.4)) and
hence is defined for any k ∈ C. It remains to study the second term in (8.30). Note that

(n − i − j + 1)(k−1/2)

�(k + 1/2)

is a polynomial of degree n − i − j , while
(k
i

)
and

( k
i+ j

)
are polynomials of degree i and

i + j respectively. Hence QH

k (n)/�(k + 1/2) is a finite sum of polynomials in k and is
therefore a polynomial. To compute degrees, notice that the highest degree term in the
summand of (8.30) occurs when 2i + j + n − i − j = n + i is maximal, namely when
i = n−1 implying a degree of 2n−1. That the degree of the combined polynomials (i.e.
unitary plus symplectic contribution) is really 2n − 2 is a consequence of the following
cancellation. Setting j = 1 and i = n − 1 in the summand of (8.30) and dividing by
�(k + 1/2) gives the polynomial

an

(
k

n − 1

)(
k

n

)
.

Then Stirling’s formula gives the estimate

an

(
k

n − 1

)(
k

n

)
= k2n−1

(2n − 1)!41−n
+ O(k2n−2), k → ∞.

Similarly, consider the complex moments

1

2 �(k + 1/2)
QC

k (2n) = 1√
π

2n−1∑

j=0

2 j−1
(
k

j

)(
2n

j + 1

)
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Fig. 4. The 2(n − 1) complex zeros of the symplectic polynomial pHk (n) for the GSE with n = 30 (left) and
n = 50 (right)

which has the same leading coefficient (setting j = 2n − 1) as

1√
π

(
k

2n − 1

)
22n−2 = k2n−14n−1

(2n − 1)! + O(k2n−2), k → ∞.

Hence, the terms of order k2n−1 in (8.30) cancel, yielding a polynomial of degree 2n−2.
To compute the normalizing factor cn requires studying terms of order k2n−2. This is a
straightforward but tedious task and we omit the details. The only contributions to the
monomial k2n−2 come from (8.31) when j = 2n − 1 and j = 2n − 2, and from the
double sum in (8.30) with indices (i, j) = (n− 1, 1) and (i, j) = (n− 2, 1), (n− 2, 2).
Then studying the asymptotics of these five terms as k → ∞ with Stirling’s formula
gives the result. For the Laguerre and Jacobi cases, this computation can be repeatedwith
the formulae [64–66, Eq. (89) and Eq. (98)] which have an identical structure to (8.30)
and is therefore omitted. 	

Below are the first few polynomials pHn (k) for the GSE, whose zeros appear to settle
onto an explicit contour in the complex plane as n becomes larger (see Fig. 4).
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pH1 (k) = 1

pH2 (k) = k2 + 5k + 3

pH3 (k) = k4 + 10k3 + 38k2 + 41k +
45

2
pH4 (k) = k6 + 15k5 + 109k4 + 393k3 + 637k2 + 735k + 315.

8.3. Orthogonal ensembles. In this section we will study the Mellin transform of the
one-point correlation function ρ

(β)
n (x) with β = 1. One can expect this case to be more

complicated in general, since now (3.1) contains a non-analytic term (the absolute value
of the Vandermonde determinant, which happened to be a polynomial in the cases β = 2
and β = 4). In the case of n odd we are saved by a remarkable duality principle for
the Mellin transform, relating the orthogonal and symplectic ensembles. This duality
involves a simple correction term which is a single hypergeometric OP.

The case of n even has a different analytic structure, evident already at n = 2.
Indeed, it was known since the beginnings of random matrix theory that the parity
n plays an important role for ensembles with orthogonal symmetry (see [60, Chapter
6] for example or more recently [35]), with most authors assuming n to be even for
simplicity. Here it is the converse, we describe the analytic structure for n odd and give
an explicit analytic continuation. First we need a proposition relating the orthogonal and
symplectic ensembles.

Proposition 8.8 Given the notation of Section 3, let pn(x) denote the degree n monic
polynomial orthogonal with respect to the weight w2(x) on the interval I . Then the
one-point eigenvalue density (3.3) satisfies the following duality

ρ
(1)
2n+1(x) = 2ρ̃(4)

n (x) +
w1(x)p2n(x)∫

I w1(t)p2n(t) dt
(8.31)

where ρ̃(4)(x) is the β = 4 eigenvalue density with respect to the modified weights

w̃4(x) =

⎧
⎪⎨

⎪⎩

e−x2/2 Hermite
xα+1e−x Laguerre
xα1+1(1 − x)α2+1 Jacobi.

(8.32)

Remark We give a complete proof of Propostition 8.8 in Appendix A, which is based on
the skew-orthogonal polynomial formalism developed in [2]. In the specific case of the
GOE, formula (8.31) was mentioned in [55]. Actually, the statement of Proposition 8.8
is implicit in Forrester’s book [36, (6.120)–(6.122)]. It is worth emphasizing that this
duality goes beyond the one-point function and can be formulated as a duality between
the correlation kernels of n-odd orthogonal and symplectic ensembles. This suggests a
possibly simpler route to studying correlation functions of n-odd orthogonal ensembles,
but this lies beyond the scope of the current investigation.

We now study the consequences of the duality (8.31) for the Mellin transforms of the
orthogonal ensembles.

Theorem 8.9 (Duality in the n-odd orthogonal ensemble) In the three orthogonal ensem-
bles the following identity holds for all k ∈ C and n ∈ N:

QR

k (2n + 1) = 2k+1QH

k (n) + 4k� (k + 1/2) fk(n) (8.33)
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QR

k (2m + 1, 2n + 1) = 2k+1QH

k (m, n) + 2k� (k + m − n + 1/2) fk(m, n) (8.34)

QR

k (2α1, 2α2, 2n + 1) = 2QH

k (α1, α2, n) +
� (k + α1 + 1/2)

� (k + α1 + α2 + 2n + 1)
fk(α1, α2, n)

(8.35)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

fk(n) = cn P
(1/4)
n (−i(k + 1/4);π/2)

fk(m, n) = cn,m P(m−n+1/2)
2n (−ik;π/2)

fk(α1, α2, n) = cn,α1,α2 p2n(−ik;α1 + 1
2 ,−α1 − α2 − 2n, α1 + 1

2 ,−α1 − α2 − 2n).

In each case, the fk is a hypergeometric orthogonal polynomial from the Askey scheme:
The P(λ)

n (x, φ) are the Meixner–Pollaczek polynomials, while pn(x; a, b, c, d) are the
continuous Hahn polynomials, see (3.14). The normalization constants are

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

cn = inn!
� (n + 1/2)

cn,m = (−1)nn!
� (m + 1/2)

cn,α1,α2 = (−1)nn!� (α1 + 1/2) � (n + α1 + α2 + 1)

� (n + α1 + 1/2) � (n + α2 + 1/2)
.

Remark The results (8.33)–(8.35) combined with Theorem 8.7 imply a polynomial
property for the moments of the orthogonal ensemble, though not as cleanly as in the
symplectic case. It is not possible to normalize QR

k (2n + 1) and obtain a polynomial in
k, unlike in the symplectic and unitary cases (e.g. the second term in (8.33) is always
exponentially larger in k than the first).

The content of Theorems 8.1 and 8.3 is that the combinations SRk (n) and SRk (m, n)

of moments of the orthogonal ensembles (with fixed n) have hypergeometric orthogonal
polynomial factors. Putting together the dualities in the n-odd orthogonal ensembles of
Theorem 8.9 and the classical duality between symplectic moments and formal orthog-
onal moments (8.1)–(8.2)–(8.3), we find that the combinations of moments (with fixed
k)

TR

k (n) = QR

k (2n + 1) + (−2)k QR

k (−2n)

TR

k (m, n) = QR

k (2m + 1, 2n + 1) + (−2)k QR

k (−2m,−2n)

TR

k (α1, α2, n) = QR

k (2α1, 2α2, 2n + 1) + QR

k (−2α1,−2α2,−2n)

do have hypergeometric polynomial factors.
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Corollary 8.10

TR

k (n) =(2k − 1)!! Mn (k; 1/2,−1) (8.36)

TR

k (m, n) =2m+n+k

√
π

�(k + α + 1/2)

(2n − 1)!!(2m − 1)!! Sn((ik)
2; 1/2, 0, α + 1/2) (8.37)

TR

k (α1, α2, n) = � (k + α1 + 1/2) � (α1 + 1/2) � (n + α1 + α2 + 1)

� (k + α1 + α2 + 2n + 1) � (n + α1 + 1/2) � (n + α2 + 1/2)
(2(n + α2) − 1)!!

(2α2 − 1)!!(2n − 1)!! (−1)nWn

(
(ik)2; 1

2
, 0, α1

+
1

2
,−α1 − α2 − 2n

)
. (8.38)

Proof of Theorem 8.9 We multiply both sides of identity (8.31) by xk (or |x |2k for the
GOE) and integrate over I . By the correspondence (3.4) this gives

QR

k (2n + 1) = 2Q̃H

k (n) + ψn(k) (8.39)

where Q̃H

k (n) are moments defined with respect to the modified weights (8.32). Such
moments are easily expressed in terms of the usual QH

k (n) bymultiplying by 2k (Hermite
and Laguerre case) or by dividing the parameters α1 and α2 by 2 (Laguerre and Jacobi
cases). This gives the first terms in (8.33)–(8.35).

The correctionψn(k) is a weightedMellin transform of the corresponding orthogonal
polynomial. In the JOE and LOE this takes the form

ψn(k) =
∫
I x

kw1(x)p2n(x) dx∫
I w1(x)p2n(x) dx

(8.40)

while for the GOE xk is replaced with |x |2k . The integral (8.40) can be computed
explicitly by expanding p2n(x) as a sum and integrating term by term. This expansion
turns out to be a terminating hypergeometric series which can be identified as one of the
hypergeometric polynomials appearing in the claimed result. In fact, for the Gaussian
and Laguerre cases, precisely this calculation is carried out in a different context in
[22,23], so let us just explain the Jacobi case. Then the monic polynomials p2n(x) are
proportional to the usual Jacobi polynomials which can be written down explicitly (see
e.g. [78, Eq. 4.32]). Integrating term by term in (8.40) gives

ψn(k) = n!�(α1+α2
2 + 1 + n)

�(α1+1
2 + n)�(α2+1

2 + n)�(α1+α2
2 + 2n + k + 1)

×
2n∑

i=0

(−1)i
(
2n + α2

2n − i

)(
2n + α1

i

)
�

(
α2 + 1

2
+ i + k

)
�

(
α1 + 1

2
+ 2n − i

)
.

The sum can be matched with a hypergeometric function and we obtain

ψn(k) =
ηn,α1,α2�

(
α2+1
2 + k

)

�
(
1 + α1+α2

2 + k + 2n
) 3F2

(
k + (α2 + 1)/2,−2n,−α1 − 2n

α2 + 1,−(α1 − 1)/2 − 2n ; 1
)
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where

ηn,α1,α2 = n!�(1 + α1+α2
2 + n)�(1 + α2 + 2n)�( 1+α1

2 + 2n)

(2n)!�(1 + α2)�( 1+α1
2 + n)�( 1+α2

2 + n)
.

Finally, comparing (8.41) with the definition of the continuous Hahn polynomial in
(3.14) gives the result. 	

Remark In the Gaussian and Laguerre cases, the evaluation of the integral (8.40) already
appeared in the literature on special functions, see the work of Bump et al. [20], Coffey
et al. [22–24], though no connection to random matrix theory is made. These works
show that the quantity (8.40) satisfies a functional equation and Riemann hypothesis
with critical line Re(k) = −1/2 (Hermite polynomials) and Re(k) = 0 (Laguerre
polynomials) in our notation. We believe it is new that precisely these Mellin transforms
should appear in the context of random matrices. The last and most complicated case
of Jacobi appears to be absent from the literature. This turns out to be a continuous
Hahn polynomial p2n(−ik; a, b, c, d) with a = c > 0 and b = d < 0. The analogous
properties in this case are most easily proved by noticing that the continuous Hahn
polynomial can be represented in terms of the Wilson polynomial with a negative fourth
parameter. Explicitly, one has

p2n(−ik;α1 + 1/2,−α1 − α2 − 2n, α1 + 1/2,−α1 − α2 − 2n)

= (2α2 + 1)(2α2 + 3) · · · (2α2 + 2n − 1)

(2n − 1)!! n! Wn

(
(ik)2; 1

2
, 0, α1 +

1

2
,−α1 − α2 − 2n

)
.

This identity demonstrates that the Mellin transforms satisfy a symmetry on the line
Re(k) = 0 (the polynomials are invariant under k → −k). Furthermore, by the orthog-
onality property (C.2), we can deduce that the zeros all lie on the imaginary axis (this
does not seem to be obvious from the Hahn polynomial representation).

We now study the orthogonal ensemble with n even. In this case the analytic structure of
the Mellin transform seems to be more complicated and remains somewhat mysterious
to us. For this reason we restrict ourselves to the Gaussian case, though analogous
results for Laguerre and Jacobi could easily be derived. We are able to prove an analytic
continuation of QR

k (2n) to an entire function of k as in the previous sections, but with
a more complicated structure. We first consider the simplest case n = 2 where this
structure already appears. Directly integrating |x |2k against the density (3.1) with β = 1
and a Gaussian weight gives

QR

k (2) = 2k�(k + 1/2)√
π

+
1√
2

∫ ∞

0
x2k x erf(x/2)e−x2/4 dx . (8.41)

Clearly, the first termabove has a similar structure to that already observed in theGSEand
GUE. But the second term, which is a weightedMellin transform of the error function, is
different. It is analytic in the half-plane Re(2k) > −1 and standard properties of Mellin
transforms show that it extends as to an analytic function in the entire complex plane
except for simple poles when 2k + 1 ∈ {−2,−4,−6, . . .}. Since these simple poles are
eliminated on dividing by �(k + 1/2), this gives an entire function of k. In fact this
analytic continuation can be given in terms of a hypergeometric function:
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QR

k (2) = 22k+3/22F1

(
1/2, k + 3/2

3/2 ;−1

)
�(k + 3/2)/

√
π +

2k�(k + 1/2)√
π

= (2k − 1)!! ((2k + 1)Mk(−1; 3/2, 1/2) + 1) .

This hypergeometric function reduces to a polynomial whenever k is a positive integer.
But its analytic continuation to k ∈ C appears more complicated than in the previously
considered cases. Indeed one has the asymptotics (see e.g. [77]):

2F1

(
1/2, k + 3/2

3/2 ;−1

)
∼ 1

2

√
π

k
, k → +∞,

2F1

(
1/2, k + 3/2

3/2 ;−1

)
∼ −k2−3/2−k, k → −∞.

For say n = 4, 6, 8, . . . and so on, this structure persists and follows a similar pattern.
As for the GSE, the results of [64–66] are again useful here, providing a general formula
for the GOE moments:

QR

k (2n) = QC

k (2n − 1) −
n−1∑

j=0

n− j−1∑

i=0

(
k

i

)(
k

i + j

)
(n − i − j)(k+1/2)

(n − j)(1/2)
+ AR

k (2n)

(8.42)

where

AR

k (2n) := cn

∫ ∞

0
x2ke−x2/2H2n−1(x)erf(x/

√
2) dx .

The first two terms in (8.42) have a simple analytic structure, similar to that found in the
symplectic case. The term AR

k (2n) is the generalization to larger n of the second term
in (8.41).

Proposition 8.11 For any positive integer n, the ratio QR

k (2n)/�(k + 1/2) has an ana-
lytic continuation to an entire function of k.

Proof It is clear that the first two terms in (8.42) yield a polynomial in k after
dividing by �(k + 1/2). The third term (8.43) is the Mellin transform of the func-
tion φn(x) = e−x2/2H2n−1(x)erf(x/

√
2) which is analytic in the right-half plane

Re(2k) > −3. To extend to the left-half plane Re(2k) ≤ −3 it suffices to notice that
φn(x) has an asymptotic expansion near x = 0 with respect to the sequence {x2k}k≥1.
Therefore AR

2k(2n) has an meromorphic continuation into the left-half plane except for
simple poles when 2k + 1 = −2,−4,−6, . . .. Precisely these poles are eliminated after
dividing through by the factor �(k + 1/2). 	
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Appendix A. Orthogonal and symplectic ensembles: duality

The purpose of this section is to prove Proposition 8.8 in the three classical ensembles.
The proof is based on explicit results for the eigenvalue density of orthogonal and
symplectic ensembles obtained by Adler et al. [2]. To begin with, we introduce the
notation and relevant results obtained in [2]. There, the notation e−2V (x) is equivalent to
our w2(x) as in (3.2).

We begin by denoting by pn(x) the unique degree n monic polynomial orthogonal
with respect to w2(x) and we set

hn =
∫

I
w2(x)pn(x)

2 dx . (A.1)

An important quantity in the theory is the ratio

2V ′(x) = g(x)

f (x)
(A.2)

where f and g are polynomials ofminimal degree, with f ≥ 0. For the classical weights,
this implies

f (x) =

⎧
⎪⎨

⎪⎩

1 GOE
x LOE
x(1 − x) JOE .

(A.3)

Then we define modified potentials

V1(x) = V (x) +
1

2
log f (x), V4(x) = V (x) − 1

2
log f (x) (A.4)

and eigenvalue densities ρ̃
(1)
n (x) with respect to the weight e−V1(x) for β = 1 and

ρ̃
(4)
n (x) with respect to the weight e−2V4(x) for β = 4. We have that e−2V4(x) = w̃4(x)

are precisely the modified weights (8.32). On the other hand, e−V1(x) = w1(x) and so
ρ̃

(1)
n (x) = ρ

(1)
n (x).

The first result we need is [2, Eq. (4.18)] which writes the density in the n-odd
orthogonal ensemble as

ρ
(1)
2n+1(x) =ρ̃

(1)
2n (x) − γ2n−2s̃2n−2

e−V1(x)

s̃2n

(
φ̃2n(x)p2n−1(x) − p2n(x)φ̃2n−1(x)

)

+
e−V1(x) p2n(x)

2s̃2n
,

(A.5)

http://creativecommons.org/licenses/by/4.0/
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where we define

s̃n = 1

2

∫

I
e−V1(x) pn(x) dx (A.6)

φ̃ j (x) = 1

2

∫

I
e−V1(y) sgn(x − y)p j (y) dy (A.7)

γnhn =

⎧
⎪⎨

⎪⎩

1 GOE,
1
2 LOE,
1
2 (2n + α1 + α2 + 2) JOE.

(A.8)

hn =

⎧
⎪⎨

⎪⎩

n!√π2−n GOE
n!�(α + n + 1) LOE
�(α1+n+1)�(α2+n+1)�(n+1)�(α1+α2+n+1)

�(α1+α2+2n+1)�(α1+α2+2n+2)
JOE .

(A.9)

We also recall the classical identity (see e.g. [60, Chap. 5])

ρ(2)
n (x) = e−2V (x)

n−1∑

j=0

p j (x)2

h j
. (A.10)

The integrals s̃n happen to be known for all positive integers n.

Lemma A.1 Forall three classicalweights andanypositive integer n,wehave s̃2n−1 = 0
and

s̃2n =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
2π (2n)!

4nn! GOE

2
α−1
2 �

(
n + α1+1

2

)
LOE

2α1+α216n
�

(
n+ 1

2

)
�

(
n+ α1+α2+1

2

)
�

(
α1+1
2 +n

)
�

(
α2+1
2 +n

)

π�(α1+α2+4n+1)
JOE.

(A.11)

Proof For the GOE case the fact that s̃2n−1 = 0 follows from symmetry and the formula
for s̃2n is in [2, Sec. 4]. In the LOE and JOE cases these facts are less obvious, but were
derived by Nagao and Forrester in [63, A.2 and A.7] based on evaluations in terms of
hypergeometric functions. 	


Note that the expression in the second line of (A.5) corrects a typo in [2, Eq. 4.18].
The formula for ρ

(1)
2n (x) in (A.5) is given in [2, Eq. 4.12] as

ρ
(1)
2n (x) = ρ

(2)
2n−1(x) + γ2n−2e

−V1(x) p2n−1(x)φ2n−2(x). (A.12)

On the other hand, formula [2, Eq. 4.27] writes the density in the symplectic ensemble
as

ρ(4)
n (x) = 1

2
ρ

(2)
2n (x) − 1

2
γ2n−1e

−2V (x)+V4(x) p2n(x)
∫

I
e−2V (y)+V4(y) p2n−1(y)1y>x dy.

(A.13)
But by definition

e−2V (x)+V4(x) = e−V (x)− 1
2 log f (x) = e−V1(x). (A.14)
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So

ρ̃(4)
n (x) = 1

2
ρ

(2)
2n (x) − 1

2
γ2n−1e

−V1(y) p2n(x)
∫

I
e−V1(y) p2n−1(y)1y>x dy. (A.15)

Now we must demonstrate the relation (8.31).

Proof of Proposition 8.8 The point of the proof is that (A.5) can be simplified consid-
erably. There are two calculations required in the proof, which in the GOE case were
carried out in [2, Eqs 4.19 and 4.13] respectively. The first claim is that the following
identity holds in all three cases:

γ2n−2
s̃2n−2

s̃2n
= γ2n−1. (A.16)

This can be verified by direct computation using the above explicit formulae for s̃2n and
γn . Then formula (A.5) becomes

ρ
(1)
2n+1(x) = ρ

(2)
2n−1(x) + γ2n−2e

−V1(x) p2n−1(x)φ̃2n−2(x)

− γ2n−1e
−V1(x)

(
φ̃2n(x)p2n−1(x) − p2n(x)φ̃2n−1(x)

)
+
e−V1(x) p2n(x)

2s̃2n
.

(A.17)
The second claim is the following identity

e−V1(y) p2n−1(y)
(
γ2n−2φ̃2n−2(x) − γ2n−1φ̃2n(x)

)

= e−V1(y)−V1(x) f (x)
p2n−1(x)p2n−1(y)

h2n−1
(A.18)

where f (x) is given by (A.3). Setting x = y and inserting it into (A.17) gives the
simplification

ρ
(1)
2n+1(x) = ρ

(2)
2n (x) + γ2n−1e

−V1(x) p2n(x)φ̃2n−1(x) +
e−V1(x) p2n(x)

2s̃2n
, (A.19)

where we used the explicit form of the β = 2 density (A.10) and that

e−2V1(x)+log f (x) = e−2V (x) = w2(x). (A.20)

This now looks very similar to (A.13). Indeed, the proof is complete if we can check
that φ̃2n−1(x) = − ∫

I w1(y)p2n−1(y)1y>x dy. Comparing with the definition (A.7) we
see that

φ̃2n−1(x) = −
∫

I
w1(y)p2n−1(y)1y>x dy +

1

2

∫

I
w1(y)p2n−1(y) dy, (A.21)

but the second integral is s̃2n−1 which is zero by Lemma A.1. This immediately implies

ρ
(1)
2n+1(x) = 2ρ̃(4)

n (x) +
e−V1(x) p2n(x)

2s̃2n
(A.22)
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as given in the statement of Proposition 8.8. It remains to check identity (A.18). Can-
celling e−V1(y) p2n−1(y), it is equivalent to checking

γ2n−2φ̃2n−2(x) − γ2n−1φ̃2n(x) = f (x)e−V1(x) p2n−1(x)

h2n−1
. (A.23)

Differentiating both sides of (A.23) with respect to x reduces the claim to

h2n−1γ2n−2 p2n−2(x) − h2n−1γ2n−1 p2n(x) = 1

w1(x)

d

dx
( f (x)w1(x)p2n−1(x)) .

(A.24)
Now using standard differential identities for the classical orthogonal polynomials and
some routine calculation shows that (A.24) is a consequence of the three term recurrence
relation. 	


Appendix B. Mellin transform

We summarise here some properties of the Mellin transform (and its extension). The
Mellin transform of f (x) is defined by the integral

M [ f (x); s] =
∫ ∞

0
f (x)xs−1dx, (B.1)

when it exists. We set f ∗(s) = M [ f (x); s].
In general, the integral (B.1) converges and defines a holomorphic function f ∗(s)

only in a vertical strip D of the complex plane. It turns out that, in the frequently
occurring case where f (x) is of rapid decay at infinity and has an asymptotic expansion
f (x) ∼ ∑∞

j=0 a j xb j as x → 0+ (as in all instances in this paper), the Mellin transform
f ∗(s) has a meromorphic continuation to the whole complex plane with simple poles of
residue a j at s = −b j . Formore details onmeromorphic extensions ofMellin transforms
see [82].

If the integral (B.1) converges in the strip D, then the following relations hold:

M
[
f (m)(x); s

]
= (−1)m(s − m)m f ∗(s − m) s − m ∈ D (B.2)

M [
xm f (x); s] = f ∗(s + m) s + m ∈ D (B.3)

M
[
xm f (m)(x); s

]
= (−1)m(s)m f ∗(s) s ∈ D. (B.4)

Suppose that f (s) and g(s) have Mellin transforms f ∗(s) and g∗(s), respectively,
analytic in a vertical strip D in the complex plane. Take any c ∈ D. Then

M [ f (x)g(x); s] = 1

2π i

∫ c+i∞

c−i∞
f ∗(s − u)g∗(u)du (B.5)

whenever the Mellin transfom of ( f g)(x) exists.

Appendix C. Hypergeometric orthogonal polynomials

We report a few basic properties of some families of hypergeometric OP’s.
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C.1. Wilson. The Wilson polynomials are solutions of the discrete Sturm–Liouville
problem [50, Section 9.1]

B(x)y(x+i)−[B(x) + D(x)] y(x)+D(x)y(x−i) = n(n+a+b+c+d−1)y(x), (C.1)

where

y(x) = Wn(x
2; a, b, c, d)

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B(x) = (a − i x)(b − i x)(c − i x)(d − i x)

2i x(2i x − 1)

D(x) = (a + i x)(b + i x)(c + i x)(d + i x)

2i x(2i x + 1)
.

In this paper we have considered the less conventional situation when a, b, c, 1−d > 0.
For this range of the parameters, Neretin [71, Section 3.3] found the orthogonality
relation

1

2π

∫

R+

∣∣∣∣
�(a + i x)�(b + i x)�(c + i x)

�(1 − d + i x)�(2i x)

∣∣∣∣
2

Wm(x2; a, b, c, d)Wn(x
2; a, b, c, d) d x

= a + b + c + d − 1

a + b + c + d + 2n − 1

(a + b)n(a + c)n(a + d)n(b + c)n(b + d)n(c + d)n

(a + b + c + d − 1)n

× �(a + b)�(a + c)�(b + c)�(1 − a − b − c − d)

�(1 − a − d)�(1 − b − d)�(1 − c − d)
n! δmn, (C.2)

for n,m < 1 − a − b − c − d.

C.2. Continuous dual Hahn. The continuous dual Hahn polynomials Sn(x2; a, b, c) can
be found from the Wilson polynomials by dividing by (a + d)n and letting d → ∞. If
a, b and c are positive, then [50, Section 9.3]

1

2π

∫

R+

∣∣∣∣
�(a + i x)�(b + i x)�(c + i x)

�(2i x)

∣∣∣∣
2

Sm(x2; a, b, c)Sn(x
2; a, b, c) d x

= �(n + a + b)�(n + a + c)�(n + b + c)n! δmn . (C.3)

The continuous dual Hahn polynomials are solution of the discrete Sturm–Liouville
problem

B(x)y(x + i) − [B(x) + D(x)] y(x) + D(x)y(x − i) = ny(x), (C.4)

where

y(x) = Sn(x
2; a, b, c)

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B(x) = (a − i x)(b − i x)(c − i x)

2i x(2i x − 1)

D(x) = (a + i x)(b + i x)(c + i x)

2i x(2i x + 1)
.
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C.3. Meixner–Pollaczek. TheMeixner–Pollaczek polynomials satisfy the orthogonality
relation [50, Section 9.7]

1

2π

∫

R

e(2φ−π)x |�(λ + i x)|2P(λ)
m (x;φ)P(λ)

n (x;φ) d x

= �(n + 2λ)

(2 sin φ)2λn! δmn, λ > 0 and 0 < φ < π, (C.5)

and the Sturm–Liouville equation (set y(x) = P(λ)
n (x;φ)):

eiφ(λ − i x)y(x + i) + 2i x cosφ y(x) − e−iφ(λ + i x)y(x − i) = 2i(n + λ) sin φ y(x).

(C.6)

C.4. Meixner polynomials. The Meixner polynomials satisfy the orthogonality relation
[50, Section 9.7]

∞∑

x=0

(β)x

x ! cx Mm(x; β, c)Mn(x; β, c) = n!
(β)ncn(1 − c)β

δmn, β > 0 and 0 < c < 1.

(C.7)
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