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Abstract: We establish a new connection between moments of n x n random matri-
ces X, and hypergeometric orthogonal polynomials. Specifically, we consider moments
ETr X, as a function of the complex variable s € C, whose analytic structure we
describe completely. We discover several remarkable features, including a reflection
symmetry (or functional equation), zeros on a critical line in the complex plane, and
orthogonality relations. An application of the theory resolves part of an integrality con-
jecture of Cunden et al. (J Math Phys 57:111901, 2016) on the time-delay matrix of
chaotic cavities. In each of the classical ensembles of random matrix theory (Gaus-
sian, Laguerre, Jacobi) we characterise the moments in terms of the Askey scheme of
hypergeometric orthogonal polynomials. We also calculate the leading order n — oo
asymptotics of the moments and discuss their symmetries and zeroes. We discuss aspects
of these phenomena beyond the random matrix setting, including the Mellin transform
of products and Wronskians of pairs of classical orthogonal polynomials. When the
random matrix model has orthogonal or symplectic symmetry, we obtain a new duality
formula relating their moments to hypergeometric orthogonal polynomials.

Contents

1. Introduction . . . . ... ... ... ... 1092
1.1 Spectral zeta functions of random matrices . . . . . . . . .. ... .. 1093
1.2 Time-delay matrix of chaotic cavities . . . . . . . ... ... ..... 1093
1.3 Mellin transform of orthogonal polynomials . . . . . . ... ... .. 1094
1.4 Orthogonal and symplectic ensembles . . . . .. ... ... ... .. 1095
1.5 Outline. . . ... .. 1095

2. Motivation and Applications . . . . . . ... ... oL L 1096
2.1 The Laguerre ensemble: reciprocity law and spectral zeta function . . 1096
2.2 Application to quantum transport in chaotic cavities . . . . . . . . . . 1097

3. Notation and Definitions . . . . . . . . . . .. .. ... ... . ... 1099


http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-019-03323-9&domain=pdf
http://orcid.org/0000-0001-8992-9075

1092 F. D. Cunden, F. Mezzadri, N. O’Connell, N. Simm

3.1 Classical ensembles of random matrices . . . . . ... ... ... .. 1099
3.2 Hypergeometric orthogonal polynomials . . . . . ... ... ... .. 1100
4. Unitary Ensembles . . . . . . . .. ... Lo 1101
4.1 Gaussian unitaryensemble . . . . . ... ... ... ... 1102
4.2 Laguerre unitary ensemble . . . . . .. ... ... ... ... 1107
4.3 Jacobiunitaryensemble . . . . . . . ... 1109
4.4 Generating functions . . . . . . ... 1111
5. Large-n Asymptotics of the Spectral Zeta Functions . . . . ... ... .. 1113
5.1 Gaussianensemble . . . . ... ... ... o oo 1113
5.2 Laguerreensemble . . . . . . ... ... L. 1114
5.3 Jacobiensemble . . . . . . ... 1115
6. Beyond Random Matrices: Wronskians of Orthogonal Polynomials . . . . 1115
6.1 Mellin transform of orthogonal polynomials . . . . . .. ... .. .. 1115

6.2 Mellin transforms of products and Wronskians of classical orthogonal
polynomials . . . . . . ... ... 1116
6.3 Convolution of hypergeometricOP’s . . . . . . .. ... ... .... 1121
7. Higher Order Cumulants . . . . . . . . ... ... ... ... .. ..... 1122
8. Orthogonal and Symplectic Ensembles . . . . . ... ... ... ..... 1125
8.1 Recurrence relations and hypergeometric representations . . . . . . . 1125
8.2 Symplecticensembles . . . . . .. ... 1130
8.3 Orthogonalensembles . . . . . . . ... ... ... .. ........ 1133
Appendix A. Orthogonal and symplectic ensembles: duality . . . . . . ... .. 1138
Appendix B. Mellin transform . . . . . .. ... ... oL, 1141
Appendix C. Hypergeometric orthogonal polynomials . . . . . . .. ... ... 1141

1. Introduction

In this paper we present a novel approach to the moments of the classical ensembles of
random matrices. Much of random matrix theory is devoted to moments E Tr X ﬁ (k e N)
of random matrices of finite or asymptotically large size n. The Gaussian, Laguerre,
and Jacobi unitary ensembles have been extensively studied and virtually everything is
known about the moments as functions of the matrix size n. In particular, for the GUE,
ETr X ﬁ is a polynomial in n. This fact is a consequence of Wick’s theorem, it is usually
called ‘genus expansion’, and it is at the heart of several successful theories such as the
topological recursion [5,33]. For example, the 4-th moment of GUE matrices of size n
is

1
~ETr X8 = 14n* +70n% + 21.
n

In contrast to the wealth of results on moments as functions of the size n, less attention
has been devoted to them as functions of the order k. One of the consequences is that
some remarkable properties have been somehow missed. The theory described in this
paper is intended to fill this gap. By looking at the moments as functions of k, we gain
access to additional structure. Several results contained in this paper are in fact facets
of the same phenomenon, which appears to be a new observation: moments E Tr X ﬁ
of classical matrix ensembles, if properly normalized, are hypergeometric orthogonal
polynomials as functions of k. For example, for a GUE random matrix of size n = 4

1 4 20
— _ETrX2* = -k +4k> + —k +4,
2k — D! 3 3
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and this polynomial is actually a Meixner polynomial. In fact, the moments are essentially
Meixner polynomials as functions of (n — 1), too.

During our investigation it became natural to consider complex moments E Tr X ﬁ
(k € C) or, equivalently, averages of spectral zeta functions of random matrices.

1.1. Spectral zeta functions of random matrices. There exist various generalizations
of the Riemann ¢-function, associated with operator spectra and which are generically
called spectral zeta functions.

Consider a compact operator A on a separable Hilbert space. Then AA* is a nonneg-
ative operator, so that |A| = AA* makes sense. The singular values of A are defined as
the (nonzero) eigenvalues of |A|. If A is self-adjoint with discrete spectrum A1, Ap, ...,
the singular values are |A], |A2|, . ... The Dirichlet series representation of the Riemann
zeta function ¢ (s) suggests to define the spectral zeta function ¢4 (s) of the operator A
as the maximal analytic continuation of the series

> ol

j=1

(this is also called Minakshisundaram—Pleijel [67] zeta function of A). In this sense, the
Riemann ¢ (s) is the spectral zeta of the integer spectrum A; = j. Several authors have
posed the question of how the ‘spectral’ properties of Riemann’s zeta function carry
over (or not) to various spectral zeta functions [79]; classical properties of the Riemann
zeta function are:

(1) Functional equation: the function £ (s) = n_s/zF(s/Z)g(s) satisfies £(1—s) = &(s);

(2) Meromorphic structure: ¢ (s) is analytic in C \ {1};

(3) Special values: trivial zeros ¢{(—2j) =0for j =1,2,...;

(4) Complex zeros of ¢(s) and the Riemann hypothesis (RH): the complex Riemann
zeros are in the critical strip 0 < Re(s) < 1 and enjoy the reflection symmetries
along the real axis and the line Re(s) = 1/2.Itis conjectured (RH) that the nontrivial
zeros all lie on the critical line Re(s) = 1/2.

Let X, be an x n random Hermitian matrix, and denote by A1, . . ., A, its eigenvalues.
Assume that, with full probability, O is not in the spectrum of X, (this is certainly true for
the classical ensembles of random matrices). We proceed to define the averaged spectral
zeta function Cy, (s) as the maximal analytic continuation of

n
Elx, () =ETr (X, =B A"
j=1

Note that E {x, (s) is not a random function. Much of the paper is devoted to pointing
out the analytic structure of E ¢x, (s) when X,, comes from the Gaussian, Laguerre or
Jacobi ensembles.

1.2. Time-delay matrix of chaotic cavities. Random matrix theory provides a mathe-
matical framework to develop a statistical theory of quantum transport. This theory is
believed to apply in particular to mesoscopic conductors confined in space, often referred
as quantum dots, connected to the environment through ideal leads. For these systems,
Brouwer, Frahm, and Beenakker [17], showed that the proper delay times are distributed
as the inverse of the eigenvalues of matrices X, in the Laguerre ensemble (the size n
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being the number of scattering channels) with Dyson index g € {1, 2, 4} labelling the
classical symmetry classes, and parameter o = n.

The moments of the proper delay times have been studied using both random
matrix theory [25,27,28,43,44,58,64-66,75,76] and semiclassical scattering orbit the-
ory [13,52,72,73]. Of course, the subject of moments on rather general matrix ensembles
has been extensively studied. There is, however, one important complication here: the
moments of the time-delay matrix are singular spectral linear statistic on the Laguerre
ensemble. (Invariant random matrix ensembles with singular potentials received consid-
erable interest in recent years in mathematical physics, see, e.g. Refs. [3,9,14,16,21,62].)

In [25,27,28], it was conjectured that the 1/n-expansion of the cumulants of power
traces for the time-delay matrix of quantum dots has positive integer coefficients. In this
paper we prove that the conjecture is true for the first order cumulants, i.e. the moments,
when 8 = 2 (systems without broken time reversal symmetry).

1.3. Mellin transform of orthogonal polynomials. The averaged zeta function is related
to the Mellin transform of the one-point correlation function!. In the classical unitary
invariant ensembles, by using the well-known determinantal formulae and Christoffel-
Darboux formula, the one-point correlation function can be written as a Wronskian

kn—l
kn

n—1
PP ) =D Yi) = == Wr( 1 (x), Y (x)),
s

where v ; (x) are the normalized Hermite, Laguerre or Jacobi wavefunctions with leading
coefficient k ;. (The superscript stands for 8 = 2.) The Mellin transform of a function
f(x) is defined by the integral

MIf@x);s] = / fo)x*dx,
0

when it exists. We set f*(s) = M [f(x); s]. Of course, E ¢x, (s) = p,(Lz)’*(l —s).Inall

instances in this paper, the Mellin transforms have meromorphic extensions to all of C
with simple poles (see Appendix B.1).

Bump and Ng [19] and Bump, Choi, Kurlberg, and Vaaler [20] made the remarkable
observation that the Mellin transforms of Hermite and Laguerre functions ¥ (x) form
families of orthogonal polynomials (OP’s) and have zeros on the critical line Re(s) =
1/2. (Jacobi functions were not considered by them.) A few years later, Coffey [22,23]
and Coffey and Lettington [24] pointed out that the polynomials described by Bump et
al. were hypergeometric OP’s and investigated other families.

Indeed, we show that for the classical matrix ensembles, the Mellin transform
p,(l2)’*(s) of a Wronskian of two adjacent wavefunctions is a hypergeometric OP (up
to a factor containing ratios of Gamma functions). We stress that the proof does not go
along the lines of the method of Bump et al. They started from the orthogonality of the
classical wavefunctions which is preserved by the Mellin transform (a unitary operator in
L?). In our case, by explicit computations, we identify a discrete Sturm-Liouville (S-L)

problem satisfied by ,o,(,z)’*(s) (as a function of s) and this turns out to be the same S-L

of the classical hypergeometric OP’s. We remark that the Mellin transforms p,gz)’*(s)

1 See Section 3 for the definition of the one-point function and the important identity (3.4).
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of ,0,(,2) (x) do have a probabilistic meaning (moments of random matrices). The Mellin

transforms 1//;.k (s) studied in [19,20], while not unmotivated, do not have an obvious
probabilistic interpretation.

Once the analytic structure of the Mellin transform of Wr (v, (x), ¥,+1 (x)) was estab-
lished, it became natural for us to look for similar polynomial properties for Wronskians
of nonadjacent wavefunctions Wr (v, (x), ¥,+x(x)), k& > 1. Such Wronskians do not
have a random matrix interpretation. Nevertheless, they have a certain interest in mathe-
matical physics as they appear when applying Darboux and Crum [29] transformations
on a Schrodinger operator to generate families of exceptional orthogonal polynomials
[39,41,51,74].

1.4. Orthogonal and symplectic ensembles. The theory developed for the classical
ensembles of complex random matrices suggested to look for similar polynomial prop-
erties in the real and quaternionic cases (orthogonal and symplectic ensembles).

Now a fundamental insight came from recursion formulae satisfied by orthogonal
/ symplectic moments coupled with moments of the corresponding unitary ensembles
(see [55] in the Gaussian case and [28] in the Laguerre ensemble). It turns out that for
the classical ensembles of random matrices with orthogonal and symplectic symmetries,
certain combinations of moments satisfy three term recursion formulae which, again,
correspond to the S-L equations defining families of hypergeometric OP’s. Therefore,
this combination of moments plays the role of the single moments in the unitary case: they
satisfy three term recursions, have hypergeometric OP factors, reflection symmetries,
zeros on a vertical line, etc.

The (single) moments of the symplectic ensembles do have polynomial factors, but
these do not belong to the Askey scheme. In the orthogonal cases, we use a novel duality
formula (based on the results by Adler et al. [2]) to write the moments of real random
matrices of odd dimension as quaternionic moments plus a remainder containing an
orthogonal polynomial factor.

Coupling this result with a classical duality between orthogonal and symplectic
ensembles, we discover a functional equation for moments of real random matrices.

1.5. Outline. The paper has the following structure:

e In Section 2 the physics motivations and application to quantum transport in chaotic
cavities are presented;

e In Section 3 we set some notation and we recall the definition of the classical
ensembles of random matrices and hypergeometric OP’s;

e In Section 4 we present the main results along with their proofs for the Gaussian,
Laguerre, and Jacobi unitary ensembles;
In Section 5 we discuss the large-n asymptotics of the spectral zeta functions;
In Section 6 we discuss the relation of our findings with earlier works on the Mellin
transform of classical orthogonal polynomials; then, we extend our results beyond
random matrix theory by considering Mellin transforms of products and Wronskians
of generic pairs of orthogonal polynomials;

e In Section 7 we discuss the extension of duality formulae between moments of
random matrices to higher order cumulants;

e In Section 8 we consider the classical orthogonal and symplectic ensembles and, in
particular, present a new duality formula relating their moments to hypergeometric
orthogonal polynomials.
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2. Motivation and Applications

One of the original motivations for this work was to make some progress on an integrality
conjecture for the 1/n-expansion of the Laguerre ensemble put forward in [25,27,28].
The problem originated from a random matrix approach to quantum transport in chaotic
cavities.

In this section, we will first present some of our findings on the Laguerre ensemble.
Then we will briefly review the connection between the Laguerre ensemble and the
time-delay matrix in chaotic cavities, and explain the applicability of our results to the
integrality conjecture.

2.1. The Laguerre ensemble: reciprocity law and spectral zeta function. Let X, be a
random matrix from the Laguerre Unitary Ensemble (LUE) with parameter m > n. That
is, X, is distributed according to

dP(X) = %(det X*)exp(—Tr X)dX 2.1

on the space P, of nonnegative Hermitian matrices, where d X is Lebesgue measure on

2 ..
P, ~ R"™, Z the normalizing constant, and « = m — n.
Consider for integer k € N, the (inverse) moments

n
ETrx;kzﬂEE:x;h (2.2)
j=1

where A1, ..., A, are the eigenvalues of X,. The above moments are finite if and only
if k < o [53]. We will prove the following remarkable property of these moments.

Proposition 2.1 (Reciprocity law for LUE).

k
ETr X, "D = T]
j=—k

- | ETr XK. (2.3)
0[+J

The above identity can be verified using the recurrence relation for moments proved
by Haagerup and Thorbjgrnsen [45] and extended to inverse moments in [28]. This
gives an explicit formula for the inverse moments given known identities for positive
moments. For instance,

ETr X% =n IETan_lzE
o
2

+
ETrX)l:n2+om ]ETI‘X;ZZ—( nl) ((xn D
o — Da(a +
2

2n3 + 3an? +
ETr X2 =21 +3an’*+a’n  ETrX,> = " an ran .
(@ —2)(a — Da(e+ 1) (x+2)

It is natural to consider complex moments or, equivalently, the averaged LUE spectral
zeta function defined as

EQJQ:E%Xf:EE:Hﬂ for Re(s) < a, (2.4)
j
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|E Ix, (172 + i t)|

LUE: n=5, a=10

Fig. 1. Expected LUE spectral zeta function (modulus) on the critical line s = 1/2 + it

and by analytic continuation for other values of s. We list below a few remarkable
properties of the averaged LUE spectral zeta function.

(1) Functional equation: the reciprocity law (2.3) suggests to consider the function

1
En(s) = mE {x, (5), (2.5)

so that (2.3) becomes the functional equation

En(1 —5) =&a(s). (2.6)

(2) Analytic structure: it turns out that [E {x, (s) can be analytically extended to the
whole complex plane; In particular, &,(s) is a polynomial of degree 2(n — 1).

(3) Special values: trivial zeros E¢x, (1 +a + j) =0for j =1,2,...;

(4) Complex zeros and Riemann hypothesis: as for the Riemann zeta function, the set
of complex zeros is symmetric with respect to reflections along the real axis and
the critical line Re(s) = 1/2. It is tempting to ask whether a RH holds true for the
averaged LUE zeta function. Amusingly, the answer is ‘Yes’: the nontrivial zeros
of E¢x, (s) all lie on the critical line Re(s) = 1/2.

These facts are an immediate consequences of the main results presented in Section 4.
See Fig. 1 for a plot of the averaged LUE zeta function and Fig. 2 for an illustration of
the zeros.

Remark. For any fixed n, the function ¢y, (s) is a finite sum of exponentials. Therefore,
without taking the average, {x, (s) is arandom analytic function in C and never vanishes.

2.2. Application to quantum transport in chaotic cavities. In [25,27], it was proposed
that, for 8 € {1, 2}, the cumulants of the time-delay matrix of a ballistic chaotic cavity
have a 1/n-expansion with positive integer coefficients (similar to the genus expansion
of Gaussian matrices). The precise conjectural statement is as follows.

Consider the measure (2.1) with « = n, and the rescaled inverse power traces

w) =TT X (k= 0).
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Fig. 2. Zeros of &, (s) for the LUE

It is known that the expectation of i (n) has a 1/n-expansion
o0
Et(n) = Z Kkg(k)n™8.
g=0

Conjecture. ([28]) «,(k) € N.

The conjecture was supported by a systematic computation of certain generating func-
tions, and it is in agreement with the diagrammatic expansions of scattering orbit theory.
The integrality of the coefficients in the large-n expansion has been also conjectured in
the real case (LOE) [28], and for higher order cumulants [25,27].

The results reported in this paper resolve the conjecture in the complex case.

Theorem 2.2. The above conjecture is true.

Proof. To prove the Theorem we take advantage of the reciprocity law to use known
results for positive moments of the Laguerre ensemble.

Let X, be in the LUE with parameter « = m — n. For k > 0, from [46, Corollary
2.4] (see also [68, Exercise 12]) we read the formula

ETr Xt = 3 pfow0ro =) (T)#(U) : @.7)

nk+1 n

UESk

where Sy is the symmetric group, and for a permutation o € Si, #(o') denotes the number
of cycles in 0. By yx we denote the k-cycle (1 23 ... k). If m = cn with ¢ > 0, the
above formula shows that nklﬂ ETrX ﬁ is a polynomial in n~2 with positive coefficients
(see Lemma 4.5 below).

By the reciprocity law (2.3) with o« = n (or, equivalently, ¢ = 2)

k
1 1
j2 nk+l

Erennn = | []—

Jj=1 n?

ETr XX, (2.8)
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2\ —1
The factor ]_[]J‘: 1 (1 — ”1—2) in (2.8) is a product of geometric series. Therefore, we
have

o0 k
Etgy1(n) = Z Z (o) 1—[ 2 @0 = (et D=2 +-+ik) (2.9
OESK i,y ir=0 j=1

and this readily prove that Et; has an expansion in n~2 with positive integer coefficients.
0

Remark. From (2.7) we see that, if ¢ € N, then ,}H ETr Xfl (k > 0 integer) has a
1/n-expansion with positive integer coefficients. The computation above shows that
the integrality of the coefficients for the LUE negative moments also holds whenever
¢/(c —1) € N. Therefore, c = 2 is the only case when all moments nk%]E Tr X ﬁ (ke Z)
have integer coefficients in their large-n expansion.

3. Notation and Definitions

3.1. Classical ensembles of random matrices. We will consider expectations with
respect to the measures

l n
o [Twepxiepy [ 1w —xjlPdxr---dx, 3.1)
n, j=1

1<j<k<n

for finite n and for any value of 8 € {1, 2, 4}. The value of B corresponds to ensembles
of real symmetric (8 = 1), complex hermitian (8 = 2) or quaternion self-dual matrices
(B = 4). The function wg(x) is the weight of the ensemble:

e~ (BIDX?)2, I =R,
wg(x) = x(B/2)(m—n+1)—1 e—(ﬁ/Z)x’ I=R,, (3.2)
(1 — x)B/Dm—n+h=1 y (B/Dmy—n+tD=1 "1 — 10, 1],

for Gaussian, Laguerre, and Jacobi, respectively. C;, g is a normalization constant which
depends on the ensemble and is known explicitly [36]. For convenience we set « =
m — n > 0 in the Laguerre ensemble and o1 = m| —n > 0, ap = my —n > 0 in the
Jacobi ensemble.

We define the one-point eigenvalue density p,sﬂ )(x) corresponding to (3.1) by

PP @) =ED s(x—x))|. (3.3)
j=1

We will call (3.3) the eigenvalue density corresponding to the weight wg(x) defining the
expectation over (3.1). The following identity easily follows from the definitions (3.3)
and (3.1):

ETr Xt = / x*plP) (x) dx. (3.4)
I
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3.2. Hypergeometric orthogonal polynomials. We use the standard notation for hyper-
geometric functions

F (al,...,dp.z>Zi(al)j~.-(ap)jz_j
PHINbL kg™ ) T ) (b)Y

where (¢), = ['(g +n)/T'(q). We need to introduce some families of hypergeometric
OP’s [50]. Recall that there are three types of hypergeometric OP’s:

(1) Polynomials of the first type are solutions of usual S-L problems for second order

differential operators: Jacobi Pn(‘)[l -o2) (x) and its degenerations, Laguerre Lff‘) (x)
and Hermite H), (x). They have a hypergeometric representation, but they are per-
haps better known by the Rodrigues-type formulae

dl'l
Hy(x) = (—1)" ex2d e 3.5)
X
(@) 1 —a X d" n+a  —x
L7 (x) = Ex e Wx e ", (3.6)

P(O(],Olz)(X) — l (_1)” d"
" n! (1 — x)%1x% dxn

(1 — x)¥+nyoetn, 3.7

Note that the Jacobi polynomials considered in this paper are orthogonal with
respect to the measure (1 — x)*' x*2dx on the unit interval [0, 1];

(2) Polynomials of the second type are solutions of discrete S-L problems (three-terms
recurrence relations) with real coefficients: Racah R, (A (x); «, B, ¥, §), including
its degenerations Hahn Q,(x; «, 8, N), dual Hahn R,(A(x); y, §, N), Meixner
M, (x; B, c), etc. They can be represented as finite hypergeometric series

Ru(u(x): @, B, v, 8) = aF3 (—n,n+a+,8+1,—x,x+y+8+1. 1) (3.8)

a+1,8+8+1,y+1 ’

—n,n+a+pB+1,—
On(x; @, B, N)=3F2< ket pel o 1) (3.9)
Ry(.(x): 7. 8. N) = 3F, (‘”’ _)ffffl; o+, 1) (3.10)
—n, — 1
Mn(x;ﬂ,o:zﬂ( " x;l——>, (3.11)
C

where A(x) = x(x + y +§ + 1). Note that some authors define the Meixner
polynomials as m, (x; B, ¢) = (B),M,(x; B, ¢);

(3) Polynomials of the third type are solutions of discrete S-L problems with complex
coefficients: Wilson Wn(xz; a, b, c,d) including its degenerations, continuous
dual Hahn S,,(x2; a, b, ¢), continuous Hahn pn(x;a, b, c,d), Meixner—Pollaczek

Pn(k) (x; @), etc. They have the following hypergeometric representations:
Wa(¥*;a,b, ¢, d) = (a +b)u(a +c)nla+d),

—n,n+a+b+c+d—1,a+ix,a—ix,
X 4F3< a+b,a+c,a+d ’1) (3.12)
—n,a+ix,a—ix

Sp(x?;a,b,¢) =(a+b),(a+c), 3F2( d+b.a+te

: 1) (3.13)
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n

paxia,b.c.d) == (a+on(a+d),
n.

—n,n+a+b+c+d—1,a+ix,
x 3F2< Phresd, ,1) (3.14)
ing _ . )
PP (x; ¢) :(u)n%m ( ”’ZA;”C; 1 —e2l¢>. (3.15)

At the top of the hierarchy of hypergeometric orthogonal polynomials are the Wilson and
Racah polynomials. In this paper, the parameter ranges are such that it is most natural to
consider the polynomials which appear as Wilson polynomials and their degenerations,
specifically continuous dual Hahn and Meixner—Pollaczek polynomials. The reader can
find the common notation and the most important properties of hypergeometric OP’s in
[50, Section 9].

4. Unitary Ensembles

It is known that the k-th moments of the classical unitary invariant ensembles of random
matrices X, of dimension n are polynomials in n (or in 1/n after rescaling). Here we
show that the (completed) moments can also be seen as polynomials in the parameter
k. These polynomials are hypergeometric orthogonal polynomials OP’s belonging to
the Askey scheme [7]. The polynomial property suggests to consider complex moments
or, equivalently, averages of spectral zeta functions. For the three classical ensembles,
define

{x,(s) =Tr|X,|™%, X, ~ {GUE, LUE, JUE},

and
22s
Ex, (4 if X, ~ GUE ,
T (1/2=25) 5% (9) if X,
&n(s) __ Ecy. (s) i X ~LUE
= ; o~ ’
" Tlta—y) Kb ,
'l+oa;+a2+2n —ys) .
E - -1 f X, ~JUE,
F(l+az—s) (6x,(9) = ¢x, (s = D) if X,y

when the expectations exist (s < 1/4,s < o+ 1,and s < o + 1 for GUE, LUE, and
JUE, respectively) and by analytic continuation otherwise (see Appendix B.1).
We can now state the first result.

Theorem 4.1. For all n, &,(s) is a hypergeometric orthogonal polynomial:

-1—n
lﬁ PY (@x; 7/2) if X, ~ GUE
1 31 1
——— Su (xz; oa+ —) if X, ~ LUE
£,(s) = I'mI'(a+n) 2°2 2

MNai+ay+n+1)
I'm)I'(ay +n)
3

X Wa_t [ x%

(—=1)"" Yoy +n)

11
5757012"‘5,5—011—012—2”) if X, ~JUE,
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where x = i(1/2 — s). In particular, &,(s) satisfies the functional equation &,(s) =
&,(1 — s) in the LUE and JUE cases, and &,(s) = (—1)”_15,,(1 — s) for the GUE.
Moreover, all its zeros lie on the critical line Re(s) = 1/2.

Proof. See Theorems 4.2, 4.4 and 4.7 below. O
The weights of the OP’s in Theorem 4.1 are

F's+ay+ay+2n)F'2s — 1)

|2ﬁr(2s)|2 if X, ~ GUE
2
| [F@CE+ DIG + o) if X, ~ LUE
w(s) = r2s—1)
‘ L)l (s+ DI (s +o2) if X, ~JUE.

For the GUE and LUE, the following orthogonality conditions hold

1 _
i f Em ()En(s)w(s)ds = hm Smn, 4.1)
%+iR+

where 5, is an explicit constant depending on the ensemble (see Appendix C).

For an illustration of the zeros on the critical line, see Figs. 2 and 3. For the reader’s
convenience, the relation between moments of the unitary ensembles and hypergeometric
OP’s is summarised in Table 1.

Remark. The orthogonality in the JUE is slightly different to the GUE and LUE cases.
First of all, the fourth parameter of the Wilson polynomial is negative. An orthogonality
relation in this case is far from obvious and was established by Neretin [71], see also
Appendix C. This fourth parameter also depends on n, therefore each &, (s) belongs to
a distinct family of orthogonal polynomials obtained by fixing the fourth parameter. As
before, this orthogonality implies that the zeros lie on the line Re(s) = 1/2.

4.1. Gaussian unitary ensemble. The GUE is a classical orthogonal polynomial ensem-
ble. In particular, the correlation functions can be compactly and conveniently written
in terms of Hermite polynomials. It turns out that the complex moments are essentially
a Meixner—Pollaczek polynomial. The moments for GOE and GSE can be expressed
using known formulae relating the one-point correlation functions of the three Gaussian
ensembles.

Let X,, be a GUE random matrix of dimension n. Define Q}? n)=ETrX 5" for all
k € C for which the expectation exists. It is known [47] that, for k € N,

0 (n) = (2k — 1)!!221‘—1(?) (i f 1), (4.2)
i=1

where 2k — D! = 2K0°(1/2 + k)//7 (this is equal to (2k — 1)(2k — 3)---1 for
k > 1 integer). For each k, the moment Q}? (n) is a polynomial in n with positive integer
coefficients:

o5y =n
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Fig. 3. Zeros of &, (s) for the JUE

Table 1. Relation between the correlation functions (in terms of classical OP’s) and the moments (given by
hypergeometric OP’s) of the classical unitary ensembles

Matrix ensembles Correlation functions Moments
(classical OP’s) (hypergeometric OP’s)
GUE Hermite Meixner—Pollaczek
LUE Laguerre continuous dual Hahn
JUE Jacobi Wilson
C 2
Qr(m)=n

05 () =2n*+n
05 (n) = 5n* + 1012
0% (n) = 14n° +70n° + 21n.
This fact is the well-known genus expansion for Gaussian complex matrices.

As observed in [81, Theorem 8], (4.2) can be written in terms of a (terminating)
hypergeometric series:

C
T (g}: 81)1)” = »F (‘k’ é - 2> . 4.3)

From this hypergeometric representation, we see that the moment Q}(C(n), if properly
normalised, is a Meixner—Pollaczek polynomial in i (k + 1) of degree n — 1.

Theorem 4.2. [f we write x = i(k + 1), then for Re(k) > —1/2
oy =i @k =1t PV (x; 7/2). (4.4)
In particular, i"~! Qg(n) /(2k — D! can be extended to an analytic function in C (a

polynomial), invariant up to a change of sign under reflection k — —2 — k, with
complex zeros on the vertical line Re(k) = —1.
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Proof. Consider the polynomials
qr(s) = —P%s 7/2).

From the definition of Meixner—Pollaczek polynomials (3.15) of Pn(l) 1 (x; /2) and the
hypergeometric representation (4.3) we see that Q}S(n) =n 2k — ! gr(n) when k is
a nonnegative integer. In order to prove the general complex case, we use a procedure
of analytic continuation from integer points to a complex domain via Carlson’s theorem

[6, Theorem 2.8.1]. A standard calculation in random matrix theory shows that, for

Re(k) > —1/2,
e VD
Qf(n)=/0 v Z( T et

where H; denotes the Hermite polynomial (3.5) of degree j. This shows that Q}S(n) is
. 2
analytic in the half-plane Re(k) > —1/2. If we write Y"—§(2/ j) 2 (Hj O /ﬁ)) -

o272 + ...+ ¢1y + ¢ for some constants c;, then

‘Q}S(n)‘ _ |/0 et

We use now the elementary inequality a +by +cy2 < (a +b)+(b+c)y2 fora,b,c,y > 0.
Setting d; = |c2j—1| +2|czj| + |c2j+1] (With ¢ = 2,1 = 0) we have then

2/2 2n=2

2n 2
Zc]y/dx < c]|/ Uj€ dy

C = © ey
0F )| < df 2
o Z TRV, e

n—1 k+j—1

—Zd

Ctk+j+1/2)

j—1
= TF(/{+ 1/2)Zd 20 [ Jke+172+0).

i=0

Therefore, i"~'QF(n)/(2k — D! = OK"~1) as |k| — oo with Re(k) > —1/2. In
conclusion, Q}?(n) /(2k — 1)!! and the polynomial P( )1 (i(k +1); m/2) coincide on

nonnegative integers and their difference is O(e/*l) for any ¢ > 0. By Carlson’s theorem
the two functions coincide in the whole domain Re(k) > —1/2.
The polynomials g, (s) enjoy the symmetries

qr-1(8) = gs—1(r)
gr(=s) = (=1)"q,(s).

Therefore, Q}?(n) =nQk— D" g 1tk+1)=n Ck— D! (=1)" g,_1(=k = 1)
thus explaining the reflection symmetry k — —2 — k. Recall that the Meixner—Pollaczek
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polynomial form an orthogonal family with respect to a positive weight on the real line.
Therefore, the zeros of ¢, (s) are purely imaginary; they occur in conjugate pairs, with
zero included if r is odd. This proves that all the zeros of i n—1 Q}? (n)/(2k — 1)!! lie on
the line Re(k) = —1. O

Remark. The polynomials g, (s) satisfy the difference equation
(s+Dgr(s+1) =2(r + Dg,(s) + (s — Dgr(s — 1),
and the three-term recurrence
(r +2)qrs1(s) = 25q,(s) +rqr—1(s).

Since gr—1(s) = gs—1(r), these are in fact equivalent.
Recalling that Q}? (n) = n 2k — D! gx(n), this yields the Harer—Zagier recursion
[47]
(k+2)0F,  (n) = 202k + 1) OF (n) + k(2k + 1)(2k — D OF | (n), (4.5)

and the recursion in n
nQF(n+1) =2k +1)0F (n) +nQF (n — 1). (4.6)

The Meixner—Pollaczek polynomials can be thought as continuous version of the
Meixer polynomials [8]:

)n

PP (x; ¢) = *“’d’( My (—h+ix; 21, e %),

In fact, the normalized moment (4.3) is a Meixner polynomial (see (3.11)) inn — 1 of
degree k or, by symmetry, a Meixner polynomial in k of degree n — 1. The alternative
form of Theorem 4.2 using Meixner polynomials is the following.

Theorem 4.2,
Q}(C(n) =n k-1 Mn—-1;2,-1)=n 2k — D" M,_1(k;2,—-1). (4.7
The first polynomials are

0%(1) = 2k — !
05 =202k — DN- (k+ 1)

C _ l 2
0F(3) =32k — DI~ 2 (2k +4k+3)
0C(4) = 42k — D11 - % (k3 +3k2 4 5k + 3)

05 (5) =52k — - L

(2k4 +8K3 +22Kk2 + 28k + 15) .
15

Remark. Thenormalised GUE moments can be written as products of moments (2k—1)!!
of a standard Gaussian, times a Meixner polynomial

%Q}S(n) = k=D My(n—1; 2,-1).
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It is natural to ask whether the Meixner polynomials form moment sequences of some
random variables, so that one can ‘decompose’ the GUE one-point function as multiplica-
tive convolution of a standard Gaussian and another probability distribution (product of
two independent random variables). In fact, Ismail and Stanton [48,49] considered the
problem of orthogonal polynomials as moments. It turns out that the Meixner polyno-
mials are moments of translated Beta random variables

I'(8)

1
I U k x4+l —x—1 _n .
T+ AT (—x) /. r(1—1) (t—oc) dt = "My (x; B, ¢),

(1—c)'F

for Re(x) < 0 and Re(x + ) > 0. Note however that, in our setting, the Meixner
polynomials have nonnegative argument x = n — 1, so that this representation of the
one-point function as a ‘convolution’ is purely formal.

As a corollary of Theorem 4.2 we have the following two identities.

Corollary 4.3. Reflection formula:

L L ofm = 1 Qi (k+1) (4.8)
n 2k — N =k " T k+1Q2n—1)—npn=rt ' '
Convolution formula:

i G+D  k—j+1)  Q7m OF ;(m)

Sej-Diek—j)-Di n n
C C (on—
_1 ! (Qk+2(2n+1)(k+2—2n)+—Qk+2(2n 1)(k+2+2n)>.
4Qk+2)— DI\ 2n+1 20— 1
(4.9)

Proof. The reflection formula follows from the hypergeometric representation in (4.3).
To prove (4.9) we start from the convolution property of the Meixner—Pollaczek poly-
nomials [4]

k
PEM (x4 y; @) =Y PP (xi )P (05 9).
j=0

It follows that
k

3 (i/2)/ Jm(+1)
rg+1/2)

(/D ymk—j+1)
I'tk—j+1/2)

oS m) 0f ;) = P2 Qin: 7/2).

j=0

To complete the proof we use the Forward Shift Operator for the Meixner—Pollaczek
polynomials [50, Sec. 9, Eq. (9.7.6)], the reflection formula (4.8), and the recursion
4.6). O

Remark. The reflection formula (4.8) relates expectations of power of traces when the
role of k and n is interchanged. We remark that these are not the only quantities invariant
under this type of reflection. The other main examples are moments of characteristic
polynomials. See the work of Mehta and Normand [61, Eq. (3.15)] and Forrester and
Witte [34, Eq. (4.43)]. A generalization of such a duality to all 8 was obtained in the
work of Desrosiers [30].
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4.2. Laguerre unitary ensemble. The moments of the Laguerre polynomial ensemble
(LUE) enjoy a polynomial property, too. They are (dual) Hahn polynomials (3.9)—(3.10),
or their continuous versions (3.13)—(3.14).

Let X, be a LUE random matrix with parameter m. Denote « = m —n > 0. Set
Q}(C(m, n) =ETr X,’j forall k € C for which the expectation exists. Then Qg(m, n)=n
and, for k € N, it is known that [46]

i+ Dr(n—i+1)

k
C _ 1 _ i—1(m—
Qg (m,n) = ki:ZI( 1) ( . (4.10)

k— i)l — 1!

For any k € N, Q}S(m, n) is a symmetric polynomial in m, n of degree k + 1, with
positive integer coefficients:

Q(F(m,n) =mn

Qg(m, n) = m?n + mn>

Qg(m, n) = m3n +3m*n® + mn> + mn

Qf(m, n) = m*n + 6m3n® + 6m*n> + mn* + 5m*n + 5mn’.

In fact, for each positive integer n, Q}{C (m, n)isapolynomial in k of degree 2(n—1). After
some manipulations, the moments (4.10) can be expressed in terms of a hypergeometric
function:

C
Qy(m,n) _ mn P 1—k,2+k,1—n; ' @.11)
(k +a)! 1+ a)! 2,2+a
This formula can be extended for k € C and satisfies Qg(m, n) =n.
Theorem 4.4. [f we write k = ix — 1/2, then for Re(k) > —a — 1,
c (k+a)! , 31 1
N =——"—8§,_ D=, =, a+ =, 4.12
Qelmm) = T — o\ 2%t (4.12)

where S,,_1 denotes the continuous dual Hahn polynomial of degree n — 1. In particular
this shows that Q}(C(m, n)/(k +a)! can be extended to a polynomial invariant under the
reflection k — —1 — k (reciprocity law) and, moreover; its complex zeros lie on the
critical line Re(k) = —1/2.

Proof. Comparing (4.11) with the hypergeometric representation of continuous dual
Hahn polynomials (3.13) we get the result for k integer. The extension to complex k is
again an application of Carlson’s theorem. O

An alternative formulation in terms of Hahn and dual Hahn polynomials (3.9)—(3.10) is
as follows.

Theorem 4.4,

Qg(m, n)=mn2+a)_1Ri—1((k—Dk+2); 1,1, -2 — ) 4.13)
=mn+a)—1Qr—1(n—1; 1,1, =2 — ). 4.14)
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Remark. The difference equations / three-term recurrence relations for these polynomi-
als (see [50, Sections 9.5 and 9.6]) yield the Haagerup-Thorbjgrnsen recursion [28,45]

(k+2)QF, (m, n) = 2k+1)2n+a) OF (m, n)+(k—1)(k> —a®)QF | (m,n).  (4.15)
If k is a positive integer, and we treat « as a parameter, then Qf (m, n) is a polynomial
in n of degree k + 1. Moreover, we can write
1k
Q}(C(m,n): lTn(n+a)pk_1(in; L1—a,1,1+0a), (4.16)

where py_1 denotes the continuous Hahn polynomial (3.14) of degree k — 1.
Note the alternative formula:

c _ (k=1 (mtk—1 1—k,1—n1—m
Qk(m»n>—k-< no1 m—1 )3 —k—n Zk—m')
If « is fixed and we write Q}S(m, n) = a, R,, where a,, = n(n + ), then

(k= D(k+2)R;, = ans1 Rys1 — (@ps1 +an—1) Ry + a1 Ry 1.

It is very natural to consider m dependent on n. An interesting situation (from the point
of view of the large-n limit) is the case m = cn with ¢ > 0 and fixed. The next result
shows that the moments, as functions of n, are polynomials with all zeros on a vertical
line in the complex plane.

Lemma 4.5. Let m = cn and k a positive integer. Then, n~— %+ Q}S(cn, n) is a polyno-
mial in n=% of degree | (k — 1)/2] with positive coefficients.
Proof. From [46, Corollary 2.4] we have

1 -
—5OF(en.n) = Y HOpHrne D= (k+1) “.17)
n

o €Sk

For any permutation o € Sk, one has
(—=)*#) = 5on (o).
Hence
(=D} HOEHRTD < son()sgn(yeo ") = sen(yp) = (—~DF!
and so
(_1)#(a)+#(yka*1) = (=),

2

Hence #(o) + #(ykcr_l) — (k+1)iseven and (4.17) is a polynomial inn™=. O

Theorem 4.6. Fix ¢ > 0. The zeros of the polynomials Q}(C(cn, n) as a function of n are
purely imaginary and satisfy the interlacing property.

Proof. Let g (n) = Q}? (cn, n)/n. Then for each k, gr(n) is a polynomial of degree k,
with positive coefficients, and only powers nk onk=2 .. (see Lemma 4.5). It follows
that if we define pi(x) = iKgi(—ix), then pi(x) is a polynomial of degree k, with
alternating signs, and satisfies the (Haagerup-Thorbjgrnsen) recursion

(k+1) pr(x) = (c+ 1) (k=D xpr—1 (x)—(k = 2) ((k — 1>+ (c=1)*xH) pr_a(x).  (4.18)

Itnow follows from [57, Corollary 2.4] that { px (x)} is a ‘Sturm sequence’ of polynomials.
Hence the p;’s have only real zeros, and they satisfy the interlacing property. O
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4.3. Jacobi unitary ensemble. Let X, be a JUE random matrix of size n with parameters
o] = m| —n, oy = my — n. It turns out that the suitable statistics in this ensemble are
differences of consecutive moments A Q}? (a1, an, n), defined as

OF (a1, a2,n) = ETr X
AQf (a1, 02, n) = O (a1, a2, n) — Qg (o1, a2, )
for all k € C for which the expectations exist.

Theorem 4.7. In terms of Wilson polynomials, writing k = ix — 1/2, for Re(k) >

—ap — 1,
(k +an)! (a1 +n) (0] +ap +n)!
AQF (a1, a2, n) =
k+ai+ar+2n)! (n— D! (ap+n —1)!
=D "W,y (x% SR (4.19)
n—1 ’ 27 25 2 272 1 2 . .

This shows that A Q}S (a1, oo, n) ((k+a1+ap)!/(k+ay)!) can be extended to a polynomial
invariant under the reflection k — —1 — k (reciprocity law) and, moreover, its complex
zeros lie on the critical line Re(k) = —1/2.

In this case, our strategy is to look for a three-term recursion for A Q}?(al, oy, n) when
k is an integer. In fact, adapting a method due to Ledoux [54, Eq. (30)—(31)], we find

the following recurrence relation for the JUE which is the analogue of the Harer—Zagier
and Haagerup—Thorbjgrnsen recursions.

Proposition 4.8 (Three term recurrence relation for JUE). Let k € Z. Then,
ReAQL, (a1, a2, n) + SKAQL (ar, 2, n) + TyAQY (@1, 02,m) =0, (4.20)

with ‘initial conditions’

n(ay +n)
AQ§ (a1, 02, 1) = ————— “.21)
o1 +op+2n
n(a; +ay +n)(ay +n)(ar +n)
AQT (a1, a2, n) = . (422

(a1 +ax+2n — )(ag +ap +2n) (g + a2 +2n + 1)
The coefficient Ry, Sk, and Ty are given by

Ri(ar,a2,n) = (k+2) (a1 +a2 +20)° — (k+ 1)),

Si(ar, @z, n) = — 2k + 1) 2n(ay +ay +n) + a3 +ajay — k(k + 1)),

Ti(er, a2, n) = (k — 1(ef — k).
Proof of Theorem 4.7. The proof is immediate when k is a nonnegative integer by
observing that (4.20) is the discrete S-L problem for Wilson polynomials, and by

checking the initial conditions. For k complex we can use the same method of
Theorem 4.2. 0O
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Remark. Using the hypergeometric representation of Wilson polynomials (3.12) we
have the explicit formula

(k+a2)! (1 +ap +ay +2n)!
(I+a)! (k+a; +oap +2n)!

F 1—k,2+k,1—n,1—n—oq.1
x4ls 2,24+w2,2 —ay —op —2n )

AQF (a1, a2, n) = AQS (a1, a2, )

To our knowledge, this hypergeometric representation is new.

Remark. Ledoux [54] obtained a fourth order recursion for moment differences of the
Jacobi ensemble, but the ensemble he considers is shifted compared to ours. In our
notation, the moments L (k) considered in [54] can be written as

k

! 1
L = [ x- 1P ar =Y (’J‘)z’ 04 [P )
0 0

j=0

for which it is shown that L(k) — L(k + 2) satisfies a fourth order recursion. Using
(2x — DF — 2x — DF*2 = 4(2x — D¥(x — x2) we obtain

k

L&)_L@+2)=§:<iﬁﬁ%—nijQ%ﬂaLmJﬂ

j=0

It follows that Ledoux’s moment differences can be expressed as a linear combination
of hypergeometric functions.

The difference of moments A Q}? (01, @2, n) can alternatively be written in terms of
Racah polynomials.

Theorem 4.7'. The JUE difference of moments is (a1 +ay +n ¢ 7)

AQF (1, 0z, n) = (=1)""n(n+ o)) (n + ) (n +ay +0t2)
sin (77 (a1 + o +2n — 1)) 2+ a2)r—1
sin(w (w1 +a2+n)) (1 +a2+2n— 1)
XRy_1((k—1)*k+2); 1,—a1 —2n,1 —a; —ar —2n, 1 +a; +ap +2n).
(4.23)

Using the recurrence relation (4.20), one can verify the following identity between
positive and negative moments (this is the analogue of (2.3)).

Proposition 4.9 (Reciprocity law for JUE).

k .
o1 +op+2n —
[T 252 AQf @i aain). (424)

AQ(E(kH)(al ,0, 1) = @ —J

j=k
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For instance, (0 = m — n, ap = my — n):

C nmi
AQg(ar, a0, n) = —————
o1 +ot2+2n
C nmi
AQZ(ay,02,n) = —
2%

nmimy(my +my — n)

A (Ca,a,n =
Qrle, «2,m) (@1 + a2 +2n) (a1 + a2 +2n)2 — 1)

nmimy(my +my — n)
o (a% — 1)
nmima(my +my —n) (mo(my +mo —n) +nmy —2)
(a1 + a2 +2n) (1 + a2 +2n)% — 1) () + a2 +2n)% — 4)
nmimo(my +mo —n) (may(my + my —n) +nm; — 2)
o (o3 = 1) (o3 —4) '

AQS (a1, @2, 1) =

AQC (a1, a2, n) =

4.4. Generating functions. Itis sometimes convenient to define the moments of random
matrices in terms of their generating function. The first example of such a generating
function was constructed by Harer and Zagier for the GUE of fixed size n (see Eq. (4.25)
below). This convergent series is a rational function. As emphasised by Morozov and
Shakirov [69], from the point of view of random matrices and enumeration problems, this
is a highly non-trivial result: a generating function for moments at all genera appears
to be rational. The generating function of covariances of the GUE computed in [69]
turns out to be again an elementary function. The generating function of higher order
cumulants of the GUE have been studied recently by Dubrovin and Yang [31] who
expressed them in terms of traces of 2 x 2 matrix-valued series.

One of the advantages of the representation of the moments in terms of hypergeo-
metric OP’s discussed in the present work, is that we can write explicit formulae for the
generating functions of the moments of GUE and LUE for fixed n and/or k. Remarkably,
these closed expressions are elementary functions.

Proposition 4.10. Let Q}?(n) and Q}(C(m, n) be the moments of the GUE and LUE,
respectively. Then

GUE:
- Qg(n) k 1 1+2\"
Zm’ :Z<<1_t) ‘1> (4.25)
k=0
> Q}S(n) W 2 l+z k+1
; k-1 T 1-2 <1 _Z) (4.26)
Oc(m) .,z |
. o' Y TTaSh ey .27)

n>1,k>0
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LUE:

00 C k
Qy(m,n) t tr (D) )

Y S =L ()L, (1) (4.28)

— (k—1)! K
oo
c (m —1)! 2" z —k, 1 —k

, > F : 4.29

;Q" ) vt Aot 21 2 52 (4-29)

) OF (m,n) itk z122t exp (3Z1Z2 —2@1+z2) + lt>

e k= DU KT (A=) — ) I--2) )

(4.30)

Proof. The sum (4.25) can be computed from (4.7) using the formula of the generating
function of Meixner polynomials [50, Eq. (9.10.11)]:

ok OF () gt _ (L el
“n (2k =Dl T \l—¢ '

The formula for generating function (4.25) follows from the identity

_ o k Q;S(”) k—1

ndi ocm k
2k — D! _kzln(Zk—l)!!

tdt =

The generating function (4.26) for fixed k, is a direct consequence of the repre-
sentation of the moments in terms of Meixner—Pollaczek polynomials (4.4) and their
generating function [50, Eq. (9.7.11)].

Finally, the joint generating function (4.27) is the resummation in n of (4.25) (or the
resummation in k of (4.26)).

For the LUE we use the generating series of continuous (dual) Hahn polynomials.
From the representation of the LUE moments as continuous Hahn (4.16), using [50, Eq.
(9.5.11)] we get

o]

Q}{C(m,n) ! 1—n, 1+m,
2oma— AT

k=1
1— 1-—
:1F1< 2n;—t>1F1( zm;—l>et.

Note that the hypergeometric functions on the right-hand side are terminating series. In
fact, they are Laguerre polynomials [50, Eq. (9.12.1)], thus proving (4.28).

For (4.29) we use the representation in terms of continuous dual Hahn polynomi-
als (4.12) and the formula of the generating series [50, Eq. (9.3.11)]. We have

o0

— D! "
ZQ}?(m,n)(m )z z P (k+2,2k+1;z>,
n=1

(k+a)! n!  (1—gak !

which is equal to (4.29) by Euler’s tranformation. Note that the hypergeometric series
is terminating. In fact, one could also write it in terms of Jacobi polynomials.

The joint generating series in (4.30) is a resummation of (4.28) over n and
m using the known formula for the generating function of Laguerre polynomials
[50, Eq. (9.12.10)]. O
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Remark. The series (4.25) was computed by Harer and Zagier [47] using different meth-
ods. It is surprising that, although the three-term recurrence in k and the generating
function were known, nobody recognized the moments of the GUE as Meixner poly-
nomials. The generating function of the GUE for fixed k (Eq. (4.26)) does not seem to
appear in the previous literature. The joint series (4.27) appears in the work of Morozov
and Shakirov [69] who stressed the nontrivial fact that it is a rational function in both
variables.

The generating functions (4.28)—(4.29)—(4.30) for the LUE seem to be new. It is
remarkable, again, that these series sum to elementary functions.

5. Large-n Asymptotics of the Spectral Zeta Functions

It is a classical result that, after rescaling, the one-point function ,0,1’3 ) (x) of the random
matrix ensembles considered in this paper weakly converges to a compactly supported
probability measure, as n goes to infinity. The limit pso(x) is known as equilibrium
measure of the ensemble and does not depend on the Dyson index S. In formulae, for
allk e N,

: 1 k k
nll>nolo WETan :/x DPoo(X)dx.

This suggests to define the limit zeta function {(s) as the analytic continuation of
f |x] 7% poo (x)dx. The limit zeta functions for the classical ensembles turn out to be
meromorphic functions. For the LUE and JUE, {.(s) has infinitely many nontrivial
zeros, and they all lie on a critical line.

We discuss the three classical ensembles separately. For notational convenience we
consider the GUE, LUE and JUE, although the results hold true for any S-ensemble.

5.1. Gaussian ensemble. The equilibrium measure is given by the semicircular law

1
Poo(X) = o 4 —x2 1ye—2,2). (5.1)

After a suitable rescaling, in the large-n limit, the integer moments converge to the
Catalan numbers:

lim leM> /Q%pw@mxz-l—(%>. (5.2)

e k+1\ k

This formula can be analytically continued and suggests to define the limit GUE zeta
function as the analytic continuation of f [x] 75 poo (X)dx:

27
2
f r (2 5)
This function has alternating simple poles and zeros on the positive integers, with no

other zeros in the rest of the complex plane. The large-n limit is more interesting for
matrices in Laguerre and Jacobi ensembles.

loo(s) = (5.3)
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5.2. Laguerre ensemble. Let X, be in the Laguerre unitary ensemble. Seta =m —n =
(¢ — 1)n, with ¢ > 1. Define the equilibrium measure

1
Poo(X) = Y- (rr =) (x —x2) Leer_,xy) (5.4)
TX
where x+ = (1 &+ \/5)2 > 0 (this is the celebrated Marchenko—Pastur distribution).

Then,
lim LQC((C—l)n n) —/xk
% ,n) = Poo(X)dx. (5.5)
R

n—oo pk+l

Define the limit LUE zeta function as
loo(s) = /R %] poo (x) d x (5.6)

with pso(x) in (5.4). From the finite-n functional equation &,(s) = &,(1 — s), we see
that a good definition for the limit n — oo is

Eoo(s) = (x—x4)*"?Lo0 (5).

Proposition 5.1. Assume ¢ > 1. Then, the functional equation £xo(s) = Exo(l — )
holds, and the zeros of the {0 (s) all lie on the critical line Re(s) = 1/2.

Proof. To prove the functional equation it suffices to use the change of coordinates
y = (x4x_)/x in the integral (5.6), and notice that x_x; = (¢ — 1)2. Alternatively, a
calculation using Euler’s integral formula and Pfaff transformation, reveals that

1 (xp —x2)? <3/2,s+1 x_—x+>
T <1 2F1

é‘OO(S) = E (x_)s+1 3 5
1

X
3 1 3 1 1
=c(l—0)" ', F <z +3(0-2) 172 (s=2). i icc)2> .G

Then apply Euler’s transformation formula to show the functional equation.

To show that the zeros of £, (s) are on the critical line we use an argument based on
Sturm-Liouville theory (we borrowed this argument from a similar problem in a paper
by Biane [15]).

First, observe that the integral (5.6) can not vanish for s real. We want to show that

the zeros of
3 3
DR (BT AT i ;
2 (1—0)?

where 24 = s — 1/2, lie on the imaginary axis. The function y(z) = 2 F1(3/4+p, 3/4—
u; 2; —z) satisfies the hypergeometric equation

z(1+2)y" + 2 +52/2)y +(9/16 — u*)y = 0.

Thus, if  is such that y(4c/(1—¢)?) = 0, then y(x) is a solution to the Sturm—Liouville
problem

(P(X)Y (X)) +q(x)y(x) = pPw(x)y(x)
on [4c/(1 — )2, 00), with Dirichlet boundary conditions, where p(x) = x2(1+x)
g(x) = (9/16)w(x) and w(x) = x(1+x)~ /2. It then follows from the Sturm—Liouville
theory that the eigenvalues 2 are real which can only happen if u is real or purely
imaginary. Since we have excluded the real case, we conclude that 2 = s — 1/2 is
purely imaginary: the zeros of {(s) all lie on the critical line Re(s) = 1/2. O

1/2
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5.3. Jacobi ensemble. Let X,, be in the JUE.
Set a2 = (c1,2 — 1)n, with ¢1 » > 1. Then, the equilibrium measure is

cl1+cC

pro() = 5V = D& = 50) Laenn (5.8)
2
where x4 = <—‘/aivccl2fg+62_l)) , and

li !
m —-
n—oo pk+l

OF((c1 = Dn, (¢ — Dn,n) = /ka(l — X)pso(x)dx. (5.9
Define the limit JUE zeta function as

{oo(s) = /R 1X] ™ poo(x) d x (5.10)
with poo (x) in (5.8). Again, the finite-n functional equation &, (s) = &, (1 —s), suggests
the definition of
foo(s) = (0-x)*"? (Loo(8) = Loo(s = 1)

Proposition 5.2. Assume c12 > 1. Then, the functional equation £xo(s) = Exc(1 — )
holds, and the complex zeros of £ (s) all lie on the critical line Re(s) = 1/2.

Proof. Using Euler’s integral formula, we have
c1+c (xp — x2)? 3/2,s+1 X_ — x4
2 F ; .
16 (x_)s+! 3 x_
The proof of Proposition 5.1 is easily adapted. O

$ools) = (5.11)

6. Beyond Random Matrices: Wronskians of Orthogonal Polynomials

6.1. Mellin transform of orthogonal polynomials. Bump and Ng [19] and Bump, Choi,
Kurlberg and Vaaler [20] made the remarkable discovery that the Mellin transforms of
Hermite and Laguerre functions have zeros on the critical line Re(s) = 1/2. Their proof
is based on the observation that the Mellin transform preserves orthogonality. Hence,
Mellin transforms of orthogonal polynomials are themselves orthogonal with respect to
some inner product. Later [22-24] it was noticed that those orthogonal functions are
hypergeometric OP’s (multiplied by some nonnegative integrable weight).

Consider, for concreteness, the Hermite polynomials H, (x) and the normalised Her-
mite wavefunctions ¢, (x) = (2"n!ﬁ)_1/ 26=x%/ 2H, (x). The following proposition
follows from the result of Bump et al. [19,20].

Proposition 6.1 (Mellin transform of Hermite functions). For all integers n > 0

* _ nAn—1+% n! i (%) (s — 1/2) z
) =172 2WF(2)P’“ <_’ 2 2>

s o (221 8 (L=, 1)
2n+1 \/m ) n ) )

The averaged spectral zeta function of unitary invariant ensembles of random matrices
can be interpreted as Mellin transform of Wronskians of adjacent Hermite, Laguerre
or Jacobi wavefunctions. Given our results, it is natural to ask whether more general
Wronskians have the property that their Mellin transforms can be written in terms of
hypergeometric OP’s.
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6.2. Mellin transforms of products and Wronskians of classical orthogonal polynomials.
In this section we will use repeatedly the properties (B.2)—(B.3)—(B.4) of the Mellin
transform.

The Wronskian of smooth functions fi(x) ..., fi(x) is defined as

WECAL(0, s f @) = det (£ )

ij=1"
Note the homogeneity property
Wr(g(x) f1(x), ..., 8(x) fn(x)) = ()™ Wr(f1(x), ..., fin(x)).

Consider the Hermite, Laguerre and Jacobi polynomials defined in (3.5)—(3.6)—(3.7),
and the associated normalised wavefunctions

(2"n!\/;)_1/2e_x2/2Hn(x) (Hermite)

n!
| ——————x2e™2L@ (x) g, (x) (Laguerre)
uiry = 4 VTt D ©.1)

\/n!(oq tar+2n+ Dl(a) +ar+n+1)

MNai+n+DI'(p+n+1)
x (1= x)0/2x22 P (1) yi0.17(x)  (Jacobi).

The wavefunctions are orthonormal
/ O (X) P (x)dx = 8n,m,
I

where I = R, Ry, and [0, 1] for Hermite, Laguerre, and Jacobi, respectively. We set

n,e(X) = Gp(X)Pnre(x)
Wa,e(x) = Wr(dn(x), dpie(x)).

Theorem 6.2. Let ¢,,(x) be Hermite wavefunctions (6.1). Then,

i) the Mellin transform of the products is

s [t T () (s @
wp ,(s) =i"22 T DIT (s_fﬂ) Py <—E, E)’ (6.2)

ii) the Mellin transform of the Wronskians is

" 20
Wn,e(s - = .1

1w;£(s). (6.3)

Proof. Part i): Given the three-term recurrence of the Meixner—Pollaczek polynomials
[50, Sec. 9, Eq. (9.7.3)], it is sufficient to show that a); ((s) satisfies the recurrence

V+ D)+ L+ Dy, () — sy, o(s) —/nn+Ow, _ ,(s) =0. (6.4)
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Using the three-term recurrence of the Hermite functions
Vit 11 (¥) = V22 (1) + Vg1 (x) = 0 (6.5)
we have
Vo + D0+ €+ Dot 0 (6) = 26705, () + /(1 + Owy-1,6(x)
—v2x (\/mwn,e—l(x) + x/ﬁwn—l,ul(x)) .

We now take the Mellin transform of both sides. Using the equation

dp(xX) + Xy (x) — V2n¢p,—1(x) =0, (6.6)

we get
Va+Dm+L+ l)a):JrM(s) =-M [xa);l’[(x); s] +/nn+ K)wZ—l,e(s)-

The fact that M [xa);l (03 s] = —swy ,(s) follows from integration by parts (or prop-
erty (B.4) of the Mellin transform, with m = 1). We have proved (6.4). To complete the
proof of (6.2) we compute the initial conditions
[ L
wp (s) = 22—&, and o] ,(s) = 2 I'e) s.
, \/ﬁ r (Av—§+l) , (K ¥ 1); r (s—§+1)

Part ii): Note that

Woe(x) = V2 + O)wpo—1(x) — V2n0n—1.041(x)

where we have used the identity (6.6). Taking the Mellin transform of both sides, substi-
tuting the identity (6.2), and using the Forward Shift Operator for the Meixner—Pollaczek
polynomials [50, Sec. 9, Eq. (9.7.6)] we complete the proof of (6.3). O

The following analogue of Proposition 6.1 for the Laguerre wavefunction is essen-
tially due to Bump et al. [20] and Coffey [22,23].

Proposition 6.3. Let ¢, (x) be Laguerre wavefunctions (6.1). Then

010 = iy [ r e (T -1 ).
'h+a+1) i 2
Theorem 6.4. Let ¢,,(x) be Laguerre wavefunctions. Then,
i) the Mellin transform of the products is
's)I'(s +a)
Cs—O/n!n+O)Tn+a+DIn+l+a+1)

xS, (—(s—1/2)2;z+1/2, 1/2,(x+1/2>; 6.7)

o o(s) = (=1)f

ii) the Mellin transform of the Wronskians is

L
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Proof. Given the three-term recurrence of the continuous dual Hahn polynomials [50,
Sec. 9, Eq. (9.3.4)], we need to show that wj; ,(s) satisfies

VA + D+ a+ 1) o) () = (Ag+ Cp — L +1) +5(s — 1)} ,(5)
—VCi(n+ O+ L+a)wf_y (), (6.9)

with A, =m+£L+1)(n+{+a+1)and C, = n(n+ ). Using the relations

VD +a+ D (x) = Qn+a+1— )¢, (x) — Y +a)d,—1(x), (6.10)
1
X (x) = S@n+a—X)ga(x) = Vnn+a)gy_1(x),  (6.11)

we have the identity

A+ D+ o+ D) 010 (x) = (An + Cp — L€+ 1)) ¢ (x) + (xza);l’e(x))/

—VC(n+0)(n+ L+ a)w,_1.¢(x).

Taking the Mellin transform of both sides and using (B.2)—(B.4) we get (6.9). The initial
conditions are
's)r's +aw)
IF's—OJTU+ DI+ DIl +a+1)
T (s +a) (s —s+ @+ D +1))
I'Gs—OVTUE+2)T(a+ 2T U +a+2)

Wy (s) =(—=1)"

o} o(s) =(—=1)"*

These complete the proof of (6.7). Similarly to the Hermite case, Eq. (6.8) can be proved
by using (6.10)—(6.11), and the elementary properties of the Mellin transform (B.2)-
(B4). O

Using the very same method one can show that the Mellin transform of products and
Wronskians of two Jacobi wavefunctions is essentially a Wilson polynomial. The proof
follows the same lines as the Hermite and Laguerre cases and is omitted.

Theorem 6.5. Let ¢,,(x) be Jacobi wavefunctions (6.1). Then,

i) the Mellin transform of the products is

. o) (ar+or+2n+ Dl (a1 +ax+n+1)
w S) =
n.¢ nC(a+n+ Dl(aa +n+1)

(ar+or+2n+0)+ DN +ar+n+L+1)
n+O) T (ar+n+l+ DIl (ax+n+L+1)
L))o +5)
I's—0OT' (e +ar+2n+£+1)

W, ! ’ €+1 ! +1 2 V4 !
X —(s—=); —, -+ -,—ay—ay—2n—L0— =],
" 2 PR A A 2

(6.12)

x (—=D)"T(a +n+£€+1)
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ii) the difference of Mellin transforms of the Wronskians is
* * ¢ *
Wiels) = Wi, (s —1) = sle"’[(S)' (6.13)

We can also calculate the Mellin transform of a single Jacobi wavefunction in terms
of a continuous Hahn polynomial. The interesting case turns out to be for weights with
slightly shifted parameters.

Theorem 6.6. Consider the functions
~ o=l -l

Gu(x) =x 7 (1—x)" 7 P (x)x10,17(x). (6.14)

Then the Mellin transform can be written in terms of continuous Hahn polynomials:

-1

F1(5) Pl st (m +1>< %

s) = —i

" T (s + %32 4+ n) 2

X pp(—i(s — 1), (2 +1)/2, —(o1 + a2) /2 — n, (a2 + 1) /2,
— (1 +@2)/2 — n).

(6.15)

These polynomials have zeros on the vertical line Re(s) = 1 and satisfy an orthogonality
condition. They are invariant under the reflection s — 2 — s (up to a change of sign if
n is odd).

Proof. Toidentify the continuous Hahn polynomial, one employs the standard expansion
of Jacobi polynomials and calculates the Mellin transform integrating term by term. The
result is a hypergeometric sum which can be identified with definition 3.13, leading to
(6.15). The difficulty in establishing the conclusion is that these polynomials are only
known to be orthogonal when the parameters have positive real part.

We proceed by expressing the right-hand side of (6.15) in terms of Wilson polyno-
mials and apply a result of Neretin [71]. We claim that for generic parameters a, b € C,
we have

pan(x,a, b, a,b) o« Wy(x%,0,1/2,a,b) (6.16)
Pans1 (x, a, b, a,b) oc xWy(x?,1,1/2, a, b) (6.17)

up to a constant independent of x. If a and b have positive real part, this follows by
writing the orthogonality condition for the Wilson polynomials with the parameters
given in (6.16) or (6.17). Use of the duplication formula for the Gamma function shows
that the weight reduces to |I'(a + ix)|? |T'(b + ix)|*> which is the weight function for
continuous Hahn polynomials. If a or b have negative real part the identity follows
by analytic continuation. Now inserting (6.16) and (6.17) into (6.15) and applying the
orthogonality (C.2) completes the proof. 0O

Going back to random matrices, we obtain exact ordinary differential equations for

the one-point functions of the classical ensembles. Denote by ,0,52) (x) the one-point
function of the ensembles GUE, LUE, or JUE. As already discussed in the Introducion,

p,?) (x) can be represented as the Wronskian of two adjacent wavefunctions.

The following proposition is a corollary of the previous theorems on Mellin trans-
forms of Wronskians. For GUE and LUE we recover a result obtained and used earlier
by Gotze and Tikhomirov [42, Lemma 2.1 and Lemma 3.1]. For the JUE a similar result
does not seem to have been published.
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Proposition 6.7. The one-point correlation function ,0,(,2) (x) satisfies the differential
equation D,o,gz) (x) = 0, where

"+ (@4n — x2)y +xy (GUE)

1+b 2
Dy = § x3" +4xy" + (x — a)(b — x)y + <—2 Y ) y, (LUE)
X

(1= x)39)" + x (@ +x)(1 = x)?y)" + (1 = x)A(x)y + B(x)y, (JUE)

where
a=m+n—x/m, b=m+n+~v4mn +?2,
and
Ax) = — ((051 +a)? — 2) X% — dnx(x — 1)@y + 0 +n) +2a0x (ar) +2) — 63 +2,

B(x) = x*((a) +2n)> — 4) — 6nx(ay +n) +2x —2

2
+ar(2x — )(x — D) (ay +2n) +2n(ay +n) — O[—2(1 — x)3.
by

Proof. We present the proof for the GUE. The one-point function ,o,(,z) (x) of the GUE

is proportional to the Wronskian of consecutive Hermite functions W, 1(x/ V2) =

Wr(n—1(x/~2), dn(x/+/2)). To prove the Theorem for the GUE it is therefore suffi-

cient to show that the function W, 1 (x) satisfies the third-order differential equation
V() 420+ 1) — xHW, () +4x W) (x) = 0.

The Harer—Zagier recurrence relation (4.5) for the moments of the GUE is in fact a

difference equation for the Mellin transform W:,l (s)

s(s+1)(s +2)W;f’1(s) +8(s+2)(n+ 1)W;’1(s +2) —4(s +5)W,T,1(s +4) =0.
(6.18)

Using the properties (B.2)—(B.4) of the Mellin transform we get the claim.
For the LUE and JUE the proof follows the same steps starting from the recurrence
relations (4.15) and (4.20). 0O

Remark. 1t is natural to ask whether Wronskians of nonadjacent wavefunctions satisfy
similar differential equations. The Mellin transforms of those Wronskians are essentially
hypergeometric OP’s (see Theorems 6.2, 6.4, and 6.5). Hence, they satisfy a discrete
Sturm—Liouville problem. Upon inversion of the Mellin transform this discrete problem
correspond to a differential equation.

We discuss, for concreteness the case of Wronskian of Hermite wavefunctions
Wi.e(x) = Wr(¢u(x), ¢n+e(x)). Its Mellin transform is given in (6.2)—(6.3). From the
difference equation of Meixner—Pollaczek polynomials
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(=38 . 4l .
t—s—2p\ ) (—’(”1)- —) Caenrsenpl ) (_’(“3). z)

2 72 2 72

1 .
+(£+s+4)Pn( ’ ) (——l(s+5); Z) =0,
2 2

the Mellin transform of the Wronskian satisfies the difference equation

s(s+1)(s +2)(s +3)(€ — 5 — )W, ,(5)
—A(s+2) (s +3)Qn+L+ D (s — L+ 2 W, (s +2)
+4((s +4)* — ) (s — L+ )W) (s +4) = 0. (6.19)

This implies that, for generic n and £, W,, ¢ (x) satisfies a fifth-order differential equation.
When when ¢ = 1, formula (6.19) simplifies as (6.18), which corresponds to the third-
order equation of Proposition 6.7.

6.3. Convolution of hypergeometric OP’s. If ¢, (x) are the Hermite, Laguerre, or Jacobi
functions and wy, ¢(x) = ¢, (x)@n+e(x), by the convolution property (B.5) of the Mellin
transform, we have

1 c+ioo
o by (s — )y, (W)du = wy, ,(s), (6.20)
Tl Je—ioo
with ¢ in the fundamental strip of convergence of the Mellin transform. Note that ¢, (x)
isin L?(Ry) so that the fundamental strip always contains the line % +iRR. Given that ¢/,
e and o, have hypergeometric OP’s factors, the above formula is a ‘convolution
formula’ for hypergeoemetric OP’s. Note that this is different from the usual (discrete)
convolutions formulas of orthogonal polynomials.
When ¢, (x) is a Hermite wavefunction, ¢;; (s) has a Meixner—Pollaczeck polynomial
factor whose parameter depends on the parity of n. Using the explicit expressions in
Proposition 6.1 and Theorem 6.2 we can write the special cases of (6.20):

1. .

1 [zH>® — i —u—1/2 i —1/2

— 7 (% M)F<Z> Png4> sou-l2 T Pn(4) Y127
2mi I—ioo 2 2 2i 2 2i 2

— 2K7m7n7%s+2i2rfmfn \/7?(2”)' ['(s) P(“—%) (i z> (6.21)
min! T (3L —¢) "2 \2i72 '
L %”'OOF s—u+1 r u+1 P(%)
27 J1ioo 2 2 "
—u—1/2 3 —1/2
smu=1/2 7\ () (u=1/2 7\
2i 2 2i 2
— 2€—m—n—%sl~2r—m—n+1 ﬁ(zr +1)! T () 2<£+1%) (i, Z) (6.22)
min! T (S —¢) 7 \2i7 2

2

L %+iooF s—u+1 I‘(E>P(i)
2700 J1ioo 2 2/ "
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(s—u-—1/2; z) Pn(i) (u—.l/Z; z)du
2i 2 2i 2

_ 2€7m7n7%s+%i2r7m7n VT 2! T(s) PZ(Z"'D (i’ Z)
mn! T (5-¢) 7 2i 2

(6.23)

with r = min(m, n) and £ = |m — n|.
In a similar way, from Proposition 6.3 and Theorem 6.4, the convolution prop-
erty (6.20) gives the identity

300 e
L F(s—ur 2)r (e )l )
%ﬂ'oo
(s—u—l/Z. Z) Pﬂ(%) (s—1/2' z)du
i T2 i 02

— 1)y ()T 1\? 11 1
:( ) (s) (S+Ol)Sr —(s==) :t+=, = a+= (6.24)
m!ln!  257¢T'(s — £) 2 22 2

with r = min(m, n) and £ = |m — n|.

7. Higher Order Cumulants

It is tempting to look for reciprocity formulae for cumulants of higher order
(covariances, etc.). Write the moments as Qf(m,n) = ETr Xﬁ, second order

moments as Q}El(m, n) = ETr X,’; Tr sz, and covariances as C,(El = le(m, n) —
QOf (m, m)QF (m, n).
Positive and negative moments of LUE matrices satisfy recursion relations known as

loop equations. The following lemma can be proved using standard methods in random
matrix theory (see, e.g. [33] for similar loop equations for positive moments of the GUE).

Lemma 7.1 (Loop equations for positive and negative moments of LUE). For ki, ..., ky
€ N, the positive and negative moments satisfy the relations (loop equations):

k1—1 v v
Y ET X, T XS Texle e xb 4 Y GETex, T [ e xk
=0 j=2 i=2
i%i
=ETr Xk e xk ... xb —oETr X5t Xk e XA (7.1)
k1—1 v v
Y ET X T X T X R T X R+ Y GETe X, YT ] Tex
=0 =2 i=2

i#]
= -ETr X, " Tr X, * .. Tr X, ® +oaETe X, " e X2 e X0, (7.2)

provided they exist.
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Proposition 7.2 (Reflection symmetry for LUE covariances).

CC
C k,1
Coi—a

T 2@ 1) (@2 — k) 73)

Proof Note that Qf (m,n) = n, 0(m,n) = mn and Q€ (m,n) = n/a. The proof
of (7.3) uses the loop equations (7.1)—(7.2) together with the reciprocity law (2.3) for
moments, as follows. By the loop equations,

OF |(m,n) = mQF o(m, n) +kQF (m,n) = OF (m, n) OF (m, n) + kQf (m, n)

and
@ QS _y(m.n) = Q% o(m,n) +kQ,_ (m,n) = mQS (m,n) +kQC, _(m,n).
The first gives
CEy = kOF (m, n).
Using Q((_:1 (m, n) = n/a, the second gives
0%, _1(m.n) = Q,(m.n) QS (m.n) +kQ%,_ (m.n)/a.
thatis C&, | = kQ%,_ (m.n)/a. Now (2.3) gives

kQF (m, n) B Ce
2@ —1)--- (@2 —k?)  a2@2—1)--- (a2 —k?)

C —
Ch 1=

as required. O

There exists also a precise reflection symmetry for the covariances of one-cut -
ensembles at leading order in n. Suppose that the eigenvalues x1, ..., x, of X, have a
joint probability density proportional to

n
[T x—xlf[Je ™" ax; (>0 (7.4)
1<j<k<n i=1
on the real line. Special cases of one-cut S-ensembles are the Laguerre and Jacobi

ensembles defined by the weights (3.2) with = (¢ — I)n and @1 2 = (c12 — I)n, with
¢, c1, ca > 0 (see discussion in Section 5). Denote the covariances by

Cry=ETr XX Tr X! —ETr X*ETr X! (7.5)

The two-point connected correlator

1
Gy(z,w) =ETr Tr —ETr ETr (7.6)
77— Xn w— X, z— X, w— X,
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is the generating function of covariances of positive and negative moments

o0
Ga(z,w) = Z Cryz~ *D =D as z, w — 00 (7.7)
k.1=0
o0
= Z Cf(k+1),7(1+1)zkwl asz,w — O. (7.8)
k,1=0

For one-cut S-ensembles the large n limit of G,(z, w) exists and depends only on
the edges of the cut [5,10,12,26,27], see Eq. (7.13) below. (On the other hand, for
multicut ensembles the asymptotics of G(z, w) is more delicate due to the presence of
oscillating terms [1,11]). In the Laguerre ensemble set « = m — n = (¢ — 1)n, with
¢ > 1. The edges x4+ of the cut are strictly positive, see (5.4). In the Jacobi ensemble
seto; 2 = (c1,2 — 1), with ¢ > 1, so that the cut [x_, x,] is contained in the interval
(0, 1], see (5.8).

Theorem 7.3 (Covariances of Laguerre and Jacobi ensembles at leading order in ). Let
X, be in the Laguerre (resp. Jacobi) ensemble with ¢ > 1 (resp. co > 1). Denote the
edges of the cut by 0 < x_ < x4. Then, forall B > 0,

k+l
lim C_k,_[ = ( ) lim Ck’[. (7.9)
n—00 X_Xy n—00
More explicitly:
1 2(k+1)
lim C_y ;= (—) lim Cy, (Laguerre) (7.10)
n—o00 — n—oo
2(k+1)
+
lim C_p_; = (cl Cz) lim Cy (Jacobi). (7.11)
n— 00 cy—1 n— 00
Proof By the one-cut property, the limit
G2.0(z, w) = lim G(z, w), (7.12)
n—oo

is given by the explicit formula

1 1 Zw— (x— +xp)(z+w)/2 +x_x4
G , == —1]. 7.13
20, w) B (z—w)? (\/(Z —x_ )z —xp)(w —x_)(w — xy) ) (7.13)

Moreover, since the cut does not contain zero, the negative covariances lim,_, oo C—k, —;
exist. From (7.13) it is easy to verify the following functional equation

2
Gao (“”, ”*) - (H*) Ga0(z. w). (7.14)
Z Zw

w

Using (7.7)—(7.8), the claim follows. O
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8. Orthogonal and Symplectic Ensembles

We will now discuss analogous results for the orthogonal and symplectic ensembles of
random matrices, corresponding to averages over the density (3.1) withg =1lorg =4
respectively. Our aim will be to isolate the polynomial factors of the moments (Mellin
transforms), again for the Gaussian, Laguerre and Jacobi ensembles. These ensembles
are characterized by their joint eigenvalue distribution as in (3.1) with corresponding
weight functions (3.2). We will consider various expectation values of power of traces
with respect to (3.1) with 8 = 1 and 4. We will use the shorthand GSE and GOE to mean
Gaussian Symplectic Ensemble, GSE (8 = 4), Gaussian Orthogonal Ensemble, GOE
(B = 1) and similarly for the Laguerre (LSE / LOE) and Jacobi (JSE / JOE) cases. As in
the complex case, we will denote by « = m — n in the Laguerre case, and o] = m| —n
and oy = my — n in the Jacobi case, which we treat as fixed n-independent parameters.

Moments of real and quaternionic Gaussian ensembles have already received some
attention in the literature, however much less is known compared with the complex
case f = 2. One of the first explicit formulas was derived by Goulden and Jackson
[40] who were motivated by the fact that, for 8 = 1, moments of Gaussian matrices
describe the genus expansion of non-orientable surfaces. An important development was
achieved in the work of Ledoux [55] who discovered recursion relations for moments
of the GOE and GSE (which can be viewed as real and quaternionic analogues of the
Harer—Zagier recurrence relations). This was extended to the Laguerre ensemble in [27].
Results holding for complex moments were obtained in [64—66].

8.1. Recurrence relations and hypergeometric representations. We define

OR(n) = ETr X2 if X, ~ GOE

0 (n) = ETr X2 if X, ~ GSE
OR(m,n) = ETr Xk if X, ~ LOE
0(m, n) = ETr X* if X, ~ LSE

O (a1, ap, n) = ETr x* if X, ~ JOE
0 (a1, 0z, n) = ETr X* if X, ~ JSE

AQF (a1, a2, n) = O (a1, a2, 1) — O, (a1, @2, 1)

A (ay, a2, n) = 0y, a2, n) — O (@1, a2, )

for all k € C for which the expectations exist. Moments of the classical orthogonal
ensembles satisfy recursions similar to those of the unitary ensembles. To our knowl-
edge this was first noticed by Ledoux for the GOE [55] and extended to the LOE in
[28]. The first question is whether moments of orthogonal / symplectic ensembles enjoy
reflection symmetries and have orthogonal polynomial factors as in the unitary case. This
is not the case as can be ascertained from the following observation. The Harer—Zagier
recursion for moments Q}S (n) of the GUE is a three terms recursion in k which can be
interpreted as the discrete S-L problem of some families of hypergeometric (Meixner /
Meixner—Pollaczek) polynomials. Moments of the classical orthogonal ensembles sat-
isfy recursion formulae too. For the GOE, Ledoux [55] discovered that Q,iR(n) sat-
isfy a five term recurrence relation which cannot be interpreted as a S-L equation (a
second order difference equation). In fact, Ledoux also found an alternative inhomo-
geneous recursion formula for Q%(n) coupled with the moments of the GUE that is
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somewhat more convenient for some application. An analogue of this coupled recursion
was obtained later for the LOE [28].
These results suggest that suitable combinations of moments, rather than the moments
themselves, have nice hypergeometric polynomial factors similar to the unitary cases.
Moments of the symplectic ensembles can be analysed similarly given the duality
relations between moments of GSE, LSE and JSE of size n and the (formal) moments
of the GOE, LOE and JSE of size —2n

08 ) = (=271 0F (—2n) (8.1)
0 (m, n) = (=D)* 1271 QR (—2m, —2n) (8.2)
0M(ar, a2, n) = =271 QR (21, —2a2, —2n). (8.3)

For the GOE/GSE the duality was put forward by Mulase and Waldron in terms dia-
grammatic expansion of Gaussian integrals [70]. See also [18,55]. This duality between
orthogonal and symplectic Laguerre ensembles appeared in the paper of Hanlon, Stan-
ley and Stembridge [46, Corollary 4.2]. The duality in the Jacobi ensembles has been
observed by Forrester, Rahman and Witte [37, Eq. (4.15)]. See also [32] and [38,
Appendix B].

Theorem 8.1 The combinations of GOE and GSE moments

SE(n) = Qi (1) — 4n —2) Q) (n) — 8k(2k — DO (n) (8.4)
S (n) =208, () — (16n +4) QL (n) — 16k(2k — 1) Q%L | (n) (8.5)

have Meixner polynomial factors:

SR(n) = —3n(n — 1) 2k — D! M,_o(k; 3, —1) (8.6)
= 3n(n—1) 2k — D! My(n —2;3, —1) (8.7)
SH(n) = —6n(2n +1) 2k — D! Ma,_1(k: 3, —1) (8.8)
= —6n2n+1) Qk — DI Mp(2n — 1;3, —1). (8.9)

In particular, for any integer n, SF (n)/ 2k — D! and S,]PI (n)/ 2k — 1! are Meixner—
Pollaczek polynomials in x = —i(k +3/2)

S (n) o

(zkk_ D —6i"~2 PP (x: 7/2) (8.10)
S () .

G = 6 PR 8.11)

invariant up to a change of sign under the reflection k — —3 — k, with complex zeros
on the vertical line Re(k) = —3/2.

Proof We first prove (8.6). We read from Ledoux paper [55, Theorem 3]
Sit () = Q1 (n) — (4n = 3) O (1) — 2k(2k — D) O} ().

Using the polynomial property of Q}(C(n), this remainder can be expressed as a sum of
two Meixner polynomials
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SRm) =3n 2k — DI (My_1(k; 2, —1) — My (k+1; 2, —1)) .

The representation (8.6) in terms of a single Meixner polynomial follows using the
Forward Shift Operator [50, Eq. (9.10.6)].
To prove (8.8) the starting point is again a result in Ledoux paper [55, Theorem 5]

Siln) = OF,,2n+1) — Bn+2)0RQ2n +1) — 8k(2k — 1) Q% ,2n + 1),
which can be written in the insightful form
Sn) = SFQn+1).

The representation (8.8) is now a consequence of (8.6). Alternatively, by the duality
relation (8.1)

SH(n) = (—1)F (Q,LR+1 (=2n) + (8n +2) QF(=2n) — 8k(2k — 1) QF (—2n)) ,
that is
Sy = (=DFsE(—2n).
Using the self-duality of Meixner polynomials, we write
H o\ _ k+1 .
S (m) =(=D""6n2n+1) 2k — D! My (=2n —2;3, —1).

Now we use the symmetry (=DM Me(=2n —2;3,—1) = My2n + 1; 3, —1), and the
self-duality again to conclude the proof. O
The S-L problem satisfied by the Meixner polynomials is a three term recursion formula
for S¥(n) and S (n),

(k+3)SE(n) = 2k + 1)2n — D)SE(n) +kQ2k + )2k — DSE ,(n)  (8.12)

(k+ 3)S,]ﬂl(n) =Q2k+1)dn+ l)S,IfH(n) +k(2k + 1)(2k — I)S,Eﬂ_l(n). (8.13)

These recursions, which are very similar to the Harer—Zagier formula, become five term
recurrences for the moments Q,iR(n) (this is Ledoux recursion [55, Theorem 2]) and

0l (m).
Corollary 8.2

(k+1)QF(n) = (4k — H(2n — DO ()

+ (2k — 3)(10k*> — 9k — 8n” +8n) OF ,(n)

— 5(2k —3)(2k — 4)(2k — 5)(2n — 1) Q% 5(n)

— 2(2k — 3)(2k — 4)(2k — 5)(2k — 6)(2k — T)QF ,(n).  (8.14)
(k+ 1O n) =@k — DHdn+1HOE | (n)

+ (2k — 3)(10k* — 9k — 32n* — 16n) O}, (n)

— 5(2k —3)(2k — 4)(2k — 5)(4n + 1) Q" 5(n)

— 2(2k — 3)(2k — 4)(2k — 5)(2k — 6)(2k — 1) QF" 4(n).  (8.15)
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Theorem 8.3 Set « = m — n, and consider the following combinations of moments for
the LOE and the LSE.

S,E%(m, n) = Q,lRH(m, n)—2(m+n — I)Q,lR(m, n)

—(1 —a® +4k(k — 1) OF (m,n) (8.16)
Sim, n) =208 (m,n) — (8m +8n +4) 0 (m, n)
—(2 — 8% +8k(k — 1)) O, (m, n). (8.17)

Then, S,]?(m, n and S,E'H(m, n) can be written in terms of dual Hahn polynomials (as
functions of k) or Hahn polynomials (as functions of n):

Seemm _ 6 s 2<x2-§_a+l> (8.18)
k +a)! (n—2)(m—2)! """ 227 T2 '
3nmn — 1)(m — 1)
=_ Okoa(n —2; 2,2, -3 —a) (8.19)
(x+2)!
Seonm) _ 24nm ) 1(x2 01 20(+1> (8.20)
(k +2a)! Qn)!\2m)! " 20 2 '
B 12nmQ2n+1)2m + 1)

a1 Ora@n—1;2,2,-3—2a)  (821)

where k = ix — 1/2. In particular this shows that the polynomials S,ICR(m, n)/(k +a)!

and S,]?I (m, n)/(k+2a)! are invariant under the reflection k — —1 — k (reciprocity law)
and, moreover; their zeros lie on the critical line Re(k) = —1/2.

Proof By the inhomogeneous recursion for moments of the LOE [28, Theorem 3.5],
S,]ig (m, n) is a combination of moments of the LUE

3
S¢m,m) = o= (m+n =k =1DQg(m = 1,n = 1) = O, (m = 1,n = 1)),
that can be expressed in terms of continuous dual Hahn polynomials

3k +a)!
(k—1(@m —2)!(n —2)!

31 1
x((m+n—k— DS, > <x2; X 5,a+z>

SE(m, n) =

( +k+1)S (x —i)? SR
—(m—n _ x—10) =, —,a+=]).
=2 22572

The final result (8.18) can be obtained by using the Forward Shift Operator of the contin-
uous dual Hahn polynomials [50, Eq. (9.3.7)]. From the hypergeometric representation
of Hahn polynomials we get (8.19).

For the symplectic moments, note that, by duality (8.2) between LOE and LSE
moments,

Sm, n) = (=DFSE(—2m, —2n).

This proves (8.21). We use the identity (3 — 2a)k—2Qk—2(—2n —2; 2,2, =3 +20) =
(=D*BG+2a)k—20k—2(2n—1; 2,2, —3—2a) and find (8.21). Now, this can be written
as a polynomial in k which can be cast as (8.20). O
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Remark As in the Gaussian case, there is a reflection formula under the transformation
2m+1— —2mand2n+1 — —2n

SRem+1,2n+1) = (=D SR (=2m, —2n). (8.22)

The S-L problem of continuous dual Hahn polynomials corresponds to the three term
recursions (in k)

(k+3)SE,(m,n) = 2k + 1)2n +a — DSE(m, n) + (k — 2)(k* — a®) S, (m, n)
(8.23)

(k+3)SE (m,n) = 2k + 1)(4n +2a + 1) (m, n) + (k — 2) (k> — 4a*) Sy, (m, n)
(8.24)
which are similar to the Haagerup—Thorbjgrnsen formula for the moments of the LUE.
Writing S,]zR (m, n) and S,]PI (m, n) in terms of the moments we obtain the following five

term recursions. To our knowledge these recursion formulae are new.

Corollary 8.4

(k+1)QF(m,n) = AQR | (m,n) + BOY ,(m,n) + CO¥ 5(m,n) + DOF ,(m, n).
(8.25)

with
A=k —1Dm+n—1)
B=—@k—6)m+n—1D2+k—4) (k=27 —a?)+ k+ 1) (2K =37 a?)
C=—(m+n—1) ((2k —3) ((2k 52— a2> — 2k —8) ((k —22 a2)>
D=—(k—4) ((k —2)2 a2) ((2k —7)2 - 052)

and

(k+1)Qm,n) = AQ [(m,n) + BOY ,(m,n) + CQL 5(m, n) + DOF,(m, n)
(8.26)

with
A =4k — 1)2m +2n+1)
B=— (4k —6)2m+2n+ D*+ (k —4) ((k —2)? —4a2)
+(k+1) ((2k 32— 4a2)
C=—Qm+2n+1) ((2k —3) ((2k — 52— 4a2) — 2k —8) ((k —2)2 - 4a2)>

D=—(k—4 ((k 22— 4a2) ((Zk 72— 4a2) .
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Using methods similar to those in [28] it is possible to write a recursion formula for the
moments of the JOE. Denote

S,I(R(a], ar,n)=Ck+4—oy—ary —2n)(a;+ar+2(n+k+ 1))AQIE+1(051 , 0, 1)
+2(c1@0 — o — ap + a5 — 4k(1 +k) — 21 +2(a1 + az)n +2n*) AQF (a1, @z, 1)
—(@3 = (1 =201 AQF (a1, 02, 1).

Proposition 8.5 (Recursion for moments of the JOE) Set o1 = m; — n and oy =

my — n. Then the differences of adjacent moments AQ,iR(on , a2, n) of the JOE satisfy
the following inhomogeneous three term recursion

R
Sk (al , 02, n)

3
= o (v k= D26 ron —k = Dn s 20%) AQF @ e =1

— (a1 +on +2n) (@) +az +2n —k — 3)AQS, (a1, 2, 1 — 1)). (8.27)
As in the Gaussian and Laguerre cases, the above recursion formula suggests that
S}CR (o1, a0z, n), and not the moments themselves, have a nice polynomial property. This

is the content of the next theorem whose proof goes along the same lines as the Gaussian
and Laguerre cases.

Theorem 8.6 Set k = ix —1/2. The combination S,ICR (o1, a2, n) has a Wilson polynomial
factor

6 (a1 +n)(ap +n — )(a; +ar +n)!
(n —2)! (ar +n —2)!

, 51 13
Wi | x75 575,(12‘*5,5—0!1—0(2—211 .
(8.28)

S&ar, aa,n) = (=1)"!

(02 +k)!
(a1 +op+k+2n—1)!

In particular, S}?((xl ya2,n) (a1 +az +k+2n — 1)!/(aa +k)!) is a polynomial of degree
2(n —2) in k, invariant under the reflection k — —1 — k, with zeros on the vertical line
Re(k) = —1/2.

8.2. Symplectic ensembles. The goal of this section is to establish the following poly-
nomial property for the moments of the symplectic ensembles.

Theorem 8.7 The rescaled moments

1
H
- GSE
e 1/2) 2k ™
H 2k H
k) = — , LSE 8.29
pn( ) Cn’mr(205+k+2)Qk (m,n) ( )
I'(1+20; + 202 +4n + k)
Cn,ay,0 T Qo +k+2) AQ]H;H(OH, ap,n) JSE
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are monic polynomials in k of degree 2(n — 1) in the GSE, and degree 4(n — 1) in the
LSE and JSE cases. The normalizing constants are

cn =220 2n) /1
cnom = '2m)I'(2n)
T'2n +2a)T Qon + 4T (2n)

FQRay + 20 +2n +2)T Ry +2n +2)Ran +2)

Cn,ay,0p =

Proof We will discuss the Gaussian case in detail, as the Laguerre and Jacobi cases
follow a similar pattern. By [64—66, Eq. (33)], we have the explicit formula

"Lk
ofm =27""0f@n —a, 33 (;) <i . j)(n —i—j+Dg_12 (8.30)

j=1i=0
where Q}{C(Zn) denotes the moments of the GUE (see Section 4.1) and
I'(n+ DI (n)
ap = ———————.
T /Al (2n)4ln

Although formula (8.30) was only stated in [64—-66] for k € N, it naturally defines a
meromorphic continuation to k € C, as follows. As a function of k € N, we have that
ng (2n)/('(k + 1/2)) is a polynomial of degree 2n — 1 in k (see equation (4.4)) and
hence is defined for any k € C. It remains to study the second term in (8.30). Note that

(n—i—j+Dx-1/2
Tk+1/2)

is a polynomial of degree n — i — j, while (ll‘) and (l.fj) are polynomials of degree i and
i + j respectively. Hence Q,iﬂ(n) / T'(k +1/2) is a finite sum of polynomials in k and is
therefore a polynomial. To compute degrees, notice that the highest degree term in the
summand of (8.30) occurs when 2i + j +n — i — j = n +i is maximal, namely when
i = n—1implying a degree of 2n — 1. That the degree of the combined polynomials (i.e.
unitary plus symplectic contribution) is really 2n — 2 is a consequence of the following

cancellation. Setting j = 1 and i = n — 1 in the summand of (8.30) and dividing by
I'(k + 1/2) gives the polynomial
k k
Mn—1)\n)

Then Stirling’s formula gives the estimate

k k anfl
an =—— 1 0("?, k- oo
n—1/\n 2n — 1)l141-n

Similarly, consider the complex moments

2n—1

1 c _ 1 _1(k\( 2n
2T(k+1/2) Qcem = JT ;2] (j><j+1>
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Fig. 4. The 2(n — 1) complex zeros of the symplectic polynomial p]]fﬂ (n) for the GSE with n = 30 (left) and
n = 50 (right)

which has the same leading coefficient (setting j = 2n — 1) as

1 k k2n—l4n—l
— R L S o Y( S W k — oo.
ST \2n —1 2n —1)!

Hence, the terms of order k2"~ ! in (8.30) cancel, yielding a polynomial of degree 21 — 2.
To compute the normalizing factor ¢, requires studying terms of order k" 2. This is a
straightforward but tedious task and we omit the details. The only contributions to the
monomial k2"~2 come from (8.31) when j = 2n — 1 and j = 2n — 2, and from the
double sum in (8.30) with indices (i, j) = (n — 1, 1) and (i, j) = (n —2, 1), (n — 2, 2).
Then studying the asymptotics of these five terms as k — oo with Stirling’s formula
gives the result. For the Laguerre and Jacobi cases, this computation can be repeated with
the formulae [64—66, Eq. (89) and Eq. (98)] which have an identical structure to (8.30)
and is therefore omitted. O

Below are the first few polynomials pfl(k) for the GSE, whose zeros appear to settle
onto an explicit contour in the complex plane as n becomes larger (see Fig. 4).
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Pl =1
palk) = k> +5k +3

45
PElk) = k% + 10k + 38k2 + 41k + >
Pilk) = kO + 15k + 109k* +393k> + 637k> + 735k + 315.

8.3. Orthogonal ensembles. In this section we will study the Mellin transform of the

one-point correlation function ,0,5’3 ) (x) with B = 1. One can expect this case to be more
complicated in general, since now (3.1) contains a non-analytic term (the absolute value
of the Vandermonde determinant, which happened to be a polynomial in the cases 8 = 2
and B = 4). In the case of n odd we are saved by a remarkable duality principle for
the Mellin transform, relating the orthogonal and symplectic ensembles. This duality
involves a simple correction term which is a single hypergeometric OP.

The case of n even has a different analytic structure, evident already at n = 2.
Indeed, it was known since the beginnings of random matrix theory that the parity
n plays an important role for ensembles with orthogonal symmetry (see [60, Chapter
6] for example or more recently [35]), with most authors assuming n to be even for
simplicity. Here it is the converse, we describe the analytic structure for n odd and give
an explicit analytic continuation. First we need a proposition relating the orthogonal and
symplectic ensembles.

Proposition 8.8 Given the notation of Section 3, let p, (x) denote the degree n monic
polynomial orthogonal with respect to the weight wy(x) on the interval I. Then the
one-point eigenvalue density (3.3) satisfies the following duality

wi (xX) p2,(x)
[; w1 (@) pan (1) dt

where p¥ (x) is the B = 4 eigenvalue density with respect to the modified weights

Pt () = 2559 (x) + (8.31)

2 .
e /2 Hermite

Wy (x) = § x¥+e=x Laguerre (8.32)
x0T — )2t Jacobi.

Remark We give a complete proof of Propostition 8.8 in Appendix A, which is based on
the skew-orthogonal polynomial formalism developed in [2]. In the specific case of the
GOE, formula (8.31) was mentioned in [55]. Actually, the statement of Proposition 8.8
is implicit in Forrester’s book [36, (6.120)—(6.122)]. It is worth emphasizing that this
duality goes beyond the one-point function and can be formulated as a duality between
the correlation kernels of n-odd orthogonal and symplectic ensembles. This suggests a
possibly simpler route to studying correlation functions of n-odd orthogonal ensembles,
but this lies beyond the scope of the current investigation.

We now study the consequences of the duality (8.31) for the Mellin transforms of the
orthogonal ensembles.

Theorem 8.9 (Duality in the n-odd orthogonal ensemble) In the three orthogonal ensem-
bles the following identity holds for all k € C and n € N:

OR@n+1) =210 () + 45T (k + 1/2) fr(n) (8.33)
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OR@m+1,2n+1) =251 Q8 (m, n) + 25T (k +m — n +1/2) fi(m,n)  (8.34)

Q (20{ 20, 2n 1) — 2Q (Ol o ”) ( l / ) f ( )
’ ’ ’ ’ oy, 02, n
k 1 2 k 1 2 IR (k ) ) 1) k 1 2

where
fen) = e PP =ik + 1/4): 1/2)

felm,n) = cpm PA" "2 (—ik; 7/2)

. 1 |
Jrlar, a2, n) = cp oy, Pon(—ik; a1 + 5, —1 —a2 —2n, a1 + 5, —o1 — g — 2n).

In each case, the f. is a hypergeometric orthogonal polynomial from the Askey scheme:
The Pn()‘) (x, ¢) are the Meixner—Pollaczek polynomials, while p,(x; a, b, ¢, d) are the
continuous Hahn polynomials, see (3.14). The normalization constants are

i"n!

“Tm+1/2)
(—1)"n!
T Tm+1/2)
(=D"n!T (1 +1/2)) T (n+a;+az+ 1)
T(ntai+1/2)T (n+az+1/2)

Cn

Cn,m

Cn,ar,ap =

Remark The results (8.33)—(8.35) combined with Theorem 8.7 imply a polynomial
property for the moments of the orthogonal ensemble, though not as cleanly as in the
symplectic case. It is not possible to normalize Q,lR(Zn + 1) and obtain a polynomial in
k, unlike in the symplectic and unitary cases (e.g. the second term in (8.33) is always
exponentially larger in & than the first).

The content of Theorems 8.1 and 8.3 is that the combinations S,]F (n) and S,I{R(m, n)
of moments of the orthogonal ensembles (with fixed n) have hypergeometric orthogonal
polynomial factors. Putting together the dualities in the n-odd orthogonal ensembles of
Theorem 8.9 and the classical duality between symplectic moments and formal orthog-
onal moments (8.1)—(8.2)—(8.3), we find that the combinations of moments (with fixed
k)

T (n) = OF n+ 1)+ (=2)* 0F (—2n)
T (m, n) = QFQ@m +1,2n + 1) + (=2 OF (=2m, —2n)

TE (a1, a2, n) = OF Qay, 22, 2n + 1) + QR (=201, =202, —2n)

do have hypergeometric polynomial factors.
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Corollary 8.10
TE(n) =2k — D' My, (k; 1/2, —1) (8.36)
R amntk (k4 +1/2) o
TE(m,n) = S, ((ik)%; 1/2,0,a+1/2)  (8.37)

JT o 2n—DN2m — D!
F'k+ar+1/2)T (1 +1/2)T (n+a;+az2+1)
F'k+ar+a+2n+)TFm+o1+1/2))T (n+ oy +1/2)

Qn+az) — D! . o1
oy — Dl — D Wa ((lk) L5 0.0

R
T, (a1, p,n) =

1
+5, o — o2 = Zn) . (8.38)

Proof of Theorem 8.9 We multiply both sides of identity (8.31) by x* (or |x|?* for the
GOE) and integrate over /. By the correspondence (3.4) this gives

OR@n+1) =208 n) + (k) (8.39)

where Q,iH(n) are moments defined with respect to the modified weights (8.32). Such

moments are easily expressed in terms of the usual Q,iH(n) by multiplying by 2% (Hermite
and Laguerre case) or by dividing the parameters «; and «» by 2 (Laguerre and Jacobi
cases). This gives the first terms in (8.33)—(8.35).

The correction ¥, (k) is a weighted Mellin transform of the corresponding orthogonal
polynomial. In the JOE and LOE this takes the form

7 xFwi (x) pan (x) dx
J; wi(x) pan(x) dx

Yn (k) = (8.40)

while for the GOE x* is replaced with |x|%*. The integral (8.40) can be computed
explicitly by expanding ps,(x) as a sum and integrating term by term. This expansion
turns out to be a terminating hypergeometric series which can be identified as one of the
hypergeometric polynomials appearing in the claimed result. In fact, for the Gaussian
and Laguerre cases, precisely this calculation is carried out in a different context in
[22,23], so let us just explain the Jacobi case. Then the monic polynomials p»,(x) are
proportional to the usual Jacobi polynomials which can be written down explicitly (see
e.g. [78, Eq. 4.32]). Integrating term by term in (8.40) gives

n!F(% +1+n)

DS+ D + )0 (22 420 +k + 1)

2n i 2n+0(2 2n+a1 0(2+1 . 051+1 .
XZ(—]) ; . r +i+k )T +2n—1i]).
= 2n —1i i 2 2

The sum can be matched with a hypergeometric function and we obtain

"pn (k) =

ar+1
Y (k) = sl (ZT”‘) k+ (o +1)/2, =2n, —a = 2n_|
T (14 932 4 o+ 2n) w+l,—(—-1)/2-2n
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where

nID(1+ 232 1+ )D(1+ 0 + 200 (L +2n)

Cm)IT (1 + )T (HL 4+ )0 (H22 4 )

Mn,oy,00 =

Finally, comparing (8.41) with the definition of the continuous Hahn polynomial in
(3.14) gives the result. O

Remark Inthe Gaussian and Laguerre cases, the evaluation of the integral (8.40) already
appeared in the literature on special functions, see the work of Bump et al. [20], Coffey
et al. [22-24], though no connection to random matrix theory is made. These works
show that the quantity (8.40) satisfies a functional equation and Riemann hypothesis
with critical line Re(k) = —1/2 (Hermite polynomials) and Re(k) = 0 (Laguerre
polynomials) in our notation. We believe it is new that precisely these Mellin transforms
should appear in the context of random matrices. The last and most complicated case
of Jacobi appears to be absent from the literature. This turns out to be a continuous
Hahn polynomial p»,(—ik; a, b, c,d) witha = ¢ > 0 and b = d < 0. The analogous
properties in this case are most easily proved by noticing that the continuous Hahn
polynomial can be represented in terms of the Wilson polynomial with a negative fourth
parameter. Explicitly, one has

poan(—ik;o1 +1/2, —a1 —ay —2n, 01+ 1/2, —a1 — p — 2n)

Qoo+ 1DQRar+3)--- 2oz +2n — 1) o1 1
= @ = Dl W, ((lk) ; 5,0, o] + X —ay—oy—2n).

This identity demonstrates that the Mellin transforms satisfy a symmetry on the line
Re(k) = O (the polynomials are invariant under k — —k). Furthermore, by the orthog-
onality property (C.2), we can deduce that the zeros all lie on the imaginary axis (this
does not seem to be obvious from the Hahn polynomial representation).

We now study the orthogonal ensemble with n even. In this case the analytic structure of
the Mellin transform seems to be more complicated and remains somewhat mysterious
to us. For this reason we restrict ourselves to the Gaussian case, though analogous
results for Laguerre and Jacobi could easily be derived. We are able to prove an analytic
continuation of Q§(2n) to an entire function of k as in the previous sections, but with
a more complicated structure. We first consider the simplest case n = 2 where this
structure already appears. Directly integrating |x|?* against the density (3.1) with g = 1
and a Gaussian weight gives

2T (k +1/2)
JT

Clearly, the first term above has a similar structure to that already observed in the GSE and
GUE. But the second term, which is a weighted Mellin transform of the error function, is
different. It is analytic in the half-plane Re(2k) > —1 and standard properties of Mellin
transforms show that it extends as to an analytic function in the entire complex plane
except for simple poles when 2k + 1 € {—2, —4, —6, .. .}. Since these simple poles are
eliminated on dividing by I'(k + 1/2), this gives an entire function of k. In fact this
analytic continuation can be given in terms of a hypergeometric function:

0%(2) = + % /0 2y erf(x/2)e =/ dx. (8.41)
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2XC(k +1/2)

ook 1/2,k+3/2.
OF(2) = 224312, < 32 —1> Tk +3/2)//7 + 7=

= (2k — DI ((2k + DM (—1; 3/2,1/2) +1).

This hypergeometric function reduces to a polynomial whenever k is a positive integer.
But its analytic continuation to k € C appears more complicated than in the previously
considered cases. Indeed one has the asymptotics (see e.g. [77]):

1/2, k+3/2 1 |m
2F1< 32 1) W k — +oo,

2 Fy (1/23]‘/;3/2 1) k27K kS oo

Forsayn =4, 6, 8, ... and so on, this structure persists and follows a similar pattern.
As for the GSE, the results of [64—66] are again useful here, providing a general formula
for the GOE moments:

n—ln—j— e
0%2n) = 0C@n - 1)—2 Z ( )(1+/) (1= D) | 4o

- (n—j)ay

(8.42)

where
o 2
AR(2n) = ¢y / xe™ 2 Hy, g (x)erf (x/v/2) dx.
0

The first two terms in (8.42) have a simple analytic structure, similar to that found in the
symplectic case. The term AE(Zn) is the generalization to larger n of the second term
in (8.41).

Proposition 8.11 For any positive integer n, the ratio Q,lR(Zn) /T'(k+1/2) has an ana-
Iytic continuation to an entire function of k.

Proof It is clear that the first two terms in (8.42) yield a polynomial in k after
dividing by I'(k + 1/2). The third term (8.43) is the Mellin transform of the func-
tion ¢,(x) = Pl 2Hop—1(x)erf(x/+/2) which is analytic in the right-half plane
Re(2k) > —3. To extend to the left-half plane Re(2k) < —3 it suffices to notice that
¢, (x) has an asymptotic expansion near x = 0 with respect to the sequence {x2k}k2 1.
Therefore A%Rk (2n) has an meromorphic continuation into the left-half plane except for
simple poles when 2k + 1 = —2, —4, —6, .. .. Precisely these poles are eliminated after
dividing through by the factor I'(k + 1/2). O
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Appendix A. Orthogonal and symplectic ensembles: duality

The purpose of this section is to prove Proposition 8.8 in the three classical ensembles.
The proof is based on explicit results for the eigenvalue density of orthogonal and
symplectic ensembles obtained by Adler et al. [2]. To begin with, we introduce the
notation and relevant results obtained in [2]. There, the notation e=2Y @) ig equivalent to
our wy(x) as in (3.2).

We begin by denoting by p, (x) the unique degree n monic polynomial orthogonal
with respect to wy(x) and we set

y = / w3 pu(x)? dx. (A1)
I

An important quantity in the theory is the ratio

g(x)
fx)

where f and g are polynomials of minimal degree, with f > 0. For the classical weights,
this implies

2V (x) =

(A2)

1 GOE
f)=1x LOE (A.3)
x(1 —x) JOE.
Then we define modified potentials
1 1
Vitr) = V@) + S log f(x),  Valx) =V (x) — 7 log f(x) (A4)
and eigenvalue densities ,5,(,1)(x) with respect to the weight e="1®) for 8 = 1 and

,5,(14) (x) with respect to the weight e~ 2V4(™) for B = 4. We have that e 2V4(") = i4(x)
are precisely the modified weights (8.32). On the other hand, e="1®) = w(x) and so
~(1 1
o’ (x) = ot ().

The first result we need is [2, Eq. (4.18)] which writes the density in the n-odd
orthogonal ensemble as

—Vi(x)
~ ~ e < ~
Pia () =75, (0) = ynaion s ™ ($20 P21 () = pan (@)1 ()

n

.\ e V19 pyy (x)
2§2n '
(A.5)
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where we define

1
§p == f e V10 b (x) dx (A.6)
2 Jr
z L AT
¢j(x) 5 1€ sgn(x — y)p;(y)dy (A7)
1
1 GOE,
Yuhn = { % LOE, (A.8)
f@n+ay+ay+2) JOE.
nl/m2™" GOE
hy=3dnT(@+n+1) LOE (A.9)
I(a+n+ DT (ap+n+ DT (n+ DT (o +ap+n+1) JOE
I'(a1+ap+2n+1)T () +ar+2n+2) .

We also recall the classical identity (see e.g. [60, Chap. 5])

P @)?
PP (x) = e 2V Y (A.10)
j=0

The integrals 5, happen to be known for all positive integers 7.

Lemma A.1 Forallthree classical weights and any positive integern, we have §2,—1 = 0
and
Var G GOE
a1 1
- 272 F<n+%) LOE (A.11)

Jartar g l"(n+%)F(n+%w)r‘(a'7”+n)l"(a2;l +n) JOE.

7T (o +op+4n+1)

Proof For the GOE case the fact that 57,1 = 0 follows from symmetry and the formula
for §5,, is in [2, Sec. 4]. In the LOE and JOE cases these facts are less obvious, but were
derived by Nagao and Forrester in [63, A.2 and A.7] based on evaluations in terms of
hypergeometric functions. 0O

Note that the expression in the second line of (A.5) corrects a typo in [2, Eq. 4.18].
The formula for p,, (y (x) in (A.5) is given in [2, Eq. 4.12] as

PV () = p2 () + yan—2e™ 1Y poy 1 (X) a2 (). (A.12)

On the other hand, formula [2, Eq. 4.27] writes the density in the symplectic ensemble
as

PP (x) = pzn%x)——yz e 2V by () / e 2V OVAD) by () Lysr dy.
1

(A.13)
But by definition
e 2VOHVAR) _ =V =g log f(0) _ ,=Vi(0) (A.14)
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So
AP (x) = p2,3<>——yz e V1) pay (x) / e poy 1 (M 1yrdy.  (A.15)
1

Now we must demonstrate the relation (8.31).

Proof of Proposition 8.8 The point of the proof is that (A.5) can be simplified consid-
erably. There are two calculations required in the proof, which in the GOE case were
carried out in [2, Eqs 4.19 and 4.13] respectively. The first claim is that the following
identity holds in all three cases:

Yon—2—=— = Y2n—1- (A.16)

This can be verified by direct computation using the above explicit formulae for 57, and
¥,. Then formula (A.5) becomes

1 2 — 7
P00 =082 @)+ yan—2e VT poy 1 (1) ana (x)

=Vix)
- - z e P2n(x)
— V2n-1€ M) <¢2n(x)p2n—l(x) - p2n(x)¢2n—l(x)> + Tn
n
(A.17)
The second claim is the following identity
Vi) s _ 7
e pan—1(y) (J/zn—2¢2n—2(x) Y2n—1$2n (X))
—Vl(y) Vl(X)f( )PZn 1) pan—1(y) (A.18)

h2n 1

where f(x) is given by (A.3). Setting x = y and inserting it into (A.17) gives the
simplification

» e~ V1) on ()
VI o (a1 (1) + L2 (A9
257

1 2
P (x) = pS2(X) + yan-re

where we used the explicit form of the § = 2 density (A.10) and that
672‘/1 (x)+logf(x) — 672V(x) — wQ(X). (AZO)
This now looks very similar to (A.13). Indeed, the proof is complete if we can check

that (1;2,,_1 x)=-— fl w1 (y) p2n—1(¥)1y=x dy. Comparing with the definition (A.7) we
see that

- 1
$on—1(x) = _/;wl(y)pZn—l(y)]ly>x dy + 5/;w1(y)l72n—1()’) dy, (A.21)

but the second integral is 57,1 which is zero by Lemma A.1. This immediately implies

—Vi(x)

e P2n(x)

Pane () = 257 () + —— = (A22)
S$2n
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as given in the statement of Proposition 8.8. It remains to check identity (A.18). Can-
celling e V1 Pan—1(y), it is equivalent to checking

)g_vl (x) P2n—1 (x)

Von—22n—2(x) — Yo 162 (x) = f(x (A.23)
han—1
Differentiating both sides of (A.23) with respect to x reduces the claim to
1 d
hon—1Von—2p2m—2(x) — hon—1y2n—1p2n(x) = ——— (f(Dw1(x) p2n—1(x)) .
wi(x) dx
(A.24)

Now using standard differential identities for the classical orthogonal polynomials and
some routine calculation shows that (A.24) is a consequence of the three term recurrence
relation. O

Appendix B. Mellin transform

We summarise here some properties of the Mellin transform (and its extension). The
Mellin transform of f(x) is defined by the integral

MIf(x);s] = / Fo)x*"dx, (B.1)
0

when it exists. We set f*(s) = M [f(x); s].

In general, the integral (B.1) converges and defines a holomorphic function f*(s)
only in a vertical strip D of the complex plane. It turns out that, in the frequently
occurring case where f(x) is of rapid decay at infinity and has an asymptotic expansion
fx) ~ ZC/’O:O a ijf as x — 0% (as in all instances in this paper), the Mellin transform
f*(s) has a meromorphic continuation to the whole complex plane with simple poles of
residue a; ats = —b ;. For more details on meromorphic extensions of Mellin transforms
see [82].

If the integral (B.1) converges in the strip D, then the following relations hold:

M [f(’”)(x); s] = (=)™ (s — m)pm [*(s —m) s—meD (B.2)
M X" f(x)is] = f*(s +m) s+meD (B.3)
M F ;5] = (1" 6 f46) seD. (B4

Suppose that f(s) and g(s) have Mellin transforms f*(s) and g*(s), respectively,
analytic in a vertical strip D in the complex plane. Take any ¢ € D. Then

1 c+i00
MIf(x)gx);s] = z—m/ ~ fi s —wgt(wdu (B.5)

whenever the Mellin transfom of (fg)(x) exists.

Appendix C. Hypergeometric orthogonal polynomials

We report a few basic properties of some families of hypergeometric OP’s.
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C.1. Wilson. The Wilson polynomials are solutions of the discrete Sturm—Liouville
problem [50, Section 9.1]

B(x)y(x+i)—[B(x)+ Dx)]y(x)+D(x)y(x—i) = n(n+a+b+c+d—1)y(x), (C.1)
where
y(x) = W,(x%; a,b, c,d)

and
B(x) = (a —ix)(b - zx).(c —ix)(d — ix)
2ix(2ix — 1)
D(x) = (@a+ix)(b+ix)(c+ix)(d+ix)

2ix(2ix +1)

In this paper we have considered the less conventional situation whena, b, ¢, 1 —d > 0.
For this range of the parameters, Neretin [71, Section 3.3] found the orthogonality
relation

1 / T(a+ix)[(b+ix)[(c+ix)|
2
R,

Wi (x%; a, b, c, )W, (x*; a,b,c,d)d
T(1—d+ix)Q2ix) m(75 @b e, )Wa (75 a,byc,d)dx
_atb+c+d—1 (a+b)ha+c)(a+d)n(b+c)n(b+d)n(c+d)y
a+b+c+d+2n—1 (@a+b+c+d—1),
Fa+b)Ta+c)FTb+c) (1 —a—b—c—d)
F'l—a—-d)T(1—b—d)T(1—c—d)

fornm<1l—a—b—c—d.

7! Spans (C.2)

C.2. Continuous dual Hahn. The continuous dual Hahn polynomials S, (x2;a, b, ¢) can
be found from the Wilson polynomials by dividing by (a + d),, and letting d — oo. If
a, b and c are positive, then [50, Section 9.3]

1 / T(a+ix)[(b+ix)[(c+ix)|
27
R,

i Sm(x?; a,b,)S,(x*; a,b,c)dx

=T'n+a+b)T’'n+a+c)F'(n+b+c)n! Spyy. (C.3)

The continuous dual Hahn polynomials are solution of the discrete Sturm-Liouville
problem

B(x)y(x +i) = [B(x) + D(x)] y(x) + D(x)y(x —i) = ny(x), (C4)
where
y(x) = Sy (x*:a. b, c)
and
B(x) = (a — ix?(b — ix)(c—ix)
2ix(2ix — 1)
D) = (a+ix)(b+ix)(c+ix)

2ix(2ix +1)
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C.3. Meixner—Pollaczek. The Meixner—Pollaczek polynomials satisfy the orthogonality
relation [50, Section 9.7]

1
2—/ PPN+ ix) PP (x; 9) PP (x; p) d x
T JR

['(n+2A)
:(ZSin—(p)ZAn!amn’ A >0 and 0<¢<7T, (CS)
and the Sturm-Liouville equation (set y(x) = P,EM (x; 9)):

EP(h—ix)y(x +i) +2ixcosg y(x) —e P +ix)y(x —i) = 2i(n+1)sing y(x).
(C.6)

C.4. Meixner polynomials. The Meixner polynomials satisfy the orthogonality relation
[50, Section 9.7]

o
n!
Z _(,3)‘;; My (x; B,o)My,(x; B,c) = W%m p>0and0 <c <1
= x! n€ ¢
(C.7)
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