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Abstract

A renewed scientific interest has been growing in the exploration of small as-

teroids in addition to larger planetary bodies such as Mars, since their weaker

gravitational field makes them more easily accessible. However, such exploratory

missions are very challenging from an engineering perspective, particularly when

striving for optimal propellant consumption. This is mostly due to the perturbed

and poorly known characteristics of small planetary bodies but also, as shown

by the European Rosetta mission, to the long-time degradation of spacecraft

subsystems. In order to address this challenge, it has been long recognised the

need for robust descent algorithms.

However, Space guidance and control communities have different understand-

ings, restricting the integration of scientific advances and even constraining their

capabilities. To incite such an integration and guide engineers in the devel-

opment of planetary descent algorithms, this survey gathers state-of-practice

guidance and control techniques and presents them in an instructive fashion. In

addition, it clarifies and reconciles different concepts from both guidance and

control perspectives. The survey and reconciliation of concepts then lead to the

identification of an underlying parametric generalisation of guidance techniques,

suitable for the application of systematic optimisation tools. Albeit simple, this
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URL: www.tasc-group.com (Technology for AeroSpace Control Lab.)

Preprint submitted to Progress in Aerospace Sciences September 27, 2018

www.tasc-group.com


structural identification is very important as the latter tools have shown great

promise and have already been employed, for example, for Rosetta’s critical

control update. Finally, special emphasis is placed on the robustness of those

techniques against uncertainties.

Keywords: Optimal guidance, Robust control, Planetary descent

1. Introduction

Space Sample Return (SR) missions have a record of revolutionising planetary

science. For example, in 2012, new chemical analyses carried out by the University

of Chicago on the lunar material collected by Apollo 14 fifty years earlier have

brought new elements to the disputed question of the origin of the Moon, casting5

a new doubt on the most widely accepted ”Giant Impact” hypothesis (Zhang

et al., 2012). In order to facilitate the science, all Space exploration missions

require a high level of technological development. And even from the beginnings

of this endeavour, the technology support ranged from the manned US missions

to the Moon of the Apollo program (the first missions to return extraterrestrial10

samples) to the Soviet Luna missions (the first to do so relying solely on advanced

robotics). More recently, technological advances have enabled sample return

missions from farther celestial bodies: NASA’s Stardust (Bhaskaran et al., 2004)

returned cometary dust in 2006 and JAXA’s Hayabusa (Yoshimitsu et al., 2009)

returned microscopic grains of asteroid material in 2010.15

In addition to the exploration of larger planetary bodies such as Mars, small

asteroids are among the candidates for future SR missions since their weaker

gravitational field makes them more easily accessible. In particular, the Martian

moons are receiving significant attention from the international community, not

only because of the wide scientific interest to solve the unknowns surrounding20

their formation, but also as technological precursors for future manned and

unmanned exploration missions targeting the Martian System (Barraclough

et al., 2014).

In order to succeed in these upcoming exploratory missions, descent and

landing (D&L) on the target planet or asteroid represents one of the most25
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critical phases from an engineering perspective, especially if the natural dynam-

ics in the vicinity of the target body is exploited to alleviate tight propellant

consumption requirements. This is because small planetary bodies are typi-

cally characterised by highly irregular and poorly known shapes, which render

their physical environment extremely uncertain and variable. Moreover, due to30

the interplanetary distances involved, fully autonomous guidance, navigation

and control algorithms are required to cope with communication delays and

spacecraft subsystems degradation, as demonstrated by the European Rosetta

mission (Falcoz et al., 2015).

As part of the UK Space Agency National Space Technology Programme35

(NSTP-2) Fast Track call in 2015, the University of Bristol and Airbus Defence

and Space were awarded the project entitled ”Robust Nonlinear Guidance and

Control for Landing on Small Bodies”, with the aim to investigate the application

of advanced robust control techniques for the design and optimisation of D&L

trajectories on small planetary bodies. Special attention was given to approaches40

well-oriented towards the industrial state-of-practice, where the application of

legacy knowledge is fundamental. Although a generic framework for D&L on

these bodies was pursued, the project focused on the Martian moon Phobos as an

illustrative case of the implications of the proposed strategies on system design

and operation (for a future interplanetary SR mission). This article provides45

the survey on the state-of-practice on guidance techniques for D&L that was

the foundation to the subsequent technological developments performed in the

study (Simpĺıcio et al., 2018a,b).

The presented techniques cover applications to both small asteroids and

larger planetary bodies, and it is noted that, while strategies for each have been50

developed rather independently, much insight can be gained by examining their

joint potential. Hence, in contrast to other surveys in this domain, e.g. (Hawkins

et al., 2012; Guo et al., 2013), the scope of the present one is much ampler and

techniques are compared in an implementation-oriented manner. For each cate-

gory, relevant Space missions are presented and guidance laws are described. In55

addition, emphasis is placed on a parametric description of the algorithms, which
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is valuable for systematic optimisation, as well as on practical implementation

issues, such as the impact of uncertainties and inaccuracies (e.g., relative to the

knowledge of gravitational fields) that can lead to performance or mission loss if

not addressed.60

The survey is organised as follows: Sec. 2 provides an introductory background

to the rest of the document including the formal definition of the planetary

descent problem, Sec. 3 presents and describes the most relevant open and

closed-loop guidance techniques (also known as implicit and explicit techniques)

and Sec. 4 elaborates on practical issues identified throughout the survey.65

2. Preliminaries on Planetary Descent

This section provides an introductory background to support the presentation

and understanding of the guidance techniques reviewed throughout the rest of

the article. This background begins with the mathematical formulation of the

planetary descent problem in Sec. 2.1 and it is followed by a discussion on70

candidate guidance and control architectures in Sec. 2.2. It concludes with a

brief review of relevant Space missions in Sec. 2.3 and of the applicability to a

landing on Phobos in Sec. 2.4.

2.1. Mathematical problem formulation

The planetary descent configuration towards a target asteroid or planet is75

depicted in Fig. 1 for planar motion but without loss of generality. It describes a

spacecraft approaching a moving (small) body target subject to the influence of

another (large) body, i.e., the so-called two-body problem. For this problem, it

is assumed that the spacecraft has a dedicated attitude control system, therefore

attitude and translational dynamics are considered independent. Coupling effects80

are then considered at actuator level (see Sec. 2.2).

The position and velocity of the target in Fig. 1, rT (t) ∈ R3 and vT (t) ∈ R3,

are described as follows:

ṙT (t) = vT (t)

v̇T (t) = gT (rT )
(1)
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where gT (rT ) ∈ R3 is the gravitational acceleration acting on the target, which85

is generically expressed as a partial derivative of the potential gravity of the

main body. In addition, rT (t) = ||rT (t)|| and vT (t) = ||vT (t)||.

Y
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λ
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a

rx

ry

rS

rT
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vS

Figure 1: Problem geometry

Similarly, the position and velocity of the impactor or lander spacecraft

in the same frame, rS(t) ∈ R3 with rS(t) = ||rS(t)||, and vS(t) ∈ R3 with

vS(t) = ||vS(t)||, are modelled as (Battin, 1987):90

ṙS(t) = vS(t)

v̇S(t) = gS(rT , rS) + a(t) + p(t)
(2)

where gS(rT , rS) ∈ R3 is the gravitational acceleration felt by the spacecraft

due to the main and target bodies, a(t) ∈ R3 is the control acceleration provided

by the spacecraft thrusters and p(t) ∈ R3 represents any external perturbations

(e.g., third-body perturbations) and unknowns.95

Defining relative position as r(t) = rS(t) − rT (t) and relative velocity as

v(t) = vS(t) − vT (t), the relative motion between spacecraft and target is

expressed as:

ṙ(t) = v(t)

v̇(t) = g(rT , rS) + a(t) + p(t)
(3)

where:100

g(rT , rS) = gS(rT , rS)− gT (rT ) (4)
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is the apparent gravitational acceleration. The closing velocity of the spacecraft

is defined as Vc(t) = −||v(t)||. Moreover, g(rT , rS) can be computed with

different levels of accuracy (e.g., assuming Keplerian forces only or including

detailed representations of the inhomogeneity of bodies via gravity harmonics),105

with all the inaccuracies contained in p(t). Also, note that it is important that

non-inertial effects are accounted for in g(rT , rS) when the frame of Fig. 1 is

rotating with the system.

Following the definitions above, the descent guidance problem is defined

as: Find the acceleration law a(t) between t = t0 and t = tf that110

• Brings the relative states from the terminal boundary conditions r(t0) = r0

and v(t0) = v0 to the final conditions r(tf ) = rf and v(tf ) = vf ;

• Copes with the effect of external perturbations p(t) and uncertainties.

Two additional important concepts to describe the D&L problem that must be

introduced now are the duration from a given instance of time t until the end of115

the manoeuvre, known as time-to-go, tgo(t) = tf − t, and the line-of-sight (LOS)

vector Λ(t) ∈ R3, which is the direction from target to spacecraft (Hawkins

et al., 2010) and is given by:

Λ(t) =
r(t)

r(t)
(5)

For the planar illustration of Fig. 1, the LOS is represented by a single angle:120

λ(t) = arctan
ry(t)

rx(t)
, λ̇(t) =

rx(t)ṙy(t) + ry(t)ṙx(t)

r2(t)
(6)

and, in this case:

Λ(t) =

cosλ(t)

sinλ(t)

 , Λ̇(t) = λ̇(t)

− sinλ(t)

cosλ(t)

 (7)

In addition, and specially important to reconcile the diverse guidance laws,

the concept of zero-effort errors that was first defined in (Ebrahimi et al., 2008)125

must be introduced:

• Zero-effort-miss (ZEM) is the position error at the end-of-mission if no

corrective manoeuvres are made after time t:

ZEM(t) = rf − r(tf ) | a(τ) = 0 ∀ τ ∈ [t, tf ] (8)
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• Zero-effort-velocity (ZEV) is the velocity error at the end-of-mission if no130

corrective manoeuvres are made after time t:

ZEV(t) = vf − v(tf ) | a(τ) = 0 ∀ τ ∈ [t, tf ] (9)

Position and velocity can be propagated using (3) in the absence of corrective

manoeuvres, hence the ZEM and ZEV equations become:

ZEM(t) = rf −
[
r(t) + (tf − t)v(t) +

∫ tf

t

(tf − τ)g(τ) dτ

]
ZEV(t) = vf −

[
v(t) +

∫ tf

t

g(τ) dτ

] (10)135

To obtain these analytical expressions for ZEM and ZEV, the apparent ac-

celeration is typically assumed to be known as an explicit function g(t) of

time. However, as the acceleration is more generally given as a function of

position (4), the computation of ZEM and ZEV has to be approximated or

performed numerically. An overview of methods for this computation is provided140

in Sec. 4.2.

For the development of guidance laws, spacecraft mass m(t) is often also

assumed constant while the control acceleration is assumed unconstrained. These

approximations can be compensated by an inner control loop (see Sec. 2.2). On

the other hand, for purposes of detailed dynamical simulations, the actual145

spacecraft acceleration results from:

a(t) =
Tc(t)

m(t)
(11)

in which the available thrust force Tc(t) ∈ R3 is bounded as follows:

0 ≤ ρ1 ≤ ‖Tc(t)‖ ≤ ρ2 (12)

2.2. Guidance and control architectures150

Arising from different domains in Control Theory (optimal versus robust),

and guidance versus control understanding in Space Mission Analysis, different

terms are found in the literature on planetary descent techniques. Thus, this

section clarifies key concepts before proceeding with the survey. This clarification

is mostly supported by the two generic block diagrams depicted in Fig. 2.155
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Figure 2: Guidance and control architectures (dashed lines represent flow of information for

closed-loop guidance techniques)

Referring to Fig. 2, the Spacecraft Dynamics & Kinematics (SDK) block

represents essentially the simulation of the relative translational motion (3). The

complexity of this simulation depends on that of (4), since g(rT , rS) can be

highly nonlinear for very accurate gravitational models.

The SDK block is fed by the spacecraft Actuators, which are commanded by160

the guidance and/or control systems. The actuators account for realisation errors

of the spacecraft thrusters due to mounting errors and gas-dynamics properties,

as well as for maximum thruster capability (12) and limited authority (if also

employed for position-dependent attitude control).

Furthermore, the outputs of the SDK block are measured and filtered by the165

Sensors & Navigation subsystem before being used for guidance/control. This

process introduces noise and quantisation errors in the relative position and

velocity estimates, r̂(t) and v̂(t).

Focusing now on Fig. 2a, two different guidance paradigms for planetary

descent can be defined. The first one is the so-called open-loop guidance (also170

known as implicit guidance) which refers to the case when a complete reference

trajectory rref(t),vref(t) and thruster profile aref(t) are designed before the
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descent, stored and remain unchanged throughout the manoeuvre. In the Space

domain, these references are designed based on Mission Analysis considerations.

The second paradigm is then called closed-loop guidance (also known as explicit175

guidance) when the reference thruster profile aref(t) is computed in real-time

throughout the descent in order to correct the trajectory based on onboard

measurements, r̂(t) and v̂(t). This feedback of information is represented with

dashed lines in the figure. In this case, the Descent Guidance subsystem might

also be responsible for the computation of auxiliary variables such as the LOS (5)180

or zero-effort errors (10).

In addition to the Descent Guidance subsystem, a Control Compensator

can be included, as illustrated in Fig. 2b, to further alleviate trajectory errors.

This alleviation is achieved by introducing an additional acceleration vector

command acmp(t) that compensates for deviations between reference trajectory185

and measured states. This is however outside the scope of this survey and thus

the remainder of the paper focuses on Descent Guidance techniques and their

implementation. But as an example of control compensator design, the reader is

referred to (Simpĺıcio et al., 2018a), where an application to the scenario of a

landing on Phobos is presented. In this reference, deviations between reference190

and measured states were modelled as linear orbital perturbations (Battin,

1987) and control synthesis was performed using robust control techniques. The

internal structure adopted and an example of the simulation results obtained

with this approach are depicted in Fig. 3.

2.3. Missions and categories195

In recent years, a renewed interest in small planetary bodies has led to several

studies and missions. There are mainly two different purposes behind these

studies and missions. On the one hand, there is the exploitation of hypervelocity

impact with a spacecraft as a mitigation strategy against objects on a course

for potential collision with Earth. Notable examples of this type of missions200

include NASA’s Deep Impact Spacecraft (Kubitschek, 2003), which successfully

hit comet Tempel 1 on July 2005 at 10 km/s (Fig. 4), and ESA’s Asteroid

Impact Mission (Ferrari et al., 2015), undergoing preliminary design phase but
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Figure 3: Example of control compensation

planned to rendezvous with the Didymos binary asteroid system around 2021

(and observe closely the collision with an impactor a few months after).205

On the other hand, there is also the interest of touch-and-go or landing on

planetary bodies instead of impacting, as the scientific return in general is much

higher. Successful missions in this category include NASA’s Stardust (Bhaskaran

et al., 2004), launched in 1999 and the first SR mission to collect comet and

cosmic dust samples, JAXA’s Hayabusa (Yoshimitsu et al., 2009), a mission that210

landed on Itokawa asteroid on November 2005 returning to Earth five years after,

and ESA’s Rosetta (Geurts et al., 2014), which performed a rendezvous with

comet Churyumov-Gerasimenko and delivered a lander for on-site analysis on

November 2014 (Fig. 5). In addition, NASA has launched OSIRIS-REx (Williams

et al., 2018) in September 2016, an SR spacecraft that will reach the near-Earth215

asteroid Bennu, while ESA is also studying the feasibility of an SR mission to

Phobos (Barraclough et al., 2014), one of Mars’ moons. And more recently,

JAXA’s Hayabusa-2 (Kuninaka & Hayabusa-2 team, 2015) successfully delivered

in September 2018 two small landers on Ryugu (taking advantage of the asteroid’s

weak gravitational field) and is scheduled to land another two, as well as to220

obtain and return samples using an explosive penetrator.

For both interception and landing on small bodies, autonomous systems are

mandatory to guide spacecraft through very uncertain operational environments

10



while coping with long communication delays with Earth. The earliest known

method is inspired by the missile interception problem. It is known as propor-225

tional navigation guidance (PNG) and introduced in (Zarchan, 1994), where

a method of augmenting it when the target acceleration is known or can be

assumed is also provided. In addition, guidance using predictive manoeuvres

based on linear orbital perturbation theory (Battin, 1987) is proven possible and

complemented with PNG in (Gil-Fernandez et al., 2008).230

Figure 4: Image taken by Deep Impact’s flyby craft after the collision of its impactor with

comet Tempel 1 [Credits: NASA/JPL-Caltech/UMD ]

Figure 5: Series of images captured by Rosetta’s camera as its lander descended to comet

Churyumov-Gerasimenko [Credits: ESA/Rosetta/MPS ]

However, most of the work on traditional closed-loop guidance for small bodies

recasts the problem as optimal feedback control with terminal constraints only

(i.e., with no path constraints), which is solved with the Pontryagin maximum

principle in (Battin, 1987) or through calculus of variations in (D’Souza, 1997).

This type of laws, known as optimal guidance laws (OGLs), has been continuously235
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developed for different terminal boundary conditions (e.g., constrained velocity,

free velocity, constrained intercept-angle, etc.) and also related to the classical

PNG laws (see, for example, (Hawkins et al., 2011)).

Additionally, and due to the highly uncertain character of the operational

environments, OGLs have been recently augmented with nonlinear terms based240

on sliding mode control (SMC) theory in order to increase their robustness in

the presence of inaccurate measurements and unmodelled dynamics (Ebrahimi

et al., 2008). Because of the improved robustness that can be achieved, this

research topic has been evolving and applied to different scenarios in the past

few years (Furfaro et al., 2011, 2013b).245

In parallel, different descent techniques have been developed and applied for

the exploration of larger bodies, such as the Moon and Mars. These approaches

are not as demanding as for the asteroid intercept problem since curvature of

the planet can often be neglected and its gravity field is relatively uniform and

well known. Hence, the first-generation of Mars probes that successfully reached250

its surface, from NASA’s Viking 1 in 1976 to Phoenix in 2008 (Fig. 6), relied

on an unguided descent phase. As a consequence, these systems generated a

landing uncertainty ellipse in the order of 500 km by 100 km (Li & Jiang, 2014).

Figure 6: Artist’s concept of Phoenix Mars lander after jettisoning its heat shield before firing

its thrusters [Credits: NASA/JPL-Caltech/UA]

When the mission has to satisfy more stringent requirements such as very

high landing accuracy or crew safety (in the case of manned missions), then the255

strategies used are generally based by solving a trajectory-generation problem

with both terminal and path constraints. This type of approach begun with
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the Apollo program and continues with the next-generation Mars landers (for

which the capability of pinpoint landing the spacecraft in hazardous sites with

high scientific value is mandatory, thus requiring an uncertainty ellipse down260

to 100 m (Li & Jiang, 2014)), and is also used on Earth by reusable vertical

take-off vertical landing (VTVL) launch vehicles as those from SpaceX and

Blue Origin (Blackmore, 2016).

The aforementioned problem is typically nonlinear and challenging to solve

and, until the past decade, its application was only feasible in an offline setting265

(where open-loop trajectories are designed on the ground with powerful com-

puters). To simplify the problem, during the Apollo program, an acceleration

profile that is a quadratic function of time (Klumpp, 1974) was chosen. This

profile was not optimal in the sense that no cost function was optimised, but

the quadratic coefficients could be computed analytically from the terminal270

boundary conditions for a pre-specified descent duration. This approach was

modified for the NASA’s Mars Science Laboratory (MSL) Curiosity in 2011, by

adding a line-search over the powered descent duration so as to minimise propel-

lant consumption (Ploen et al., 2006; Wong et al., 2006). In addition to these

simplifications and extensions, augmenting the polynomial order of an open-loop275

guidance law renders the computation of the coefficients under-determined and

thus, this allows choosing them so as to optimise a desired cost function.

A plethora of optimisation algorithms can be applied to solve this augmented-

coefficient optimisation problem offline while enforcing different path constraints

(such as minimum altitude or maximum actuation). However, the increase of280

computational power available onboard in recent years has enabled representative

solutions to be determined and applied in a closed-loop fashion, leading to a

paradigm shift known as Computational Guidance and Control (Special Issue

on Computational Guidance and Control, 2017). This is supplemented by

specific semi-analytical algorithms (e.g., (Lunghi et al., 2013, 2014)) or by285

further mathematical developments (in the domain of convex optimisation and

pseudospectral methods, summarised in Sec. 3.3).

Nonetheless, methods for extraterrestrial autonomous pinpoint landing have
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very little heritage and have only recently been demonstrated with NASA’s

reusable VTVL platform Xombie (Fig. 7), which uses a vision system to determine290

its location and the guidance for fuel-optimal large diverts (G-FOLD) algorithm

to optimally fly to the landing site (Açikmeşe et al., 2013; Scharf et al., 2014).

Figure 7: Photo of NASA’s reusable VTVL platform Xombie demonstrating Mars-like descent

and pinpoint landing [Credits: NASA/Tom Tschida]

2.4. Applicability to a landing on Phobos

Although developed in parallel, the solutions introduced in Sec. 2.3 have

the potential to complement more traditional techniques targeting small bodies295

such as Phobos which, due to their irregular shapes and mass distributions

(Fig. 8a), are characterised by very variable and uncertain gravitational fields,

with complex orbits stable only in certain regions (Lara & Scheeres, 2003).

Moreover, in the case of Phobos, as this moon is very small and close to

Mars, the boundary of the planet’s sphere of influence lies just above Phobos’300

surface (Fig. 8b) and its third-body perturbation cannot be neglected.

As mentioned in Sec. 1, although a generic framework for planetary descent

is pursued in this article, the scenario of a landing on Phobos is employed as

an illustrative case. With this is mind, candidate guidance techniques for a

landing on Phobos are exemplified throughout the next section. Here, the relative305

motion (3) is simulated by a high-fidelity dynamics model of the Mars-Phobos

system, in which the gravity field of the planets is described by a main Keplerian

term plus gravity harmonics to account for their inhomogeneity. Uncertainties

and variations can also be included in the gravity field of Phobos by dispersing

14



its gravity harmonics coefficients. A more generic robustness comparison of310

guidance techniques is provided in Sec. 4.1.

(a) Difference of gravitational acceleration be-

tween gravity harmonics and Keplerian model

(b) Mars’s sphere of influence

around Phobos

Figure 8: Highly inhomogeneous gravitational field in the vicinity of Phobos [Credits: Airbus

Defence and Space]

3. Overview of Guidance Techniques

This section is dedicated to the description of the guidance techniques

introduced in Sec. 2.3. They are divided in open-loop (Sec. 3.1), traditional

closed-loop (Sec. 3.2) and computational closed-loop guidance (Sec. 3.3). In315

addition, insight on future trends of these techniques from an industrial point is

given in Sec. 3.4 and an overall summary is provided in Sec. 3.5.

3.1. Open-loop guidance

Open-loop (or implicit) guidance relies on the design of a reference trajectory

and thruster profile before initiating the descent. Depending on the type of320

profile, open-loop guidance laws can be further classified as quadratic (Sec. 3.1.1)

or optimal with path constraints (Sec. 3.1.2).

3.1.1. Quadratic

As previously mentioned, for landing on larger planetary bodies where the

gravity field is well known and can be assumed constant, open-loop guidance325
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techniques often suffice. For the Apollo program, emphasis was placed on devel-

oping computationally feasible guidance laws rather than looking for complex

energy-optimal solutions. Hence, the Apollo guidance law is simply defined as a

quadratic function of time (Klumpp, 1974; Wong et al., 2006):

a(t) = C0 + C1t+ C2t
2 (13)330

where Ci ∈ R3 are coefficients to be determined. Velocity and position are
obtained assuming a constant gravity field and integrating the above acceleration:

v(t) = v0 + (C0 + g) t+
1

2
C1t

2 +
1

3
C2t

3 (14)

r(t) = r0 + v0t+
1

2
(C0 + g) t2 +

1

6
C1t

3 +
1

12
C2t

4 (15)

Applying the boundary conditions at the end-of-mission (t = tf ) as defined335

in Sec. 2.1, the unknown coefficients are obtained by solving the linear system:
I tf I t2f I

tf I
t2f
2
I

t3f
3
I

t2f
2
I

t3f
6
I

t4f
12

I




C0 + g

C1

C2

 =


v̇(tf )

vf − v0

rf − r0 − v0tf

 (16)

which is given by:

C0 = v̇(tf )− g − 6

tf
(vf − v0) +

12

t2f
(rf − r0 − v0tf )

C1 = − 6

tf
v̇(tf ) +

30

t2f
(vf − v0)− 48

t3f
(rf − r0 − v0tf )

C2 =
6

t2f
v̇(tf )− 24

t3f
(vf − v0) +

36

t4f
(rf − r0 − v0tf )

(17)

In this type of guidance, the end-of-mission time (or alternatively the time-to-340

go, tgo(t) = tf − t) is a free parameter that must be specified. A brief discussion

on how to automatically set a reasonable time-to-go, or even determine an

optimal value is provided in Sec. 4.3.

3.1.2. Optimal with path constraints

Planetary descent guidance with a direct consideration of physical state345

and control constraints can also be implemented in an open-loop fashion. The

basis for these sophisticated implicit guidance methods is actually the quadratic
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acceleration law of (13), in which all the coefficients are completely determined,

but in this case augmenting its order to N > 2:

a(t) = C0 + C1t+ . . .+ CN t
N (18)350

This higher order polynomial structure for the acceleration allows for signifi-

cant improvements (Ploen et al., 2006; Singh et al., 2007), since the terminal

linear system (16) is now under-determined:
I tf I . . . tNf I

tf I
t2f
2
I . . .

tN+1
f

(N + 1)
I

t2f
2
I

t3f
6
I . . .

tN+2
f

(N + 1)(N + 2)
I




C0 + g

C1

...

CN

 =


v̇(tf )

vf − v0

rf − r0 − v0tf

 (19)

Therefore, the solution of the acceleration coefficients Ci ∈ R3 and of tf355

can be determined so as to optimise a specified cost function (e.g., propellant

consumption) while subject to the linear system (19), as well as to path state and

control constraints. These may include bounded thrust force (12), admissible

mass variation, subsurface flight avoidance (r(t) ≥ hMIN) or any additional

position and velocity constraints (e.g., obstacle avoidance, glide-slope angle or360

maximum velocity) all given as generalised linear inequalities.

Depending on the formulation of the constrained optimisation problem,

a plethora of solvers is available and, depending on the solver, parametric

descriptions of the acceleration profile different than (18) may also be considered.

For the case of Phobos, open-loop guidance laws have been designed through365

the following process:

1. Analysis of a set of unstable manifolds originated at libration point orbits

in the Mars-Phobos system that intersect the moon;

2. Selection as initial guesses the manifolds that reach it with higher incidence

angle and lower closing speed;370

3. Definition of a polynomial acceleration profile aimed at bringing the final

speed to zero;

4. Optimisation of the initial guesses and acceleration profile via nonlinear

programming, with the objective of minimum fuel consumption.
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For further details on this process, the reader is referred to (Joffre et al., 2017). To375

simplify the optimisation runs, an approximate model of the Mars-Phobos system

(denoted MAG - Mission Analysis and Guidance) is employed. The optimal

trajectory using the latter model and the result of applying the corresponding

acceleration profile to a high-fidelity environment (DKE - Dynamics, Kinematics

and Environment) are both depicted in Fig. 9.380

Figure 9: Phobos D&L trajectory using open-loop guidance (arrows represent magnitude and

direction of acceleration commands)

In this figure, it is shown that the trajectory rapidly diverges from the optimal

one (obtained with the MAG model) under the influence of a slightly different

dynamics environment (DKE). This shows that, as anticipated in Sec. 2.3, open-

loop command profiles do not typically yield suitable standalone D&L guidance

strategies for bodies with complex and perturbed gravity fields.385

3.2. Traditional closed-loop guidance

In traditional closed-loop guidance, the thruster profile is computed as a

closed-form solution to actively correct the descent trajectory. Depending on

the type of solution, guidance laws can be further classified as proportional

(Sec. 3.2.1), predictive and hybrid (Sec. 3.2.2), optimal without path constraints390

(Sec. 3.2.3) and nonlinear robust (Sec. 3.2.4).
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3.2.1. Proportional

The earliest known guidance strategy for the interception of small bodies

is inspired by the missile interception problem and is known as proportional

navigation guidance (PNG). PNG laws and their most basic variations are395

introduced in (Zarchan, 1994) and thoroughly described in (Hawkins et al., 2012;

Guo et al., 2013). The principle of PNG is to drive the LOS rate to zero by

applying a proportional acceleration perpendicularly to the LOS direction:

a(t) = nVc(t)Λ̇(t) (20)

where n is the effective navigation ratio, a tunable parameter typically chosen400

between 3 and 5. Smaller values result in reduced propellant consumption

whereas larger values are adopted for improved robustness at the expense of

higher acceleration commands. For the planar case, i.e., equation (7), the

acceleration becomes:

a(t) = nVc(t)λ̇(t)

− sinλ(t)

cosλ(t)

 (21)405

This guidance law does not require the target or spacecraft accelerations to

be zero, but its performance is improved if the contribution of the gravitational

environment is deducted. This results in the augmented PNG (APNG) law:

a(t) = nVc(t)Λ̇(t)− n

2
g⊥(t) (22)

where again g⊥(t) are the components of apparent gravity perpendicular to the410

LOS. For the planar case, the APNG law simplifies into:

a(t) = n

(
Vc(t)λ̇(t)− 1

2
g⊥(t)

)− sinλ(t)

cosλ(t)

 (23)

with g⊥(t) = [− sinλ(t) cosλ(t)] g(t). Moreover, employing the definitions

of time-to-go and zero-effort-miss (10), it can be shown that the APNG law

becomes:415

a(t) =
n

t2go(t)
ZEM(t) (24)

where the time-to-go cannot be controlled, but is computed as tgo(t) = r(t)/Vc(t).
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In (Kim et al., 1998), an adaptation of the APNG law known as biased PNG

(BPNG) is also explored. This biased law allows to constrain the impact (final)

LOS angle to λf resulting in:420

a(t) =

(
4Vc(t)λ̇(t)− g⊥(t) + 2Vc(t)

λ(t)− λf
tgo(t)

)− sinλ(t)

cosλ(t)

 (25)

Finally, for thrusters with no continuous throttling ability (only on-off), PNG

laws have to be applied using a discrete scheme, through a pulse-modulation

method (Wie, 2008). In this case, the guidance is known as pulsed PNG (PPNG).

3.2.2. Predictive and hybrid425

A more propellant-efficient method to perform pulsed navigation is to compute

impulsive velocity corrections, which eliminate the predicted end-of-mission error

by using linearised orbital perturbation theory (Battin, 1987) and apply them

only at pre-scheduled firing times Tp. Acceleration commands are provided as:

a(t) =


∆vS(t)

∆tp
, for t ∈ Tp

0, otherwise

(26)430

where ∆tp is the duration of the correction and Tp is the set of pre-scheduled

times. This method is designated predictive navigation and it is assessed in (Gil-

Fernandez et al., 2008) and detailed in (Hawkins et al., 2010).

If full information on the relative position and velocity vectors is available,

then the guidance is known as predictive impulsive (PI) and, recalling (5), the435

velocity correction to be applied is:

∆vS(t) = Vc(t)Λ̆(tf )− v(t) = Vc(t)
r̆(tf )

r̆(tf )
− v(t) (27)

where˘indicates a predicted term. The term r̆(tf ) is the predicted relative end-

of-mission position, propagated from time t through a linearised time-varying

state transition matrix (STM) yielding:440

r̆(tf ) ≈
(
I +

1

2
G(t)t2go(t)

)
r(t) (28)

20



where I is the identity operator and G(t) is the gravity Jacobian along the

reference orbit (Battin, 1987):

G(t) =
∂ g(r, t)

∂ r(t)

∣∣∣∣
r(t)=rref (t)

(29)

In the case that measurements or estimates of the relative states are not445

available, then the kinematics of the system must be estimated using for example

optical LOS information:

r(t) = Vc(t)tgo(t)Λ(t)

v(t) = Vc(t)tgo(t)Λ̇(t) + Vc(t)Λ(t)
(30)

In this case, the guidance law is known as kinematic impulsive (KI) and it is

obtained by substituting (30) into the velocity correction (27):450

∆vS(t) = Vc(t)
r̆(tf )

r̆(tf )
− Vc(t)

(
tgo(t)Λ̇(t) + Λ(t)

)
(31)

as well as into the predicted end-of-mission position (28):

r̆(tf ) = Vc(t)tgo(t)

(
I +

1

2
G(t)t2go(t)

)
Λ(t) (32)

With respect to the firing times Tp of the thrusters, earlier firings will lead to

less propellant consumption because of the propagated corrective effect – even455

if the sensed information is less accurate when the spacecraft is away from the

target. On the other hand, in these cases, performance tends to degrade near the

end-of-mission as further gravity linearisations cause increasing approximation

errors. For this reason, a hybrid guidance scheme is typically adopted, which

implements mid-course predictive corrections and then switches to terminal460

PNG (Gil-Fernandez et al., 2008).

3.2.3. Optimal without path constraints

Most of the work on guidance laws for small bodies recasts the problem as

optimal feedback control, resulting in a class known as optimal guidance laws

(OGLs). This problem can be solved using either the Pontryagin maximum465

principle (Battin, 1987) or calculus of variations (D’Souza, 1997), although these

derivations assume rf = vf = 0. The OGLs have been generalised in (Hawkins

et al., 2011) as described in this section.
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The objective of the optimal control problem is to find the acceleration profile

a(t) that minimises the actuation effort, formulated as the cost function:470

J(a(t)) =

∫ tf

t

L(x(τ),a(τ)) dτ =

∫ tf

t

1

2
aT(τ)a(τ) dτ (33)

subject to the dynamics of the system (3):

ẋ(t) = f (x(t),a(t))⇔

 ṙ(t)

v̇(t)

 =

 v(t)

g(rT , rS) + a(t)

 (34)

and the terminal boundary conditions introduced in Sec. 2.1.

In order to solve this problem, it is convenient to define position and velocity475

co-states, pr(t) ∈ R3 and pv(t) ∈ R3, which are described by:[
ṗr(t) ṗv(t)

]
= −

[
pr(t) pv(t)

] ∂ f(x(t),a(t))

∂ x(t)
+
∂ L(x(t),a(t))

∂ x(t)
=

= −
[
0 pr(t)

] (35)

These are then solved via integration until the terminal co-states are obtained:

pr(t) = pr(tf )

pv(t) = pv(tf ) + pr(tf )tgo(t)
(36)

In addition, the Pontryagin maximum principle states that the optimal480

acceleration profile, minimising J(a(t)) in (33), is the one that cancels out the

Hamiltonian derivative:

∂ H(x(t),a(t))

∂ a(t)

∣∣∣∣
optimal

= 0⇒ a(t) = pv(tf ) + pr(tf )tgo(t) (37)

maximising the Hamiltonian function H(x(t),a(t)) given by:

485

H(x(t),a(t)) =

pr(t)

pv(t)

T

f(x(t),a(t))− L(x(t),a(t)) =

=
[
pr(tf ) pv(tf ) + pr(tf )tgo(t)

] v(t)

g(rT , rS) + a(t)

− 1

2
aT(t)a(t) (38)

From (37), it is observed that the optimal acceleration law is a linear function

of the time-to-go (and thus of t) that depends only on the terminal co-states.490
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These are determined from the terminal states by integrating the acceleration

twice, exactly as was done in Sec. 3.1.1.

To obtain a closed-form solution, a constant gravity field is assumed, yielding

the expression for the so-called constrained terminal velocity guidance (CTVG)

law:495

a(t) = 6
rf − [r(t) + vf tgo(t)]

t2go(t)
+ 4

vf − v(t)

tgo(t)
− g (39)

For the case when the terminal velocity is unconstrained (e.g., no soft landing

is required), the corresponding co-state is zero, pv(tf ) = 0, and the so-called

free terminal velocity guidance (FTVG) solution can be found:

a(t) = 3
rf − r(t)

t2go(t)
− 3

v(t)

tgo(t)
− 3

2
g (40)500

Furthermore, if the zero-effort equations (10) are analytically integrated for

a constant gravity field, the CTVG and FTVG laws can be re-written as:

a(t) =
6

t2go(t)
ZEM(t)− 2

tgo(t)
ZEV(t) (41)

a(t) =
3

t2go(t)
ZEM(t) (42)

Comparing equations (24) and (42), it is concluded that FTVG corresponds505

to the APNG law for a navigation ratio n = 3, which means that this represents

the optimal value of proportional laws.

In addition, writing the CTVG and FTVG laws generically as a function of

ZEM and ZEV avoids the constant gravity assumption at the expense of requiring

a more accurate integration of the zero-effort errors. If such an integration is510

still too complex, a candidate alternative is to perform the computation with

respect to a set of intermediate waypoints interpolated on a reference trajectory,

as evidenced in Fig. 10, using a fixed guidance time-horizon (Joffre et al., 2017).

The latter approach has been applied to the case of Phobos using CTVG

and the optimal trajectory of Fig. 9 (from the MAG model) as reference. The515

resulting trajectory and commanded acceleration with 14 waypoints (time-horizon

th = 500 s) are illustrated in Fig. 11.
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Figure 10: Illustration of closed-loop guidance with intermediate horizons

Figure 11: Phobos D&L trajectory using CTVG (arrows represent magnitude and direction of

acceleration commands)

Figure 11 shows that a successful landing on Phobos can be achieved using this

approach, with smooth acceleration commands and with trajectory coinciding

to the reference one.520

Note also that OGL laws allow to define state constraints only at terminal

conditions, but not during the manoeuvre itself (path constraints). Also, they

do not directly impose any kind of control constraints. This shortcoming is the

main motivation for the constrained guidance strategies introduced in Sec. 3.1.2.

Nevertheless, several developments of the OGLs can be found in the literature525

to indirectly account for specific types of constraints:

• In (Ebrahimi et al., 2008), an OGL is derived for a fixed-interval guidance

manoeuvre, with a continuous firing that burns-out several seconds be-

fore touching down. It is then called optimal fixed-interval guidance law

(OFIGL).530
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• In (Hawkins & Wie, 2011), an optimal law to control the impact (or glide-

slope) angle is obtained by leaving the terminal velocity in the desired

direction free and constraining the remaining components to zero. This

law is called intercept-angle-control guidance (IACG) and it is shown to

yield the BPNG law (25) for the case of planar motion.535

• In (Guo et al., 2012), a methodology to cope with thrust and power

limited engines is proposed combining the OGLs with the generation of

intermediate optimal waypoints.

• In (Guo et al., 2013), the case when the landing site is not specified is

tackled by indirectly incorporating the constraint rT
f rf = R2

T as a weighted540

index in the cost function J(a(t)), where RT is the radius of the target.

• In (Zhou & Xia, 2014), a weighted term is added to the cost function

J(a(t)) to penalise trajectories that go under a certain altitude with respect

to the target and even below its surface (subsurface flight).

3.2.4. Nonlinear robust545

In opposition to the guidance methods presented in Sec. 3.1, the techniques

from Sec. 3.2.1 to 3.2.3 do rely on closed-loop feedback control, although assuming

that the parameters on which they depend are fully known. Therefore, inaccurate

measurements or unmodelled dynamics can affect the results negatively. To

overcome this issue, in (Ebrahimi et al., 2008) it is proposed to augment the550

energy-optimal laws with advancements in the field of nonlinear control. This

augmentation is rooted on nonlinear sliding mode control (SMC) theory (Levant,

2007; Shtessel et al., 2014) and results in guidance algorithms that are globally

stable in uncertain dynamical environments for which an upper bound of the

perturbing acceleration p(t) is known. These algorithms are named optimal555

sliding guidance (OSG) and are further developed in (Furfaro et al., 2011, 2013b).

OSG laws are derived by defining a sliding surface as a linear combination of

tracking (zero-effort) errors:

s(t) = ZEV(t) + λ̃(t)ZEM(t) (43)
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where λ̃(t) > 0 ∀ t ∈ [t0, tf ]. The dynamics of this sliding surface is given by:560

ṡ(t) = ˙ZEV(t) + λ̃(t) ˙ZEM(t) = −a(t)− λ̃(t)tgo(t)a(t) (44)

This results in the guidance law re-constructed in such a way that the system

is always asymptotically driven to the sliding surface, i.e., s(t)→ 0. The rate

of convergence corresponds to e−λ̃(t)t and, when the sliding surface is reached,

the system is said to be in sliding phase. The new guidance law can be made565

as simple as a switching between two states (back or forth towards the sliding

surface) and therefore very robust. It is constructed using Lyapunov’s direct

method by selecting V (s) = 1
2sT(t)s(t) as the candidate Lyapunov function with

V (0) = 0 and V (s) > 0 for s(t) > 0, as well as imposing:

V̇ (s) = sT(t)ṡ(t) ≤ 0 (45)570

For the CTVG case, substituting the optimal acceleration (41) into (44) gives:

ṡ(t) = − 1

tgo(t)
Ks(t) (46)

where K = 4. And in order to satisfy (45), the acceleration input can be

augmented, for example, simply as:575

a(t) =
6

t2go(t)
ZEM(t)− 2

tgo(t)
ZEV(t)− φ

tgo(t)
sign s(t) (47)

which gives the following ṡ(t) satisfying now (45):

ṡ(t) = − 1

tgo(t)
[Ks(t) + φ sign s(t)] (48)

Finally, using Lyapunov’s second method it can be proven that the algorithm

is globally stable when φ ≥ ||p(t)|| ∀ t ∈ [t0, tf ] (Furfaro et al., 2011, 2013b).580

Moreover, the nonlinear term provides an additional acceleration command, but

note that it is only in off-nominal cases. In these cases, the motion is brought

inside the sliding surface at the expense of a larger control effort.

To demonstrate the increased robustness of the OSG approach, the CTVG

law of Fig. 11 has been augmented with the sliding mode term while reducing585

the number of waypoints from 14 to only 1. The result is depicted in Fig. 12.

26



Figure 12: Phobos D&L trajectory using sliding CTVG (arrows represent magnitude and

direction of acceleration commands)

Despite relying on a much smaller number of waypoints, the sliding CTVG

approach still allows to achieve a successful landing on Phobos, as illustrated

by Fig. 12, although presenting slight deviations from the reference trajectory

(blue line). However, comparing this figure with Fig. 11, it is observed that the590

increased robustness comes at the expense of higher and rougher acceleration

commands.

The OSG concept can also be extended to the FTVG cases by defining:

s(t) = ZEM(t) (49)

ṡ(t) = −tgo(t)a(t) = − 1

tgo(t)
Ks(t) (50)595

with K = 3 and modifying the acceleration law (42) to:

a(t) =
3

t2go(t)
ZEM(t)− φ

tgo(t)
sign s(t) (51)

The main shortcoming of the laws (47) and (51) is that the augmentation with

the discontinuous term sign s(t) can degenerate in the system chattering around

the sliding surface, which massively reduces its performance. Such a trend is600

already noticeable from the comparison between Fig. 11 and 12. To overcome this

phenomenon, continuous chattering-free augmentations known as higher-order

sliding controllers have been presented over the last years (Furfaro et al., 2013a,
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2015). Additional research has also been carried out in the SMC field with

its application to increase the robustness of open-loop guidance laws (Orr &605

Shtessel, 2008, 2009).

3.3. Computational closed-loop guidance

With computational guidance (Special Issue on Computational Guidance and

Control, 2017), solutions that minimise equation (33) while meeting desired state

and control constraints are computed in real-time. Two classes of algorithms610

are available to achieve this in a computationally-efficient manner: convex

optimisation and pseudospectral methods. These two approaches are described

in Sec. 3.3.1 and 3.3.2, respectively.

3.3.1. Convex optimisation

The most relevant mathematical development leading to convex optimisation-615

based D&L is the reformulation of the trajectory-generation problem into

the convex programming framework as a second-order cone program (SOCP),

see (Açikmeşe & Ploen, 2005, 2007; Blackmore et al., 2010; Eren et al., 2015)

and references therein. To tackle this problem, powerful interior-point solvers

exist (Nesterov & Nemirovski, 1994; Sturm, 2002) with guaranteed convergence620

to the optimal solution of the original problem within a finite number of iterations

(for a given neighbourhood around it).

This approach is particularly attractive because it allows the D&L problem

to be recast as model predictive control (MPC) (Pascucci et al., 2015) and to

solve it very efficiently in real-time (Jerez et al., 2017). Its main difficulty lies in625

the process of converting non-convex constraints into the convex form, which is

known as lossless convexification.

There are two sources of non-convexity that are inherent to the trajectory-

generation problem: (i) the fuel-depletion dynamics, which have a logarithmic

dependence on time; and (ii) thrust magnitude and pointing constraints, due to630

the norm operator in (12). The first one is directly avoided using the following

change of coordinates:

z(t) = lnm(t) (52)
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while the latter requires the introduction of a surrogate optimisation variable:

Γ(t) =
‖Tc(t)‖
m(t)

(53)635

A physical illustration of the effect of this surrogate variable is depicted in Fig. 13.

Figure 13: Illustration of the lossless convexification of thrust magnitude and pointing con-

straints [Source: Eren et al. (2015)]

To solve the D&L problem, the optimisation variables are discretised into N

points uniformly spaced by TS. The objective is then to find a discrete thrust

acceleration profile a[k] (k ∈ [1, · · · , N ]) that minimises fuel consumption, which640

is equivalent to maximising the final mass of the spacecraft or z[N ]. The most

basic formulation of this problem is provided in SOCP 1 and its main constraints

are summarised below:

• Boundary conditions, with k = 1 and k = N corresponding to current and

touchdown time, t and tf , respectively. These are the same of Sec. 3.2.3,645

with the addition that the final thrust acceleration vector a[N ] is required

to have no horizontal components;

• Dynamics equations, describing the depletion of fuel and translational

motion using a central discretisation scheme with interval TS. In these

equations, α is an engine-dependent constant and the gravity acceleration650

g(t) is again assumed uniform;

• Surrogate variable Γ[k] and convexification inequality:

‖a[k]‖ ≤ Γ[k] (54)

which becomes an equality once z[N ] is maximised;
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• Control constraints, consisting of bounded thrust direction and magnitude.655

The angle between the thrust vector and the vertical direction is constrained

by tan θmax. The magnitude constraint assumes constant mass m(t) from

time t to preserve convexity, which is not restrictive since the actual limits

can be re-adjusted via {ρ1, ρ2}.

SOCP 1

max
a,Γ

z[N ], subject to:

Boundary conditions

z[1] = lnm(t), r[1] = r(t), v[1] = v(t), a[1] = a(t)

r[N ] = rf , v[N ] = vf , ax,y[N ] = 0 2×1, az[N ] ≥ 0

Dynamics equations, ∀k ∈ [1, · · · , N − 1]

z[k + 1] = z[k]− αTS

2

(
Γ[k] + Γ[k + 1]

)
r[k + 1] = r[k] + TS v[k] +

T 2
S

3

(
a[k] +

a[k + 1]

2
+

3

2
g(t)

)
v[k + 1] = v[k] +

TS

2

(
a[k] + a[k + 1] + 2 g(t)

)
Surrogate variable, ∀k ∈ [1, · · · , N ]

‖a[k]‖ ≤ Γ[k]

Control constraints, ∀k ∈ [1, · · · , N ]

az[k] ≥ ‖ax,y[k]‖
tan θ

ρ1

m(t)
≤ Γ[k] ≤ ρ2

m(t)

660

The inclusion of additional constraints in this problem is straightforward

if they are convex (e.g. subsurface flight avoidance and glideslope limits) or if

they can be converted via lossless convexification. If not, a technique known as

successive convexification can be applied to eliminate any remaining nonlinearities.

This approach is based on an iterative process in which non-convex terms are665

sequentially approximated using information from the previous SOCP solution.

To facilitate convergence, a trust region constraint (TRC) is typically imposed

between consecutive iterations.
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Successive convexification allows to handle certain features that, depending on

the target body, may play a critical role for D&L, such as high-order gravitational670

harmonics, nonlinear aerodynamic forces, non-convex keep-out zones and also

free final-time, see (Liu & Lu, 2014; Mao et al., 2016; Lu, 2018) and references

therein.

Moreover, this approach effectively enables extending the 3 degree-of-freedom

(3-DoF) problem to 6-DoF by incorporating attitude kinematics and decoupling675

the thrust vector from the attitude of the spacecraft (Szmuk et al., 2017; Szmuk

& Açikmeşe, 2018). An alternative approach was proposed in (Lee & Mesbahi,

2015, 2017), which uses piecewise affine (PWA) approximations of the nonlinear

6-DoF dynamics and an MPC formulation with dual quaternions. Its main

shortcoming is that, since it relies on PWA approximations, the resolution of680

the discretised dynamics has a drastic impact on the quality of the obtained

solutions.

3.3.2. Pseudospectral methods

An alternative approach to convex optimisation arose with the development

of pseudospectral optimal control in (Fahroo & Ross, 2008). Pseudospectral685

methods allow to transform the infinite-dimensional problem of (33) with state

and control constraints into a discrete, finite-dimensional nonlinear program-

ming (NLP) problem, which can be solved using different off-the-shelf solvers.

These methods are particularly suitable for aerospace applications due to the

guaranteed spectral (i.e. quasi-exponential) convergence of their solution for690

smooth problems.

With this approach, the cost function, differential equations and constraints

are approximated by being defined at a set of discretisation nodes (known as

collocation points) and treated as a set of algebraic constraints, in a process

called transcription. To do so, the physical domain of a variable t ∈ [t0, tf ]695

is converted into a normalised independent variable τ ∈ [−1, 1] through the

following affine transformation:

τ =
2

tf − t0
t+

tf + t0
tf − t0

(55)
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Different methods can then be employed to compute the location of the

collocation points, with one of the simplest corresponding to the roots of a linear700

combination of Legendre polynomials as follows:

(τn)i+1 = (τn)i −
1− τn

2

Pn−1(τn) + Pn(τn)

Pn−1(τn)− Pn(τn)
(56)

with:

Pi(τ) =

N∏
j=0, j 6=i

τ − τj
τi − τj

(57)

generating non-uniform grids, where a smaller number of nodes is required705

to compute a valid solution. Once the domain is discretised, pseudospectral

operators for differentiation and integration are also defined. Thanks to the

classes of polynomials involved, these operators are more accurate than the

standard finite differences for differentiation and trapezoidal rule for integration.

Application examples using more sophisticated algorithms, such as the flipped710

Radau pseudospectral method (RPM), can be found in (Arslantas et al., 2014)

and (Sagliano et al., 2017) for lunar landing and Earth re-entry guidance,

respectively.

It is important to note that the quality of the obtained solution is strongly

dependent on the Jacobian matrix generated from the transcription process.715

In (Sagliano & Theil, 2013), it is shown how the inherent sparseness of that

matrix (due to non-dependencies between states) can be exploited for faster and

improved results. Nonetheless, even with a proper transcription, poor scaling of

the Jacobian can still lead to numerical difficulties.

Once again, different strategies exist, ranging from ad hoc manual scal-720

ing, available with widespread pseudospectral tools like DIDO (Elissar, 2015),

to more sophisticated self-scaling methods such as Jacobian rows normalisa-

tion (JRN) (Rao, 2009) or projected JRN (PJRN) (Sagliano, 2014).

The real-time implementation of pseudospectral optimisation remains a chal-

lenging issue because of the NLP problem involved. To tackle this issue, the725

hybridization of pseudospectral methods and convex optimisation was recently

proposed in (Sagliano, 2018). The idea is to combine the more accurate distribu-

tion of nodes and pseudospectral operators with the more efficient formulation
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and computation of SCOP problems. In that reference, this method was shown

to remain real-time capable, while providing improved results compared to the730

standard convex approach.

3.4. Industrial trends

In terms of technological maturity, the practical applicability of closed-loop

techniques (Sec. 3.2 and 3.3) is currently limited, not only due to the restricted

number of D&L mission opportunities on small planetary bodies, but essentially735

because orbit/trajectory control has been conventionally performed by the ground

part of the operations and not a direct responsibility of the spacecraft guidance

subsystem.

For this reason, the authors believe that, rather than relying on the more

elaborate techniques presented in the aforementioned sections, which are still in740

the realm of research and development, the industrial trend for short-term future

missions lies on: (i) guidance solutions that combine open-loop trajectories with

robust control compensators (recall Sec. 2.2) that have been already proven

on attitude control problems; or (ii) simple closed-loop laws, possibly aided by

pre-computed trajectory waypoints (recall Fig. 10).745

Since the main objective of the project under which this survey was carried

out is precisely to increase the maturity and Technology Readiness Level (TRL)

of candidate techniques (up to their implementation and validation on a rep-

resentative environment) for short-term future missions, the remainder of the

article is focused on issues that the authors consider central for the improvement750

and successful implementation of open-loop and traditional closed-loop D&L

solutions only.

3.5. Parameterised guidance

The open-loop and traditional closed-loop laws addressed in the survey

are summarised in Table 1. Although being directed at the same planetary755

descent problem (Sec. 2.1), they present quite different properties as highlighted

throughout Secs. 3.1 and 3.2.
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Table 1: Open-loop and traditional closed-loop laws for planetary descent

Proportional

PNG a(t) = nVc(t)Λ̇(t) Eq. (20)

APNG a(t) =
n

t2go(t)
ZEM(t) Eq. (24)

Representing the laws as a function of ZEM and ZEV allows to concentrate the

knowledge of gravitational forces in these terms

Predictive and hybrid

PI ∆vS(t) = Vc(t)
r̆(tf )

r̆(tf )
− v(t) Eq. (27)

KI ∆vS(t) = Vc(t)
r̆(tf )

r̆(tf )
− Vc(t)

(
tgo(t)Λ̇(t) + Λ(t)

)
Eq. (31)

Pre-scheduled firings are commanded to generate the required ∆vS(t) and correct

the predicted end-of-mission position r̆(tf )

Quadratic

Apollo a(t) = C0 + C1t+ C2t
2 Eq. (13)

Open-loop trajectory with closed-form solution as a function of terminal conditions

Optimal without path constraints

CTVG a(t) =
6

t2go(t)
ZEM(t)− 2

tgo(t)
ZEV(t) Eq. (41)

FTVG a(t) =
3

t2go(t)
ZEM(t) Eq. (42)

Specific constraints may be taken into account but not explicitly enforced, e.g.,

OFIGL (Ebrahimi et al., 2008) and IACG (Hawkins & Wie, 2011)

Optimal with path constraints

Polynomial a(t) = C0 + C1t+ . . .+ CN t
N , N > 2 Eq. (18)

Open-loop trajectory with optimisation-based solution and possibility to explicitly

enforce path constraints

Nonlinear robust

Sliding CTVG a(t) =
6

t2go(t)
ZEM(t)− 2

tgo(t)
ZEV(t)− φ

tgo(t)
sign s(t) Eq. (47)

Sliding FTVG a(t) =
3

t2go(t)
ZEM(t)− φ

tgo(t)
sign s(t) Eq. (51)

Augmentation with nonlinear function, ensuring stability for ||p(t)|| ≤ φ
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Despite their differences, and from the mindset of using automated tuning

methods, it was observed that traditional closed-loop guidance laws shared

structural commonalities and could be formalised in terms of LOS kinematics in760

the following manner:

a(t) =
[
kr kv

]
Vc(t)


Λ(t)

tgo(t)

Λ̇(t)

− φh
(
Λ(t), Λ̇(t), tgo(t)

)
(58)

Alternatively, and more sophisticatedly, they can also be parameterised as a

function of zero-effort errors:

a(t) =
[
kr kv

]


ZEM(t)

t2go(t)

ZEV(t)

tgo(t)

− φh (ZEM(t),ZEV(t), tgo(t)) (59)765

The two equations above clearly show a fixed structure formed by a linear

component (parameterised through the gains kr and kv) and (optionally) by

a nonlinear function h(.) (weighted by the constant φ). As mentioned before,

this nonlinear term is introduced to improve robustness properties following

the concepts of sliding motion control and it can range from a very simple to a770

high-order function.

This generalisation is particularly convenient for the application of newly-

developed systematic tuning tools (Apkarian & Noll, 2006; Gahinet & Apkarian,

2011), allowing key parameters to be optimised against competing guidance

requirements while keeping the rest of the structure fixed. It shall also be775

remarked that this generalisation does not encapsulate open-loop laws, although

these are directly parameterised as time polynomials (18).

Finally, to demonstrate that there might be room for D&L improvement, a

parametric analysis of the guidance law shown in Fig. 11 has been performed for

a range of guidance gains kr and kv (Simpĺıcio et al., 2017). Results in terms of780

touchdown speed and propellant consumption, Vc(tf ) and ∆V (tf ), are depicted

in Fig. 14.
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Figure 14: Tuning trade-offs for Phobos D&L using CTVG

This figure provides a clear visualisation of an underlying trade-off between

Vc(tf ) and ∆V (tf ): a choice of gains that minimises touchdown speed will

maximise the required ∆V and vice-versa. However, it also shows that the785

state-of-practice tuning selection of kr = 6, kv = −2 (marked with ×) might

not be the most suitable one since choosing, e.g., kr = 5, kv = −2.35 (marked

with 4), enables a ∆V reduction of 7.1 m/s while only increasing the touchdown

speed by 0.003 m/s.

4. Practical Issues790

In this final section, the main practical issues identified during this survey

are further elaborated. These include the effect of uncertainties on guidance

algorithms (Sec. 4.1), the computation of zero-effort errors (Sec. 4.2), as well as

the determination of the time-to-go (Sec. 4.3).

4.1. Robustness795

Stability and performance characteristics of any real system are affected

by many dynamical perturbations or operational uncertainties, ranging from

modelling inaccuracies (both deliberate and unknown) to external disturbances.

The guidance laws presented in Sec. 3 are typically designed for a single nominal

target-spacecraft model, but a successful descent strategy must function properly800

for all uncertainties within a bounded set. As anticipated in Sec. 3.2.4, pure
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optimal guidance laws are more sensitive to uncertainties and perturbations than

their robust counterparts, i.e., augmented with sliding mode control (SMC). This

section provides a simple illustration of the effect of uncertainties in planetary

descent, for the different guidance laws.805

The scenario selected to exemplify the uncertainty effect is taken from

reference (Hawkins et al., 2010). It simulates a hyper-velocity interception of

asteroid Apophis (which will make close approaches to planet Earth in 2029

and 2036) with the interception phase starting at perihelion roughly 1 day

before impact. The available thrust force for control is assumed unlimited,810

but the actuation is switched-off 200 seconds before touch-down. In addition,

gravity is assumed constant for ZEM and ZEV computations and all the sensor

measurements are assumed ideal. The target asteroid is modelled as a uniform

sphere with gravitational coefficient µT = 15.35 m3/s2 and radius RT = 500 m.

Without any guidance actuation, this scenario results in a miss distance of815

around 40,000 km.

The main source of uncertainty in this type of scenario is known to lie on

the gravitational force experienced by the spacecraft due to the irregular and

inaccurately known mass distribution of the asteroid and to the proneness of

variable third-body perturbations. Thus, a multiplicative uncertainty is intro-820

duced around the norm (not direction) of the spacecraft’s nominal gravitational

acceleration gSnom
(rT , rS) assuming a relative uncertainty level wg = 100% and

where ∆g ∈ [−1,+1] represents the normalised uncertainty (with -1/+1 its

minimum/maximum range and 0 its nominal value):

gS(rT , rS) = gSnom
(rT , rS) [1 + wg∆g] (60)825

The above uncertainty representation follows the robust control community

modelling paradigm known as a linear fractional transformation (LFT). These

LFT models are the cornerstone of robust control as they allow capturing the

known part of a system and/or variable (in this case gSnom
) and the uncertain

component (in (60) the range of ∆g) in a manner amenable for subsequent robust830

analysis and control. A detailed description of LFTs is beyond the scope of

this survey, but the interested reader is referred to (Doyle et al., 1991; Zhou
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et al., 1995) and references therein. Their use in Space for robust stability and

performance analysis of different systems is now prevalent (Bourdon et al., 2002;

Charbonnel, 2010; Simpĺıcio et al., 2016) and as part of the UK Space Agency835

project these techniques are also introduced for the D&L problem.

Simulations are depicted for a fixed set of 20 values of ∆g for the CTVG law

(terminal velocity constrained to 0 m/s, i.e., soft landing) in Fig. 15 and for the

FTVG law (free terminal velocity) in Fig. 16.

Both figures show the outcome of the two (pure) optimal laws (gray lines)840

against their SMC-augmented (robust) counterparts (red lines) – for the latter

a constant φ = 200 is used. The same end-of-mission time is commanded for

all the cases. The nominal responses, i.e. ∆g = 0, are also shown (black lines).

The main difference between the CTVG and the FTVG laws is related to the

reduction of velocity towards 0 m/s imposed by the former (Fig. 15b vs. 16b).845

As expected, this manoeuvre is more demanding in terms of control acceleration

(Fig. 15d vs. 16d). Note also that the linear dependence on time anticipated for

the pure optimal laws from (37) is also easily seen.

For the pure optimal laws, it is also observed that off-nominal spacecraft’s grav-

itational accelerations lead to significantly dispersed trajectories (see Figs. 15a850

and 16a for the heliocentric frame, and Figs. 15c and 16c for the relative frame).

This effect is therefore reflected into a degradation of the landing accuracy.

Furthermore, the FTVG law, by employing only position information (42), shows

larger sensitivity to uncertainties, which even causes the spacecraft to miss the

asteroid for |∆g| ≥ 0.8 (in other words, the robust laws improve against gravity855

uncertainty of at least 80% larger in norm-size). After augmenting the guidance

schemes with SMC, and although the trajectory is still affected by the presence

of uncertainties, its degradation is reduced to approximately half for both laws

(Figs. 15c and 16c). Of course, this comes at the expense of a significantly

higher actuation effort (Figs. 15d and 16d) for off-nominal cases. This decrease860

in sensitivity and consequent increase in actuation effort is a critical trade-off

often encountered in aerospace systems, in which better robustness properties

are attained through a compromise in terms of optimality.
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Figure 15: Robustness of CTVG laws (with vf = 0)
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Figure 16: Robustness of FTVG laws (dashed lines indicate missed interceptions)
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As a potential axis for improvement, and as briefly mentioned before, the

robust control community has particularly well suited methods and tools to865

systematically address the aforementioned type of trade-offs, explicitly consid-

ering the effect of uncertainties and disturbances. As previously shown, these

uncertainties can be modelled as time-invariant LFTs, but this formalism also

allows to indirectly capture time-varying effects via linear parameter-varying

(LPV) models (details on LPV modelling can be found in (Marcos & Bennani,870

2009) and references therein). Furthermore, and also favoured by the use of

the robust control framework, recent automated tuning tools (Apkarian & Noll,

2006; Gahinet & Apkarian, 2011) have appeared that will be able to exploit the

parameterisation of the guidance laws proposed in (58) and (59) – or facilitate

the synthesis of control compensators that minimise orbital perturbations with875

respect to a reference trajectory (Simpĺıcio et al., 2018a).

4.2. Zero-effort errors computation

In Sec. 3.2 it was shown that defining guidance laws as a function of the

zero-effort errors allows to gather the effects of an inaccurate knowledge of the

gravitational environment in the value of ZEM and ZEV (and these effects were880

exemplified in Sec. 4.1). For this reason, it is important to compute the ZEM

and ZEV (and therefore the integrations in (10)) as accurately as possible. To

do so, the following options exist in the literature:

• If the gravitational force is not significant, then it can be neglected for

ZEM and ZEV computations;885

• If the gravitational force is slowly changing during the manoeuvre, it can

be assumed constant, yielding:

ZEM(t) = rf −
[
r(t) + tgo(t)v(t) +

1

2
t2go(t)g

]
ZEV(t) = vf − [v(t) + tgo(t)g]

(61)

• For a fast but more accurate computation, the value of ZEM and ZEV

can be estimated from the linearised time-varying state transition matrix890

(refer to (Battin, 1987) for more details);
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• Ultimately, the value of ZEM and ZEV can be computed from the full

numerical propagation of the equations of motion (3).

The options above are organised in increasing levels of accuracy. However, it

shall be remarked that more accurate approaches are also associated with higher895

computational needs.

4.3. Time-to-go determination

Most of the guidance laws presented in this article are implemented as a

function of the time-to-go tgo (or, alternatively, the end-of-mission time tf ).

Therefore, it is convenient to have ways of systematically setting an appropriate900

time-to-go throughout the mission. A first option is to specify tgo as dependent

on additional criteria. For example, for the Apollo guidance law, tgo is selected

so that the vertical component of the spacecraft acceleration is a linear function

of time (Ploen et al., 2006).

However, the performance of guidance algorithms can be significantly im-905

proved by choosing the value of tgo so as to achieve optimal propellant consump-

tion. Hence, a generic option is to execute a line search over tgo ∈
[
tgoMIN

, tgoMAX

]
for each initial state in order to minimise the cost function (Ploen et al., 2006):

J(tgo) =
1

2

∫ t+tgo

t

aT(τ)a(τ) dτ (62)

The lower bound tgoMIN
is given by physical constraints such as maximum910

thrust capability or allowed acceleration, while the upper bound tgoMAX
depends

typically on mission specifications such as acceptable duration.

In addition, using the optimal guidance laws of Sec. 3.2.3, the optimal tgo

must render the Hamiltonian constant over the optimal trajectory:

H(x(t),a(t))|optimal = 0 (63)915

Therefore, for a mission using the CTVG, substituting (41) into (38) and

assuming constant gravity (Guo et al., 2011), the optimal tgo can be determined

numerically (or analytically if the gravity field g is negligible) by solving:

t4gog
Tg − 2t2go

(
vTv + vT

f v + vT
f vf

)
+920

+ 12tgo (rf − r)
T

(vf + v)− 18 (rf − r)
T

(rf − r) = 0 (64)
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The same can be performed for FTVG laws but in this case substituting (42)

into (38):

t4gog
Tg−4t2go

[
vTv − (rf − r)

T
g
]
+16tgo (rf − r)

T
v−12 (rf − r)

T
(rf − r) = 0

(65)925

Finally, it shall be noted that the laws (58) and (59) become singular when

t→ tf (i.e., tgo(t)→ 0), which must be prevented. The most simple way to do

it is by switching-off the actuation immediately before the end-of-mission. The

exact instant of time is computed as a trade-off between allowable zero-effort

errors and maximum acceleration capability.930

5. Conclusions

This article reviews and analyses the state-of-the-art in guidance techniques

as applied to the Space field, mainly for planetary interception and/or descent

missions. The usefulness of this survey is related to the fact that important

developments on distinct scientific fields often take place independently and in935

here a coherent presentation framework has been adopted to facilitate interdisci-

plinary cross-pollination towards effective planetary descent techniques. Most

notably, this framework gathers technological developments from Control Theory

and Space Mission Analysis (Sec. 2.2) as applied to landing on small and larger

planetary bodies (Sec. 2.3).940

The guidance laws surveyed in this paper present very different properties.

Proportional laws, and their evolutions based on optimal control theory, are by

far the most widespread techniques when it comes to landing on small bodies.

But recently, their robustness properties have been improved against dynamical

perturbations and uncertainties by employing results from nonlinear sliding945

mode control (at the expense of additional control effort). On the other hand,

predictive and hybrid approaches allow to reduce the overall control effort via

pulsed navigation, but are less accurate since they rely on a linearised propagation

of the system states. In parallel, notable advancements have taken place since

the Apollo program on explicitly constrained trajectories, being most commonly950
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targeted at larger bodies using very efficient optimisation frameworks. Despite

these differences, it was shown that traditional closed-loop techniques share

structural commonalities that are particularly convenient for the application of

tuning methods against competing requirements.

In addition, this survey article has presented an evaluation of the key practical955

issues for deployment of these guidance laws. For example, it was shown

(Sec. 4.1) that special care must be devoted to ensure robustness of autonomous

descent systems on extremely variable and uncertain environments, which are

characteristic of planetary bodies with irregular shapes and mass distributions.

This requires the ability to effectively model and account for these uncertain960

effects when synthesising guidance and control algorithms. These issues are

addressed within the UK Space Agency project under which this survey was

developed for the case of a future descent and landing in Phobos.
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B. (2017). Landing on Small Bodies Trajectory Design, Robust Nonlinear

Guidance and Control. In The 27th AAS/AIAA Spacefilght Mechanics Meeting .

San Antonio, TX.

Kim, B., Lee, G., & Han, H. (1998). Biased PNG law for impact with angular

constraint. Transactions on Aerospace and Electronic Systems, 34 , 277–288.

Klumpp, A. (1974). Apollo lunar descent guidance. Automatica, 10 , 133–146.

Kubitschek, D. (2003). Impactor spacecraft targeting for the Deep Impact

mission to comet Temple 1. In The 2003 AAS/AIAA Astrodynamics Specialist

Conference. Big Sky, MT.

Kuninaka, H., & Hayabusa-2 team (2015). Deep Space Exploration of Hayabusa-2

Spacecraft. In The 30th International Symposium on Space Technology and

Science. Kobe, Japan.

Lara, M., & Scheeres, D. (2003). Stability bounds for three-dimensional motion

close to asteroids. Journal of the Astronautical Sciences, 50 , 389–409.

Lee, U., & Mesbahi, M. (2015). Optimal Powered Descent Guidance with 6-DoF

Line of Sight Constraints via Unit Dual Quaternions. In The AIAA SciTech

2015 Forum. Kissimmee, FL.

Lee, U., & Mesbahi, M. (2017). Constrained Autonomous Precision Landing

via Dual Quaternions and Model Predictive Control. Journal of Guidance,

Control, and Dynamics, 40 , 292–308.

Levant, A. (2007). Principles of 2-sliding mode design. Automatica, 43 , 576–586.

Li, S., & Jiang, X. (2014). Review and prospect of guidance and control for

Mars atmospheric entry. Progress in Aerospace Sciences, 69 , 40–57.

47



Liu, X., & Lu, P. (2014). Solving Nonconvex Optimal Control Problems by

Convex Optimization. Journal of Guidance, Control, and Dynamics, 37 ,

750–765.

Lu, P. (2018). Propellant-Optimal Powered Descent Guidance. Journal of

Guidance, Control, and Dynamics, 41 , 813–826.

Lunghi, P., Lavagna, M., & Armellin, R. (2013). Semi-Analytical Adaptive

Guidance Algorithm for Fast Retargeting Maneuvers Computation During

Planetary Descent and Landing. In The 12th Symposium on Advanced Space

Technologies in Robotics and Automation. Noordwijk, Netherlands.

Lunghi, P., Lavagna, M., & Armellin, R. (2014). Semi-analytical guidance algo-

rithm for autonomous close approach to non-cooperative low-gravity targets.

In The 2014 AAS/AIAA Spaceflight Mechanics Meeting . Santa Fe, NM.
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