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Abstract 

Manipulation of the gut microbiota presents a new opportunity to combat chronic diseases. 

Randomized controlled trials of probiotics suggest some associations with adiposity, lipids and 

insulin resistance, but no trials with hard outcomes have been conducted. We used separate-

sample Mendelian randomization to obtain estimates of the effects of 27 gut microbiota genera 

on ischemic heart disease, type 2 diabetes mellitus, adiposity, lipids and insulin resistance, based 

on summary data from CARDIoGRAAMplusC4D and other consortiums. Among 27 genera, a 1 

allele increase in single nucleotide polymorphisms related to higher Bifidobacterium was 

associated with lower risk of ischemic heart disease (odds ratio 0.977, 95% confidence interval 

(CI) 0.96, 1.00, P=0.04), 0.011 standard deviation lower in body mass index (95% CI -0.017, -

0.005) but 0.026 standard deviation higher in low-density lipoprotein cholesterol (95% CI 0.019, 

0.033), which, however, were not robust to exclusion of potential pleiotropy. We also identified 

Acidaminococcus, Aggregatibacter, Anaerostipes, Blautia, Desulfovibrio, Dorea and 

Faecalibacterium as nominally associated with type 2 diabetes mellitus or other risk factors. 

Results from our study indicate that these 8 genera should be given priority in future search 

relating the gut microbiome for new means to prevent and treat leading causes of global 

morbidity and mortality. 

 

Keywords: gut microbiota, Mendelian randomization, ischemic heart disease, type 2 diabetes 

mellitus 
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The human intestine is increasingly understood as harboring a complex community of trillions of 

bacteria having symbiotic relations with their host and thereby potentially affecting risk of major 

non-communicable diseases. In animals and humans, a microbiota-dependent metabolite, 

trimethylamine-N-oxide, is a predictor of cardiovascular disease 1, 2, suggesting a potential link 

between the gut microbiota and cardiovascular disease. Additionally, the gut microbiota may 

shape host metabolism, affecting the development of type 2 diabetes mellitus (T2DM) and 

adiposity 3, which are important risk factors for cardiovascular disease.  

Observationally some gut microbiota taxa have been associated with cardiovascular disease, its 

subtypes or risk factors. A small case-control study (n=128) found order Lactobacillales 

positively associated with ischemic heart disease (IHD) and phylum Bacteroidetes inversely 

associated with IHD 4. A systematic review implicated several species/genera in T2DM, but was 

only based on four small heterogeneous observational studies (total n=576) 5. A recent case-

control study (n=223) observed lower Bacteroides thetaiotaomicron in the obese 6. Lactobacillus 

reuteri was reported positively associated with body mass index (BMI), and Bifidobacterium 

animals, Methanobrevibacter smithii and Escherichia coli were negatively associated with BMI 

in 263 people (51% obese) 7. In a cohort of 893 adults 34 taxa were associated with BMI and 

lipids, at a false discovery rate of 0.05 8. Prevotella copri and Bacteroides vulgatus were the 

main species associated with homeostatic model assessment insulin resistance (HOMA-IR) in 

277 people without diabetes (58% obese) 9. However, these small observational studies are 

difficult to interpret because they are open to confounding by socially patterned factors, such as 

diet, which may affect the gut microbiota and health, and to changes in the gut microbiota in 

response to ill-health. 
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Meta-analyses of small randomized controlled trials (RCTs) suggested microbiota manipulation 

through probiotics, usually of Lactobacillus or Bifidobacterium, had a protective effect on 

adiposity 10, 11 but mixed effects on high-density lipoprotein cholesterol (HDL-C), low-density 

lipoprotein cholesterol (LDL-C) 12-14, and HOMA-IR 12, 13 with high heterogeneity. No RCT of 

probiotics with disease end-points has been conducted. Moreover, large meta-analyses of RCTs 

of antibiotics testing the role of antibiotic therapy in cardiovascular disease, which almost 

certainly changed the gut microbiome, did not affect cardiovascular disease mortality 15, 16. No 

effect of vancomycin on HOMA-IR was found in an RCT of 57 obese, pre-diabetic men 17. 

However, the exact effect of the antibiotics used in these RCTs on individual gut microbiota taxa 

is unknown, so at most they suggest we cannot rule out a role for a specific taxon.  

In the absence of definitive studies giving the causal effects of specific gut microbiota taxa on 

IHD, T2DM, and their risk factors, comparing risk by genetically predicted taxon abundance, i.e. 

Mendelian randomization (MR), provides an alternative means of assessing the role of the gut 

microbiota in major non-communicable diseases. Since genetic endowment is randomly 

allocated at conception, analogous to the randomization in RCTs, MR is less vulnerable to 

confounding than observational studies 18. To our knowledge, no MR study of the gut microbiota 

has been conducted. We conducted a separate-sample MR study based on genome-wide 

association studies (GWAS) predicting 27 genera applied to large extensively genotyped case-

control studies of IHD and T2DM, and cross-sectional studies of adiposity, lipids and HOMA-IR 

to identify agnostically genera associated with these health outcomes.   

 

METHODS 
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Genetically predicted gut microbiota genera 

Genetic predictors of 27 genera at genome-wide significance (P < 5×10-8) were obtained from all 

currently available GWAS of stool samples in humans 19-23. Highly correlated single nucleotide 

polymorphisms (SNPs) (r2 ≥0.8) were discarded based on larger P with correlations taken from 

Ensembl 24 (1000 Genomes: phase_3 among Europeans) and SNP Annotation and Proxy Search 

25 (1000 Genomes Pilot 1 catalog). If a SNP was not available for an outcome, a highly 

correlated proxy SNP (r2 ≥ 0.8) was used instead, if available. We also replaced rs892244 

(Cadherin 13 (CDH13)), because of a discrepancy between the major allele given in the GWAS 

22 and Ensembl 24, with rs8063330 (CDH13), which is highly correlated with rs892244 (r2 =  

0.941) and was associated the same genus (P = 2.68×10-7) in the same GWAS 22. We checked 

the phenotypes of selected SNPs using comprehensive genotype-to-phenotype cross-references, 

i.e. Ensembl 24 and GWAS Catalog 26, and repeated the analysis with potentially pleiotropic 

SNPs (rs1446585 (RNA, U6 small nuclear 512, pseudogene) and rs4988235 (minichromosome 

maintenance complex component 6)) excluded. We calculated SNP-specific F-statistics as a 

quotient of squared SNP-genus association and its variance 27. A mean F-statistic for each genus 

(predicted by uncorrelated SNPs) was approximated as an average of the corresponding quotients 

27.  

 

Genetically predicted IHD, T2DM and their risk factors  

CARDIoGRAMplusC4D 1000 Genomes is a case (n=60,801)-control (n=123,504) study of IHD, 

extensively genotyped using the 1000 Genomes phase 1v3 training set, largely of people of 

European descent (77%) 28. As sensitivity analysis, we also used CARDIoGRAMplusC4D 
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Metabochip, (63,746 cases and 130,681 controls) largely of European descent imputed to 

HapMap 2 29, which overlaps with 1000 Genomes (57.5% cases, 40.1% controls). If SNPs were 

not available in CARDIoGRAMplusC4D Metabochip, genetic associations were obtained from 

the more extensively genotyped subset in CARDIoGRAM, (22,233 cases, 64,762 controls) of 

European descent 30. All three studies were age- and sex-adjusted. 

Genetic associations with T2DM, adjusted for age and sex, were from DIAbetes Genetics 

Replication And Meta-analysis case (n=34,380)-control (n=114,981) study 31. Genetic 

associations with adiposity were from The Genetic Investigation of Anthropometric Traits with 

BMI and waist-hip ratio (standard deviation) for 332,154 and 210,222 people of European 

descent respectively, adjusted for age, age2, and study-specific covariates 32. Genetic associations 

with HDL-C and LDL-C (standard deviation), adjusted for age, age2 and sex, were obtained from 

the Global Lipids Genetic Consortium Results, of up to 188,577 participants of European descent 

and 7,898 participants of non-European descent 33. Genetic associations with HOMA-IR (log-

transformed) were from the Meta-Analyses of Glucose and Insulin-related traits Consortium of 

46,186 people of European descent 34.  

 

Statistical analysis 

Estimates of the association of each genus with IHD and its risk factors were obtained by 

combining SNP-specific Wald estimates 35 using inverse variance weighting with fixed effects 

for uncorrelated SNPs and weighted generalized linear regression, considering correlations 

between SNPs (Web Appendix 1) 36. Variance of a Wald estimate was obtained from Fieller’s 

theorem 37 or an approximation if the variance for SNP on exposure was not given 38. When 
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different GWAS used incompatible microbiota units for SNPs predicting the same genera, we 

used SNP-outcome associations (Web Table 1) 39. If a genus was predicted by >3 uncorrelated 

SNPs, MR-Egger and weighted median methods were used as sensitivity analyses. MR-Egger 

checks for unknown horizontal pleiotropy indicated by a non-zero intercept 40, with its “No 

Measurement Error” assumption tested by I2 27. If I2 was less than 90%, we performed simulation 

extrapolation to adjust for this violation 27. A weighted median estimate is robust to 50% of the 

SNPs being invalid genetic instruments 40. Bonferroni correction was used to adjust for multiple 

comparisons among genera within each outcome, giving a cutoff of 0.00185 for IHD in 

CARDIoGRAMplusC4D 1000 Genomes and 0.002 for the other outcomes. Given the overlap of 

participants between the two IHD case-control studies, we also combined their estimates 

accounting for this overlap using the Lin and Sullivan approach 41. All statistical analyses were 

conducted using Stata version 13.1 (StataCorp LP, College Station, TX) and R version 3.2.5 (R 

Foundation for Statistical Computing, Vienna, Austria). This study used publicly available 

summary data. Therefore, no ethical approval was required.  

 

RESULTS 

Five GWAS of the gut microbiota were identified, giving 94 SNPs related to 27 gut microbiota 

genera at genome-wide significance. 16S rRNA gene sequencing was used in four studies 19-22 

and metagenomics sequencing in one study 23. In UK Twins (n=2,731, 11% men, age range 19 to 

89 years) 13 SNPs predicted 7 genera (Box-Cox transformed relative abundance) 19. In 1,812 

people from Germany (46% men, age range 18 to 83 years) 5 SNPs predicted 4 genera in a 

generalized linear model with a negative binomial distribution and log link 20. In 1,561 healthy 

participants of European descent (45% men, age range 6 to 35 years) 29 SNPs predicted 17 



8 
 

genera (log-transformed relative abundance) 21. In 127 Hutterites (38% men, age range 6 to 92 

years), of European descent, rs2630788 (zinc finger protein 385D) and rs892244 (CDH13) 

predicted Anaerostipes and Bifidobacterium (normalized relative abundance) respectively 22. 

Finally, in 1,514 participants (42% men, age range 18 to 84 years) from Dutch cohorts 45 SNPs 

predicted 5 genera (normalized abundance) 23. We excluded 37 highly correlated SNPs. The 

remaining 57 SNPs from 55 genes were used in this study (Web Tables 2, 3) to predict 27 

genera: Acidaminococcus, Acinetobacter, Aggregatibacter, Anaerostipes, Atopobium, 

Bacteroides, Bifidobacterium, Blautia, Coprococcus, Desulfovibrio, Dialister, Dorea, 

Eggerthella, Escherichia, Eubacterium, Faecalibacterium, Lachnospira, Lactobacillus, 

Leuconostoc, Megamonas, Mogibacterium, Oscillibacter, Oscillospira, Pseudobutyrivibrio, 

Roseburia, Slackia and Weissella. All available F-statistics were >10 (Web Table 2). 

Bifidobacterium, based on 3 SNPs from different GWAS, was associated with lower IHD in the 

two CARDIoGRAMplusC4D studies combined, accounting for their overlap (Table 1, Web 

Figure 1c), although this association was not evident in CARDIoGRAMplusC4D 1000 Genomes 

(Web Figure 1a). Bifidobacterium was also associated with lower BMI (Table 1, Web Figure 1e), 

higher HDL-C (Table 1, Web Figure 1g), higher LDL-C (Table 1, Web Figure 1h), and lower 

HOMA-IR (Table 1, Web Figure 1i). Only the associations with BMI and LDL-C were robust to 

Bonferroni correction (Table 1). However, after the exclusion of pleiotropic SNPs 

Bifidobacterium was not associated with any outcome considered (Web Table 4). 

We further identified 7 genera nominally associated with IHD risk factors. Acidaminococcus, 

based on 5 uncorrelated SNPs from the same GWAS, was associated with higher HDL-C (Table 

1, Web Figure 1g). Sensitivity analysis using MR-Egger and weighted-median gave similar 

estimates (Web Table 5). Aggregatibacter, based on 1 SNP, was associated with higher HDL-C 
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(Table 1, Web Figure 1g). Anaerostipes, based on 2 SNPs from different GWAS, was associated 

with lower T2DM (Table 1, Web Figure 1d). Blautia, based on 6 SNPs from different SNPs, was 

associated with lower LDL-C (Table 1, Web Figure 1h). Desulfovibrio, based on 2 uncorrelated 

SNPs from the same GWAS, and Dorea, based on 1 SNP, were associated with higher HOMA-

IR (Table 1, Web Figure 1). Faecalibacterium, based on 4 SNPs from different GWAS, was 

associated with lower waist-hip ratio (Table 1, Web Figure 1f). However, none of these 

associations were robust to Bonferroni correction (Table 1).  

Additionally, Lachnospira, based on 1 SNP, was associated with higher IHD in 

CARDIoGRAMplusC4D Metabochip (Table 1, Web Figure 1b), but not in 

CARDIoGRAMplusC4D 1000 Genomes (Web Figure 1a), or in the two 

CARDIoGRAMplusC4D studies combined accounting for their overlap (Web Figure 1c). No 

associations were found for the other 18 genera, namely Acinetobacter, Atopobium, Bacteroides, 

Coprococcus, Dialister, Eggerthella, Escherichia, Eubacterium, Lactobacillus, Leuconostoc, 

Megamonas, Mogibacterium, Oscillibacter, Oscillospira, Pseudobutyrivibrio, Roseburia, Slackia 

and Weissella (Web Figure 1). 

 

DISCUSSION 

In what is to our knowledge the first MR study relating gut microbiota to IHD and its risk 

factors, we found some preliminary indications of beneficial associations of Bifidobacterium 

with BMI, HDL-C and HOMA-IR. We also found some nominal associations of 

Acidaminococcus, Aggregatibacter, Anaerostipes, Blautia, Desulfovibrio, Dorea and 

Faecalibacterium with modestly lower risk of T2DM, less adiposity, more beneficial lipid 
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profiles or higher HOMA-IR. Associations of the other genera considered with these outcomes 

appeared less likely.  

Our study has some consistency with an observational study showing no robust association of 

genera Bacteroides, Blautia, Coprococcus, Eggerthella or Lachnospira with BMI, HDL-C or 

LDL-C 8, although we also found Blautia nominally associated with lower LDL-C. However, our 

study is less consistent with a small case-control study showing order Lactobacillales positively 

and phylum Bacteroidetes negatively associated with IHD but Bifidobacterium unrelated to IHD 

4, 42. In fact, observational studies of the gut microbiota are probably susceptible to unmeasured 

confounding, by factors such as diet and health status. Our study also has some consistency with 

meta-analyses of RCTs showing beneficial effects of probiotics, typically including 

Bifidobacterium, on BMI 10, 11, HDL-C 12, 13 and HOMA-IR 13, although associations with HDL-

C and HOMA-IR in our study were less evident after correction for multiple comparisons. 

However, these meta-analyses of RCTs may be vulnerable to biases from small sample sizes 

(ranging from 234 to 1,931) and/or high heterogeneity (I2 ranging from 0% to 92%) 10-13. In 

addition, some RCTs included in these meta-analyses suggest a role for probiotics including 

Lactobacillus 10-12, but we found no associations for Lactobacillus, perhaps because the gut 

microbiota acts synergistically 43, so that the effect of a particular mix may be different from the 

effect of its constituent parts. A large well-conducted RCT in a well-characterized population 

using probiotics capsules containing sole species may provide further clarification. Finally, our 

study has some consistency with meta-analyses of RCTs showing little association of antibiotics 

with IHD 15, 16, because these RCTs likely changed the gut microbiota but did not affect 

cardiovascular disease mortality. RCTs targeting Bifidobacterium (or more generally 
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investigations of exact effects of various antibiotics on specific gut microbiota taxa) might 

provide further evidence for IHD prevention. 

Many potential pathways linking specific gut microbiota to non-communicable diseases have 

been identified. A possible pathway linking gut microbiota to IHD is via dietary choline (from 

shrimps and eggs) or dietary carnitine (from meat) to trimethylamine and trimethylamine-N-

oxide 44. However, the role of specific taxa in trimethylamine production is not entirely clear 45 

and we did not identify any genus robustly associated with IHD. Host metabolites linking gut 

microbiota to T2DM/metabolic syndrome may exist. Short-chain fatty acids are generated by 

many gut microbiota genera, such as Anaerostipes, Bacteroides, Bifidobacterium, Blautia, 

Clostridium, Dialister, Prevotella, Roseburia, Salmonella and Streptococcus, from fermentation 

of dietary fiber and may have beneficial metabolic effects for the host 46. Meta-analysis of RCTs 

showed dietary fiber reduces LDL-C 47, and we further identified that Blautia, possibly fueled by 

dietary fiber 46, might provide the mechanism. Whether any beneficial effect of Blautia on LDL-

C is mediated by short-chain fatty acids would be informed by RCTs investigating the role of 

Blautia in short-chain fatty acids production. Branched-chain amino acids have essential 

signaling functions, may be synthesized by Prevotella copri and Bacteroides vulgatus 9, and 

were positively associated with T2DM and BMI 48, but not with any marker of glucose 

metabolism 48, 49. Correspondingly, we did not find Bacteroides associated with HOMA-IR. A 

recent observational study found several Bacteroides species inversely correlated with branched-

chain amino acids 6, but the role of these species in the biosynthesis of branched-chain amino 

acids needs to be further confirmed in humans. Notably, lactase persistence alleles predicting 

lower Bifidobacterium abundance have been associated with higher milk drinking 50 and with 

anthropometric traits 24, 26. Since lactose fuels Bifidobacterium in the human intestine 19, 
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Bifidobacterium may have more of an effect in populations who drink milk despite lactose 

intolerance. Given the role of Bifidobacterium is difficult to distinguish from that of lactase 

persistence in people of European descent, replication in a population without lactase 

persistence, such as East Asians, would be helpful. Bidirectional MR studies to assess whether 

IHD and its risk factors influence the gut microbiota might also be informative. More generally, 

this study raises the question as to whether the search for a healthy diet should focus on the effect 

of foods and their constituents on health or their many mechanisms, including the gut microbiota. 

In the era of “big data”, taking advantage of GWAS and large publicly available data with 

extensive genotyping enables a cost-efficient MR study 36. Nevertheless, limitations regarding 

MR and gut microbiota exist. First, MR has stringent assumptions. Although we selected SNPs 

uniquely associated with 27 genera at genome-wide significance, few of them achieved study-

wide significance, and thus we could not fully rule out the possibility of weak instrument bias. 

However, our F-statistics suggest little evidence of that 51. A post-hoc power calculation 52 

assuming a statistical confidence level of 0.05, an R2 equaling genus heritability and an effect 

size shown in Table 1 suggested power of greater than 80% for the associations of 

Bifidobacterium with BMI and LDL-C, but less than 80% for weaker associations. As such 

larger MR studies are necessary, to distinguish associations with small effect sizes from null 

associations. In addition, some SNPs identified in one GWAS were not replicated in others due 

to low variance in the corresponding genera or different SNP selections. Publicly releasing all 

available individual GWAS, or their summary, would be helpful, as would further GWAS in 

larger more homogenous samples. More generally, our study did not consider associations 

between the 27 genera or all bacterial taxa. For example, family Bifidobacteria is inversely 

associated with species Escherichia coli 53. Cross-phenotype association analysis 54 combining 
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GWAS may help identify more accurate genetic instruments and clarify our MR estimates, when 

data is available. Residual pleiotropy is difficult to exclude, as functions of most SNPs have not 

been comprehensively identified; use of MR-Egger and a weighted median to identify pleiotropy 

statistically was restricted by the limited number of genetic instruments. Confounding by 

population stratification is possible. However, all five GWAS concerned participants of 

European descent 19-23 and the genetic associations with IHD and its risk factors are all from 

studies conducted largely in people of European descent with genomic control 28-34. Second, 

canalization may buffer the genetic effects of gut microbiota, so its manipulation might not have 

the same effect as that genetically predicted. However, whether the relevance of canalization 

exists is unknown. Third, winner’s curse may bias our MR estimates, but its direction is 

ambiguous 51. Finally, selection bias may influence our MR estimates, where genetic associations 

are obtained from studies in older people 55 or otherwise condition on genetic make-up and 

exposure or outcome. However, they did not condition one phenotype on another, reducing the 

risk of bias 56. 

In terms of specific limitations of applying MR to gut microbiota, the studies used to identify 

genetic predictors of Bacteroides, Bifidobacterium, Coprococcus, Dorea, Eggerthella and 

Faecalibacterium and to identify their associations with adiposity and lipids overlapped slightly 

because of the participants in the TwinsUK study 57. However, they only form a very small 

proportion of these studies which is unlikely to create a bias 58 and separate-sample MR reduces 

the risk of chance associations generated by the underlying data structure in a one-sample MR 59. 

Use of separate samples also means that possible non-linear associations, subgroup analysis by 

age and sex, and diet-microbiome interactions could not be tested 60, but causal effects should be 

generally consistent. Second, the 16S rRNA gene sequencing used by most microbiota GWAS 
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usually only permits resolution at genus level rather than at a more specific level, so we cannot 

rule out the possibility that some specific species or strains are associated with IHD or its risk 

factors. Additionally, we cannot rule out the possibility that a ratio of two taxa or dysbiosis of 

gut microbiota contributes to cardiovascular disease or its risk factors as suggested by some 

observational studies 8, 61, 62, although the ratio of Bacteroidetes to Firmicutes is not consistently 

associated with adiposity in humans 63. Fourth, gut microbiota may also be influenced by other 

factors, such as the time/season of stool sampling, which may decrease the variance explained by 

genetics. However, gut microbiota is thought to have temporal stability especially after early 

childhood, and the dominant force in determining its composition is long-term dietary habits 64. 

As such, our findings may be more relevant to the effects of gut microbiota from adolescence or 

adulthood. Our study is also limited by the current understanding of the gut microbiota. A 

hypothesis driven study testing epidemiologically established associations would have been 

preferable, but was precluded by the lack of knowledge as to the function of each constituent of 

the microbiome and by the lack of large epidemiological studies. In addition, differences in 

statistical methods between gut microbiota GWAS made the units hard to interpret. As such, we 

presented results per allele for Bifidobacterium, Blautia, Anaerostipes, Bacteroides, Dialister and 

Faecalibacterium, so these estimates are best understood as providing direction and we could not 

completely rule in/out their causal effects on the outcomes considered 65. Finally, our findings 

mainly concern Europeans. Gut microbiota may vary between populations 66, so replication in 

different populations are needed. Replication with functionally relevant genetic prediction of gut 

microbiota would also be helpful.  

Our study generates the hypothesis that Acinetobacter, Atopobium, Bacteroides, Coprococcus, 

Dialister, Eggerthella, Escherichia, Eubacterium, Lachnospira, Lactobacillus, Leuconostoc, 
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Megamonas, Mogibacterium, Oscillibacter, Oscillospira, Pseudobutyrivibrio, Roseburia, Slackia 

and Weissella are unlikely to have a major causal association with IHD or T2DM, and so might 

not warrant extensive testing. Our study also raises the possibility of a beneficial association of 

Bifidobacterium with IHD, adiposity, HDL-C and HOMA-IR, as well as associations of 

Acidaminococcus, Aggregatibacter, Anaerostipes, Blautia, Desulfovibrio, Dorea and 

Faecalibacterium with cardiovascular disease risk factors, suggesting these might be the focus of 

future investigation. Further MR studies using multiple robust instruments are needed to confirm 

these results given our study was limited by single genetic instruments for some genera. 

 

ACKNOWLEDGMENTS 

The authors thank CARDIoGRAMplusC4D, DIAbetes Genetics Replication And Meta-analysis, The 

Genetic Investigation of Anthropometric Traits, Global Lipids Genetic Consortium and Meta-Analyses 

of Glucose and Insulin-related traits Consortium for their publicly available summary data.  

  



16 
 

References 

1. Kitai T, Kirsop J, Tang WH. Exploring the microbiome in heart failure. Curr Heart Fail Rep. 

2016;13(2):103-109. 

2. Zhu W, Gregory JC, Org E, et al. Gut microbial metabolite TMAO enhances platelet 

hyperreactivity and thrombosis risk. Cell. 2016;165(1):111-124. 

3. Bouter KE, van Raalte DH, Groen AK, et al. Role of the gut microbiome in the pathogenesis 

of obesity and obesity-related metabolic dysfunction. Gastroenterology. 2017;152(7):1671-1678. 

4. Emoto T, Yamashita T, Sasaki N, et al. Analysis of gut microbiota in coronary artery disease 

patients: a possible link between gut microbiota and coronary artery disease. J Atheroscler 

Thromb. 2016;23(8):908-921. 

5. He C, Shan Y, Song W. Targeting gut microbiota as a possible therapy for diabetes. Nutr Res. 

2015;35(5):361-367. 

6. Liu R, Hong J, Xu X, et al. Gut microbiome and serum metabolome alterations in obesity and 

after weight-loss intervention. Nat Med. 2017;23(7):859-868. 

7. Million M, Angelakis E, Maraninchi M, et al. Correlation between body mass index and gut 

concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii 

and Escherichia coli. Int J Obes (Lond). 2013;37(11):1460-1466. 

8. Fu J, Bonder MJ, Cenit MC, et al. The gut microbiome contributes to a substantial proportion 

of the variation in blood lipids. Circ Res. 2015;117(9):817-824. 

9. Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum 

metabolome and insulin sensitivity. Nature. 2016;535(7612):376-381. 



17 
 

10. Zhang Q, Wu Y, Fei X. Effect of probiotics on body weight and body-mass index: a 

systematic review and meta-analysis of randomized, controlled trials. Int J Food Sci Nutr. 

2015;67(5):571-580. 

11. Sun J, Buys N. Effects of probiotics consumption on lowering lipids and CVD risk factors: a 

systematic review and meta-analysis of randomized controlled trials. Ann Med. 2015;47(6):430-

440. 

12. Li C, Li X, Han H, et al. Effect of probiotics on metabolic profiles in type 2 diabetes 

mellitus: A meta-analysis of randomized, controlled trials. Medicine (Baltimore). 

2016;95(26):e4088. 

13. Hu YM, Zhou F, Yuan Y, et al. Effects of probiotics supplement in patients with type 2 

diabetes mellitus: A meta-analysis of randomized trials. Med Clin (Barc). 2017;148(8):362-370. 

14. Hendijani F, Akbari V. Probiotic supplementation for management of cardiovascular risk 

factors in adults with type II diabetes: a systematic review and meta-analysis. Clin Nutr. 

2018;37(2):532-541. 

15. Almalki ZS, Guo JJ. Cardiovascular events and safety outcomes associated with 

azithromycin therapy: a meta-analysis of randomized controlled trials. Am Health Drug Benefits. 

2014;7(6):318-328. 

16. Andraws R, Berger JS, Brown DL. Effects of antibiotic therapy on outcomes of patients with 

coronary artery disease: a meta-analysis of randomized controlled trials. JAMA. 

2005;293(21):2641-2647. 

17. Reijnders D, Goossens GH, Hermes GD, et al. Effects of gut microbiota manipulation by 

antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled 

Trial. Cell Metab. 2016;24(1):63-74. 



18 
 

18. Smith GD, Ebrahim S. 'Mendelian randomization': can genetic epidemiology contribute to 

understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1-22. 

19. Goodrich JK, Davenport ER, Beaumont M, et al. Genetic determinants of the gut 

microbiome in UK twins. Cell Host Microbe. 2016;19(5):731-743. 

20. Wang J, Thingholm LB, Skieceviciene J, et al. Genome-wide association analysis identifies 

variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet. 

2016;48(11):1396-1406. 

21. Turpin W, Espin-Garcia O, Xu W, et al. Association of host genome with intestinal microbial 

composition in a large healthy cohort. Nat Genet. 2016;48(11):1413-1417. 

22. Davenport ER, Cusanovich DA, Michelini K, et al. Genome-wide association studies of the 

human gut microbiota. PLoS One. 2015;10(11):e0140301. 

23. Bonder MJ, Kurilshikov A, Tigchelaar EF, et al. The effect of host genetics on the gut 

microbiome. Nat Genet. 2016;48(11):1407-1412. 

24. Aken BL, Achuthan P, Akanni W, et al. Ensembl 2017. Nucleic Acids Res. 

2017;45(D1):D635-D642. 

25. Johnson AD, Handsaker RE, Pulit SL, et al. SNAP: a web-based tool for identification and 

annotation of proxy SNPs using HapMap. Bioinformatics. 2008;24(24):2938-2939. 

26. MacArthur J, Bowler E, Cerezo M, et al. The new NHGRI-EBI Catalog of published 

genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45(D1):D896-

D901. 

27. Bowden J, Del Greco MF, Minelli C, et al. Assessing the suitability of summary data for 

two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 

statistic. Int J Epidemiol. 2016;45(6):1961-1974. 



19 
 

28. Nikpay M, Goel A, Won HH, et al. A comprehensive 1,000 Genomes-based genome-wide 

association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121-1130. 

29. Deloukas P, Kanoni S, Willenborg C, et al. Large-scale association analysis identifies new 

risk loci for coronary artery disease. Nat Genet. 2013;45(1):25-33. 

30. Schunkert H, Konig IR, Kathiresan S, et al. Large-scale association analysis identifies 13 

new susceptibility loci for coronary artery disease. Nat Genet. 2011;43(4):333-338. 

31. Morris AP, Voight BF, Teslovich TM, et al. Large-scale association analysis provides 

insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 

2012;44(9):981-990. 

32. Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights 

for obesity biology. Nature. 2015;518(7538):197-206. 

33. Willer CJ, Schmidt EM, Sengupta S, et al. Discovery and refinement of loci associated with 

lipid levels. Nat Genet. 2013;45(11):1274-1283. 

34. Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose 

homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42(2):105-116. 

35. Wald A. The fitting of straight lines if both variables are subject to error. Stat Med. 

1940;35(11):284-300. 

36. Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental 

variables in Mendelian randomization: comparison of allele score and summarized data methods. 

Stat Med. 2016;35(11):1880-1906. 

37. Fieller EC. Some problems in intervel estimation. J R Stat Soc Series B Stat Methodol. 

1954;16(2):175-185. 



20 
 

38. Burgess S, Scott RA, Timpson NJ, et al. Using published data in Mendelian randomization: a 

blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015;30(7):543-552. 

39. Katan MB. Apolipoprotein E isoforms, serum cholesterol, and cancer. 1986 [letter]. Int J 

Epidemiol. 2004;33(1):9. 

40. Burgess S, Bowden J, Fall T, et al. Sensitivity analyses for robust causal inference from 

Mendelian randomization analyses with multiple genetic variants. Epidemiology. 2017;28(1):30-

42. 

41. Lin DY, Sullivan PF. Meta-analysis of genome-wide association studies with overlapping 

subjects. Am J Hum Genet. 2009;85(6):862-872. 

42. Emoto T, Yamashita T, Kobayashi T, et al. Characterization of gut microbiota profiles in 

coronary artery disease patients using data mining analysis of terminal restriction fragment 

length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. 

Heart Vessels. 2017;32(1):39-46. 

43. Vieira AT, Teixeira MM, Martins FS. The role of probiotics and prebiotics in inducing gut 

immunity. Front Immunol. 2013;4:445. 

44. Yamashita T, Emoto T, Sasaki N, et al. Gut microbiota and coronary artery disease. Int Heart 

J. 2016;57(6):663-671. 

45. Zhang C, Zhao L. Strain-level dissection of the contribution of the gut microbiome to human 

metabolic disease. Genome Med. 2016;8(1):41. 

46. Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: 

short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332-1345. 

47. Hartley L, May MD, Loveman E, et al. Dietary fibre for the primary prevention of 

cardiovascular disease. Cochrane Database Syst Rev. 2016(1):CD011472. 



21 
 

48. Lotta LA, Scott RA, Sharp SJ, et al. Genetic predisposition to an impaired metabolism of the 

branched-chain amino acids and risk of type 2 diabetes: a Mendelian randomisation analysis. 

PLoS Med. 2016;13(11):e1002179. 

49. Mahendran Y, Jonsson A, Have CT, et al. Genetic evidence of a causal effect of insulin 

resistance on branched-chain amino acid levels. Diabetologia. 2017;60(5):873-878. 

50. Yang Q, Lin SL, Au Yeung SL, et al. Genetically preicted milk consumption and bone 

health, ischemic heart disease, and type 2 diabetes: a Mendelian randomization study. Eur J Clin 

Nutr. 2017;71(8):1008-1012. 

51. Lawlor DA, Harbord RM, Sterne JA, et al. Mendelian randomization: using genes as 

instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133-1163. 

52. Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian 

randomization studies. Int J Epidemiol. 2013;42(5):1497-1501. 

53. Lee JH, O'Sullivan DJ. Genomic insights into bifidobacteria. Microbiol Mol Biol Rev. 

2010;74(3):378-416. 

54. Cichonska A, Rousu J, Marttinen P, et al. metaCCA: summary statistics-based multivariate 

meta-analysis of genome-wide association studies using canonical correlation analysis. 

Bioinformatics. 2016;32(13):1981-1989. 

55. Zhao J, Jiang C, Lam TH, et al. Genetically predicted testosterone and cardiovascular risk 

factors in men: a Mendelian randomization analysis in the Guangzhou Biobank Cohort Study. Int 

J Epidemiol. 2014;43(1):140-148. 

56. Zheng J, Baird D, Borges MC, et al. Recent developments in Mendelian randomization 

studies. Curr Epidemiol Rep. 2017;4(4):330-345. 



22 
 

57. Moayyeri A, Hammond CJ, Valdes AM, et al. Cohort profile: TwinsUK and healthy ageing 

twin study. Int J Epidemiol. 2013;42(1):76-85. 

58. Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample 

Mendelian randomization. Genet Epidemiol. 2016;40(7):597-608. 

59. Taylor AE, Davies NM, Ware JJ, et al. Mendelian randomization in health research: using 

appropriate genetic variants and avoiding biased estimates. Econ Hum Biol. 2014;13:99-106. 

60. Lawlor DA. Commentary: Two-sample Mendelian randomization: opportunities and 

challenges. Int J Epidemiol. 2016;45(3):908-915. 

61. Pevsner-Fischer M, Blacher E, Tatirovsky E, et al. The gut microbiome and hypertension. 

Curr Opin Nephrol Hypertens. 2017;26(1):1-8. 

62. Yin J, Liao SX, He Y, et al. Dysbiosis of gut microbiota with reduced trimethylamine-N-

oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am 

Heart Assoc. 2015;4(11):e002699. 

63. Sze MA, Schloss PD. Looking for a signal in the noise: revisiting obesity and the 

microbiome [published correction appears in MBio. 2017;8(6):e01995-17]. MBio. 

2016;7(4):e01018-16. 

64. Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human 

metabolism. Nature. 2016;535(7610):56-64. 

65. Tobin MD, Minelli C, Burton PR, et al. Commentary: development of Mendelian 

randomization: from hypothesis test to 'Mendelian deconfounding'. Int J Epidemiol. 

2004;33(1):26-29. 

66. Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the 

human gut microbiota. Nature. 2012;489(7415):220-230.  



23 
 

Table 1. Associations of Selected Genetically Predicted Gut Microbiota Genera with IHD, T2DM, Adiposity, Lipids and HOMA-IR 

Genus Unit of exposure Outcome Combined 

Estimatea 

95% confidence 

interval 

P 

Acidaminococcus per relative abundance (log10) HDL-C (SD) 0.001b 0.0003, 0.002 0.006 

Aggregatibacter per relative abundance (log10) HDL-C (SD) 0.039 0.002, 0.075 0.038 

Anaerostipes per allele T2DM 0.960 0.926, 0.996 0.032 

Bifidobacterium per allele IHD Metabochip 0.959 0.943, 0.976 1.7×10˗6 

  IHD two studies combined 0.985 0.971, 1.000 0.043 

  Body mass index (SD) ˗0.011 ˗0.017, ˗0.005 1.6×10˗4 

  HDL-C (SD) 0.010 0.003, 0.017 0.004 

  LDL-C (SD) 0.026 0.019, 0.033 4.3×10˗12 

  HOMA-IR (log-transformed) ˗0.008 ˗0.015, ˗0.001 0.022 

Blautia per allele LDL-C (SD) ˗0.008 ˗0.014, ˗0.002 0.011 

Desulfovibrio per relative abundance (log10) HOMA-IR (log-transformed) 0.007 0.0001, 0.014 0.046 

Dorea per relative abundance (Box-Cox 

transformed) 

HOMA-IR (log-transformed) 0.024 0.005, 0.043 0.013 

Faecalibacterium per allele Waist-hip ratio (SD) ˗0.009 ˗0.016, ˗0.003 0.008 

Lachnospira per relative abundance (log10) IHD Metabochip 1.095 1.001, 1.197 0.046 

Abbreviations: HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostatic model assessment insulin resistance; IHD, 

ischemic heart disease; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation; T2DM, type 2 diabetes mellitus.  
a Odds ratio for IHD and T2DM; β for other outcomes. 
b 0.001 SD higher in HDL-C per relative abundance (log10) increase in Acidaminococcus. 


