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Abstract Relationships between sediment flux and geomorphic processes are combined with
statements of mass conservation, in order to create continuum models of hillslope evolution. These models
have parameters that can be calibrated using available topographical data. This contrasts the use of
particle-based models, which may be more difficult to calibrate but are simpler and easier to implement
and have the potential to provide insight into the statistics of grain motion. The realms of individual
particles and the continuum, while disparate in geomorphological modeling, can be connected using
scaling techniques commonly employed in probability theory. Here we motivate the choice of a
particle-based model of hillslope evolution, whose stationary distributions we characterize. We then provide
a heuristic scaling argument, which identifies a candidate for their continuum limit. By simulating instances
of the particle model, we obtain equilibrium hillslope profiles and probe their response to perturbations.
These results provide a proof of concept in the unification of microscopic and macroscopic descriptions of
hillslope evolution through probabilistic techniques and simplify the study of hillslope response to external
influences.

1. Introduction
Hillslopes evolve topographically through a variety of erosional mechanisms ranging from slow diffusive pro-
cesses (e.g., soil creep), to fast, localized processes (e.g., landslides). Over short timescales (100 − 101 years),
hillslope sediment transport determines the redistribution of sediment and its delivery to the slope base. Over
long timescales (102−105 years) the balance between, and integral of, individual erosional events determines
the topographic form of hillslopes. Where advective processes dominate, hillslopes tend to be concave up, and
where diffusive processes are more pronounced hillslopes become convex (e.g., Carson & Kirkby, 1972; Kirkby,
1971). It is well acknowledged that the processes shaping landscapes are inherently dynamic and stochastic
(Dietrich et al., 2003; Roering, 2004; Tucker & Hancock, 2010), yet landscape evolution model (LEM) character-
ization of hillslope processes is often based on geomorphic transport laws (GTLs), mathematical formulations
expressing erosion as an averaged process operating over long timescales (Dietrich et al., 2003). This discrep-
ancy gives rise to a mathematical disconnect between the stochastic processes operating at the grain scale
over the short term and the evolution of hillslope topography over the long term.

In this paper we demonstrate a probabilistic scaling argument by which a particle-based description of hill-
slope sediment transport can be scaled to a continuum one representing long-term hillslope evolution. In
other words, we present a mathematical argument for deriving a continuum description of hillslope erosion
while remaining faithful to the particle-scale dynamics that operate over short temporal and spatial scales.

GTLs are a compromise between a comprehensive physics-based description, which may be too complex
to be parametrized through field observation, and rules-based modeling, which may lack a testable mech-
anistic footing (Dietrich et al., 2003). LEMs typically consist of a statement of mass conservation, GTLs for
describing sediment transport in the form of differential equations, and numerical methods to approximate
solutions to the GTLs (Tucker & Hancock, 2010). Despite inherent simplifying assumptions associated with this
approach, GTLs have been successful in simulating landform development in some environments, particularly
associated with diffusive processes like creep and bioturbation (e.g., Roering et al., 1999).

Particle-based models, which display a rich range of behavior despite their simplicity and ease of implemen-
tation, are an important alternative to this prescription of landscape evolution modeling (Davies et al., 2011;

RESEARCH ARTICLE
10.1029/2018JF004612

Key Points:
• We present a particle-based model of

hillslope evolution
• Probabilistic scaling of the particle

model gives a continuum
advection-diffusion equation

• The scaling argument bridges
the microscopic and macroscopic
descriptions of the hillslope evolution
model

Correspondence to:
J. Calvert,
jacob_calvert@berkeley.edu

Citation:
Calvert, J., Balázs, M., & Michaelides, K.
(2018). Unifying particle-based and
continuum models of hillslope
evolution with a probabilistic scaling
technique. Journal of Geophysical
Research: Earth Surface, 123.
https://doi.org/10.1029/2018JF004612

Received 9 JAN 2018

Accepted 19 OCT 2018

Accepted article online 29 OCT 2018

©2018. American Geophysical Union.
All Rights Reserved.

CALVERT ET AL. 1

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9011
https://orcid.org/0000-0001-9173-0946
https://orcid.org/0000-0002-5797-0150
https://orcid.org/0000-0002-7996-0543
http://dx.doi.org/10.1029/2018JF004612
https://doi.org/10.1029/2018JF004612


Journal of Geophysical Research: Earth Surface 10.1029/2018JF004612

Kessler & Werner, 2003; Tucker & Bradley, 2010). Traditionally, particle models have been criticized for using ad
hoc evolution rules and experimentally inaccessible parameters and for neglecting the underlying transport
physics (Dietrich et al., 2003). Accordingly, as continuum models have long been numerically implementable
and experimentally verifiable, the use of GTLs has dominated studies of landscape evolution. However, the
experimental validation of particle-based models is now possible using techniques for tracking grain motion
(Fathel et al., 2015; Habersack, 2001; McNamara & Borden, 2004; Roering, 2004; Roseberry et al., 2012).
This, combined with their ability to incorporate particle mechanics and motion statistics, leads Tucker and
Bradley (2010) to argue that particle-based models are no less fundamental than GTLs and should be used to
complement continuum models.

While the case against the use of particle-based models has been undermined by experimental innovation,
it is the theoretical development of nonlocal transport on hillslopes, which best underscores the case for
their use. Continuum models like those of Culling (1963) and Andrews and Bucknam (1987) rely on locality
assumptions, the assumption that sediment transport at position x on a slope is a function of the hillslope
conditions at x (i.e., local land surface slope; Furbish, Haff, et al., 2013). Locality assumptions are only valid
when hillslope material moves short distances relative to the hillslope length (Tucker & Bradley, 2010). Exam-
ples of local transport processes are soil creep (Furbish, Haff, et al., 2009), rainsplash (Dunne et al., 2010;
Furbish, Childs, et al., 2009), and bioturbation and tree throw (Gabet, 2000; Gabet et al., 2003). Nonlocal
transport occurs when sediment transport at position x depends on the hillslope characteristics a significant
distance upslope or downslope of position x (Furbish, Haff, et al., 2013) such that occurs in sheetwash sed-
iment transport (Michaelides & Martin, 2012; Michaelides & Singer, 2014) and dry ravel (Gabet & Mendoza,
2012) on steep slopes. Accordingly, formulations of nonlocal transport must specify the relationship between
flux and relative upslope or downslope position, ultimately leading to assumptions on the distribution of par-
ticle travel distances (Furbish & Haff, 2010; Furbish, Haff, et al., 2013) or the fitting of a fractional derivative
operator (Foufoula-Georgiou et al., 2010). However, such relationships change as hillslopes evolve, and so
particle-based approaches may be more appropriate (DiBiase et al., 2017; Gabet & Mendoza, 2012).

In order to effectively combine their strengths, the particle model must correspond, in some sense, to the
continuum description. However, as Tucker and Bradley (2010) indicate, it is not clear how to identify such
a pair. Indeed, referring to the particle-based models of Tucker and Bradley (2010) and Gabet and Mendoza
(2012), Ancey et al. (2015) observe, “there is no technique for deriving continuum equations from the rules
used to describe particle behavior in this environment.” Here we demonstrate a probabilistic scaling argument
by which a particle-based description can be scaled to a continuum one with the two descriptions corre-
sponding to one another. The probabilistic scaling procedure consists of scaling space and time by a small
parameter, ultimately converting the microscopic evolution rules into a partial differential equation governing
the macroscopic observables (Bahadoran et al., 2010; Kipnis & Landim, 1999; Olla et al., 1993).

In sections 2 and 3, we introduce a simple particle-based model of hillslope evolution and provide a
heuristic scaling argument, which identifies a corresponding continuum description in the form of an
advection-diffusion equation. Critically, the particles of our model correspond to characteristic units of hill-
slope gradient, not hillslope height. This element of indirection softens the distinction between local and
nonlocal transport, and for this reason, our model can represent diverse geomorphic processes and the scaling
argument applies uniformly across various transport regimes.

Finessing nonlocal transport through indirection comes at the expense of immediate access to infor-
mation about particle hopping distances and fluxes. This contrasts the convolutional approaches of
Foufoula-Georgiou et al. (2010) and Furbish and Haff (2010), which express sediment flux arising from nonlo-
cal transport as an integral over relative upslope positions. While such methods enable detailed calculation
of fluxes, they require as input assumptions about the distribution of particle hopping distances in rela-
tion to hillslope topography (Gabet & Mendoza, 2012; Furbish & Haff, 2010; Furbish, Haff, et al., 2013). When
these detailed outputs are unnecessary, the requisite inputs are unavailable, or corresponding simulations are
computationally expensive, a particle-based approach may be preferable.

Section 4 describes simulations of the particle model for various choices of microscopic parameters, includ-
ing both linear and nonlinear slope dependence, to exhibit the types of hillslope profiles that form and how
fluxes arise in response to hillslope perturbations. Additionally, to translate simulation results into empirically
testable predictions, we suggest a way of fitting model parameters from data and assigning dimensions to
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Figure 1. Schematic of the mapping between units of hillslope (a) and
corresponding units of gradient (b). The height of the hillslope’s leftmost
site (i = 1) is fixed at a height of H and the rightmost site (i = L + 1) is fixed at
0 (a). In the gradient model (b), particles in the bulk (1 < i < L) hop to the
left and right with rates qf (𝜔(i)) and pf (𝜔(i)), respectively; particles at the
left boundary move right at rate pf (𝜔(1)) and those at the right boundary
move left at rate qf (𝜔(L)).

model outputs. Finally, in section 5, we discuss the relation of this paper
to the hillslope evolution and nonlocal transport literature and suggest
future work, which takes advantage of a dual, particle-based and contin-
uum approach.

2. A Particle-Based Model of Hillslope Evolution
2.1. Specifying State Space and Dynamics
As our goal is to model hillslope profiles, we begin by considering a 1-D
grid of L + 1 labeled sites, each containing some number of units of hills-
lope height (Figure 1a). In other words, if a site contains two hillslope units,
the hillslope has an elevation of twice some characteristic height. We fix
the ridge-top height—the number of units at site 1—to be H and the
number at site L + 1 to be 0. The process of hillslope evolution could then
occur via the rearrangement of the units across sites 2 to L, according to
some dynamics. In this case, the particles of an associated particle-based
model would be identified with these units of hillslope height, like in the
particle-based model of Tucker and Bradley (2010). However, our analysis
becomes simpler if we instead specify the dynamics of a corresponding
model, for which the particles are identified with units of hillslope gradient
(Figure 1b). In other words, by each particle, we represent some character-
istic difference in height over adjacent lattice sites. We will refer to these
particles as gradient particles and the associated particle-based model
as the gradient model, to distinguish them from particles representing
units of hillslope height and the particle-based model that describes the
evolution of the hillslope height profile.

If at time 𝜏 there are h𝜏 (i) units of hillslope height at site i and h𝜏 (i + 1)
units of hillslope height at site i + 1, we place 𝜔𝜏 (i) = h𝜏 (i) − h𝜏 (i + 1) units
of hillslope gradient at site i of the gradient model. We note that, because
we fixed site L + 1 to have 0 units, 𝜔𝜏 (L) = h𝜏 (L). Additionally, because
we fixed site 1 to have H units, for any 𝜏 , it must be that

∑L
i=1 𝜔𝜏 (i) = H;

we have conservation of gradient particles. To complete the specification
of the gradient model, we need to describe the ways in which units of
gradient—the particles of our gradient model—are allowed to move.

Figure 1 summarizes the rules governing the dynamics. Particles hop after exponentially distributed waiting
times (a mathematical necessity), with rates given as follows. For sites i ≠ 1, L, a particle will hop i → i+1 with
rate pf (𝜔𝜏 (i)) and i → i−1 with rate qf (𝜔𝜏 (i)), where p, q ∈ (0, 1) and p+q = 1, and f (𝜔𝜏 (i)) is a nondecreasing
function of 𝜔𝜏 (i) with f (0) = 0. We note that the mean of an exponentially distributed time is the inverse of
the hopping rate. The requirement that f be nondecreasing in𝜔𝜏 (i) formalizes the intuition that the dynamics
on steep slopes happen at least as quickly as those on gradual slopes. At the left boundary i = 1, a particle
hops 1 → 2 with rate pf (𝜔𝜏 (1)) and, at the right boundary i = L, a particle hops L → L − 1 with rate qf (𝜔𝜏 (L)).
As the number of gradient particles 𝜔𝜏 (i) represents the steepness of the hillslope at site i, a gradient particle
hopping to site i corresponds to the hillslope becoming steeper at i. This could reflect deposition at site i or
erosion at site i + 1, both of which would cause the hillslope to become steeper at i (Figure 2). Specifically, if
the gradient particle hops from site i − 1 to site i, it corresponds to deposition at site i for h𝜏 . Alternatively, if
the gradient particle hops from site i + 1 to site i, it corresponds to erosion at site i + 1 for h𝜏 .

Particles in the gradient process only hop unit distances, unlike particles in the model of Tucker and Bradley
(2010). However, while gradient particles redistribute locally, the corresponding changes in the height profile
need not be. Consider again Figure 2—neither the origin of the deposited hillslope material nor the destina-
tion of the eroded hillslope material are specified. In other words, there is no conservation of units of hillslope.
We discuss the consequences for fluxes in section 4.2.

Our model is a type of continuous-time Markov process, known in the statistical physics and probability liter-
ature as a zero-range process because particles hop at rates that depend on the occupancy of their current
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Figure 2. Deposition and erosion. Deposition at hillslope site i occurs when a gradient particle hops from site i − 1 to
site i (left). Erosion at hillslope site i + 1 occurs when a gradient particle hops from site i + 1 to site i (right). In both of the
depicted cases, 𝜔(i) increases, which is reflected in a steepening of h(i) relative to h(i + 1). Analogously, there are
deposition and erosion scenarios in which 𝜔(i) decreases, corresponding to a lowering of h(i) relative to h(i + 1).

site. In this sense, there is a zero-range interaction between particles occupying the same site. We note that
exponentially distributed waiting times are characteristic of continuous-time Markov processes.

2.2. Identifying the Stationary Distributions of the Particle Model
2.2.1. The Detailed Balance Condition
The stationary distributions of the gradient process are those probability distributions over occupancies 𝜔

that are unchanged by the dynamics specified in section 2.1. In the context of our model, these stationary dis-
tributions represent the topographic steady state. The gradient process is in equilibrium when𝜔 is distributed
according to a stationary distribution. Denoted by 𝜔i→i+1 the occupancy of sites, which results from 𝜔 when
a particle at site i hops to site i + 1:

𝜔 = {𝜔(1), … , 𝜔(i), 𝜔(i + 1), … , 𝜔(L)} and (1)

𝜔i→i+1 = {𝜔(1), … , 𝜔(i) − 1, 𝜔(i + 1) + 1, … , 𝜔(L)}. (2)

To find stationary distributions of the gradient process, it suffices to enforce the detailed balance condition
between occupancies

P(𝜔) ⋅ pf (𝜔(i)) = P(𝜔i→i+1) ⋅ qf (𝜔(i + 1) + 1), (3)

whereP is a probability distribution on occupancies. The left-hand side expresses the rate at which occupancy
𝜔 becomes 𝜔i→i+1, and the right-hand side expresses the rate of the reverse process. Intuitively, if (3) holds for
P, the rates at which the gradient process moves between occupancies 𝜔 and 𝜔i→i+1 are perfectly balanced
by P. Accordingly, if the gradient particles are distributed according to P, the dynamics are unable to change
this; P is stationary for the gradient process.
2.2.2. Marginal Distributions
Section 2.1 stipulates that gradient particles occupying a common site interact with one another by altering
the rate at which they hop to other sites. It therefore seems reasonable to expect that a distribution of particles
arising from the dynamics would involve dependencies across some or all sites. However, despite the many
interactions between the particles, we can find a probability distribution P on occupancies 𝜔, which both
satisfies (3) and marginalizes into independent distributionsP𝜃i

i on single-site occupancies𝜔(i). That is,P(𝜔) =∏L
i=1 Pi

𝜃i (𝜔(i)), where 𝜃i is a parameter of the marginal distribution at site i. This property enables us to study
the simpler marginal distributions P𝜃i

i instead of P and would not be present if we had instead modeled the
hillslope directly, with particles representing units of hillslope height.

The stationary marginal distributions have the form

Pi
𝜃i (𝜔(i)) = e𝜃i𝜔(i)

f (𝜔(i))! Z(𝜃i)
𝜃i ∈ R, (4)

CALVERT ET AL. 4
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Figure 3. Hillslope profiles produced by the particle model for f (𝜔(i)) = 𝜔(i), fixed H = 50, L = 100, and values of p
shown in the legend, where we fix p + q = 1 (a). We indicate soil creep, sheet wash, and sheet wash with rills/gullies as
geomorphic processes, which could be modeled by these curves, in analogy with the characteristic-form profiles of
Kirkby (1971). Hillslope profiles produced by the particle model for constant rate f (𝜔(i)) = 1 if 𝜔(i)> 0 (b). We fixed
H = 50, L = 100, and values of p shown in the legend, where we fix p + q = 1. The curves represent average profiles
obtained over 25 independent, identical simulations of the particle model after 5, 000, 000 steps, starting from the
stationary profile of the linear rate model with the same choice of p.

with f (z)! =
∏z

k=1 f (k) and f (0)! = 1. Z(𝜃i) =
∑∞

k=0 e𝜃i k∕f (k)! is a normalization constant, which is assumed to
be finite. We note that, if f (𝜔) = 1 for all 𝜔, then (4) is the familiar geometric distribution; if f (𝜔) = 𝜔 for all
𝜔, then (4) is the Poisson distribution. In Appendix A1, we show that (4) indeed satisfies the detailed balance
condition of (3), so long as exp(𝜃i+1 − 𝜃i) = p∕q. This result motivates the interpretation of the parameter 𝜃i

as relating to the particles’ underlying preference for right (p> 1∕2) or left (p < 1∕2) jumps.

Using the marginalsPi
𝜃i , we would like to calculate the expected number of gradient particles occupying each

site in equilibrium. Technically, this quantity depends on the choice of hillslope height H, and so we should
calculate the conditional expected number of gradient particles at each site. In equilibrium, for an arbitrary
choice of f (𝜔(i)), parameter 𝜃i, and fixed height H, the expected number of gradient particles at a site i is

𝜌𝜃i (i) = E
𝜃i

(
𝜔(i)

||||||
L∑

j=1

𝜔(j) = H

)
=

H∑
k=0

k ⋅ P𝜃i

(
𝜔(i) = k | L∑

j=1

𝜔(j) = H

)
, (5)

where E
𝜃i is the expectation with respect to the distribution P

𝜃i and the notation |||∑𝜔 = H indicates con-
ditioning on the sum of gradient particles being H. The sum over k in (5) is an average over the numbers of
gradient particles, which could be at site i, with a weighting based on the probability of observing k particles
at site i, subject to the configuration having a total of H gradient particles.

Note that 𝜌𝜃i describes the expected number of particles at each site in equilibrium for the gradient process; it
does not describe the number of units of hillslope at each site. In order to obtain the corresponding hillslope
profile, we must invert 𝜔(i) = h(i) − h(i + 1) as

h(i) =
L∑

j=i

𝜔(j). (6)
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2.3. Hillslope Profiles for Linear Rate
We can calculate (5) explicitly for the choice of linear rate, f (𝜔(i)) = 𝜔(i), corresponding to the gradient par-
ticles hopping with rate proportional to local gradient. For this choice of f (𝜔(i)) and, as a consequence of (4),
the stationary distributions are Poisson

Pi
𝜃i (𝜔(i)) = e𝜃i 𝜔(i) ⋅ e−e𝜃i

𝜔(i)!
. (7)

In Appendix A2, we show that using (7) with (5) gives

𝜌𝜃i (i) = H
e𝜃i

L∑
j=1

e𝜃j

= H ⋅
(

p
q

)i−1

(
p
q

)
− 1(

p
q

)L
− 1

, (8)

where the second equality follows from the stationarity condition exp(𝜃j+1 − 𝜃j) = p∕q.

We can invert (8) with h(i) =
∑L

j=i 𝜔(j) to get the corresponding hillslope profile

h(i) = H

(
p
q

)i
−
(

p
q

)L+1

(
p
q

)
−
(

p
q

)L+1
for 1 ≤ i ≤ L, (9)

which describes the expected hillslope profile in equilibrium. Examples of such profiles are provided for a
range of p∕q values in Figure 3a.

2.4. Hillslope Profiles for Constant Rate
We can also calculate 𝜌𝜃i (i) = E

𝜃i𝜔(i), in absence of conditioning on H, for a choice of constant rate: f (𝜔(i)) = 1
if 𝜔(i)> 0 and f (𝜔(i)) = 0 if 𝜔(i) = 0. Whereas, in the case of linear rate, the dynamics depended on the local
gradient, the constant rate case corresponds to a dynamics, which evolves steep slopes at the same rate as
gradual slopes. The proof of the fact that the conditioning matters little to the stationary hillslope profile is
outside the scope of this discussion, and we omit it for brevity.

The occupancies 𝜔(i) are distributed as geometric random variables, that is,

P
𝜃
i (𝜔(i)) =

e𝜃i𝜔(i)

Z(𝜃i)f (𝜔(i))!
= e𝜃i𝜔(i)

Z(𝜃i)
= e𝜃i𝜔(i)(1 − e𝜃i ); (10)

thus, the expected number of gradient particles has the following simple form

𝜌𝜃i (i) = e𝜃i

1 − e𝜃i
, (11)

valid for (𝜃i < 0). The stationary distribution requires e𝜃i+1−𝜃i = p∕q, or

e𝜃i = c ⋅
(

p
q

)i

and i <
− ln c

ln p − ln q
, (12)

where c > 0 is a constant determined by (14) and the left boundary condition for height, h(1) = H. Combined
with (11), we obtain the discrete gradient of the hillslope

𝜌𝜃i (i) =
c ⋅

(
p
q

)i

1 − c ⋅
(

p
q

)i
. (13)

To obtain the expected hillslope profile corresponding to (13), we apply h(i) =
∑L

j=i 𝜔(j) and substitute (13),
resulting in

h(i) =
L∑

j=i

c ⋅
(

p
q

)j

1 − c ⋅
(

p
q

)j
. (14)

Hillslope profiles for constant rate and an assortment of choices of p are shown in Figure 3b.
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Figure 4. Schematic of space and time rescaling. Discrete space in a particle model of a hillslope, indexed by i (a), is
rescaled by a small parameter 𝜀. In the limit as 𝜀 approaches 0, discrete space becomes continuous; accordingly, we
replace i with a continuous quantity x = 𝜀i (b). After the rescaling, particles originally spaced by unit distance are spaced
by 𝜀. Consider instead the hillslope height at a particular site i, which changes in response to particle movements
occurring on a timescale 𝜏 (c). After the rescaling of space, changes in hillslope height on timescale 𝜏 are too small to be
observed, so the dynamics must be quickened by rescaling 𝜏 to t with 𝜀2. Rescaling both space and time results in a
macroscopic height h(x) evolving on timescale t (d).

2.5. Particle Model Recap
We recall some key points from section 2 before proceeding to the scaling.

1. The particles of the model represent units of gradient, not units of hillslope.
2. Gradient particles are conserved and have local dynamics; units of hillslope are not conserved (no mass

conservation), and the locality/nonlocality of their dynamics is unspecified.
3. Gradient particles move according to a rate function f , which is not necessarily linear.
4. To obtain a hillslope profile, gradient particles must be summed according to (6).
5. Hillslope profiles can be calculated explicitly when f is linear or constant, or simulated otherwise.

3. Heuristic Derivation of the Continuum Equation

We now return to a general setting, where the form of f (𝜔𝜏 (i)) is unspecified, to identify the continuum
equation corresponding to the particle-based model of section 2.2. As in section 2.3, the expected number
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of gradient particles 𝜌𝜏 (i) = E
𝜃i𝜔𝜏 (i) is the object of interest, the scaling of which wholly characterizes the

gradient process in the limit of macroscopic time and space scales. For simplicity, we consider H fixed, but the
scaling argument should hold in cases where H varies slowly in time, relative to the dynamics of the gradient
process. We denote the particle model’s time by 𝜏 and choose the scaling t = 𝜏∕aL2, x = i∕L, with the inter-
pretation that we zoom out by a factor of L and speed up the process by a factor of L2, in order to observe
changes on the new spatial scale. This is the idea expressed in Figure 4, with the small parameter 𝜀 chosen in
terms of the hillslope length as 𝜀 = 1∕L, so 𝜀 → 0 as L → ∞. The constant a will become relevant in section 4.3.
To suggest their interpretation, we refer to t and 𝜏 as times and L as a length; a can be interpreted as a diffu-
sivity. However, we do not consider these quantities to have dimensions, as if we had obtained them through
nondimensionalization. In section 4.3, we discuss how these dimensions might be restored. We thus identify
the rescaled expected number of gradient particles as

𝜚t(x) ∶= E
𝜌𝜔taL2 (xL), (15)

where the expectation with respect to 𝜌 is justified in Appendix A3.

We require that p and q become increasingly close in value when scaling 𝜌𝜏 (i), in the sense that p∕q → 1 as
L → ∞. The intuition for this choice comes from the f (𝜔𝜏 (i)) = 𝜔𝜏 (i) curves of Figure 3a, which indicate that
increasing p relative to q results in a profile more closely resembling a step function. The scaling procedure
will only serve to accentuate this resemblance and so, to avoid a discontinuous rescaled 𝜚t(x), we choose the
weakly asymmetric limit, where p = 1

2
+ E

L
and q = 1

2
− E

L
, and where E is a positive parameter. This scaling is

called weakly asymmetric in reference to the symmetric case p = q and to reflect the fact that, for any fixed
E, as L → ∞, E∕L becomes increasingly small and so p is nearly q. Note that, while our choices force p> q, we
could just as easily address p < q by swapping them.

We proceed to examine the time evolution of 𝜌𝜏 for a site i, with Figure 1b in mind. Particles at site i − 1 and
i + 1 hop to i with respective rates pf (𝜔𝜏 (i − 1)) and qf (𝜔𝜏 (i + 1)); particles at site i hop away to sites i − 1
and i + 1 with respective rates qf (𝜔𝜏 (i)) and pf (𝜔𝜏 (i)). This is summarized as follows, where the positive terms
correspond to those particles hopping to i and the negative terms correspond to those particles hopping
from i to adjacent sites

d
d𝜏

𝜌𝜏 (i) =
d

d𝜏
E
𝜌𝜔𝜏 (i) (16)

= E
𝜌pf (𝜔𝜏 (i − 1)) + E

𝜌qf (𝜔𝜏 (i + 1)) − E
𝜌pf (𝜔𝜏 (i)) − E

𝜌qf (𝜔𝜏 (i)). (17)

We now substitute the weak asymmetry condition in the following way

d
d𝜏

E
𝜌𝜔𝜏 (i) = −E𝜌f (𝜔𝜏 (i)) +

1
2
E
𝜌f (𝜔𝜏 (i + 1)) (18)

− E
L
E
𝜌f (𝜔𝜏 (i + 1)) + 1

2
E
𝜌f (𝜔𝜏 (i − 1)) + E

L
E
𝜌f (𝜔𝜏 (i − 1))

= 1
2

[
E
𝜌f (𝜔𝜏 (i + 1)) − 2E𝜌f (𝜔𝜏 (i)) + E

𝜌f (𝜔𝜏 (i − 1))
]

(19)

− E
L

[
E
𝜌f (𝜔𝜏 (i + 1)) − E

𝜌f (𝜔𝜏 (i − 1))
]
.

We continue by defining G(𝜌) ∶= E
𝜌f (𝜔) and substitute the rescaled t and x variables

1
aL2

𝜕

𝜕t
E
𝜌𝜔taL2 (xL) = 1

2

[
G
(
𝜌taL2 (xL + 1)

)
− 2G

(
𝜌taL2 (xL)

)
+ G

(
𝜌taL2 (xL − 1)

)]
(20)

− E
L

[
G
(
𝜌taL2 (xL + 1)

)
− G

(
𝜌taL2 (xL − 1)

)]
.

Rearranging and identifying 𝜚t(x), we find

𝜕

𝜕t
𝜚t(x) =

aL2

2

[
G
(
𝜚t

(
x + L−1

))
− 2G

(
𝜚t(x)

)
+ G

(
𝜚t

(
x − L−1

))]
(21)

− aEL
[

G
(
𝜚t

(
x + L−1

))
− G

(
𝜚t

(
x − L−1

))]
.

≃ a
2

𝜕2

𝜕x2
G(𝜚t(x)) − 2aE

𝜕

𝜕x
G(𝜚t(x)). (22)
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We conclude
𝜕

𝜕t
𝜚t(x) ≃

a
2

𝜕2

𝜕x2
G
(
𝜚t(x)

)
− 2aE

𝜕

𝜕x
G
(
𝜚t(x)

)
. (23)

By repeating this argument for the leftmost and rightmost sites (see Appendix A4), we obtain the Robin
boundary conditions (a linear combination of Dirichlet and Neumann boundary conditions)

𝜕

𝜕x
G
(
𝜚t(0)

)
= 4EG

(
𝜚t(0)

)
and

𝜕

𝜕x
G(𝜚t(1)) = 4EG(𝜚t(1)). (24)

The boundary conditions (24) are consistent with the time-stationary solution of (23), 𝜚(x), together implying

d
dx

G(𝜚(x)) = 4EG(𝜚(x)) 0 ≤ x ≤ 1, (25)

the general solution of which is G(𝜚(x)) = Ce4Ex .

Equation (23), along with (24), is the continuum description of the particle-based hillslope model.
Appendix A5 describes the solution to (23) subject to the boundary conditions (24). Note that, as in section
2.2, (23) describes the evolution of the gradient process, and so its solutions must be integrated to obtain the
corresponding hillslope profiles.

In Appendix A6, we obtain the continuum equation for the evolution of the hillslope profile ht(x) by substi-
tuting 𝜚t(x) =

𝜕

𝜕x
ht(x) into (23) and then integrating. We find that

𝜕

𝜕t
ht(x) =

a
2

𝜕

𝜕x
G
(
𝜕

𝜕x
ht(x)

)
− 2aEG

(
𝜕

𝜕x
ht(x)

)
, (26)

with boundary conditions given by substituting 𝜕

𝜕x
ht(x) into (24).

3.1. Special Cases of the Continuum Equation
3.1.1. When f is Linear in 𝝎

In the special case of f (𝜔(i)) = 𝜔(i), we have G(𝜚t(x)) = 𝜚t(x), so the continuum equation is an
advection-diffusion equation

𝜕

𝜕t
𝜚t(x) ≃

a
2

𝜕2

𝜕x2
𝜚t(x) − 2aE

𝜕

𝜕x
𝜚t(x) (27)

with Robin boundary conditions

𝜕

𝜕x
𝜚t(0) = 4E𝜚t(0) and

𝜕

𝜕x
𝜚t(1) = 4E𝜚t(1). (28)

Specializing (26), we find that the continuum equation for the hillslope profile ht is identical to the one for 𝜚t

𝜕

𝜕t
ht(x) ≃

a
2

𝜕2

𝜕x2
ht(x) − 2aE

𝜕

𝜕x
ht(x), (29)

with boundary conditions by substituting 𝜕

𝜕x
ht(x) into (28).

3.1.2. When f is Constant in 𝝎

In the special case of f (𝜔(i)) = 1 for 𝜔(i)> 0, G(𝜚t(x)) = 𝜚t(x)∕(1 + 𝜚t(x)), so the continuum equation has the
following form

𝜕

𝜕t
𝜚t(x) ≃

a
2

𝜕2

𝜕x2

𝜚t(x)
1 + 𝜚t(x)

− 2aE
𝜕

𝜕x

𝜚t(x)
1 + 𝜚t(x)

(30)

with Robin boundary conditions

𝜕

𝜕x

𝜚t(0)
1 + 𝜚t(0)

= 4E
𝜚t(0)

1 + 𝜚t(0)
and

𝜕

𝜕x

𝜚t(1)
1 + 𝜚t(1)

= 4E
𝜚t(1)

1 + 𝜚t(1)
. (31)

Specializing (26), we find that the corresponding continuum equation for the hillslope profile ht is

𝜕

𝜕t
ht(x) ≃

a
2

𝜕2

𝜕x2 ht(x)(
1 + 𝜕

𝜕x
ht(x)

)2
− 2aE

𝜕

𝜕x
ht(x)

1 + 𝜕

𝜕x
ht(x)

, (32)

with boundary conditions given by substituting 𝜕

𝜕x
ht(x) into (31).
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Figure 5. Equilibrium hillslope (a and c) and gradient profiles (b and d) for quadratic
(

f (𝜔) = 𝜔2
)

, linear
(

f (𝜔) = 𝜔
)

, and
constant

(
f (𝜔) = 1if𝜔> 0

)
rates. For a and b, parameters were p = 0.52 (quadratic), p = 0.51 (linear), p = 0.505

(constant), H = L = 100. For c and d, parameters were p = 0.51 (all rates), H = L = 100. All curves were obtained as the
average over 10 identical trials.

3.2. Scaling Recap
We recall some key points from section 3 before describing simulations and dimensionalization.

1. The scaling procedure consists of three steps: balancing incoming and outgoing particles, substituting the
weak asymmetry condition, and substituting the rescaled variables.

2. The resulting continuum equation describes the number of gradient particles along the hillslope and is of
advection-diffusion type.

3. The continuum equation contains a function G which has simple, explicit forms when the rate function is
linear or constant.

4. The scaling argument confirms that, even if the continuum equation is complicated, its solutions can easily
be approximated by simulating the corresponding particle model.

4. Simulation and Dimensionalization

The analysis of section 3 tells us that if we want to study the evolution of hillslopes according to (23), we can
simulate the particle model of section 2 instead. As choices of rate f (𝜔) ≠ 𝜔 generally lead to a nonlinear PDE
(23), simulating the particle model may often be preferable to an analytic approach or a numerical scheme.
In addition to simulating the equilibrium hillslope profiles under various values of p and rate function f , we
would also like to simulate the response of hillslopes to perturbations, such as river erosion or climate change
(usually implemented by a change in a diffusion coefficient [Fernandes & Dietrich, 1997; Mudd & Furbish, 2004;
Roering et al., 2001]). We begin with simulations of equilibrium hillslope profiles.
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Figure 6. Simulated hillslope response to a river-erosion-like perturbation. A
hillslope in equilibrium (a) with linear rate f (𝜔) = 𝜔 is perturbed (b) and
relaxes (c and d). The rows depict time steps 1 × 106 (a), 1.1 × 106 (b),
2.5 × 106 (c), and 5 × 106 (d), for a perturbation applied near the righthand
boundary immediately after time step 1 × 106. The particle model was
initialized at equilibrium (equation (9)) with parameters
p = 0.51, H = 1 × 104, and L = 100. At equilibrium, 𝜌(i) is given by (8).

4.1. Equilibrium Hillslope Profiles
When the hopping rates of the gradient process are chosen to be f (𝜔(i)) =
𝜔(i), the hillslope gradients satisfy equation (27). For other choices of
rates, the gradients evolve according to equation (23). Balázs and Sep-
päläinen (2007) showed that convex (concave) f (𝜔(i)) implies convexity
(concavity) of G(𝜌). To demonstrate these two cases, we pick constant and
quadratic rates given by

(
f (𝜔(i)) = 1 for 𝜔(i)> 0, f (𝜔(i)) = 0 for 𝜔(i) = 0

)
and f (𝜔(i)) = 𝜔(i)2, respectively. As a result of section 3, the behavior
of these solutions can be understood by simulating the corresponding
particle model. Stationary hillslope and gradient profiles are compared
in Figure 5. In particular, Figures 5a and 5b highlight that, for different
choices of p, the profiles arising from linear, quadratic, and constant rates
can be made relatively similar, but their curvatures differ. This result echoes
comparisons of hillslope forms arising from linear and nonlinear transport
(Roering et al., 1999, 2007). Figures 5c and 5d show that, for a given value
of p, the profile arising from a constant rate is far steeper than those from
linear and quadratic rates. Informally, linear and quadratic rates respond
aggressively to large local gradients, leading to a smoother profile than
in the case of constant rate. Note that the profiles in the linear rate case
can be calculated from (9), while the constant and quadratic results can be
produced with the following simulation procedure.

We begin by specifying f , parameters H, L, and p, and the number of simu-
lation time steps, N. We choose an initial height profile, which satisfies the
boundary conditions, and use 𝜔(i) = h(i) − h(i + 1) to get the correspond-
ing gradient profile. For each time step, we (i) apply f to each element of
𝜔; (ii) draw random numbers from independent exponential distributions
with rates f (𝜔(i)), respectively representing the time interval until the next
hop occurs at site i; (iii) identify the site i with the next hop; and (iv) update
𝜔 and h to reflect this hop, contingent on satisfying boundary conditions.
We implemented this procedure and conducted all simulations in MATLAB
(R2016b, The MathWorks, Inc., Natick, Massachusetts, USA).

4.2. Hillslope Perturbations and Empirical Flux
We now turn our attention to hillslopes perturbed away from equilibrium,
to study the timescales over which hillslopes relax and the influence the
parameters have over this process. Consider the gradient process with lin-
ear rate f (𝜔(i)) = 𝜔(i), p = 0.51, L = 100, and H = 1 × 104. We emphasize
that we could choose H so as to make any average slope we wish, but
choose a large value of H so the perturbed profiles are smoother. In fact,
for the linear rate case, (9) indicates that the shape of the stationary hills-
lope profile is the same for any H. However, the average slope does affect
the relaxation time, with steeper slopes having dynamics at least as fast as
those of relatively gradual slopes.

We initialize 𝜔(i) by calculating h(i) from (9), rounding h(i) to the nearest integer greater than or equal to h(i),
and then calculating𝜔(i) from the rounded h(i). We introduce a perturbation, which conserves the total num-
ber of units of gradient, by skimming 50 such units from each site with at least that many. All of the skimmed
particles are then added to a single site. This perturbation is designed to mimic lateral fluvial erosion undercut-
ting the slope base resulting in oversteepening of the hillslope (Harvey, 1994). This scenario can occur during
high floods or local response to base-level change upstream. We track h(i) and 𝜔(i) as the hillslope relaxes
back to equilibrium (Figure 6). Figure 6a depicts the hillslope and gradient profiles maintaining equilibrium
for 1 × 106 time steps. Figures 6b and 6c show the profiles smoothing and refilling the base at time steps 1.1
× 106 and 2.5 × 106, respectively. By time step 5 × 106, the hillslope resembles the equilibrium hillslope.
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Figure 7. Hillslope profile relaxation in response to a perturbation, for a
particle model with f (𝜔(i)) = 𝜔(i), p = 0.51, p = 0.55, or
p = 0.60, H = 1 × 104, L = 100, and t = 0 to t = 8 × 107. Δht (defined by 33)
was normalized by its largest value over the simulation. Each curve is the
average over 25 trials.

It is natural to wonder about the affect p has on the rate of hillslope relax-
ation in response to perturbations that do not change the underlying
dynamics. Consider the same process, with p = 0.51, p = 0.55, or p = 0.60.
Take

Δht(i) ∶= ||ht(i) − h0(i)|| and Δht ∶=
L∑

i=1

Δht(i) (33)

as measures of distance from the h0 equilibrium. The results for t = 0 to
t = 8×107 are shown in Figure 7. It seems that the larger p is, the greater the
asymmetry in hopping rates, and the faster the hillslope returns to equi-
librium. However, the perturbation depends on the gradient profile, and
larger values of p are associated with steeper hillslopes, meaning the local
slope is not controlled in the experiment.

To separately test the affects of p and local slope on the rate of hills-
lope relaxation, we identified contiguous, 10-site regions of equilibrium
hillslopes, for various choices of p, which had slope similar to that of an
equilibrium profile for a different choice of p (Figures 8a and 8b). We then
perturbed these regions of similar slope by adding one quarter of the total
number of gradient particles in that region to a single drop site. For the
linear rate model, the time series of Δht(i) (where i was the drop site) were
well fit by exponential decays (R2 > 0.995 in all cases) with identical time
constants of 1.47 × 10−4 (Figure 8c). We then conducted the same per-
turbation, but for all possible contiguous 10-site windows. The resulting
exponential decays for sites i = 10, 15,… , 90 had time constants that
agreed with that of Figure 8 and are summarized in (Figure 8d); this result
seems to be consistent with the previous findings of exponential decay in

topography (Booth et al., 2017). These simulation results suggest that, for linear rate, the timescale over which
hillslopes relax does not depend on p or the local slope; this conclusion is in agreement with the calculation
of sections A5 and (A33) in particular. We emphasize that this is not the case in general.

We recall that the dynamics of the gradient particle model correspond to deposition and erosion events for the
hillslope, but neither the origin of the deposited material nor the destination of the eroded material are spec-
ified. In other words, there is no conservation principle for hillslope height. Consequently, fluxes of hillslope
height, which would develop during the process of equilibration are not directly accessible via the methods of
section 3. However, we can accessorize our particle model with an empirical flux inferred from height changes
along the hillslope, which depends on observations at times t and t + Δt. For example, if we assume that
growth downslope of a site i requires that a flux arose upslope of site i, we can calculate the empirical flux at
site i, relative to time steps t and t + Δt, as

𝜙t+Δt(i) − 𝜙t(i) = r Δt +
∑
j > i

(
ht+Δt(j) − ht(j)

)
. (34)

Here r is a constant, downhill flux exiting the right boundary and we adopt the convention that a positive
value of flux at a site i indicates a net, relative height change for sites j > i. Equation (34) describes a nonlocal
flux, in the sense that determining the flux through a site i involves consideration of sites other than i. We note
that (34) is an integrated Exner equation for our setting.

To demonstrate the use of the empirical flux, we consider a hillslope with H = 50 and L = 100, initially at
equilibrium with p = 0.55. For convenience, we choose Δt to be the length of one time step in the simulation.
Immediately after t = 0, we switch to p = 0.51, producing a net flux toward the righthand boundary, as the
hillslope equilibrates. To isolate the flux contributions driven by equilibration from those of the constant flux
r, we instead track the cumulative flux through site i as

𝜙̄t(i) ∶= ||𝜙t(i) − 𝜙0(i) − rt|| . (35)

Figure 9a shows the before-and-after hillslope profiles, corresponding to p = 0.55 and p = 0.51, and Figure 9b
shows the cumulative flux through sites i = 25, 50, and 75 during equilibration.
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Figure 8. The role of p and gradient on hillslope relaxation in the linear rate model. Equilibrium hillslope profiles for a
variety of choices of p (a) and the corresponding gradient profiles (b). Parameters were H = 1 × 104 and L = 100, with
linear rate f (𝜔) = 𝜔. The gradient profiles overlap around i = 70, so we can control for the affect of local slope on the
rate of hillslope relaxation by perturbing in the overlap region. For each choice of p, the perturbation (applied at the
beginning of the simulation) consisted of taking one quarter of the gradient particles from each of 10 sites in an interval
centered on i = 70 and adding them all to the leftmost site in the interval. The resulting time series of Δht(i) (defined by
(33)) were well fit by exponential decay with common time constant 1.47 × 10−4 (c). R2 > 0.995 in all cases. In (d), we
fixed p = 0.51 and performed the perturbation experiment using a sliding, 10-site window, in order to test various local
gradients along the hillslope. The resulting, normalized Δht decays for i = 10, 15,… , 85, 90 are shown (thin black
curves) with the exponential fit superimposed (thick red curve). Each curve in c and d was the average of 25 identical
trials. Values for p in a–c are given in the corresponding figure legends.

4.3. Adding Dimensions and Fitting Parameters
In order to reliably translate simulation results into empirically testable predictions, we need a way of assigning
dimensions to otherwise dimensionless model quantities (e.g., particle model length L and the length 𝓁 of
an observed hillslope, in meters). Additionally, we need to specify how hillslope data are used to fit model
parameters. We suggest the following procedure, which is partly motivated by the calculations in Appendix A5
and partly by (29).

Recall that sites in the particle model of section 2.1 are indexed by i = 1, 2,… , L. Let i count the number of
sediment grains in the length of the hillslope. We can set L to be the ratio of the hillslope length 𝓁 to the
average diameter of a grain. With h we denote the difference between the hillslope height at the crest and the
height at the end of the hillslope (at a length 𝓁 away from the crest). We can then set H to be the ratio of h to
the average diameter of a grain. For example, if the average grain diameter is 2 mm,𝓁 is 200 m, and h is 100 m,
we set L = 100, 000 and H = 50, 000. In this way, we relate dimensionless particle model quantities L and
H to observable hillslope quantities with dimension, 𝓁 and h. As our model does not resolve the distribution
of grain sizes, we suggest the use of the diameter of a grain which is considered typical with respect to the
distribution of grain sizes. However, grain size should not affect the nature of the limiting behavior, since even
larger grains are orders of magnitude smaller than the length-scale of the hillslope. Nevertheless, to explore a
distribution of grain sizes, it is possible to conduct multiple experiments using an array of different grain sizes.

CALVERT ET AL. 13



Journal of Geophysical Research: Earth Surface 10.1029/2018JF004612

Figure 9. A hillslope equilibrated for p = 0.55, H = 50, L = 100, and linear rate f (𝜔) = 𝜔, is perturbed by an abrupt change
in the dynamics to p = 0.51. In a, the initial profile (solid line) evolves with updated p to the final, equilibrium hillslope
(dotted line). In b, cumulative fluxes 𝜙̄t(i) (defined by 35) develop in response to the perturbation. Cumulative fluxes
averaged over 50 identical trials are shown for sites i = 25, i = 50, and i = 75.

We now consider fitting E, which encapsulates the asymmetry in the underlying gradient process. Ideally, we
would observe an individual hillslope in equilibrium and fit E according to the linear rate case (A25). As such
an observation is presumably rare and the simulation cost is low, we instead suggest fitting E to different
hillslopes and then performing simulations for a range of values of E. This can similarly be done for nonlinear
rate models using the contents of Appendix A5.2. The process of finding an appropriate rate function may
require trial and error, potentially starting from the constant, linear, and quadratic rate functions of Figure 5.

The process of adding dimension to the time steps is more challenging. Ideally, having determined E and in
the context of (29), we would add a small perturbation to the hillslope, the relaxation of which obeys (A33) and
from which a could be inferred. However, without experimental innovation or a theoretical work-around, this
is impractical. As the development of such an experimental methodology is outside the scope of the present
study, we provide this suggestion as a placeholder.

To summarize, we suggest the following, three-step approach:

1. Measure typical grain diameter to add units to H and L.
2. Fit range of E values to observed hillslope shapes.
3. Fit a to hillslope relaxation in response to a perturbation.

While the first step does not depend on the choice of rate function, the second and third steps do, as the form
of the rate affects the relationship between E and hillslope shape, and may affect the relationship between a
and the coefficients of the advection-diffusion equation for the hillslope height. We also note that this pro-
cedure makes use of both small-scale and large-scale measurements, as well as information about hillslope
equilibrium and nonequilibrium.

4.4. Simulation Recap
We collect some key points from section 4 before continuing on to the discussion.

1. We simulated perturbations in two ways: rearranging the gradient particles (through 𝜔) and changing the
dynamics (through p or, equivalently, E).

2. Hillslope relaxation in response to perturbation can be tracked by comparing it with the corresponding
stationary profile or by tracking the empirical fluxes.

3. In the linear rate case, hillslope relaxation timescale is independent of E, H, and L.
4. We suggested the procedure of section 4.3 to assign dimensions to simulation results, but the fitting of

diffusivity a may require experimental innovation or a theoretical work-around.

5. Discussion and Conclusion

We have presented a mathematical argument for deriving a continuum description of hillslope erosion, which
remains faithful to the particle-scale dynamics that operate over short temporal and spatial scales. The key
ingredient of the particle model of section 2 is indirection: the decision for particles to represent units of
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hillslope gradient, instead of units of hillslope height. Consider again the scenario of Figure 1. Had we specified
similar dynamics on the hillslope profile directly, the resulting profiles could be unrealistic (e.g., large particle
buildup next to sites with no particles) and the dynamics would require awkward constraints to prevent such
profiles. Most importantly, this process would not have stationary profiles that are amenable to analysis, and
a scaling argument like that of section 3 would not apply. In this sense, the gradient particle model is a natural
choice, but one made at the expense of direct access to information about sediment flux and particle hopping
distances. Indeed, although we can obtain the hillslope profile from the gradient particle profile (using (6)), our
model does not prescribe a dynamics on the hillslope profile and so is agnostic to fluxes of units of hillslope
and the distances they typically travel. Critically, this circumvents the issue of specifying whether transport on
the hillslope is local or nonlocal and, as a result, our model can represent a variety of geomorphic processes
and the scaling argument holds across transport regimes.

We are free to accessorize our model with fluxes, defined in terms of hillslope gradient, which evolve accord-
ing to the particle model of section 2 or, in the continuum, according to (23). In section 4.2, for example, we
proposed a nonlocal flux (34) in terms of changes in the hillslope height (equivalently, changes in hillslope
gradient via (6)). Alternatively, we could specify a local flux like those of Culling (1963; linear dependence on
slope), Andrews and Bucknam (1987; nonlinear dependence on slope), and Furbish, Childs, et al. (2009; non-
linear, includes height and slope), or a nonlocal flux of the form favored by Furbish, Haff, et al. (2013). This
freedom reflects the hillslope-first nature of our particle model, for which we formulate the dynamics of the
hilllslope gradients and infer the flux, as opposed to formulating the dynamics of the flux, from which we then
infer the hillslope profile. It is for this reason we have not recovered from our model a GTL, which connects flux
to powers of slope (Carson & Kirkby, 1972; Ganti et al., 2012). The analogous law for our model is G(𝜌) which,
being the expectation of a function f of gradient 𝜔, resembles a traditional GTL and similarly aims to capture
the underlying process mechanics.

A hillslope-first approach may be more natural than a nonlocal, transport-first approach for conducting per-
turbation simulations like those described in section 4.2. For example, consider the experiment illustrated
by Figures 6 and 7, which simulates hillslope recovery from river erosion. Nonlocal formulations of transport
require as input a distribution of particle travel distances, which must specify the dependence of travel dis-
tance on gradient (Furbish & Haff, 2010), or an assumption about the degree of nonlocality (Foufoula-Georgiou
et al., 2010), which similarly depends on gradient and so must vary throughout the experiment (Gabet &
Mendoza, 2012). In contrast, our model fixes the law governing the redistribution of hillslope gradient through
the rate function f , which is an input of the modeler. However, as described in section 4.3, to translate simula-
tion time steps into the timescale of a hillslope under study requires the fitting of diffusivity a which, barring
a theoretical work-around, may require experimental innovation.

Given a choice of f , the parameter p can be determined from an observation of hillslope shape, according to
the procedure described in section 4.3. Intuitively, for a given rate function and relative to a linear hillslope
of the same height and length, p>

1
2

specifies steeper slopes farther from the crest; p <
1
2

specifies steeper
slopes nearer the crest. For example, in Figure 3a, p = 0.49 produces a stationary hillslope profile resembling
one formed under sheet wash with gullies, while p = 0.51 results in a profile that more closely resembles
one formed under soil creep. The parameter p can also be used to conduct perturbation experiments, as in
Figure 9, where the hillslope begins as the stationary profile under a process associated with p = 0.51 and
must equilibrate after an external driver (e.g., climate change) alters the dynamics to p = 0.55. It is possible
to use a nonlocal, transport-first approach to conduct similar experiments, for example, by making a small
change to the volumetric entrainment rate or distribution of particle travel distances.

The particle-based model of section 2 is purely probabilistic, unlike those of Kirkby and Statham (1975) and
Gabet and Mendoza (2012), which incorporate frictional forces associated with particle motion, and that of
DiBiase et al. (2017), which also accounts for variations in grain size and is extended to motion in two spatial
dimensions. These approaches benefit from directly incorporating hillslope microtopography but are com-
putationally expensive in a way which may prohibit the simulation of hillslope evolution over long timescales
(DiBiase et al., 2017) and cannot be scaled to corresponding continuum equations (Ancey et al., 2015). Our
model is most similar to that of Tucker and Bradley (2010), which is also purely probabilistic, rules-based, and
computationally inexpensive, but for which a corresponding continuum description is unavailable.

The scaling argument of section 3 claims that, under the appropriate scalings of time and space variables,
and in the limit as L → ∞, the model behaves according to an advection-diffusion equation. Note that
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this governs the scaled gradient process, not the hillslope itself—we must integrate the solutions to obtain
the corresponding hillslope. For the linear rate case, we can solve the continuum equation directly; in the
nonlinear rate case, numerical methods may be required. Both the scaling argument and the resulting con-
tinuum equation are general; they hold for any nonnegative, nondecreasing rate function f . Of course, if f
is complicated, so too will the continuum equation be (as in Appendix A5.2), and simulating the corresponding
particle model will likely be preferable. We emphasize that the scaling procedure both identifies a continuum
model, as well as justifies the continuum model’s approximation by simulations of the particle model, assum-
ing L is relatively large. The dimensionalization procedure of section 4.3 confirms that this condition will be
satisfied in practice, as typical values for grain diameter and hillslope length give L = 105.

We anticipate that the modeling approach described here will be particularly useful for long-timescale sim-
ulations and simulations of landscape relaxation in response to perturbations. As simulations of the particle
model are easy to implement and computationally inexpensive, they could be used to evaluate the long-term
impact of external drivers or could be incorporated as one component of a larger 1-D model (e.g., hills-
lope with runoff into a river) while respecting modest computational resources. In addition, the simplicity
of the particle model makes it possible to simulate the interaction of sophisticated perturbations, such as
intermittent weather patterns or avalanching, with baseline geomorphic processes. Equipped with the dimen-
sionalization procedure, these simulations can be informed by observations of individual grains and entire
hillslopes, as well as stationary and perturbed hillslopes, and ultimately translated into concrete predictions.

Appendix A: Mathematical Details
A1. The Product of One-Parameter Marginal Distributions Satisfies Detailed Balance
Following the argument of Balázs and Bowen (2016), we show that the product distribution of (4) satisfies
the detailed balance condition given in (3), for bulk sites i ≠ 1, L; the boundary cases follow from a similar
argument.

p f (𝜔(i))Pi
𝜃i (𝜔(i))Pi+1

𝜃i+1 (𝜔(i + 1))
∏

j≠i, i+1

Pj
𝜃j (A1)

= q f (𝜔(i + 1) + 1)Pi
𝜃i (𝜔(i) − 1)Pi+1

𝜃i+1 (𝜔(i + 1) + 1)
∏

j≠i, i+1

Pj
𝜃j

p f (𝜔(i)) e𝜃i𝜔(i)

f (𝜔(i))! Z(𝜃i)
e𝜃i+1𝜔(i+1)

f (𝜔(i + 1))! Z(𝜃i+1)
(A2)

= q f (𝜔(i + 1) + 1) e𝜃i(𝜔(i)−1)

f (𝜔(i) − 1)! Z(𝜃i)
e𝜃i+1(𝜔(i+1)+1)

f (𝜔(i + 1) + 1)! Z(𝜃i+1)

p f (𝜔(i)) = q f (𝜔(i + 1) + 1) e𝜃i+1

f (𝜔(i + 1) + 1)
f (𝜔(i))

e𝜃i
(A3)

p f (𝜔(i)) = q f (𝜔(i))e(𝜃i+1−𝜃i). (A4)

The last equation is satisfied when exp(𝜃i+1 − 𝜃i) = p∕q and shows that the product distribution satisfies the
bulk reversibility equations.

A2. The Expected Occupancy for f(𝝎(i)) = 𝝎(i)
If Xi are independent Poisson random variables with respective parameters 𝜆i then, for Y =

∑n
i=1 Xi, the fol-

lowing argument shows Xi|Y = k is binomially distributed with parameters k and 𝜆i∕
∑n

j=1 𝜆j . Y is the sum of
independent Poisson random variables, so it is also Poisson and has parameter 𝜇 =

∑m
i=1 𝜆i. Call Zi =

∑
j≠i Xj ,

which is Poisson with parameter 𝜇 − 𝜆i .

P(Xi = m|Y = k) =
P(Xi = m ∩ Y = k)

P(Y = k)
(A5)

=
P(Xi = m) ⋅ P(Zi = k − m)

P(Y = k)
(A6)

=
𝜆i

me−𝜆i

m!
(𝜇 − 𝜆i)

k−me−(𝜇−𝜆i)

(k − m)!
k!

𝜇ke−𝜇
(A7)
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=
(

k
m

)(
𝜆i

𝜇

)m (
𝜇 − 𝜆i

𝜇

)k−m

, (A8)

where we used the independence of Xi and Zi to get from the first line to the second.

Because the stationary distributions Pi
𝜃i are Poisson when f (𝜔(i)) = 𝜔(i), we can apply this fact to (8) as

𝜌(i)𝜃i = E
𝜃i

(
𝜔(i)

||||||
L∑

j=1

𝜔(j) = H

)
=

H∑
𝜔(i)=0

𝜔(i) ⋅ Pi
𝜃i

(
𝜔(i)

||||||
L∑

j=1

𝜔(j) = H

)
. (A9)

We identify (A9) as the mean of a binomial distribution with parameters H and e𝜃i∕
∑L

j=1 e𝜃j to conclude

𝜌(i)𝜃i = H
e𝜃i

L∑
j=1

e𝜃j

. (A10)

A3. 𝝆(i) is a Strictly Increasing Function of 𝜽i

As 𝜌(i) is an observable quantity, but 𝜃i is not, it is preferable that we parametrize expectations with 𝜌(i) in the
continuum limit. To do so, we need to show that their relation is invertible. It suffices for us to show that 𝜌(i)
is a strictly increasing function of 𝜃i.

𝜌(i)𝜃i = E
𝜃i (𝜔(i)) =

∞∑
k=0

k ⋅ e𝜃i k

f (k)! Z(𝜃i)
(A11)

and so

d
d𝜃

𝜌(i)𝜃i =
∞∑

k=0

k2 ⋅ e𝜃i k

f (k)! Z(𝜃i)
−

∞∑
k=0

k ⋅ e𝜃i k

f (k)! Z(𝜃i)
⋅

d
d𝜃i

Z(𝜃i)

Z(𝜃i)
(A12)

=
∞∑

k=0

k2 ⋅ e𝜃i k

f (k)! Z(𝜃i)
−

( ∞∑
k=0

k ⋅ e𝜃i k

f (k)! Z(𝜃i)

)2

(A13)

= E
𝜃i
(
𝜔(i)2) − (

E
𝜃i (𝜔(i))

)2
> 0 ∀𝜔(i). (A14)

As 𝜌(i)𝜃i is a strictly increasing function of 𝜃i , we can invert it to get 𝜃i(𝜌(i)) and so can parametrize expectations
in terms of an observable 𝜌.

A4. Heuristic Scaling of the Boundary Conditions
To find the proper boundary conditions for (23), we repeat the scaling argument for the leftmost site

𝜕

𝜕𝜏
E𝜌𝜔𝜏 (1) =

1
2

[
E𝜌f (𝜔𝜏 (2)) − E𝜌f (𝜔𝜏 (1))

]
− E

L

[
E𝜌f (𝜔𝜏 (2)) + E𝜌f (𝜔𝜏 (1))

]
, (A15)

which implies

1
L
𝜕

𝜕t
𝜚t(L−1) = aL

2

[
G
(
𝜚t

(
2L−1

))
− G

(
𝜚t

(
L−1

))]
− aE

[
G
(
𝜚t

(
2L−1

))
+ G

(
𝜚t

(
L−1

))]
(A16)

≃ a
2

𝜕

𝜕x
G
(
𝜚t(0)

)
− 2aEG

(
𝜚t(0)

)
. (A17)

In the limit as L → ∞, the 𝜕

𝜕t
term drops out and we have the Robin boundary condition

𝜕

𝜕x
G
(
𝜚t(0)

)
= 4EG

(
𝜚t(0)

)
. (A18)

Similarly, we obtain the following boundary condition for the rightmost site

𝜕

𝜕𝜏
E𝜌𝜔𝜏 (L) =

1
2

[
E𝜌f (𝜔𝜏 (L − 1)) − E𝜌f (𝜔𝜏 (L))

]
+ E

L

[
E𝜌f (𝜔𝜏 (L − 1)) + E𝜌f (𝜔𝜏 (L))

]
, (A19)

which implies

1
L
𝜕

𝜕t
𝜚t(1) =

aL
2

[
G
(
𝜚t

(
1 − L−1

))
− G

(
𝜚t(1)

)]
+ aE

[
G
(
𝜚t

(
1 − L−1

))
+ G

(
𝜚t(1)

)]
(A20)

≃ −a
2

𝜕

𝜕x
G(𝜚t(1)) + 2aEG(𝜚t(1)). (A21)

In the limit L → ∞,
𝜕

𝜕x
G(𝜚t(1)) = 4EG(𝜚t(1)). (A22)
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A5. Solving the Continuum Equation
We consider the setting of section 3 and, in particular, the continuum equation with Robin boundary
conditions

𝜕

𝜕t
𝜚t(x) =

a
2

𝜕2

𝜕x2
G
(
𝜚t(x)

)
− 2aE

𝜕

𝜕x
G
(
𝜚t(x)

)
,

𝜕

𝜕x
G
(
𝜚t(0)

)
= 4EG

(
𝜚t(0)

)
, (A23)

𝜕

𝜕x
G
(
𝜚t(𝓁)

)
= 4EG

(
𝜚t(𝓁)

)
.

A5.1. The Linear Case
When the rates f are linear, G becomes the identity function and the above turns into the constant coefficient
advection-diffusion equation

𝜕

𝜕t
𝜚t(x) =

a
2

𝜕2

𝜕x2
𝜚t(x) − 2aE

𝜕

𝜕x
𝜚t(x),

𝜕

𝜕x
𝜚t(0) = 4E𝜚t(0), (A24)

𝜕

𝜕x
𝜚t(𝓁) = 4E𝜚t(𝓁).

Notice that the time-stationary solution of (A24) that we need is 𝜚(x) = 4Eh
1−e4E𝓁 e4Ex . This is because the rescaled

height profile then becomes

h(x) = lim
L→∞

1
L

L∑
i=⌊xL⌋ 𝜌(i) = lim

L→∞

L∑
i=⌊xL⌋ 𝜚

( i
L

) 1
L
= ∫

𝓁

x
𝜚(z)dz = h

1 − e4E𝓁

(
e4Ex − e4E𝓁) (A25)

as needed for boundary conditions 0 at x = 𝓁 and rescaled height h at x = 0. We now introduce the
perturbation

𝜚̄t(x) = 𝜚t(x) − 𝜚(x) (A26)

and notice that this also satisfies (A24). However, it now makes physical sense to start with small initial data
𝜚̄0(x).

As (A24) describes a diffusion with a drift, it is natural to introduce

ut(y) = 𝜚̄t(y + 2aEt), −2aEt ≤ y ≤ 1 − 2aEt. (A27)

Then

𝜚̄t(x) = ut(x − 2aEt), 𝜕

𝜕t
𝜚̄t(x) =

𝜕

𝜕t
ut(x − 2aEt) − 2aE

𝜕

𝜕x
ut(x − 2aEt), (A28)

𝜕

𝜕x
𝜚̄t(x) =

𝜕

𝜕x
ut(x − 2aEt), 𝜕2

𝜕x2
𝜚̄t(x) =

𝜕2

𝜕x2
ut(x − 2aEt), (A29)

and (A24) becomes
𝜕

𝜕t
ut(y) =

a
2

𝜕2

𝜕y2
ut(y), (A30)

𝜕

𝜕y
ut(−2aEt) = 4Eut(−2aEt), (A31)

𝜕

𝜕y
ut(1 − 2aEt) = 4Eut(1 − 2aEt). (A32)

The first line is the ordinary heat equation, while the boundary conditions become rather unusual. As these
are satisfied by ut(y) ≡ 0, we expect that at least for times much smaller than 1

2aE
the boundary will not play

a significant role in the solution if the initial condition u0 is small. Hence, the solution should be close to

ut(y) =
1√

2πat ∫
∞

−∞
e−

(y−z)2
2at u0(z)dz, or

𝜚̄t(x) = ut(x − 2aEt) = 1√
2πat ∫

∞

−∞
e−

(x−2aEt−z)2
2at 𝜚̄0(z)dz.

(A33)
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A5.2. The Nonlinear Case
Here we consider a general but smooth G with derivative G′ > 0 bounded away from 0 in the relevant
range of densities. G and G′ are often not explicit but enjoy pleasant properties for particular models. The
time-stationary solution of (A23) is G (𝜚(x)) = ce4Ex with a constant c that gives

h = ∫
1

0
𝜚(z)dz = ∫

1

0
G−1

(
ce4Ez

)
dz = 1

4E ∫
G−1(ce4E )

G−1(c)
v (ln G(v))′ dv. (A34)

Notice that this solves

1
2

𝜕2

𝜕x2
G (𝜚(x)) = 2E

𝜕

𝜕x
G (𝜚(x)) , (A35)

𝜕

𝜕x
G (𝜚(0)) = 4EG (𝜚(0)) , (A36)

𝜕

𝜕x
G (𝜚(𝓁)) = 4EG (𝜚(𝓁)) , (A37)

that is,

1
2

G′′ (𝜚(x))
(
𝜕

𝜕x
𝜚(x)

)2

+ 1
2

G′ (𝜚(x)) 𝜕2

𝜕x2
𝜚(x) = 2EG′ (𝜚(x)) 𝜕

𝜕x
𝜚(x),

G′ (𝜚(0)) 𝜕

𝜕x
𝜚(0) = 4EG (𝜚(0)) , (A38)

G′ (𝜚(𝓁)) 𝜕

𝜕x
𝜚(𝓁) = 4EG (𝜚(𝓁)) .

As above, let
𝜚̄t(x) = 𝜚t(x) − 𝜚(x) = 𝜚t(x) − G−1

(
ce4Ex

)
. (A39)

Assuming this (and its derivatives) are small, we have

𝜕

𝜕t
𝜚t(x) =

𝜕

𝜕t
𝜚̄t(x), (A40)

G
(
𝜚t(x)

)
= G (𝜚(x)) + G′ (𝜚(x)) ⋅ 𝜚̄t(x) +  (

𝜚̄t(x)
)2

, (A41)

𝜕

𝜕x
G
(
𝜚t(x)

)
= G′ (𝜚t(x)

) 𝜕

𝜕x
𝜚t(x) (A42)

= G′ (𝜚(x))
(
𝜕

𝜕x
𝜚̄t(x) +

𝜕

𝜕x
𝜚(x)

)
(A43)

+ G′′ (𝜚(x)) ⋅ 𝜚̄t(x) ⋅
(
𝜕

𝜕x
𝜚̄t(x) +

𝜕

𝜕x
𝜚(x)

)
+  (

𝜚̄t(x)
)2

= G′ (𝜚(x))
(
𝜕

𝜕x
𝜚̄t(x) +

𝜕

𝜕x
𝜚(x)

)
(A44)

+ G′′ (𝜚(x)) ⋅ 𝜚̄t(x) ⋅
𝜕

𝜕x
𝜚(x) +  (

𝜚̄t(x)
)2

,

𝜕2

𝜕x2
G
(
𝜚t(x)

)
= G′′ (𝜚t(x)

) ( 𝜕

𝜕x
𝜚t(x)

)2

+ G′ (𝜚t(x)
) 𝜕2

𝜕x2
𝜚t(x) (A45)

= G′′ (𝜚(x))
(
𝜕

𝜕x
𝜚̄t(x) +

𝜕

𝜕x
𝜚(x)

)2

(A46)

+ G′′′ (𝜚(x)) ⋅ 𝜚̄t(x) ⋅
(
𝜕

𝜕x
𝜚̄t(x) +

𝜕

𝜕x
𝜚(x)

)2

+ G′ (𝜚(x))
(

𝜕2

𝜕x2
𝜚̄t(x) +

𝜕2

𝜕x2
𝜚(x)

)
+ G′′ (𝜚(x)) ⋅ 𝜚̄t(x) ⋅

(
𝜕2

𝜕x2
𝜚̄t(x) +

𝜕2

𝜕x2
𝜚(x)

)
+  (

𝜚̄t(x)
)2

= G′′ (𝜚(x))
(
𝜕

𝜕x
𝜚̄t(x) +

𝜕

𝜕x
𝜚(x)

)2

+ G′′′ (𝜚(x)) ⋅ 𝜚̄t(x) ⋅
(
𝜕

𝜕x
𝜚(x)

)2

(A47)

+ G′ (𝜚(x))
(

𝜕2

𝜕x2
𝜚̄t(x) +

𝜕2

𝜕x2
𝜚(x)

)
+ G′′ (𝜚(x)) ⋅ 𝜚̄t(x) ⋅

𝜕2

𝜕x2
𝜚(x) +  (

𝜚̄t(x)
)2

.
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Combine this with (A23) and (A38) to obtain

𝜕

𝜕t
𝜚̄t(x) =

a
2

G′ (𝜚(x)) ⋅ 𝜕2

𝜕x2
𝜚̄t(x) (A48)

+
(

aG′′ (𝜚(x)) 𝜕

𝜕x
𝜚(x) − 2aEG′ (𝜚(x))

)
⋅
𝜕

𝜕x
𝜚̄t(x)

+
(

a
2

G′′′ (𝜚(x))
(
𝜕

𝜕x
𝜚(x)

)2

+ a
2

G′′ (𝜚(x)) 𝜕2

𝜕x2
𝜚(x) − 2aEG′′ (𝜚(x)) 𝜕

𝜕x
𝜚(x)

)
⋅ 𝜚̄t(x)

+  (
𝜚̄t(x)

)2
,

G′ (𝜚(0)) ⋅ 𝜕

𝜕x
𝜚̄t(0) =

(
4EG′ (𝜚(0)) − G′′ (𝜚(0)) 𝜕

𝜕x
𝜚(0)

)
⋅ 𝜚̄t(0) +  (

𝜚̄t(0)
)2

, (A49)

G′ (𝜚(𝓁)) ⋅ 𝜕

𝜕x
𝜚̄t(𝓁) =

(
4EG′ (𝜚(𝓁)) − G′′ (𝜚(𝓁)) 𝜕

𝜕x
𝜚(𝓁)

)
⋅ 𝜚̄t(𝓁) +  (

𝜚̄t(𝓁)
)2

. (A50)

Neglecting error terms, the result is a linear equation, which may be solved numerically and used to fit the
diffusivity a.

A6. Integrating the Continuum Equation
In section 3, we found an advection-diffusion equation describing the continuum evolution of the gradient
process:

𝜕

𝜕t
𝜚t(x) ≃

a
2

𝜕2

𝜕x2
G
(
𝜚t(x)

)
− 2aE

𝜕

𝜕x
G
(
𝜚t(x)

)
(A51)

with boundary conditions

𝜕

𝜕x
G
(
𝜚t(0)

)
= 4EG

(
𝜚t(0)

)
and

𝜕

𝜕x
G(𝜚t(1)) = 4EG(𝜚t(1)). (A52)

We can find the corresponding continuum equation for the hillslope profile by substituting 𝜚t(x) =
𝜕

𝜕x
ht(x),

integrating with respect to x, and applying the boundary conditions

𝜕

𝜕x
G
(
𝜕

𝜕x
ht(0)

)
= 4EG

(
𝜕

𝜕x
ht(0)

)
and

𝜕

𝜕x
G
(
𝜕

𝜕x
ht(1)

)
= 4EG

(
𝜕

𝜕x
ht(1)

)
. (A53)

We substitute and integrate as

𝜕

𝜕t
𝜕

𝜕x
ht(x) =

a
2

𝜕2

𝜕x2
G
(
𝜕

𝜕x
ht(x)

)
− 2aE

𝜕

𝜕x
G
(
𝜕

𝜕x
ht(x)

)
, (A54)

∫
𝜕

𝜕t
𝜕

𝜕x
ht(x)dx = a

2 ∫
𝜕2

𝜕x2
G
(
𝜕

𝜕x
ht(x)

)
dx − 2aE ∫

𝜕

𝜕x
G
(
𝜕

𝜕x
ht(x)

)
dx, (A55)

𝜕

𝜕t
ht(x) =

a
2

𝜕

𝜕x
G
(
𝜕

𝜕x
ht(x)

)
− 2aEG

(
𝜕

𝜕x
ht(x)

)
+ C(t), (A56)

where C(t) is a function of t only. We can apply the boundary condition at x = 0, in terms of ht , as

𝜕

𝜕t
ht(0) =

a
2

𝜕

𝜕x
G
(
𝜕

𝜕x
ht(0)

)
− 2aEG

(
𝜕

𝜕x
ht(0)

)
+ C(t) (A57)

0 = a
2

4EG
(
𝜕

𝜕x
ht(0)

)
− 2aEG

(
𝜕

𝜕x
ht(0)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

+C(t). (A58)

The argument for x = 1 is analogous, so we conclude that C(t) = 0 for all t and

𝜕

𝜕t
ht(x) =

a
2

𝜕

𝜕x
G
(
𝜕

𝜕x
ht(x)

)
− 2aEG

(
𝜕

𝜕x
ht(x)

)
. (A59)
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A7. Estimating Typical Distances Traveled by Particles
We begin with a disclaimer: This section is not part of the core scaling argument of section 3. This section is
an example of how one might infer average distances traveled by units of hillslope; we cannot calculate this
directly, as the particles of our model are units of gradient, not units of hillslope. To overcome this barrier, we
settle for a mean-field argument. Rescaling is not involved, since one step of a grain is not imagined on scales
comparable to the hillslope size. We therefore consider the slope 𝜚 = E𝜔i a constant parameter that changes
as we look at different parts of the hill.

Consider, for the sake of argument, a medium flowing over the hillslope, which lifts, carries, and deposits units
of hillslope, building up the heights hi . We assume this medium flows at velocity v(𝜚) (units of i/model time
𝜏 units) and that it tracks with particle deposition and removal, which happen at an average rate of pe𝜃(𝜚). In
other words, it takes an average time of 1∕(pe𝜃(𝜚)) for the flow to move between adjacent sites, and so we write

v(𝜚) = pe𝜃(𝜚). (A60)

Under our scaling, p is close to 1∕2, which we substitute.

We assume that a given grain spends an average time 𝜏0(𝜚) transported by the flow before depositing . The
function 𝜏0 is an input of the model and might be constant or, perhaps more naturally, an increasing function
of 𝜚. This gives a deposition rate of 1∕𝜏0(𝜚) and so the average distance traveled is

D(𝜚) = v(𝜚) ⋅ 𝜏0(𝜚) =
1
2

e𝜃(𝜚) ⋅ 𝜏0(𝜚). (A61)

We assume that an average number n(𝜚) of grains are carried by the flow per (microscopic) site (of the particle
model). As over sufficiently long timescales the hillslope does not grow or vanish, the average fluxΨ of carried
grains, v(𝜚) ⋅ n(𝜚) is conserved across the hillslope, from which we assert

n(𝜚) = Ψ
v(𝜚)

= 2Ψe−𝜃(𝜚), (A62)

a decreasing function of the slope 𝜚. As each particle settles at rate 1∕𝜏0(𝜚), the total rate at which particles
are deposited at an individual site is

n(𝜚)
𝜏0(𝜚)

= 2Ψe−𝜃(𝜚)

𝜏0(𝜚)
. (A63)

An essential feature of this model is to distinguish between a particle depositing on the hillslope and
growth of a column in the gradient particle model. As the latter happens at an average rate of 1

2
e𝜃(𝜚), every

column-raising event of the gradient process is considered a deposition event for the hillslope as well with
probability

4Ψe−2𝜃(𝜚)

𝜏0(𝜚)
, (A64)

which must therefore be less than 1. Due to reversibility, we have the same rates and probabilities for
entrainment.

A given particle takes part in a column growth event at average rate

e𝜃(𝜚)

2n(𝜚)
= e2𝜃(𝜚)

4Ψ
, (A65)

an increasing function of slope. Multiplying this with the probability from the previous line recovers 1∕𝜏0(𝜚)
as the deposition rate.

To conclude, we have the following examples of average distance traveled:

D(𝜚) =

{ 1
2
𝜚 𝜏0(𝜚) for linear rate,

1
2

𝜚

1+𝜚
𝜏0(𝜚) for constant rate.

(A66)
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