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Vortex Preservation Using a Coupled Eulerian-Lagrangian
Solver
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This paper presents a coupled Vortex Particle Method-Computational Fluid Dynamics
solver. The Vortex Particle Method is used to prevent dissipation of the vortex structure on
coarse CFD meshes. Implementation of the approach uses the Split Velocity Method that
specifies the fluid velocity as the sum of the induced vortex particle velocity and a remaining
velocity. Dissipation of the vortex velocities on coarse meshes is removed and the CFD equations
solved for the remaining velocity have an identical form to those for a moving mesh, but with
additional source terms. The coupled solver is demonstrated on a selection of two-dimensional
test cases and the results are compared to the solutions of the CFD solver on its own using a
coarse mesh and a fine mesh. It is shown that the coupled solver preserves the vortices on a

coarse mesh and is computationally more efficient than using the fine mesh.

Nomenclature
E = Energy
Pr = Prandtl number
p = pressure
Re = Reynolds number
t = time
u,v,w = total velocity components
4, o, w = CFD particle-induced velocity components
lip,Vp,Wp = VPM particle-induced velocity components
i, v, W = background velocity components
r = particle strength
y = ratio of specific heats
u = dynamic viscosity
o = density
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I. Introduction

NDERSTANDING the effect of concentrated vortices interacting with a lifting surface is vital in many aspects of
Uaerospace engineering. Examples of this include helicopter blade-vortex interaction and aircraft take-off and
landing. Blade-vortex interaction occurs when the trailing wake from a helicopter rotor interacts with the oncoming
blade. This causes unsteady loading on the blades and aerodynamic noise [1]. Wingtip vortices that are generated on
aircraft take-off and landing determine separation distances to ensure the safety of following aircraft. The ability to
accurately predict these types of flows represents a challenge in fluid simulation methods. The literature shows that
Lagrangian, Eulerian and hybrid Eulerian/Lagrangian Computational Fluid Dynamics (CFD) techniques have been
applied to these kinds of flows.

Eulerian CFD methods are widely used for aerospace applications due to their ability to accurately and efficiently
resolve the flow near solid boundaries. However, they suffer from diffusive behaviour meaning their application to the
simulation of flows with highly concentrated vortical regions has been limited, as accurately resolving these flow features
would require a very fine mesh throughout the computational domain and result in a very large computational overhead.

Eulerian CFD methods used to compute vortical flows range in complexity and computational cost from Reynolds-
Averaged Navier-Stokes (RANS) codes to Direct Numerical Simulation (DNS) methods. The RANS approach was used
in Potsdam et al. [2] to calculate helicopter blade-vortex interactions. It is the least complex of the CFD methods but
can become computationally expensive as it requires a very fine mesh to prevent excessive diffusion. This is highlighted
in the study by Abate [3], where RANS was used to study an airfoil-vortex interaction in two dimensions, however the
extension of this to three dimensions is unlikely due to the cost of using a fine mesh. More complicated than RANS is
Large Eddy Simulation (LES), which has been used to simulate vortical flows in both two [4} 5] and three dimensions
[6]. DNS is the most accurate of the CFD methods as it resolves all the turbulent length scales and does not model
anything. However, it is computationally very expensive and so far has only been applied to simple aerospace flows such
as a stalled NACA 0012 aerofoil [[7]]. Other studies have utilised high-order algorithms to increase the accuracy of the
CFD in high gradient regions such as used by Svard ez al. [§]] to study the interaction of a vortex with a NACA 0012
airfoil. An alternative that has been explored is to adopt a chimera grid approach that uses overlapped grids to transport
the vortex on a locally fine mesh across a coarser background mesh as investigated by Wolf [9]. It is also possible to use
fully-coupled fluid-structure-interaction schemes to investigate flows with vortical regions as done by Malan and Oxtoby
[10].

Lagrangian methods benefit from the fact that they do not suffer from any diffusive effects and computational effort
can be reduced as computational elements only need to be placed in regions of interest. However these elements are
isotropic in nature causing difficulty when modelling solid boundaries [11]. Lagrangian methods have repeatedly been

used over the past few decades to model aircraft wakes and tip vortices. Rossow [12] used a vortex filament method to




model a simplified wake structure whilst Smith and Kroo [[13] used a vortex panel method for the same purpose. More
recently, Chatelain et al. [14] used a vortex particle method with a billion particles to model the aircraft wake. Vortex
Lattice methods are the most widely used method for rotor wake prediction to represent the shed and trailed vorticity
generated by the rotor, see for example Rottgermann et al. [15]] and the study by Padakannaya [[L6]. Vortex Particle
Methods have also been used to predict the rotor wake and blade-vortex interactions.

More recently a number of studies have looked at hybrid Eulerian/Lagrangian solvers to compute vortical flows.
These studies couple a RANS CFD solver to a particle-based Lagrangian method and employ a domain decomposition
approach so that the CFD is only applied in the near-body region and the particle method is used in the outer region.
Most methods also employ an ’overlap’ region to couple the two methods where both solvers are used and the solutions
are interpolated between each other. The first example of this is by Sitaraman [17]] who coupled a RANS solver to a
Particle Vorticity Transport Method (PVTM) to simulate rotor wakes. Anusonti-Inthra and Floros [[18]] extend this to a
viscous PVTM to model the flow in isolated wing wakes. Zhao et al. [[19] employ a viscous vortex particle method
together with two different RANS solvers to investigate rotor wake flow. Stone et al. [20,|21] used an overset Unsteady
RANS flow solver coupled to a vortex particle method to investigate rotor blade-vortex interactions. Pahla et al. [22]
take a slightly different approach, whilst the domain is still decomposed into regions the Lagrangian method is applied
to the entire domain whilst the Eulerian solver is only applied to the region close to the solid boundary. Essentially, they
use the CFD to correct the particle method in the near-field.

In this work, we propose a new, hybrid method that couples a RANS solver with a Vortex Particle Method. The
domain is not decomposed into regions; instead the VPM is used to approximate the flow solution and the CFD is used
to calculate the difference between the approximation and the flowfield. In convection dominated flows, having a good
approximation means that the diffusion normally found in CFD is eliminated. This is done by including the influence of
the particles in the CFD solution through the Split Velocity Method, which has previously been used in the simulation

of gusts [23] 24]).

I1. Methodology

The Navier-Stokes equations govern the motion of fluid flow. The equations are most commonly described using the
Eulerian formulation. This is the approach used here within the CFD solver DLR-TAU [235]], where the flow quantities
are considered functions of the spatial location as they change with time. For vortex transit this requires a fine mesh
throughout the computational domain leading to very high computational cost. However, the Split Velocity Method
recently developed and implemented for gusts can be extended to produce an efficient method for vortex transit if a
suitable alternative Lagrangian model of the vortex is available. The Vortex Particle Method solves the Navier-Stokes
equations in velocity-vorticity form by considering the problem as a collection of fluid elements. The Split Velocity

Method allows the vortex transit to be modelled by the Lagrangian scheme and the CFD can then compute the flow field



minus the model prediction. The key advantage is that coarser meshes can be used without the vortex being dissipated.
This section first describes the CFD formulation and then presents the VPM. Finally, the coupling method is explained

along with techniques used to speed up the computation.

A. CFD solver

In two dimensions, the unsteady Navier-Stokes equations are given by
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where the energy and pressure are given by
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In this work the Navier-Stokes equations, Eq. , are solved using a cell-centred finite volume scheme on
an unstructured mesh. The convective flux of the mean flow equations is approximated using a central difference
scheme with matrix dissipation and the equations are integrated in time using a dual-timestepping method, where the
time-derivative is discretised using a second-order Backward Difference Formula (BDF). Each time step is converged
using the Backward Euler method in which the linear system is solved using the Lower-Upper Symmetric Gauss-Seidel
(LUSGS) scheme. Although DLR-TAU employs a multigrid acceleration technique, it has been switched off for this

work.

B. Vortex Particle Method

In a Vortex Particle Method, the flow is discretised into particles with concentrated circulations or strengths, which
are then convected according to the Lagrangian form of the transport equation. Rather than using point vortices which
have a singularity, vortex blobs or regularized vortex particles are used, which are particles with a finite core size. In

this case, the vorticity field is given by
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where w is the vorticity, I is the strength of particle i, { is the regularized smoothing kernel [26] and o7 is the radius
of particle i. In this work, all particles have the same radius so o; = 0.

For a two-dimensional case, the regularized smoothing kernel is given by

lo = %é“ (?) ®)

where (p) is the smoothing or cutoff function. The cutoff function should be smooth and accurate [11]] and several
choices are listed in the paper by Wincklemans and Leonard [27]]. In this work the second-order 2D gaussian smoothing,
given by Eq. (6), is used.
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The equations of motion for a regularized vortex particle method are given by
9t = up (x(0).1) ™)
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The right hand side of Eq. (8] corresponds to a viscous diffusion where V is the volume asscoiated with a single particle.

The velocity, u, (X, t), is computed using the generalized Biot-Savart equation, which is

N
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From this point, the subscript o~ is dropped from the velocity notation. The Biot-Savart equation, Eq. (9), is solved
twice once for the VPM particle-induced velocities which will be denoted ﬁp = [ﬁ D> ﬁp], and correspond to the velocities
that the particles induce on each other, and once for the CFD particle-induced velocities, denoted by 0= [ft, \3], which
are the velocities the particles induce at the CFD grid nodes and are used for the Split Velocity Method. The convection
equation, Eq. (7)), is solved using a fourth order Runge-Kutta method and the velocity equation, Eq. (9), is solved using

a Fast Multipole Method (FMM), which is described in section [3]



C. Coupling method

The CFD solver and the VPM are coupled together using the process shown in Fig. [T} which shows that the whole
solution process involves many steps. The main steps in the coupling involve seeding the particles from the CFD
vorticity and computing the CFD particle-induced velocities and source terms for the Split Velocity Method. This is
described first, followed by a fast summation technique, which is used to reduce the computational cost of the process.

This is necessary as the computation of the velocities and source terms requires summation over a large number of

elements. Finally, the particle seeding routine is explained.

Given a steady CFD solution

From the CFD ve-
— locity field, compute
the vorticity field

Ts th o es
s there an}{ v0rt1(,t1ty in y [ Seed new particles ]
the seeding strip?
no
Are there existing yes Complete one
particles? timestep of the VPM
no

Compute particle
Complete one un- | induced velocities at

steady CFD timestep | ‘ CFD grid nodes and
SVM source terms

Final timestep reached?

yes
End

Fig. 1 Flowchart of the coupled CFD-VPM solver



1. Split Velocity Method
The formulation for the Split Velocity Method begins with the unsteady Navier-Stokes equations on a fixed mesh,

given in Eq. (I). Then the velocity and energy are decomposed as

(10)
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where /i and D are the induced vortex particle velocity components as explained above and E is computed by substituting

the velocity decompositions into Eq. (2), which after some manipulation gives
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The pressure remains unchanged and is therefore given by Eq. (). The Navier-Stokes equations for the Split
Velocity Method are then obtained by substituting the decompositions in Eq. (I0) into the unsteady Navier-stokes

equations given by Eq. (I). This gives
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where, Pr, u and Re are the Prandtl number, dynamic viscosity and Reynolds number respectively. Separating the
induced velocities from the rest of the solution and after some manipulation of the terms, the Navier-Stokes equations

are given as
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The source terms are given by
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It is noted that the stress tensors, o, in SVM are calculated based on velocity derivatives for total velocities u# and v
meaning that they include the induced vortex particle velocities for the calculation of viscous fluxes. This is to eliminate
the introduction of dissipative source terms arising from separating velocity derivatives.

The requirement for the particle induced velocities to be included in the CFD as grid velocities means that the
velocity equation, Eq. (O) must be evaluated at all M nodes of the CFD grid for all N particles. The computational
cost of evaluating this equation directly is O(NM). Furthermore, computing the source terms, Eqs. (I4) and (13), is a
further O(N M) operation if evaluated directly. This is computationally the most expensive part of the hybrid solver as
the source terms must be computed at every iteration of the dual-timestepping CFD solver. The Fast Multipole Method

(FMM) [28]] allows the cost of the velocity computation to be reduced to O(N).




2. Conservation of the scheme

The use of the Split Velocity Method along with a Vortex Particle Method to preserve vortices is a conservative
method as long as the source terms that arise in the SVM are integrated in the same way as the rest of the RANS
equations. As such, as long as this is done, then it is still possible to write the full equations in integral form. The
role of the Vortex Particle Method is to provide the decomposition for the velocities used in the Split Velocity Method.
Therefore, the velocities calculated using the Vortex Particle Method have no effect on the conservative nature of the
scheme, although their accuracy is cleary important for preserving the vorticity. However, it should be noted that whilst
this is true for the results of the simulations as they are run on the coarse mesh. The figures presented in section [[II] are
the coarse mesh results after they have been interpolated onto the fine mesh, which has been carried out for clearer

visualisation of the vortices.

3. Fast Multipole Method
The FMM has been applied to the computation of the particle-induced velocity computation, Eq. (9) and the source
terms, Eqgs. and (I3). First the formulation for the velocities is presented where a distinction between sources
and targets is made. Sources are always the particles whilst the targets are the particles if the VPM particle-induced
velocities, ﬁp, are being calculated or the CFD grid nodes if the CFD particle-induced velocities, 1, are being calculated.
For a particle simulation, following the formulation presented by Cruz and Barba [29], the complex conjugate

velocity is given by the multipole expansion

p-1 (N
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where the superscript * corresponds to the complex conjugate, y is a target point, x; is a source point, x. is the centre of

a cluster of source points and p is a truncation parameter. In Eq. (I6), ¢; is given by
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where j is the unit imaginary number, a,, is given by
am(xi, Xe) = (x; — xc)m (18)
and f,, is given by
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The version of the FMM used in this work begins with a decomposition of the spatial domain into an adaptive quadtree



and follows the algorithm for the two-dimensional adaptive FMM presented in Carrier et al. [30].

The source terms given by Eq. (T4) can be calculated by the chain rule so that, for example, sm(f) is computed from
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The computation of %g—f is simplified by utilising the fact that the CFD uses a second-order backward difference

dual-timestepping scheme. This means that g—f can be formulated as
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and 4"*!, 4" and #"~' can be calculated using the FMM and Eq. (T6) by substituting T""*!, " and T""! for T,

respectively. Finally the % terms are calculated using
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So the source term given by Eq. (20) is calculated by computing Eq. (24) and Eq. (23] and then substituting these into

Eq. (20). The source terms involving the other induced velocity components are calculated in a similar way.

4. Particle seeding
Vortex particles are initialised or "seeded" according to the vorticity in the CFD solution. A region in space, a line
in 2D, is identified and particles are seeded where any vorticity is present in this region. Using the 2D case, shown in

Fig. 2] as the example, the user specifies the length of the line and the position along the x-axis. The particle spacing, A

10



is set to

h= urefAt (26)

so that no vorticity from the CFD is missed. The number of particles in the y-direction, Ny, is set by

Ny = m 7

so that each particle lies in squares of equal area, h%. The particle radius, o, is then calculated by

g =

h
= (28)
B

where f is the particle overlap ratio, which should be less than 1 to ensure that particles overlap [31]. The vorticity at
the centre of each particle is interpolated from the vorticity at the CFD nodes using an inverse distance weighting so that

for particle i the vorticity is given by

g sj(X)w;
E—— ifd(x,x;) # 0 forall j
wix) =1 Lu0 (29)
wj if d(x,x;) = 0 for some j
In this equation
1
(X)) = —— 30
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where d is the distance metric and p is the power parameter. Using a larger value of p has the effect of increasing the
influence of solution from the closest CFD points. In this work, a value of p = 7 was used as smaller values resulted in
highly unsmooth vorticity distributions, which eventually results in the method breaking. Now each particle has an
associated vorticity the strength of the particles that gives this vorticity distribution must be found. In almost all the

literature the particle strengths are initialised by multiplying the particle vorticity by the volume of the particle, i.e.

F,‘ = (,L),'hd, (3 1)

where d is the dimension of the problem. This introduces an error, known as a regularisation or smoothing error [32],
which for most Vortex Particle Methods that appear in the literature, appears to be acceptable. However, in this work,
this means that the core vorticity is not captured entirely and this has the effect of dissipating the vortex. An alternative
is to solve Eq. @) which can be written as

AT = o, (32)

11



where

Ajj = Lo (X — Xp). (33)

The condition number of the matrix A is dependent on the value of o, which itself is dependent on the inter-particle
spacing and the overlap ratio. The condition number of the matrix correlates with o, so in order to achieve a better
conditioned system with the inter-particle spacing can be reduced by increasing the number of particles or the overlap
ratio can be increased. Unfortunately, the VPM requires the overlap ratio to be less than one to ensure convergence
[31] and computational resources restrict the number of particles that can be seeded on each timestep, especially when
simulating long times. Therefore, a way of solving this ill-conditioned system is needed. This system is solvable using
Singular Value Decomposition (SVD) but results in an odd-even coupling of the particle strengths. This then causes
numerical errors when the velocities are computed. Therefore, the problem becomes one of solving Eq. (32) for smooth

particle strengths. This was solved by adding fourth order dissipation to the equation to damp out the high frequencies.

vorticity I
5 X

4.6
4.2
38
34
3

26
22
1.8
14
1

Fig. 2 Example of particles being seeded in 2D.

I11. Results
In this section the coupled solver is demonstrated. For all the results presented, the coupled CFD-VPM approach
was only applied to the coarse mesh but all simulations were also performed on both meshes using the CFD solver on its
own. The results for the coupled simulation were produced by summing the vorticity produced by the CFD with the

vorticity produced by the vortex particles and then interpolating this onto the fine mesh.
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A. Blade-vortex interaction

The first test case involved the interaction of a NACA 0012 airfoil with a vortex given analytically by the Scully
vortex model [33]. This case has been simulated by many authors [34-36] and here the results from the CFD solver on
both the fine mesh and the coarse mesh as well as the coupled solver on the coarse mesh are compared, along with
the results presented in the literature. The case is run with a freestream Mach number of 0.8 and Reynolds number
of 3.6 x 10°. The vortex was defined with a core radius of 0.05 and non-dimensional strength of —0.2, where the
non-dimensionalization is performed with respect to the chord length. The vortex is initially located 5 chord lengths
upstream of the airfoil leading edge and 0.26 chord lengths beneath the airfoil chordline. All the simulations were
performed with a physical timestep size of 0.001 seconds. The fine mesh is shown in Fig. [3} it was designed with heavy
refinement along the path of the vortex, which resulted in a mesh with 173016 points. The coarse mesh is shown in Fig.
M) and contains 26758 points. For this case, particles were not seeded as described in section[d] instead a complete set of
400 particles were initialised at the beginning of the simulation according to the analytical description of the Scully
vortex and these were allowed to convect downstream using the VPM whilst their influence was included in the CFD
through the SVM. This number of particles was chosen as it corresponds to the minimum square number that allows the
strength of the vortex to be captured. Employing fewer particles results in a smaller response in the lift coefficient as the

vortex is weaker whilst more particles results in a marginal increase in accuracy but also increase the computational cost.

Fig.3 Fine mesh for Blade Vortex Interaction

Figure [5]shows the result of lift coefficient as the vortex traverses the domain for all three methods. Clearly, the CFD

13



Fig. 4 Coarse mesh for Blade Vortex Interaction

solver on the coarse mesh severely dissipates the vortex whereas the CFD solver on the fine mesh and the coupled solver
on the coarse mesh show good agreement with each other and also with results from the literature. There is a slight
difference in the lift coefficient value after the vortex passes the airfoil. This could be due to the interference from the
wake that occurs when using the CFD solver on the fine mesh, which is not present in the coupled solution as the airfoil
wake is not captured on the coarse mesh. This can most clearly be seen in Fig. [6] which shows the vorticity contour for
the CFD solver on the fine mesh and the coupled solver on the coarse mesh for the vortex at different positions. Figure|6]
shows that the vorticity matches for both the CFD solver on the fine mesh and the coupled solver on the coarse mesh.
However, due to the presence of the wake in the fine mesh this leads to quite large errors in vorticity between the fine
and coupled solutions even when the vortex is just at the leading edge. At X,, = 0.0 the L2 error in vorticity between the
fine and coupled solution is 156.36s! and the maximum error is 605.37s", but this value is located in the wake which
is not captured by the coarse mesh and therefore not captured by the coupled solver. Discounting the wake values the L.2
error is 30.58s~! and the maximum error is 5.00s~!. The coupled solver simulation took 145 minutes to run whereas

the fine simulation took 367 minutes giving a CPU speedup of 2.53.

B. NACA 0021
This test case involves the interaction of an artificially generated vortex with a NACA 0021 airfoil and is used to test
the vortex particle seeding. The two meshes used for this simulation both had the same point distribution in the airfoil

near field but one of the meshes, the coarse mesh shown in Fig. [7] coarsened away from this point whilst the other, the

14
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Fig. 5 Comparison of the lift variation during BVI

fine mesh shown in Fig. [8] maintained this node density along the vortex path. The fine mesh has a total of 139,810
points whilst the coarse mesh consists of 19,012 points.

The vortex was initially inserted into the CFD and allowed to convect through the mesh beyond the trailing edge.
All the simulations were performed using a timestep size of 1.0 x 107 seconds and were run for 150 timesteps.

For the coupled solver, the particle seeding line was placed at 30% chord downstream of the trailing edge, as
indicated by the dashed line in Fig. [7} and was sized vertically so it was slightly larger than the vortex. The coupled
solver was set up to attempt to seed particles, with an overlap ratio of 0.5, at every time step. The result was that 22
particles were seeded every timestep until the 56th timestep by which point the vortex had passed through the seeding
line completely. This meant that the computation reached a maximum of 1210 particles.

Figures 0] [I0]and [TT] show the vorticity distribution at four different timesteps for the CFD-only computation on
the fine mesh, CFD-only computation on the coarse mesh and coupled computation on the coarse mesh respectively.
As can be seen the coarse mesh is highly dissipative for the CFD-only computation but by coupling a VPM to the
CFD solver the vortex is preserved. Furthermore, the CFD-only simulation on the fine mesh took 35% longer than the
simulation using the coupled solver meaning the coupled solver is computationally more efficient even though there has
not been effort to make the VPM solver highly efficient. The particles at each of these timesteps can be seen in Fig. [T2]
This shows how the number of particles changes at each time and how they wrap up to the shape of the vortex as the

simulation progresses.
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(a) CFD solver on the fine mesh at Xv = -5.0 (b) Coupled solver on the coarse mesh at Xv = —5.0

(c) CFD solver on the fine mesh at Xv = -2.5 (d) Coupled solver on the coarse mesh at Xv = =2.5

(e) CFD solver on the fine mesh at Xv = 0.0 (f) Coupled solver on the coarse mesh at Xv = 0.0

Fig. 6 Comparison of vorticity contour during BVI

C. Tandem airfoil

This last test case involved two NACA 0021 airfoils in a tandem configuration. The fore airfoil is pitched down by
10 degrees which causes it to shed a vortex from the trailing edge. This vortex then convects downstream where it
interacts with the aft airfoil. The two meshes used in this case are shown in Figs. [I3]and [I4]for the coarse mesh, with
163952 points, and fine mesh, with 256312 points. The pitching motion occurred over 100 timesteps and the simulations
were run with a timestep size of 1 x 10~* seconds. The freestream conditions corresponded to a Mach number of 0.15
and a Reynolds number of 2 x 10°. The particles were seeded every timestep at a position 60% chord downstream of
the trailing edge of the first airfoil. The size of the seeding line was dimensioned such that 117 particles were seeded
on each timestep and the nature of the simulation, with the constant trailing wake from the fore airfoil meant that the
simulation seeded particles for the whole duration of the simulation.

The comparison of vorticity contours between the CFD-only on the fine mesh and the coupled solver on the coarse

mesh at different times of the simulation are shown in Fig. [T3] The results of the CFD-only simulation on the coarse

16



(g) CFD solver on the fine mesh at Xv = 2.5 (h) Coupled solver on the coarse mesh at Xv = 2.5

(i) CFD solvr on the fine mesh at Xv = 5.0 (j) Coupled solver on the coarse mesh at Xv = 5.0

Fig. 6 (Cont.) Comparison of vorticity contour during BVI

Fig.7 Coarse mesh used in NACA 0021 test case consisting of 19012 points

mesh are not presented but the results echo the findings of the previous two cases, where the coarse mesh is highly
dissipative of the vortex. However, in this case, as shown in Fig. [T3] it appears that the coupled solver gives a better
solution than even the CFD solver on the fine mesh as the vortex seems more clearly defined in the later stages of the

simulation. Figure[I6]shows the variation in lift coefficient over the trailing aerofoil as the simulation progresses for both
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Fig. 8 Fine mesh used in NACA 0021 test case consisting of 139810 points

the coupled solver and the fine solution. It can be seen that as soon as particles are created there is a slight difference in
the lift coefficient of the trailing aerofoil but the largest difference between the two solutions occurs as the vortex is
passing over the top of the front portion of the aerofoil. The error here is maximum and has a value of 0.051. The
speedup achieved for this simulation is 1.68. The reason for this much lower value, than was achieved in the first test
case, is due to the fact that the simulation continues to initialise particles even once the vortex has been shed. This is
something that could be rectified by employing conditional seeding and hence the speedup could be increased for this

particlular case.

IV. Conclusion
A coupled CFD-VPM solver has been created. It has been shown to preserve the vortex structure on a coarse CFD
mesh whilst also being computationally more efficient compared to running the same simulation using the CFD solver
alone on a fine mesh. The computational cost of the method has been reduced by employing a Fast Multipole Method to
compute the induced velocities and source terms necessary for the Split Velocity Method, which is used to couple the
two solvers. The next steps in this work would be to introduce a particle merging scheme and parallelize the code to

enable more realistic and meaningful simulations to be performed in an adequate timeframe.
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vorticity

(@) r = 1x10*secs (b) t =5x 10 3secs

(¢) r =1x10"2secs (d) t = 1.5 x 10~ 2secs

Fig. 9 Vorticity contour of NACA 0021 tip vortex simulation using the CFD solver only on the fine mesh
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vorticity

(@) t =1x107%secs () t =5x 10 3secs

(¢) t =1x 10 2secs (d) r =1.5x102secs

Fig. 10 Vorticity contour of NACA 0021 tip vortex simulation using the CFD solver only on the coarse mesh
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vorticity

(@) r = 1x10*secs () t =5x 10 3secs

(¢) t =1x 10 2secs (d) t = 1.5 x 10~ 2secs

Fig.11 Vorticity contour of NACA 0021 tip vortex simulation using the coupled CFD-VPM solver on the coarse
mesh
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(@) t =1x107%secs () t =5x 10 3secs

(c) t =1x 10 2secs (d) t = 1.5 x 10~ 2secs

Fig. 12 Particle visualisation as the simulation progresses
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(a) CED solver on the fine mesh at # = 2.25 x 10~ 2secs (b) Coupled solver on the coarse mesh at = 2.25 X 10 2secs

(c) CFD solver on the fine mesh at ¢ = 4.75 x 10 2secs (d) Coupled solver on the coarse mesh at r = 4.75 x 10~ 2secs

(e) CFD solver on the fine mesh at ¢ = 7.25 x 10 2secs (f) Coupled solver on the coarse mesh at ¢ = 7.25 X 10 2secs

Fig. 15 Comparison of vorticity contour for tandem airfoil case
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Fig. 16 Comparison of coefficient of lift variation over the trailing aerofoil
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