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Abstract 

 

Background: The developing brain is susceptible to exposure to neurodevelopmental toxicants 

such as pesticides. 

Aims: We explored associations of prenatal serum concentrations of hexachlorobenzene (HCB), 

beta-Hexachlorocyclohexane (-HCCH), 2,2-Bis(4-chlorophenyl)-1,1-dichloroethene (p,p’-DDE) 

and 2,2-Bis(4-chlorophenyl-1,1,1-trichloroethane (p,p’-DDT) with maternal-reported measures of 

verbal and non-verbal communication in young girls.  

Study Design and Methods: We studied a sample of 400 singleton girls and their mothers 

participating in the Avon Longitudinal Study of Parents and Children (ALSPAC) using 

multivariable linear regression models adjusting for parity, Home Observation Measurement of 

the Environment (HOME) score, maternal age and education status, and maternal tobacco use 

during the first trimester of pregnancy.  

Outcome Measures: Maternal serum samples (collected at median 15 wks. gestation [IQR 10, 

28]) were assessed for selected organochlorine pesticide levels. Communication was assessed 

at 15 and 38 months, using adapted versions of the MacArthur Bates Communicative 

Development Inventories for Infants and Toddlers (MCDI).  

Results:  At 15 months, girls born to mothers with prenatal concentrations of HCB in the highest 

tertile had vocabulary comprehension and production scores approximately 16% (p=0.007) 

lower than girls born to mothers with concentrations in the lowest tertile. This association varied 

by maternal parity in that the evidence was stronger for daughters of nulliparous mothers. At 38 

months, girls born to mothers with prenatal concentrations of HCB in the highest tertile had 

mean adjusted intelligibility scores that were 3% (p=0.03) lower than those born to mothers with 

concentrations in the lowest tertile; however, results did not vary significantly by parity. Maternal 

concentrations of -HCCH, p,p’-DDE and p,p’-DDT were not significantly associated with MCDI 



 

 

scores at 15 months; however, at 38 months significant inverse associations were observed for 

p,p’-DDT with communicative scores.  This association tended to be stronger among daughters 

of mothers who had lower depression scores.      

Conclusions: Organochlorine pesticide exposure in utero may negatively affect communication 

development.   
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INTRODUCTION 

Endocrine disrupting chemicals (EDCs) are substances that may change the functioning 

of the body’s endocrine system by binding to and activating various hormone receptors (1-5). 

Numerous substances identified as pesticides are not only persistent organic pollutants but also 

act as EDCs (4, 6-10). These substances are widely diffused in the environment and they 

accumulate in the fatty tissues of living organisms (11-14). Humans are exposed to EDCs 

through inhalation of gases and particles in the air, ingestion of water, food and dust, and 

absorption through the skin. Pregnant and breastfeeding women who are exposed to EDCs may 

risk exposing the fetus or child via the placenta or breast milk, respectively (15). Because the 

endocrine system, which includes adrenal, gonadal, and thyroid hormones, is critical in the 

neurodevelopment of a fetus (16-19), exposure to EDCs in utero can be particularly harmful (4, 

20-22). Clinical and laboratory studies have documented that a developing brain is especially 

susceptible to exposures of neurodevelopmental toxicants such as EDCs, even at low levels 

that may not have noticeable effects on a developed, adult brain (11, 23).  

Nonverbal and verbal communication are among the first developmental milestones 

young children achieve. Delayed development of communication and interpersonal behaviors 

before the age of 3 years may signal developmental disorders or cognitive deficits later in 

childhood (17, 24, 25). Prospective cohort studies have documented that environmental 

neurotoxicants in maternal or cord blood are adversely associated with cognition in early infancy 

(11, 26). In addition, in the 1999-2000 National Health and Nutrition Examination Survey 

(NHANES), adverse associations were found between serum concentrations of organochlorine 

pesticides and self-reported learning disorders in children aged 12-15 years (11, 27). More 

information is needed to determine how exposures to organochlorines can affect communication 

and cognition in young children as well as the development of disorders later in life. 

In population-based studies, infant/child communication and development are often 

measured through parent-reported assessments. The MacArthur Bates Communicative 
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Inventory (MCDI) (28-30) has been widely used to measure verbal and non-verbal 

communication in young children (31). Items associated with abnormal communication and 

interpersonal behaviors include delayed onset of talking, late understanding of spoken language 

and intent to communicate or show gestures, relative to expectations for age (32).  

Our objective was to evaluate the association between intrauterine exposure to selected 

pesticides and the development of communication skills in young girls. The Avon Longitudinal 

Study of Parents and Children (ALSPAC) is a birth cohort of mother-child pairs. The study 

contains information relating to pregnancy and birth characteristics, demographic factors, and 

childhood behavioral outcomes. Access to previously analyzed prenatal serum samples offered 

an ideal opportunity to explore these associations. 

 

METHODS 

Population 

 The Avon Longitudinal Study of Parents and Children (ALSPAC) is a prospective cohort 

study designed to investigate the development and health of children in the South West of 

England (33).  Recruitment methods have been described in detail (34, 35). Pregnant women 

expected to deliver between April 1991 and December 1992 in three health districts in the 

former county of Avon were enrolled and followed prospectively (n=14,541). The cohort 

included 14,062 live births. Questionnaires were mailed to mothers four times during pregnancy, 

and at set time points postnatally, to collect information on demographics, health status, lifestyle 

characteristics, and behavioral and cognitive outcomes of the child (33) The study website 

contains additional details for all available data through a fully searchable data dictionary 

(http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/). Ethical approval for the 

study was obtained from the ALSPAC Ethics and Law Committee, the Local Research Ethics 

Committees, and the Centers for Disease Control and Prevention (CDC) Institutional Review 

Board. Mothers provided written informed consent for participation in the study. 

http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/
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The participants in the current study were drawn from an ancillary study of puberty and 

development including singleton, active, female participants at the age of 13 years in 2004-

2005. Two valid assessments of pubertal status between the ages of 8 and 13 were returned by 

3,682 girls. From this group, a nested case-control study of 448 mother-daughter dyads was 

designed to explore the effects of environmental exposures (measured in maternal serum and 

urine) on selected health outcomes. The present study includes 400 girls who had values for 

childhood communication assessments at 15 or 38 months and maternal serum concentrations 

of organochlorine pesticides and lipids. Serum samples were taken at different times throughout 

the women’s pregnancy; the median gestational age of sample collection was 15 weeks 

(Supplemental Table 1).  

 

Cognitive Measures 

At 15 months and 38 months of age, mothers were mailed ALSPAC-adapted versions of 

the MacArthur Communicative Development Inventory (MCDI), which evaluates vocabulary 

comprehension and social activity in children (28-30) based on behaviors at the time of 

evaluation. The ALSPAC adaptation of the MCDI at 15 months includes verbal comprehension, 

verbal production, nonverbal communication and social development scores. The verbal 

comprehension score (range 0-12) was compiled from 12 questions, which ask if the child 

understands phrases such as “time for bed” and “come here.” The vocabulary comprehension 

and production score (range 0-268) was compiled from 133 questions in which parents 

indicated whether the child understands but doesn’t speak or understands and speaks words 

such as “dog” and “milk.” Nine questions asking if the child completes actions such as “blows 

kisses from a distance” or “shakes head ‘no’” were used to derive the nonverbal communication 

score (range 0-20). To derive the social development score (range 0-32), 15 questions asking if 

the child completes actions such as “puts on a shoe or sock” or “brush teeth” were compiled. 

The 38-month questionnaire included three sub-scores (range): language (8-326), intelligibility 
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(0-6), and communicative (4-12). The language sub-score at 38 months evaluates vocabulary, 

use of plurals, past tense, and word combinations. Each increment of the score corresponds to 

a degree of communication development within each domain. At both ages, higher sub-scores 

indicate greater communication development.   

 

Laboratory Measures  

Laboratory analysis was done at the National Center for Environmental Health of the 

Centers for Disease Control and Prevention (CDC) (Atlanta, GA) to measure serum 

concentrations of hexachlorobenzene (HCB), beta-Hexachlorocyclohexane (-HCCH), 2,2-

Bis(4-chlorophenyl)-1,1-dichloroethene (p,p’-DDE) and 2,2-Bis(4-chlorophenyl-1,1,1-

trichloroethan (p,p’-DDT). Maternal serum concentrations served as a proxy for fetal exposure. 

HCB is created as a by-product from the manufacturing of other chemicals (36). The production 

of lindane, an insecticide, creates HCB as a byproduct (37). p,p’-DDE is a result of the 

breakdown of p,p’-DDT in the environment (38). Analytical methods have been described 

elsewhere [30, 33]. Pesticide concentrations were reported as lipid-adjusted (ng/g lipid) after 

correction for total serum lipid levels. Limits of detection (LOD) were proportional to the 

available serum amount (5th and 95th percentile: 0.35-1.1 g) and lipid concentration (5th and 95th 

percentile: 410-937 mg/dL).  LOD were determined individually for each reported pesticide (39) 

defined as the highest of three times the standard deviation of blanks analyzed in parallel with 

the unknowns and the lowest calibration point having a signal to noise ratio greater than three 

(40). Estimated values for pesticide measurements below the limit of detection (LOD - ranging 

from 1.52% of samples for -HCCH and 11.25% of samples for p,p’-DDT) were calculated by 

dividing the LOD by the square root of 2 (41).  

 

Covariates 
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Potential confounders based on previous literature and biological plausibility included: 

parity (nulliparous, >1); maternal education (<O level, O level, >O level), where O-level is the 

qualification obtained at age 16 when required schooling ends; maternal smoking during the first 

trimester of pregnancy (yes, no); alcohol use during the first trimester of pregnancy (yes, no); 

low birthweight defined as less than 2500 grams (yes, no); gestational age at birth (weeks); 

maternal antepartum depressive symptoms measured using the Edinburgh Postnatal 

Depression Scale (EPDS; range 0 to 30)(42, 43), which in the current study was used to assess 

depression beginning in or extending into pregnancy; breastfeeding duration (weeks) (44); 

gestational age when the serum sample was collected (weeks), and an adapted version of the 

Home Observation for Measurement of the Environment (HOME) score at 6 and 18 months 

(range 0-12) which measures the developmental stimulation of the home environment (45).  

Final inclusion in the models for each potential confounder required meeting the following 

criteria: biological plausibility, statistical significance in relation to communication outcome of 

interest, and inclusion/exclusion of the variable from the model changed the parameter 

estimates for the exposure variable by >10%.  

 

Statistical Analysis 

The sample of girls obtained for analysis was previously selected to use in a nested 

case-control study examining associations of EDCs and age at menarche. To account for the 

sampling selection probabilities, we conservatively constructed stratum-weighted linear 

regression models to account for the sampling scheme used for participant selection, assigning 

the weighting of 15.1 to the girls who attained menarche at an older age (a random sample of 

the larger population of all the ALSPAC girls who attained menarche > 11.5 years of age) and a 

weight of 1 to girls who attained menarche at <11.5 years 1 (46). Serum concentrations of four 

organochlorine pesticides were analyzed as both continuous and categorical (tertile) variables. 

The pesticides and MCDI subset scores were first examined for potential outliers. The 
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relationships between potential covariates and the pesticides were then explored in univariate 

analyses. Multivariable linear regression models were constructed separately for outcomes at 

15 and 38 months due to item and scoring differences. Final parsimonious models were 

achieved through assessment of variables in a hierarchical manner (47). The final model for 15-

month outcomes included parity, maternal age, maternal smoking during early pregnancy, and 

HOME score at 6 months. The final 38-month models included parity, maternal age, maternal 

education status, and HOME score at 18 months. For presentation, we calculated adjusted 

means and 95% confidence intervals (95% CI) of MCDI scores by tertiles of maternal pesticide 

exposures after adjusting for covariates. Tests of trend were conducted in final multivariable 

models by assigning the median value from each tertile of pesticides and modeling this value as 

a continuous variable. Parity and maternal depression score were selected a priori to be 

evaluated for effect modification by testing appropriate cross-product interaction terms with 

continuous pesticide variables in final models and by stratified analysis (parous/nulliparous, 

EPDS split at the median <6/>6). P-values of <0.05 were used to determine significance. SAS 

version 9.3 (SAS Institute Inc., Cary, NC) was used to conduct all analyses.  

 

RESULTS 

Table 1 and Supplemental Table 1 present sample characteristics for mother-daughter 

dyads. Median pesticide concentrations were higher among older mothers; Spearman 

correlation coefficients for continuous age with organochlorine pesticides were as high as 0.52 

for -HCCH.  Median pesticide levels also tended to be higher among girls who had lower 

birthweight; however, there were few (<5%) in this category. Spearman correlation coefficients 

between MCDI sub-group scores ranged 0.39-0.64 at 15 months and 0.20-0.28 at 38 months. 

Spearman correlation coefficients between communication subscales (which are not the same 

at the two time points) measured at the two ages ranged 0.03-0.35 (data not presented). 
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Overall, the median values of lipid-adjusted HCB and -HCCH were similar, at 50.2 ng/g lipid 

(interquartile range (IQR) 37.8, 63.5) and 47.2 ng/g lipid (IQR 34.6, 62.5), respectively (Table 1). 

There was a strong correlation between these two analytes, with a Spearman correlation 

coefficient of 0.82. The median value of p,p’-DDE, 309.5 (IQR 192.5, 496.0) ng/g lipid, was 

many times that of p,p’-DDT, 11.4 ng/g lipid (IQR 34.6, 62.5) (Table 1). The Spearman 

correlation coefficient between these two analytes was 0.74.  

Prenatal exposures and communication scores at 15 months 

There were no associations for maternal concentrations of -HCCH, p,p’-DDE or p,p’-

DDT with daughters’ MCDI scores at 15 months although there was some evidence of an 

inverse association between p,p’-DDE and nonverbal communication (Table 2). At 15 months, 

there was an inverse association between HCB and vocabulary comprehension and production, 

but no associations were observed for nonverbal communication, social development, and 

verbal comprehension scores. In adjusted models, girls born to mothers with prenatal 

concentrations of HCB in the highest tertile (T3) had vocabulary comprehension and production 

scores approximately 16% lower than those born to mothers with concentrations in the lowest 

tertile (T1). At 15 months, the association for maternal HCB with two of the three MCDI subscale 

scores varied by maternal parity. In stratified analyses (Table 3), although patterns of 

association for both parous and nulliparous women were similar, associations between 

daughters’ MCDI scores (verbal comprehension and vocabulary comprehension and 

production) with mother’s concentrations of HCB were inverse only for nulliparous mothers.  

Prenatal exposures and communication scores at 38 months 

There were no strong associations between either -HCCH or p,p’-DDE and 

communication development scores at 38 months. At 38 months (Table 4), girls born to mothers 

with prenatal concentrations of HCB in the highest tertile had mean adjusted intelligibility scores 

that were approximately 3% lower than those born to mothers with concentrations in the lowest 
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tertile; however, unlike at 15 months, the 38-month associations did not vary by maternal parity. 

At 38 months, p,p’-DDT was inversely associated with communicative scores. In adjusted 

models, at 38 months, girls exposed to the highest prenatal p,p’-DDT levels had communicative 

scores approximately 7.7% lower than those in the lowest exposure group. Two analytes, p,p’-

DDE and HCB showed some evidence for inverse associations with the language subscale 

score. In stratified analyses, the inverse association for p,p’-DDT and daughters’ communicative 

scores (observed in main effects models) was significant only when maternal depression scores 

were lower (e.g., less likely to be depressed - Table 5). There were no consistent patterns of 

association between p,p’-DDT and the other MCDI subscale scores within strata of maternal 

depression scores.  

 

DISCUSSION 

Although many pesticides, including HCB, -HCCH, p,p’-DDE, and p,p’-DDT, were once 

widely used, they are now prohibited in most parts of the world (36, 38, 48, 49). Nevertheless, 

they still persist in the environment, and bioaccumulate in invertebrate and vertebrate tissues 

(4). In the serum of pregnant British women, of the pesticides we evaluated, p,p’-DDE 

concentrations were the highest (median 309.5 ng/g lipid). In comparison, a pooled analysis of 

European birth cohorts with maternal prenatal samples collected between 2000 and 2006 (50) 

reported median prenatal concentrations of p,p’-DDE ranging between 42.1 (Norway) and 413.5 

(Slovakia) ng/g lipid. p,p’-DDE is formed as p,p’-DDT breaks down in the environment and is 

more persistent than p,p’-DDT in most populations (49).  Humans are most commonly exposed 

to p,p’-DDE through foods, particularly meats, poultry, and fish (36).  

Current literature presents mixed evidence regarding the effects of pesticide exposure in 

utero on cognition and communication in early childhood. This may be in part because the 

effects of environmental contaminants like organochlorine pesticides are most often subtle with 
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only modest effects observed at the individual level. In addition, investigators have used 

different study design, methods and instruments to evaluate these outcomes among young 

children. Several studies have explored the effects of pesticide exposure on developmental 

scores of children using tools such as the Bayley Scales of Infant Development (BSID) (51); 

however, we are not aware of any studies evaluating the effects of pesticide exposure in utero 

on the development and communication abilities in children at 15 or 38 months using the MCDI. 

Current literature suggests that intrauterine exposure to p,p’-DDT and p,p’-DDE may impair 

psychomotor development in the first year of life (52-54). For example, in a Mexican study, 

trained psychologists blinded to maternal p,p’-DDE exposure level, administered the BSID to 

244 children during the first year of life. p,p’-DDE serum levels during the first trimester of 

pregnancy were associated with a decrease in the psychomotor development index (PDI) but 

not the mental development index (MDI) (51, 54). Similarly, a study of 360 children tested at 

ages 6, 12 and 24 months in California showed that for each 10-fold increase in p,p’-DDT levels 

at 6 and 12 months and p,p’-DDE levels at 6 months, infants scored 2-points lower on the PDI 

(51, 52). Cord blood p,p’-DDE levels were inversely associated with both MDI and PDI, but HCB 

was not associated with neurodevelopment in one year old Spanish infants (47). Lastly, a New 

York study of 263 women and their infants assessed cognition using the Fagan Test for Infant 

Intelligence (FTII) administered at 6 and 12 months and found no strong associations between 

FTII scores and cord blood p,p’-DDE levels (51, 55). 

Similar to previous investigations, our results did not show a consistent pattern of 

association across all organochlorines measured at both the time points. For example, at 15 

months of age, we observed inverse associations between maternal HCB and vocabulary 

comprehension and production. At 38 months of age, we observed less apparent inverse 

associations between HCB and MCDI components (e.g., intelligibility and language scores), 

although direct comparisons are not possible given the item and format differences between the 

questionnaires. In addition, the associations between maternal organochlorine concentrations 
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and early communication development tended to vary by parity status, while later 

communication development tended to vary by maternal depression. Parity may be a proxy for a 

number of potential influences on childhood communication development including interactions 

with other siblings or at childcare. Because these pesticides may accumulate in fat tissue, parity 

may also reflect opportunity for reduced bioaccumulation because of previous pregnancies and 

breast feeding (56). For example, among a large cross-sectional sample of parous women in 

the NHANES, self-reported breast feeding history was inversely associated with current levels 

of persistent organic pollutants (57). Both parity and maternal depression may also be related to 

the quality and quantity of the mother’s time, interest, and attention given to the development of 

cognitive and communication skills (58-60).  

Possible sources of exposure to pesticides could have been through the consumption of 

animal products, particularly meats and dairy, that contain animal fat in which the pesticides 

may have bio accumulated. Exposure from contaminated water, dust or soil is also possible, but 

less likely (61). When pesticides are present in the body, they may act as endocrine disruptors. 

This is especially harmful to a developing fetus, and could be one mechanism by which 

pesticide exposure in utero affects the communication and development of a child (11).  

Biological mechanisms such as oxidative stress or DNA damage could also have long-term 

effects on neurodevelopment (62). In animal models, neonatal exposure to EDCs, including 

p,p’-DDT and p,p’-DDE, has been associated with permanent effects on the cerebral cortex and 

on behavior (63, 64). 

There are multiple strengths to this study. The sample was a large, prospective, well-

characterized population of pregnant women and their infants. The organochlorine pesticides 

were measured using well-characterized procedures at the laboratories of the National Center 

of Environmental Health at the CDC. In addition, we used the MCDI scale, which is well-known 

and frequently employed to measure childhood communication development, and we were able 
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to examine communication abilities at two time points during early childhood, thus contributing 

to the understanding of potential persistence of effects. 

However, there are also several limitations to this study. We analyzed data from a 

population originally selected for an ancillary study with a different focus, which may introduce 

bias.  However, as reported previously, maternal characteristics for girls included in the ancillary 

sample were similar to the group of girls enrolled in the overall cohort (35) and linear regression 

models were weighted to account for the sampling scheme (46). Our sample with data for both 

maternal organochlorine and daughters’ MCDI scores was also relatively representative of the 

overall ancillary sample. For example, in the overall ancillary sample and in our sample ~ 20% 

of mothers were in the lowest educational group; in the overall ancillary sample ~ 23% of 

mothers reported prenatal smoking compared to 21.5% in the current study. Lastly, in both 

samples 42% of mothers were 30 years of age or older at delivery. Blood samples obtained at 

multiple time points during pregnancy may provide a more accurate estimate of intrauterine 

exposure; our study only measured serum levels at one time point. Additionally, in our study a 

small number of pesticides had values below the limit of detection. To correct for this, the LOD 

was divided by the square root of two to give a value to those below the LOD. Although an 

accepted procedure, it is possible that this estimation is not representative of the actual 

exposure. In this analyses where exposures were analyzed by tertiles this is not likely to affect 

our overall results. The MCDI scores were self-reported by the mothers which can be 

problematic if mothers over-estimate their children’s performance. In addition, maternal lead and 

mercury levels, which may also affect early childhood cognition and communication were not 

assessed as potential covariates as they were unavailable for more than half of the population.  

Lastly, although these data showed that 15 month old girls born to mothers with prenatal 

concentrations of HCB in the highest tertile had vocabulary comprehension and production 

scores approximately 16% lower than girls born to mothers with concentrations in the lowest 
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tertile it is unknown whether this difference may be associated with persistent language 

difficulties.    

 

CONCLUSION 

Results from this study suggest that organochlorine pesticide exposure in utero may negatively 

affect communication development.  Further research is needed to determine specifically how 

pesticides affect neurodevelopment in early life and which pesticides may have the most 

deleterious effects and at which time points during development. In addition, the current study 

does not include results for boys as organochlorine pesticide levels were not measured among 

mothers of boys. Conducting similar research in cohorts that include boys would provide 

additional information about the association between prenatal organochlorine pesticide 

exposure and early childhood communication development in boys.  
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Table 1. Characteristics of study population by level of lipid-adjusted pesticides (ng/g lipid)   

 

 
Frequency   

n  
(%) 

p,p’-DDE                                
Median  
(IQR) 

p,p’-DDT                       
Median  
(IQR) 

HCB                    
Median  
(IQR) 

-HCCH                     
Median  
(IQR) 

Overall 400 309.5 
(192.5, 496.0) 

11.4 
(8.1, 16.5) 

50.2 
(37.8, 63.5) 

47.2 
(34.6, 62.5) 

      

Maternal age at delivery (yrs)      

    <25 78 
(19.5) 

178.0 
(135.0, 288.0) 

9.0 
(7.3, 11.6) 

36.4  
(31.0, 46.2) 

33.7 
(26.8, 40.7) 

    25-29 154 
(38.5) 

286.5 
(193.0, 422.0) 

10.6 
(8.3, 14.8) 

47.9 
(38.3, 59.0) 

45.0 
(35.4, 56.5) 

    ≥30 168 
(42) 

451.0 
(283.0, 623.0) 

14.7 
(9.4, 19.9) 

59.9 
(45.1, 70.3) 

57.3 
(45.3, 74.5) 

      

Maternal education      

    Low 77 
(19.3) 

288.0 
(184.0, 446.0) 

11.3 
(7.6, 15.7) 

46.7 
(33.1, 62.7) 

42.4 
(32.7, 60.5) 

    Medium 128 
(32) 

257.0 
(164.0, 455.50 

9.9 
(7.7, 14.6) 

45.1 
(36.1, 58.8) 

41.6 
(32.6, 54.6) 

    High 183 
(45.8) 

389.0 
(229.0, 541.0) 

12.7 
(8.6, 18.4) 

54.2 
(42.6, 67.3) 

53.1 
(40.9, 67.2) 

    Missing 12 
(3.0) 

276.5 
(176.0, 506.5) 

9.9 
(8.4, 17.7) 

45.9 
(33.7, 61.9) 

47.7 
(37.0, 76.5) 
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 Frequency   
n  

(%) 

p,p’-DDE(pg/g)                                
Median  
(IQR) 

p,p’-DDT (pg/g)                       
Median  
(IQR) 

HCB (pg/g)                      
Median  
(IQR) 

-HCCH (pg/g)                     
Median  
(IQR) 

Maternal prepregnancy BMI (kg/m2)      

  <18.5 15 
(3.8) 

326.0 
(176.0, 522.0) 

11.2 
(8.4, 13.2) 

40.8 
(30.8, 52.7) 

47.9 
(34.9, 63.5) 

   18.5-24.9 263 
(65.8) 

331.0 
(198.0, 516.0) 

10.6 
(7.7, 16.2) 

50.8 
(37.8, 63.9) 

47.5 
(35.3, 64.8) 

   25-29.9 58 
(14.5) 

315.5 
(206.0, 478.0) 

12.2 
(9.6, 18.0) 

46.1 
(38.3, 65.1) 

45.0 
(34.1, 56.8) 

    >30 27 
(6.8) 

306.0 
(217.0, 599.0) 

15.0 
(11.2, 28.5) 

55.3 
(43.6, 68.0) 

51.7 
(33.6, 67.9) 

   Missing 37 
(9.3) 

243.0 
(160.0, 350.0) 

11.1 
(7.7, 14.1) 

47.2 
(33.4, 58.9) 

41.1 
(32.0, 55.0) 

      

Maternal Alcohol Use      

   Yes 181 
(45.3) 

331.0 
(213.0, 524.00 

12.7 
(9.0, 17.3) 

53.7 
(39.6, 67.4) 

50.3 
(35.6, 67.2) 

   No 205 
(51.3) 

295.0 
(175.0, 482.0) 

10.2 
(7.7, 14.9) 

46.3 
(36.4, 59.8)  

45.3 
(33.6, 56.1) 

   Missing 14 
(3.5) 

241.5 
(160.0, 350.0) 

9.9 
(6.4, 22.9) 

43.2 
(31.8, 59.7) 

40.7 
(32.0, 66.2) 

      

Maternal Smoking Status      

    Yes 86 
(21.5) 

290.0 
(168.0, 412.0) 

10.9 
(8.0, 14.2) 

44.0 
(35.5, 62.1) 

45.3 
(34.6, 60.5) 

    No 301 
(75.3) 

331.0 
(205.0, 516.0) 

11.6 
(8.4, 17.0) 

50.9 
(39.4, 64.2) 

47.5 
(35.0, 63.1) 

   Missing 13 
(3.3) 

234.0 
(160.0, 339.0) 

9.8 
(6.4, 18.9) 

44.4 
(33.4, 59.7) 

40.3 
(32.0, 62.4) 
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 Frequency   
n  

(%) 

DDE(pg/g)                                
Median  
(IQR) 

DDT (pg/g)                       
Median  
(IQR) 

HCH (pg/g)                      
Median  
(IQR) 

HCCH (pg/g)                     
Median  
(IQR) 

Previous Live Birth      

    Yes 191 
(47.6) 

323.0 
(193.0, 509.0) 

11.0 
(7.8, 16.1) 

51.2 
(38.4, 62.2) 

48.2 
(34.9, 63.8) 

    No 193 
(48.3) 

308.0 
(198.0, 493.0) 

11.6 
(8.6, 17.7) 

50.2 
(37.9, 65.3) 

46.9 
(34.7, 60.3) 

    Missing 16 
(4.0) 

216.5 
(158.5, 314.0) 

9.8 
(5.9, 18.9) 

43.2 
(32.6, 60.4) 

39.6 
(30.2, 58.2) 

Low Birth Weight (<2,500g)      

    Yes 20 
(5.0) 

528.5 
(321.0, 994.0) 

17.9 
(8.0, 22.2) 

56.2 
(46.2, 75.5) 

61.8 
(52.7, 83.1) 

    No 380 
(95.0) 

302.5 
(186.5, 484.0) 

11.1 
(8.1, 16.1) 

49.9 
(37.2, 62.8) 

46.0 
(34.4, 60.4)  

     

Preterm Delivery (<37 wks gestation)      

   Yes 12 
(3.0) 

274.0 
(224.5, 638.5) 

10.4 
(10.0, 18.6) 

54.4 
(47.8, 69.5) 

54.6 
(43.0, 76.1) 

   No 388 
(97.0) 

311.0 
(189.0, 492.0) 

11.4 
(8.1, 16.5) 

49.9 
(37.5, 63.4) 

46.9 
(34.5, 61.5)  

     

Breastfeeding Duration      

   Never 79 
(19.8) 

293.0 
(164.0, 472.0) 

10.8 
(8.0, 15.1) 

46.3 
(35.2, 59.6) 

42.4 
(34.1, 56.1) 

   <3 months 98 
(24.5) 

293.5 
(203.0, 516.0) 

11.5 
(8.2, 15.0) 

51.8 
(40.2, 65.3) 

45.8 
(34.4, 59.5) 

   3-5 months 61 
(15.3) 

337.0 
(219.0, 482.0) 

12.7 
(9.0, 20.4) 

50.8 
(40.2, 65.3) 

48.9 
(38.5, 63.8) 

   > 6 months 158 
(39.5) 

318.5 
(198.0, 522.0) 

11.2 
(7.9, 17.3) 

49.8 
(36.6, 65.7) 

50.0 
(34.6, 67.0) 

   Missing 4 
(1.0) 

391.5 
(214.2, 458.0) 

14.9 
(10.5, 19.6) 

50.2 
(46.8, 75.8) 

51.9 
(46.7, 67.3) 

* IQR = interquartile range 
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Table 2. Association between maternal organochlorine pesticide exposure and communication development scores in 
daughters at 15 months 
 

 Nonverbal 
Communication  

Social Development 
 

Verbal Comprehension 
 

Vocabulary 
Comprehension & 
Production  

Tertiles of analyte 
(ng/g lipid) 

Adjusted mean (95% CI) Adjusted mean (95% CI) Adjusted mean (95% CI) Adjusted mean (95% CI) 

 p,p’-DDE (n=375)     

1 (<229.5) 15.38 (14.76, 15.07) 18.77 (17.67, 19.86) 9.77 (9.32, 10.21) 97.27 (88.71, 105.84) 

2 (229.51-420.0) 14.52 (13.96, 15.08) 18.35 (17.36, 19.35) 9.42 (0.01, 9.83) 95.05 (87.30, 102.81) 

3 (>420.0) 14.48 (13.90, 15.07) 18.33 (17.29, 19.36) 9.64 (9.22, 10.06) 96.80 (88.72, 105.84) 

p-trend 0.05 0.47 0.24 0.30 

     

p,p’-DDT (n=363)     

1 (<9.0) 14.88 (14.31, 15.44) 17.80 (16.79, 18.81) 9.29 (8.88, 9.70) 94.98 (86.99, 102.97) 

2 (9.01-14.7) 14.57 (14.01, 15.14) 19.02 (18.01, 20.02) 9.45 (9.04, 9.87) 99.21 (91.24, 107.18) 

3 (>14.7) 15.16 (14.55, 15.77) 18.76 (17.67, 19.85) 10.10 (9.65, 10.54) 96.57 (87.94, 101.21) 

p-trend 0.74 0.52 0.24 0.41 

     

HCB (n=375)     

1 (<41.2) 14.92 (14.31, 15.52) 18.35 (17.29, 19.41) 9.70 (9.26, 10.13) 105.38 (97.12, 113.64) 

2 (41.21-59.0) 15.20 (14.66, 15.75) 19.26 (18.29, 20.22) 9.85 (9.45, 10.24) 95.60 (88.11, 103.08) 

3 (> 59.0) 14.19 (13.57, 14.80) 17.77 (16.69, 18.84) 9.25 (8.81, 9.70) 88.35 (80.00, 96.71) 

p-trend 0.10 0.43 0.17 0.007 

     

β-HCCH (n=374)     

1 (<39.05) 15.26 (14.61, 15.92) 19.56 (18.40, 20.71) 9.94 (9.47, 10.41) 104.54 (95.55, 113.53) 

2 (39.06-56.15) 14.58 (14.04, 15.11) 17.81 (16.88, 18.75) 9.61 (9.22, 9.99) 93.51 (86.23, 100.79) 

3 (>56.15) 14.61(14.01, 15.20) 18.32 (17.27, 19.36) 9.35 (8.92, 9.78) 92.83 (84.67, 101.00) 

p-trend 0.25 0.28 0.10 0.12 

* Adjusted for home score at six months, maternal age, parity, smoking status. Pesticides are lipid-adjusted with all in units ng/g lipid. 
**P-trend based on a scored variable using the median value of each tertile 
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Table 3. Association between maternal organochlorine pesticide exposure and communication development scores in 
daughters at 15 months by strata of parity* 
 

 Nonverbal 
Communication  

Social Development 
 

Verbal 
Comprehension*** 
 

Vocabulary 
Comprehension & 
Production***  

Tertiles of analyte 
(ng/g lipid) 

Adjusted mean (95% CI) Adjusted mean (95% CI) Adjusted mean (95% CI) Adjusted mean (95% CI) 

 Nulliparous women 

HCB (n=189)     

1 (<41.2) 14.56 (13.75, 15.37) 18.05 (16.53, 19.57)   9.96 (9.37, 10.55) 113.39 (101.28, 125.49) 

2 (41.21-59.0) 15.32 (14.67, 15.98) 19.29 (17.95, 20.63) 10.10 (9.58, 10.62) 103.02 (92.34, 113.70) 

3 (> 59.0) 14.02 (13.32, 14.73) 17.32 (15.67, 18.97)   8.97 (8.33, 9.61) 88.99 (75.85, 102.12) 

p-trend** 0.90 0.56 0.04 0.01 

 Parous women 

HCB (n=187)     

1 (<41.2) 15.07 (14.13, 16.01) 18.63 (17.13, 20.13) 9.51 (8.87, 10.16) 97.43 (85.90, 108.96) 

2 (41.21-59.0) 15.05 (14.17, 15.93) 19.44 (18.04, 20.85) 9.65 (9.05, 10.25) 87.01 (76.21, 97.80) 

3 (> 59.0) 14.30 (13.36, 15.24) 18.61 (17.13, 20.13) 9.50 (8.86, 10.13) 87.93 (85.90, 108.96) 

p-trend** 0.26 0.95 0.96 0.28 

* Adjusted for home score at six months, smoking status and maternal age. Pesticides are lipid-adjusted with all in units ng/g lipid. 
**P-trend based on a scored variable using the median value of each tertile.  
*** Significant interactions (p-int<0.05) for parity and HCB for verbal comprehension (p-int=0.01) and vocabulary comprehension & 
production (p-int<0.001). 
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Table 4. Association between maternal organochlorine pesticide exposure and communication development scores in 
daughters at 38 months 
 

 Communicative  Intelligibility 
 

Language 
 

Tertiles of analyte (ng/g lipid) Adjusted mean (95% CI) Adjusted mean (95% CI) Adjusted mean (95% CI) 

p,p’-DDE (n=339)    

1 (<234) 5.06 (4.86, 5.26) 5.82 (5.71, 5.93) 310.60 (305.73, 315.47) 

2 (234.1-445) 5.12 (4.95, 5.30) 5.90 (5.81, 5.99) 302.98 (298.70, 307.26) 

3 (>445) 4.90 (4.73, 5.08) 5.83 (5.73, 5.93) 301.60 (305.73, 315.47)  

p-trend 0.17 0.89 0.05 

    

p,p’-DDT (n=331)    

1 (<9.2) 5.22 (5.03, 5.41) 5.78 (5.68, 5.88) 302.98 (298.39, 307.57) 

2 (9.21-14.8) 5.06 (4.88, 5.24) 5.86 (5.76, 5.95) 309.39 (305.08, 313.71) 

3 (>14.8) 4.82 (4.63, 5.02) 5.90 (5.79, 6.00) 303.45 (298.78, 308.13) 

p-trend 0.006 0.15 0.78 

    

HCB (n=338)    

1 (<41.9) 4.92 (4.72, 5.12) 5.94 (5.84, 6.05) 309.82 (304.92, 314.73) 

2 (41.91-59.9) 5.17 (5.00, 5.34) 5.85 (5.76, 5.94) 303.78 (299.61, 307.94) 

3 (>59.9) 4.95 (4.76, 5.14) 5.77 (5.67, 5.88) 303.82 (298.14, 307.51) 

p-trend 0.97 0.03 0.06 

    

-HCCH (n=339)    

1 (<39.9) 4.98 (4.76, 5.19) 5.93 (5.81, 6.04) 309.60 (304.38, 314.82) 

2 (39.91-56.6) 5.06 (4.89, 5.23) 5.82 (5.72, 5.91) 303.94 (299.76, 308.12) 

3 (>56.6) 5.02 (4.84, 5.21) 5.83 (5.73, 5.93) 303.12 (298.58, 307.66) 

p-trend 0.85 0.34 0.12 

* Adjusted for home score at 18 months, parity, maternal age and maternal education. Pesticides are lipid-adjusted with all in units 
ng/g lipid. 
**P-trend based on a scored variable using the median value of each tertile. 
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Table 5. Association between maternal organochlorine pesticide exposure and communication development scores in 
daughters at 38 months by strata of maternal depression score 
 

 Communicative Intelligibility 
 

Language 
 

Tertiles of analyte (ng/g 
lipid) 

Adjusted mean (95% CI) Adjusted mean (95% CI) Adjusted mean (95% CI) 

 EPDS<6 

p,p’-DDT (n=179)    

1 (<9.2) 5.25 (4.98, 5.52) 5.78 (5.67, 5.88) 304.40 (297.32, 311.49) 

2 (9.21-14.8) 5.01 (4.79, 5.24) 5.97 (5.88, 6.06) 308.81 (302.82, 314.80) 

3 (>14.8) 4.71 (4.48, 4.93) 5.96 (5.87, 6.04) 306.26 (300.29, 312.23) 

p-trend 0.002 0.06 0.94 

 EPDS>6 

p,p’-DDT(n=146)    

1 (<9.2) 5.22 (4.93, 5.52) 5.77 (5.58, 5.95) 301.77 (295.26, 308.28) 

2 (9.21-14.8) 5.16 (4.86, 5.46) 5.70 (5.52, 5.89) 309.32 (302.73, 315.92) 

3 (>14.8) 5.00 (4.64, 5.36) 5.85 (5.63, 6.07) 298.72 (290.88, 306.55) 

p-trend 0.35 0.58 0.54 

* Adjusted for home score at 18 months, maternal education, maternal age and parity. Pesticides are lipid-adjusted with all in units 
ng/g lipid. EPDS ranges 0-30 with 30 indicative of more depressed.  
**P-trend based on a scored variable using the median value of each tertile. 
*** Significant interactions (p<0.05) for EPDS depression score and p,p’-DDT for communicative (p-int=0.007), intelligibility (p-
int<0.0001), and language (p-int=0.003).   
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Supplementary Table 1. Sample characteristics for mothers of girls and girls with maternal organochlorine pesticide 
exposure and daughters’ communication data  

Variable N Median IQR* 

Maternal Pesticide Exposure Lipid 
Adjusted 

   

   p,p’-DDE(ng/g lipid) 400 309.5 (192.5, 496.0) 

   p,p’-DDT (ng/g lipid) 387 11.4 (8.1, 16.5) 

   HCB  (ng/g lipid) 399 50.2 (37.8, 63.5) 

   -HCCH (ng/g lipid) 400 47.2 (34.6, 62.5) 

    

Adapted MCDI Scores at 15 months    

   Nonverbal communication 399 15.0 (13.0, 17.0) 

   Social development 400 18.0 (14.5, 22.0) 

   Verbal comprehension 399 10.0 (8.0, 12.0) 

   Vocabulary comprehension 399 88.0 (63.0, 125.0) 

    

Adapted MCDI scores at 38 months    

   Communicative ability 372 5.0 (4.0, 6.0) 

   Intelligibility 373 6.0 (6.0, 6.0) 

   Language 370 314 (298.0, 322.0) 

    

Important Covariates    

   Gestational age at blood collection      
(wks.) 

400 15.0 (10.0, 28.0) 

   Maternal EPDS (depression) score 
  at 32 weeks 

384 6.0 (2.0, 10.0) 

   HOME Score at 6 months 390 8.0 (7.0, 10.0) 

   HOME Score at 18 months 377 11.0 (9.0, 12.0) 

* IQR=interquartile range 
 
 

 


