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Abstract
Motivated by the problem of separating syntax from semantics in
programming with algebraic effects and handlers, we propose a cat-
egorical model of abstract syntax with so-called scoped operations.
As a building block of a term, a scoped operation is not merely a
node in a tree, as it can also encompass a whole part of the term (a
scope). Some examples from the area of programming are given by
the operation catch for handling exceptions, in which the part in
the scope is the code that may raise an exception, or the operation
once, which selects a single solution from a nondeterministic com-
putation. A distinctive feature of such operations is their behaviour
under program composition, that is, syntactic substitution.

Our model is based on what Ghani et al. call the monad of explicit
substitutions, defined using the initial-algebra semantics in the cate-
gory of endofunctors. We also introduce a new kind of multi-sorted
algebras, called scoped algebras, which serve as interpretations of
syntax with scopes. In generality, scoped algebras are given in the
style of the presheaf formalisation of syntax with binders of Fiore
et al. As the main technical result, we show that our monad indeed
arises from free objects in the category of scoped algebras.

Importantly, we show that our results are immediately applicable.
In particular, we show a Haskell implementation together with
practical, real-life examples.

1 Introduction
1.1 The Big Picture: Formalised Abstract Syntax
This paper is about formal models of abstract syntax and their
connection with semantics, mainly in the context of programming
languages. The simplest model of abstract syntax is given by the
set of terms over a signature, parametrised by the set of variables.
Terms can be generalised to free monads generated by an endofunc-
tor, which allows one to capture more intricate kinds of signatures,
and move to different categories, possibly more amenable for mod-
elling and reasoning about programming languages. However, to
model syntax of programming calculi, one needs more advanced
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structures; for example, Fiore et al. [10] model syntax with binders
as algebras on certain presheaf categories.

There are two major applications of constructing formal models
of syntax. First, they often lead to implementations, either in proof
assistants to reason about programming calculi (for example, the
syntax with binders of Fiore et al. is implementable using nat-
indexed types, see [1]), or in programming languages themselves
to achieve metalinguistic abstraction (see [26, 27]).

The other application is in investigating the connection between
syntax and semantics. The object that represents syntax is often
given by a monad in which the monadic structure captures sub-
stitution. Such a monad often comes about from a free–forgetful
adjunction, therefore validating the syntax as arising from free
objects in a wider category of semantic objects. For example, as de-
scribed in more detail in Section 2, the (algebraically) free monad is
given by free objects in the category of algebras for an endofunctor.

In this paper, we introduce a model of syntax with scoped op-
erations; see Wu et al. [29]. We show both an implementation in
Haskell (Section 6) and an appropriate adjunction (Section 4).

1.2 Motivation: Non-algebraic Operations
Since the introduction of the computational λ-calculus byMoggi [20],
monads have become the standard abstraction to capture different
notions of computational effects, such as nondeterminism, excep-
tions, mutable state, concurrency, and so on. Each strong monadM
on a Cartesian closed category is equipped with the bind operator,
which can be given a higher-order type >>= : MA × (A→ MB) →
MB. Intuitively, it allows for the sequential composition of two
computations, in which the second computation is parametrised
by the result of the first one.

While in general monads provide an interface for composing ex-
isting computations and creating pure computations, they abstract
away the constructs that actually create effectful computations. It
has been a goal of the research programme initiated by Plotkin and
Power (see [24]) to better understand such constructs in terms of
operations. As our running example, we consider a simple version
of nondeterminism. If a monadM implements nondeterminism, we
assume it to have three operations: binary or : MA ×MA→ MA
(the intuitive meaning of or(p1,p2) is nondeterministic choice be-
tween programs p1 and p2), nullary fail : 1 → MA (intuitively, a
computation that gives no results), and unary once : MA→ MA
(intuitively, select the first available result from the computation
in the argument). Note that we do not assume commutativity of
the choice, that is, in general or(a,b) , or(b,a) when a , b. One
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important observation by Plotkin and Power [23] is that such op-
erations can be categorised into two different kinds: algebraic and
non-algebraic ones. The defining property of the former is that they
commute with bind. That is, an n-ary operation op : (MA)n → MA
is algebraic if the following equality holds:

op(x1, . . . ,xn ) >>= k = op(x1 >>= k, . . . ,xn >>= k) (1)

In the case of nondeterminism, or and fail are algebraic. For exam-
ple, one expects the following equality (for brevity, return injections
of pure values into the monad are implicit):

or(1, 5) >>= k = or(k 1,k 5)

Indeed, choosing between 1 and 5, and then continuing with the
computation k parameterised by the result is the same as choosing
between the computation k parameterised by 1 and the computa-
tion k parameterised by 5. On the other hand, once is not algebraic.
Following the intuitive semantics, once(or(1, 5)) = 1, and therefore
we have the following:

once(or(1, 5)) >>= λx . or(x ,x+1) = 1 >>= λx . or(x ,x+1) = or(1, 2)

If once were an algebraic operation, it would commute with bind,
and we would obtain a different result:

once(or(1, 5))>>=λx . or(x ,x+1) = once(or(or(1, 2), or(5, 6))) = 1

The above is not what one expects and hence once is not algebraic.
The recognition of the class of algebraic operations was a stepping
stone, as they arise as operations coming from algebraic presenta-
tions of monads, hence allowing for equational reasoning about
effectful programs [22] (see also [14]).

Later, Plotkin and Pretnar [25] explained a broad spectrum of
non-algebraic operations in terms of handlers. In their setting, alge-
braic operations are purely syntactic constructs, with no semantics
associated a priori. A number of algebraic operations put together
form a signature, which then induces syntax, which is given by the
set of terms over the signature, or, more generally, a free monad, in
which bind is given by substitution for variables. A handler gives
semantics to computations built from algebraic operations: it speci-
fies a carrier and gives an interpretation to the algebraic operations.
The combination of algebraic operations and handlers has sparked
a new phase of practical adoption, with a bevy of new programming
language and library designs [4, 6, 8, 17, 18]. Formally, handlers
arise from Eilenberg–Moore algebras for the free monad induced
by the signature.

Looking at our running example through this lens, the opera-
tions or and fail are algebraic, hence they have no semantics by
themselves. One possible implementation of once as a handler uses
the same free monad as its carrier, and is obtained by preserving
pure values and folding the syntax with the following recursive
equations:

once(fail) = fail

once(or(p1,p2)) = once(p1) (if once(p1) , fail)
once(or(p1,p2)) = once(p2) (otherwise)

A shortcoming of this approach is that handlers play two simul-
taneous roles: they create a scope that delimits a part of the syntax
to be interpreted, and at the same time they interpret the syntax in
that scope. That is, we can see a computation constructed solely
with algebraic operations as a syntactic being, and we defer giving

it semantics until it is put in an appropriate context (that is, a han-
dler), while non-algebraic operations (given by handlers) always
come together with an interpretation. Therefore, by using handlers
to model operations that delimit a scope of other computations,
programs are a mix of syntax and semantics. This is problematic,
because it forbids certain interpretations of programs [29]. Is it
possible to have such scoped operations as syntax, thus keeping a
clean separation of syntax and semantics?

In this paper, we show how to achieve this by expressing the
abstract syntax as an initial algebra in the category of endofunctors
on a given base category, in the style of Ghani et al. [13]. We also
identify a category of semantic objects that give a way of inter-
preting our syntax. In particular, we can construct computations
using or, fail, and once without committing to any semantics of
these operations. Later on, we can interpret them using any chosen
semantics (for example, accumulating results on a list or using a
random choice).

1.3 Overview
We tackle the problem of formalising abstract syntax with scopes
from two different ends. First, in Section 3, we show a monad E that
allows for scoped operations by keeping an explicit continuation,
which is parametrised by the results of the syntax in the scope. The
monad E is a generalisation of Ghani et al.’s [13] monad of explicit
substitutions, defined using initial algebras over the category of
endofunctors C C for a base category C .

Unfortunately, the monad E does not come equipped with a nat-
ural notion of an interpretation of syntax, as the obvious choice,
Eilenberg–Moore algebras, turns out to be inadequate for this pur-
pose. We fix this in Section 4, in which we tackle the problem from
the other end. We first define interpretations of syntax with scoped
operations as certain algebras over the category of N-indexed ob-
jects C |N | , in the style of Fiore et al.’s [10] presheaf formalisation
of syntax with binders. These algebras induce a free monad M

on C |N | , which can be projected on the base category C , giving a
new monad ⇃M↾ that models syntax naturally interpreted by our
algebras.

In Section 5, as our main technical result, we construct an iso-
morphism between the monads E and ⇃M↾. This means that the
intuitive ideas for how syntax and semantics for scoped operations
should work coincide. The main technical obstacle is that while
the monad E is defined as a carrier of an initial algebra (in C C ),
the monad ⇃M↾ is expressed using a composition of adjunctions,
hence the isomorphism does not arise directly from the universal
property of E or M . We solve this by lifting the monad E to the
category C |N | .

Both our monads are variations on the theme of algebraic opera-
tions that represent opening and closing brackets. Brackets were
already briefly considered by Wu et al. [29], but dismissed on the
grounds that, in the usual approach to syntax, there is no way to
guarantee that the brackets are well-paired. Here, we avoid this
problem either by encoding the continuation as an explicit substitu-
tion in the monad E, or by employing types to keep the structural
properties in ⇃M↾.

Our constructions are amenable to be directly encoded in a
language with a rich type system. In Section 6, we show a Haskell
implementation and demonstrate it in Section 7 on two examples,
state with local variables and resumption-based concurrency.
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1.4 Contributions
The original contributions of this paper can be summarised as
follows:

• We observe a relationship between scoped operations and
explicit substitutions in the sense of Ghani et al. [13]. We use
this observation to define the monad E that models abstract
syntax with scopes.
• We introduce scoped algebras, which serve as interpretations
of syntax with scopes. We show that the monad that arises
from free scoped algebras,M , leads to a monad on the base
category, ⇃M↾, which is naturally interpreted by scoped al-
gebras.
• We show that the monads E and ⇃M↾ are isomorphic, which
means that the two different approaches to scoped syntax
are actually equivalent.
• This equivalence enables us to give a compact implemen-
tation in Haskell. We use it to show that our framework is
expressive enough to capture a number of examples of effects
in which scoped operations play a vital role: nondeterminism
(with the scoped operation once), exceptions (with catch),
state with local variables (with local), or resumption-based
concurrency (with fork and atomic).

2 Background: Adjoint-theoretic Approach to
Syntax and Semantics

Formalising various kinds of syntax can be discussed at many levels
of generality. Hence, we show how one can formalise the usual
story about syntax with algebraic operations and its interpretation
at the level of generality that we aim at, that is, when the signature
is given by an endofunctor on a categorywith rich enough structure,
and syntax is given by the free monad over that signature.

As for the notation, we write A ,C to denote categories, while Σ
and Γ stand for endofunctors that represent signatures. We denote
natural transformations using the applicative notation, for example,
αA : ΣA→ ΓA. When the type is given, we often drop the compo-
nent, and write simply α : ΣA→ ΓA. In abuse of notation, monads
are identified with their underlying endofunctors, and the monadic
structure is always denoted as η (unit) and µ (multiplication).

First, assume that we work in a category A with finite coprod-
ucts. These include the initial object, denoted 0. Given an end-
ofunctor Σ, which represents a signature, a Σ-algebra is a tuple
⟨A, a : ΣA→ A⟩, where A (the carrier) is an object in A . Such al-
gebras form a category, denoted Σ-Alg, with morphisms between
⟨A,a⟩ and ⟨B,b⟩ given by morphisms f : A → B in A such that
b · Σf = f · a. If the initial algebra for an endofunctor Σ exists, we
denote its carrier µΣ or µX . ΣX .

Assume that for all objectsA inA , the initial algebra with carrier
Σ∗A = µX .(ΣX + A) exists. This family of initial algebras form a
monad Σ∗. It is called the (algebraically) free monad [3] generated by
Σ, and it represents syntax over the signature Σ. This monad arises
from an important adjunction, which explains how one can define
interpretations of terms. First, we consider the obvious forgetful
functor U : Σ-Alg → A defined as U ⟨A,a⟩ = A. It has a left
adjoint, the free functor FA = ⟨Σ∗A, consA : ΣΣ∗A→ Σ∗A⟩. Then,
the monad Σ∗ is given as the compositionUF . (The family consA is
natural inA, hence we use the notation for natural transformations.)

The situation is summarised in the following diagram:

A ⊥ Σ-Alg
F

U

U F = Σ∗ (2)

The notion of interpretation arises from the same adjunction. Con-
sider the associated natural isomorphism:

Φ(A, ⟨B,b⟩) : HomA (A,B) → HomΣ-Alg(⟨Σ
∗A, consA⟩, ⟨B,b⟩).

Given a value of the type Σ∗A (understood intuitively as a Σ-term
with variables from the set A), we can interpret it using a carrier B
by providing a morphism f : A → B to interpret the variables,
and an algebra b : ΣB → B to interpret operations. The morphism
that interprets the entire ‘term’ is then given by U (Φ(A, ⟨B,b⟩)f ) :
Σ∗A→ B. Intuitively, it applies f to the variables and then folds
the structure using b.

An important property of the adjunction F ⊣ U is that it is strictly
monadic. This means that the category Σ-Alg is isomorphic to the
Eilenberg–Moore category of the monad Σ∗ (that is, the Σ∗-algebras
⟨A,a⟩ for which a · η = id and a · µ = a · Σ∗a), and the adjunction
F ⊣ U is essentially the Eilenberg–Moore adjunction of Σ∗. This
fact is useful for technical purposes, but it also gives us an intuitive
understanding of the category of Σ-algebras as the category of
interpretations (models) of syntax.

3 Scopes via Explicit Substitutions
In this section, we introduce a monad E that formalises syntax with
both algebraic operations and scoped operations. Our monad is a
generalisation of Ghani et al.’s [13] monad of explicit substitutions.
In order to motivate this construction, we first discuss it informally.

As our running example, consider two algebraic operations for
nondeterminism: binary or and nullary fail. Additionally, consider
a unary operation once. These operations just define syntax, but
the intended meaning is that or nondeterministically chooses a
computation, fail is a computation that gives no solutions, and
once, just as a Prolog operation with the same name, chooses the
first solution from the computation in its argument.

One way to approach the syntax generated by these operations is
to appropriately extend the notion of terms and substitution. That
is, we still consider tree-like structures, in which nodes correspond
to operations, while leaves correspond to variables, understood as
values returned by the nondeterministic computation. The nodes
representing algebraic operations behave exactly as in the case of
terms, that is, or is a node with two children, and fail is a node with
zero children. For such nodes, the monadic bind operator behaves
like the usual substitution, that is, it is defined recursively as in
the equation (1). However, as illustrated in the introduction, we
cannot simply substitute in the argument of once. This is because
in the expression once(t) >>= k , the computation t is in the scope of
once, but the results of applying k are not. Thus, since we cannot
perform the usual substitution, we replace it by an explicit substi-
tution: each node representing once is actually a pair consisting
of the computation in the scope (t ) and a continuation (k). More
explicitly, the computation once(or(1, 5)) is represented by the ex-
pression or(1, 5) paired with the continuation given by the unit η
of the monad E, which, as in the case of the free monad, embeds
variables as terms. Then, the bind operator >>=k recursively Kleisli-
composes k with the continuation. In particular, the expression
once(or(1, 5)) >>= k represents the following syntax tree, where ◦
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denotes Kleisli composition:

( once

or

1 5

η
)
>>=k =

once

or

1 5

k ◦ η =

once

or

1 5

k

Note that in general the first child of the node representing once
has the type EA for a type A, while the type of the second child is
given by the exponential (EB)A for a type B. Moreover, the type A
is not visible from above the once node, so A is an existential type.

The construction sketched above is similar to what Ghani et
al. [13] call the explicit substitution monad. What is new is the
observation that it can be used to model scoped operations if ap-
propriately generalised, as we now describe.

The reason why we need to generalise the explicit substitution
monad is that we may want more than one scoped operation in the
signature, and that we sometimes want scoped operations to have
more intricate arities, which allow them to carrymore data than just
one encompassed expression. One example is catch, which allows
for handling exceptions. It can contain not only an expression that
may throw an exception, but also a number of expressions used for
handling. Thus, given a fixed set of exceptions S , the catch operation
has two arguments of the types EA and (EA)S respectively. To
account for this in generality, our monad E is parametrised by
two different endofunctors: Σ for representing algebraic operations,
and Γ for operations that create a scope. For example, the signatures
for nondeterminism can be given as ΣX = X × X + 1 and ΓX = X ,
while the signatures for exceptions can be given as ΣX = S and
ΓX = X × XS .

Following Ghani et al., the intuition about the existential type can
be formalised using a coend. Simplifying things a bit (and ignoring
size issues), given two endofunctors Σ and Γ, we want the monad E
over a category C to behave like a fixed point of the following
equation:

EA � A + Σ(EA) +

∫ X ∈C
Γ(EX ) × (EA)X

Note that the coend computes the left Kan extension of ΓE along the
identity applied to the object EA. This means that we can rewrite
the equation above as follows (for the details, we refer to [13]):

EA � A + Σ(EA) + Γ(E(EA))

Formally, we consider the category C C with endofunctors on C
as objects and natural transformations as morphisms. This category
inherits coproducts from C , given as (G + H )A = GA + HA. We
define an endofunctorG : C C → C C with the following mapping
of objects:

GH = Id + ΣH + ΓHH

The action on morphisms is given by appropriate horizontal com-
positions. IfG has an initial algebra µG , we use its carrier to define
the endofunctor part of the monad E:

E = µG

The monadic structure of E is given by substitution in the ‘Id’
component. We discuss it formally in Section 4.

Sometimes, if we need to be explicit about the involved signa-
tures, we write them as superscripts, i.e., EΣ,Γ . Ghani et al.’s [13]
monad can be obtained by instantiating Γ to Id, that is, as EΣ, Id,

while the free monad generated by Σ is given by EΣ,K0 , where K0
is the constant endofunctor K0X = 0.

4 Interpreting Syntax with Scopes
Now that we have defined syntax for operations with scopes, we
show how to define semantics for such syntax. The most obvi-
ous idea is to mimic the free-forgetful adjunction (2), and use the
Eilenberg-Moore adjunction of the monad E. However, as we dis-
cuss in this section, syntax in scopes does not interact with the
monadic structure of E, and so Eilenberg-Moore algebras of E do
not necessarily respect the structure within the scopes.

Thus, we propose a solution by looking at the problem from
another angle. We first define a category of a new kind of algebras,
which, we believe, are intuitively the right ones to interpret opera-
tions with scopes, and only then we construct an adjunction that
plays the role of F ⊣ U from (2). This new adjunction gives us a
monad on C that models syntax, which can be interpreted using
the new kind of algebras, just as the syntax given by free monads
can be interpreted using Σ-algebras. As our main technical result,
in Section 5 we show that this monad coincides with E.

4.1 Monadic Structure and Algebras for the Monad E

As noticed by Ghani et al. [13], themonadic structure of their monad
of explicit substitutions coincides with how the regular substitution
in the free monad works. Indeed, one can give a monadic structure
to E by showing that it is a free monad on C (provided, as usual,
that enough initial algebras exist). First, define an endofunctor E ′
on C C as follows:

E ′ = µH . Id + ΣH + ΓEH

By the ‘diagonal rule’ [2], one can easily show that E ′ is isomorphic
to E. Moreover, if the free monad (Σ + ΓE)∗ exists, one can see that
it is isomorphic to E ′ as a functor. Hence, we obtain that

E � (Σ + ΓE)∗,

which gives us a monadic structure for E.
The fact that E is a free monad and the fact that the adjunction

F ⊣ U is strictly monadic reveal that an Eilenberg-Moore algebra
for E can be seen as a triple

⟨A, a : ΣA→ A, д : ΓEA→ A⟩,

where A is an object in C , while a and д are morphisms in C .
Intuitively, such an algebra interprets a term by folding the structure
from the leaves and working its way up to the root. It interprets
an algebraic operation from the signature Σ exactly as in the case
of free monads, while in the case of a scoped operation from Γ,
no conditions are imposed on д, so it does not have to respect
any structural properties of E. In particular, it does not have to
apply itself recursively to the syntax in the scope. Therefore, we
cannot accept Eilenberg-Moore algebras for E as the ‘right’ notion
of interpretation of syntax with scopes.

4.2 Scoped Algebras
Intuitively, in the usual approach to syntax, an interpretation of a
term can be understood as folding the structure from the leaves and
working its way up to the root. In the case of a scoped operation,
we first want to fold the continuation, and then use the result as the
initial value for folding the part in the scope. However, the algebra
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that interprets the scope might need a different type of carrier, as
we show in the examples further in this section.

Thus, the new kind of algebras, which we call scoped algebras, are
different from F -algebras in that they have a family of C -objects
A0,A1, . . . as carriers, each representing a carrier for a level of
nesting of scopes. In a scoped algebra, when entering a scope, one
needs to promote the current value of the type An to the type An+1,
and, dually, one demotes a value of the type An+1 to An when
interpreting the operation that creates the scope.

To formalise this, we work in the category of N-indexed C -
objects. Let |N| be the discrete category of natural numbers, in
which objects are given by natural numbers, while the only mor-
phisms are trivial identities. Our category of interest is then C |N | ,
that is, the category of functors of the type |N| → C with natural
transformations as morphisms. More explicitly, an object in C |N | is
an N-indexed family of C -objects A = {An }n∈N. A morphism be-
tweenA and B = {Bn }n∈N is anN-indexed family of C -morphisms
{ fn : An → Bn }n∈N. In particular, there are no coherence condi-
tions for the components of morphisms at different indices. More-
over, as a functor category, C |N | inherits coproducts from C , de-
fined as (A + B)n = An + Bn .

As the next step in our construction, we define two endofunctors
on C |N | . The first one is called shift left, denoted ◁. It moves every
component one notch ‘to the left’, forgetting the object at index 0:

(◁A)i = Ai+1

The other endofunctor, shift right, denoted ▷, moves every compo-
nent one notch ‘to the right’, sticking the initial object 0 at index 0:

(▷A)0 = 0 (▷A)i+1 = Ai

The actions on morphisms are obvious. Additionally, we can lift
every endofunctor Σ onC to an endofunctor Σ onC |N | by applying
it at each index:

(ΣA)n = Σ(An )

With this, we define scoped algebras as follows:

Definition 4.1. Given two endofunctors Σ and Γ, a scoped algebra
is a quadruple

⟨A, a : ΣA→ A, d : Γ◁A→ A, p : A→ ◁A⟩,

whereA is an object inC |N | , while a, d (‘demote’), and p (‘promote’)
are morphisms in C |N | .

Example 4.2. Assume that the base category is Set, and consider
the binary operation or, nullary fail, and scoped unary once, as
discussed in Section 3. Thus, we obtain ΣX = X × X + 1 and
ΓX = X . For readability, we write or and fail to denote the left
and right injections in Σ respectively. The usual interpretation of
nondeterminism that collects results on a list can be given as follows.
For a set X , the carrier is given as An = Listn+1 X , where Listn is
the n-fold composition of the list endofunctor. The interpretation
of or is given as concatenation, that is, an (or(x ,x ′)) = x ++x ′

for all indices n ∈ N, while fail is interpreted as the empty list:
an (fail()) = []. The promotion morphism is given as the singleton:
pn (x) = [x]. The demotion morphism (that is, the interpretation of
once) selects the first element if it exists, namely dn ([x , . . .]) = x
and dn ([]) = [].

The definition of scoped algebras can be reformulated by noticing
the simple fact that the functor ▷ is a left adjoint to ◁. It follows that

promotion morphisms A→ ◁A are in a 1-1 correspondence with
morphisms ▷A→ A. Thus, scoped algebras are simply algebras for
the endofunctor Σ + Γ◁ + ▷ : C |N | → C |N | , and therefore objects
in the category (Σ + Γ◁ + ▷)-Alg.

4.3 Syntax Induced by Scoped Algebras

Scoped algebras are simply algebras for an endofunctor on C |N | ,
and therefore when enough initial algebras exist, the forgetful
functor U : (Σ + Γ◁ + ▷)-Alg→ C |N | has a left adjoint F , and this
adjunction gives rise to a free monadM defined as follows:

M = UF = (Σ + Γ◁ + ▷)∗ : C |N | → C |N |

Moreover, we can obtain a monad on C by noticing the following
fact:

Theorem 4.3. Consider the forgetful functor ⇃ : C |N | → C that
projects on C the value at the first index, that is:

⇃A = A0

It has a left adjoint ↾ : C → C |N | given as follows:

(↾X )0 = X (↾X )n+1 = 0

Since adjunctions compose, we obtain an adjunction between C
and (Σ + Γ◁ + ▷)-Alg, and, as a consequence, a monad ⇃M↾ = ⇃UF↾
on C , as shown in the following diagram:

C ⊥ C |N | ⊥ (Σ + Γ◁ + ▷)-Alg
↾

⇃

F

U

M = U F = (Σ + Γ◁ + ▷)∗

⇃M↾ (3)

For a better intuitive understanding of the monad ⇃M↾, we first
discuss the monad M . Intuitively, for an object A in C |N | and an
index n ∈ N, we think of a value of (MA)n as encoding a (sub)term
whose root is in n nested scopes. Specifically, for n > 0, the ob-
jectMA at n is given via Lambek’s lemma as follows:

(MA)n � (A + ΣMA + Γ◁MA + ▷MA)n

= An + Σ(MA)n + Γ(MA)n+1 + (MA)n−1

This could be read as if there were four constructors used to obtain
the values of the type (MA)n . The first one is a variable An . The
second one is an algebraic operation given by the signature Σ with
arguments of the type (MA)n , which means that they are situated
in the same number of nested scopes. The third constructor gives
us a scoped operation from the signature Γ. This operation creates
a new scope (it is an ‘opening bracket’), so its arguments are of
the type (MA)n+1, which means that they are surrounded by n + 1
scopes. The last constructor is a ‘closing bracket’, which means that
its argument (MA)n−1 is a part of the continuation, so it is outside
of the n-th scope, hence it is surrounded by n − 1 nested scopes.

For n = 0, the following holds:

(MA)0 � A0 + Σ(MA)0 + Γ(MA)1 + 0 � A0 + Σ(MA)0 + Γ(MA)1

This means that at index 0 (‘no surrounding scopes’), we cannot
put a closing bracket, which guarantees that every closing bracket
matches an opening one.

Thus, we can think of an expression of the shape ◁M▷ asM put
in brackets that delimit the scope. (Coincidentally, the symbols ‘◁’
and ‘▷’ look a bit like opening and closing angle brackets.) Since
(⇃A)n = 0, for all n > 0, by sandwiching the monad M in the
adjunction ↾ ⊣ ⇃, we ensure that there are no variables at indices

5



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelioff

n > 0, that is, within at least one scope. This is because we substitute
only in the outermost continuation; in other words, when we are
not in a scope.

Example 4.4. Consider Example 4.2. The expression

once(or(return 1, return 5)) >>= λx . or(returnx , return (x + 1)) (4)

can be intuitively understood as the following structure:
once ◁

or

▷

or

1 2

▷

or

5 6
If we interpret or as accumulating results on a list, and once as
selecting the first result, the left-hand side of the bind operator in (4)
becomes the singleton [1], so the whole expression is interpreted
as [1] >>= λx . or(returnx , return (x + 1)), which obviously becomes
[1, 2]. Indeed, this is what we obtain by interpreting the variables
as singletons and applying the scoped algebra from Example 4.2:

once ◁

or

▷

or

[1] [2]

▷

or

[5] [6]

a
⇝ once ◁

or

▷

[1, 2]

▷

[5, 6]

p
⇝ once ◁

or

[[1, 2]] [[5, 6]]

a
⇝ once ◁

[[1, 2], [5, 6]]

d
⇝ [1, 2]

Example 4.5. Let C = Set. The signature for exceptions coming
from a set S can be given as ΣX = S and ΓX = X × XS , where,
intuitively, the second component of Γ is the code that handles
exceptions. We can give these signatures the usual semantics using
an algebra with the carrier An = Hn+1X , for a set X , where HB =
B + S . The associated morphisms are defined as an = inr : S →
HnX + S , together with pn = inl : Hn+1X → Hn+1X + S , and
dn : (Hn+1X + S) × (Hn+1X + S)S → Hn+1X given as:

dn (inl a, f ) = a dn (inr s, f ) = ([id, inr] · f )(s)

5 Equivalence of the Two Models
At this point, we have twomonads onC that we can use to represent
syntax with scopes: the ‘explicit substitution’ monad E and the
‘indexed objects’ monad ⇃M↾. As it turns out, they are essentially
the same monad:

Theorem5.1. Themonads E and ⇃M↾ are isomorphic in the category
of monads on C and monad morphisms.

We sketch a proof. For all objects A in C |N | , we use the notation
cons to denote the ‘constructor’ components of the initial algebra
in = [η, cons, cons, cons] : A + ΣMA + Γ◁MA + ▷MA → MA. We
use the same notation for the components of the initial algebra
in = [η, cons, cons] : Id + ΣE + ΓEE → E. Thus, the notations in
and cons are overloaded, but it is always clear which morphism
we mean thanks to explicit types. Another overloaded symbol is ϵ ,
which denotes the counit of an adjunction known from the context.

We define the isomorphism i : E → ⇃M↾. Intuitively, it flattens
the nested structure of E and inserts opening and closing brackets
to mark the original scope. For this, we first introduce a natural

transformation in C |N | that can put M-structure into brackets:
M → ◁M▷. It is done using a distributive law λ : M◁ → ◁M of
the monad M over the endofunctor ◁. For an object A, it is given
as the unique morphism induced by the algebra [λvar, λΣ, λ◁, λ▷] :
◁A + Σ◁MA + Γ◁◁MA + ▷◁MA→ ◁MA, where:

λvar =
(
◁A

◁η
−−→ ◁MA

)
λΣ =

(
Σ◁MA = ◁ΣMA

◁cons
−−−−−→ ◁MA

)
λ◁ =

(
Γ◁◁MA = ◁Γ◁MA

◁cons
−−−−−→ ◁MA

)
λ▷ =

(
▷◁MA

ϵ
−→ MA = ◁▷MA

◁cons
−−−−−→ ◁MA

)
The bracketing operation is then defined asM = M◁▷

λ
−→ ◁M▷.

The desired natural isomorphism i : E → ⇃M↾ is the unique
morphism from the initial algebra induced by the natural transfor-
mation [ivar, iΣ, iΓ] : Id + Σ⇃M↾ + Γ⇃M↾⇃M↾→ ⇃M↾, where:

ivar =
(
Id

η
−→ ⇃↾

⇃η
−−→ ⇃M↾

)
iΣ =

(
Σ⇃M↾ = ⇃ΣM↾

⇃ cons
−−−−−→ ⇃M↾

)
iΓ =

(
Γ⇃M↾⇃M↾

Γ⇃Mϵ
−−−−−→ Γ⇃MM↾ = Γ⇃M◁▷M↾

Γ⇃λ
−−−→ Γ⇃◁M▷M↾ =

⇃Γ◁M▷M↾
⇃ cons cons
−−−−−−−−−→ ⇃MM↾

⇃µ
−−→ ⇃M↾

)
As the next step, we define the inverse of i . As an auxiliary

structure, for an endofunctor G on the category C , we define a
functor G+ : C → C |N | given on objects as:

(G+A)n = G
n+1A

The action onmorphisms is obvious. (Note that theG+ construction
is relevant not only to this proof, since it appears, for appropriate
endofunctors G , as carriers in Examples 4.2 and 4.5.) Using the fact
thatMA = µX .A+ ΣX + Γ◁X + ▷X , we define the following natural
transformation k : M↾A→ E+A as the unique morphism from the
initial algebra induced by the morphism [kvar,kΣ,k◁,k▷], where:

kvar0 =
(
(↾A)0 = A

η
−→ EA = (E+A)0

)
kvarn+1 =

(
(↾A)n+1 = 0

!
−→ En+2A = (E+A)n+1

)
kΣn =

(
(ΣE+A)n = ΣEEnA

cons
−−−−→ EEnA = (E+A)n

)
k◁n =

(
(Γ◁E+A)n = (ΓE

+A)n+1 = ΓEEEnA

cons
−−−−→ EEnA = (E+A)n

)
k▷0 =

(
(▷E+A)0 = 0

!
−→ (E+A)0

)
k▷n+1 =

(
(▷E+A)n+1 = (E

+A)n = En+1A

η
−→ EEn+1A = En+2A = (E+A)n+1

)
The inverse of i is obtained by projecting k on C :

i−1A =
(
⇃M↾A

⇃kA
−−−→ ⇃E+A = (E+A)0 = EA

)
To see that ⇃k · i = id, it is enough to show that ⇃k is a morphism

between algebras, that is, ⇃k · [ivar, iΣ, iΓ] = in · (id + Σ⇃k + Γ⇃k⇃k).
(This is the so-called fusion law; see, for example, Fokkinga’s PhD
thesis [11].) In the other direction, i · ⇃k = id, the situation is a bit
more subtle, as ⇃k is not a morphism from an initial algebra. As a
workaround, we can generalise i to a morphism q : E+A→ M↾A
such that q · k = id (which can be shown using the fusion law) and
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⇃q = i . Putting this together we obtain i · ⇃k = ⇃q · ⇃k = ⇃(q · k) =
⇃id = id.

Remark 5.2. As expected, the adjunction F↾ ⊣ ⇃U is in general not
monadic. Moreover, the comparison functor is in general neither
full nor faithful.

6 Haskell Implementation
In this section we show how the abstract categorical ideas can
guide a Haskell implementation of effects with scoping operations.
Of the two monads we have presented, E is the most amenable
to implementation. For instance, we can represent it as follows
in Haskell. The implementation of E is called Prog, and the type
variables f and g are placeholders for the endofunctors Σ and Γ
respectively.

data Prog f g a = Var a
| Op (f (Prog f g a))
| Scope (g (Prog f g (Prog f g a)))

instance (Functor f , Functor g) ⇒ Monad (Prog f g) where
return = Var
Var x >>= f = f x
Op op >>= f = Op (fmap (>>=f ) op)
Scope sc >>= f = Scope (fmap (fmap (>>=f )) sc)

The implementation of the monad instance is similar to the usual
free monad implementation, except for the additional case of Scope,
where the recursive call is under two layers.

For example, we define NDProg, the monad for programs that
use nondeterminism and once:

data Choice a = Fail | Or a a deriving Functor
data Once a = Once a deriving Functor
type NDProg = Prog Choice Once

Now we can express the program from Example 4.4 in Haskell as

example4 :: NDProg Int
example4 = do x ← once (or (return 1) (return 5))

or (return x) (return (x + 1))

using these three smart constructor functions:

fail :: NDProg a
fail = Op Fail

or :: NDProg a→ NDProg a→ NDProg a
or x y = Op (Or x y)

once :: NDProg a→ NDProg a
once x = Scope (Once (fmap return x))

As Section 4.1 observes, the right notion of interpretation for
Prog f g is not apparent. Fortunately, by way of the ⇃M↾ monad
we can derive the appropriate type of algebras, Alg:

data Nat = Zero | Succ Nat

data Alg f g a = A {a :: ∀n. f (a n) → a n
, d :: ∀n. g (a (Succ n)) → a n
, p :: ∀n. a n → a (Succ n)}

The three functions involve a Nat-indexed carrier type. This use
of indexed types is a complicating factor, which requires the non-
standard GHC-Haskell DataKinds extension. It also shows up in
the fold function that uses an algebra to interpret a whole program.

fold :: (Functor f , Functor g) ⇒ Alg f g a→ Prog f g (a n) → a n
fold alg (Var x) = x
fold alg (Op op) = a alg (fmap (fold alg) op)
fold alg (Scope sc) =

d alg (fmap (fold alg ◦ fmap (p alg ◦ fold alg)) sc)

For practical use, it is convenient to use a generator function to
turn a program’s unindexed return type r into the indexed carrier
type a Zero before folding over the structure.

run :: (Functor f , Functor g)
⇒ (r → a Zero) → Alg f g a→ (Prog f g r → a Zero)

run gen alg prog = fold alg (fmap gen prog)

For our nondeterminism examplewe require a carrier typeCarrierND ::
∗ → Nat → ∗ such thatCarrierND a Zero � [a],CarrierND a (Succ Zero)
� [[a]], and so on. That is, the carrier should be such thatCarrierND a n �
[a]n+1. This datatype can be represented in Haskell as:

data CarrierND a n = ND [CarrierND ′ a n]

data CarrierND ′ a :: Nat → ∗ where
CZND :: a→ CarrierND ′ a Zero
CSND :: [CarrierND ′ a n] → CarrierND ′ a (Succ n)

The corresponding generator and algebra that give semantics to
the syntax defined in example4 using CarrierND are:

genND :: a→ CarrierND a Zero
genND x = ND [CZND x ]

algND :: Alg Choice Once (CarrierND a)
algND = A { . . } where
a :: ∀n a.Choice (CarrierND a n) → CarrierND a n
a Fail = ND [ ]
a (Or (ND l) (ND r)) = ND (l ++ r)

d :: ∀n a.Once (CarrierND a (Succ n)) → CarrierND a n
d (Once (ND [ ])) = ND [ ]
d (Once (ND (CSND l : ))) = ND l

p :: ∀n a.CarrierND a n→ CarrierND a (Succ n)
p (ND l) = ND [CSND l ]

Nowmain ties everything together to interpret example4.

main :: [Int ]
main = toList (run genND algND example4) where

toList :: CarrierND a Zero→ [a]
toList (ND l) = map (λ(CZND x) → x) l

which does indeed yield the expected result [1, 2].

7 More Examples
In this section, to demonstrate that our framework is quite expres-
sive, we show how to use it to model two computational effects
that rely heavily on scoped operations: state with local variables
and concurrency. We express these examples as Haskell implemen-
tations, since we believe that they are more readable this way, and
it shows that our implementation is indeed applicable in practice.

7.1 State with Local Variables
The first example is given by state with local variables. It has two
algebraic operations: Put x s k that assigns the value s to the
variable x, and continues with the computation k, and Get x f
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that retrieves the value stored in the variable x and applies the
function f to the result in order to obtain the value to proceed
with. There is one scoped operation Local x s k that creates a fresh
variable x, which initially stores the value s. If there already is a
variable called x, it is shadowed in k by the fresh x, but outside of
the scope created by Local, the old x is used.

We define the signature together with some smart constructors:

type Name = String
data State s a = Get Name (s→ a) | Put Name s a deriving Functor
data Local s a = Local Name s a deriving Functor
type LSProg s = Prog (State s) (Local s)

get :: Name→ LSProg s s
get x = Op (Get x (λs→ return s))

put :: Name→ s→ LSProg s ()
put x s = Op (Put x s (return ()))

local :: Name→ s→ LSProg s a→ LSProg s a
local x s p = Scope (fmap (fmap return) (Local x s p))

The state that we use in our example is modelled by a function from
variable names to values. We also define two auxiliary functions:

type Memory s = Name→ Maybe s

retrieve :: Name→ Memory s→ s
retrieve x m = case m x of Just s → s

Nothing → error ("var undefined")

update :: Name→ s→ Memory s→ Memory s
update x s m y | x ≡ y = Just s

| otherwise = m y

The carrier that we use is defined as a composition of n state trans-
formers Memory s → (a,Memory s). To avoid complicating the
carrier retrieve does not wrap s in a Maybe to indicate the error .
The promotion morphism wraps the carrier in a transformer given
by the identity on states, while the demotion morphism composes
the two outer transformers, being careful to use the original value
for the local variable.

data CarrierLS s a n =
LS { runLS :: (Memory s→ (Carrier ′LS s a n,Memory s))}

data Carrier ′LS s a :: Nat → ∗ where
CZLS :: a→ Carrier ′LS s a Zero
CSLS :: (Memory s→ (Carrier ′LS s a n,Memory s)) →

Carrier ′LS s a (Succ n)

genLS :: a→ CarrierLS s a Zero
genLS a = LS (λm→ (CZLS a,m))

algLS :: Alg (State s) (Local s) (CarrierLS s a)
algLS = A { . . } where

a (Put x s (LS f )) = LS (f ◦ update x s)
a (Get x p) = LS (λm→ runLS (p (retrieve x m)) m)
d :: ∀s n a. Local s (CarrierLS s a (Succ n)) → CarrierLS s a n
d (Local x s (LS f )) = LS (λm→ case f (update x s m) of
(CSLS g, n) → g (update x (retrieve x m) n))

p :: ∀s n a.CarrierLS s a n→ CarrierLS s a (Succ n)
p l = LS (λm→ (CSLS (runLS l),m))

We define a function that allows us to test computations. It runs a
program starting with empty memory:

testLS :: LSProg s a→ a
testLS p = case fst (runLS (run genLS algLS p) (λx → Nothing)) of

CZLS a→ a

incr :: Name→ Int → LSProg Int ()
incr x i = do

v ← get x
put x (v + i)

testProgLS :: LSProg Int (Int, Int)
testProgLS = do put "x" 1

put "y" 1
local "x" 100 (do incr "x" 100

v ← get "x"
incr "y" v)

incr "x" 2
incr "y" 2
vx ← get "x"
vy ← get "y"
return (vx, vy)

We can test the program above by calling testLS testProgLS and
obtain (3, 203).

7.2 Concurrency via Resumptions
We show how one can perform concurrent computations in any
monad m; compare [7, 21]. The algebraic signature consists of two
operations:Act c, which performs any action c::m a, andKill, which
ends the current process without returning a value. The scoped
signature consists of Spawn c c′, which executes the programs c
and c′ in parallel, and returns the result value of c, and Atomic c,
which guarantees that the computation c is not interleaved with
any other computation. We encode this signature together with
some smart constructors:

data Act m a = Act (m a) | Kill deriving Functor
data Con a = Spawn a a | Atomic a deriving Functor
type ConProg m = Prog (Act m) Con

lift :: Functor m⇒ m a→ ConProg m a
lift m = Op (Act (fmap return m))

kill :: ConProg m a
kill = Op Kill

spawn :: Functor m⇒ ConProg m a→ ConProg m b→ ConProg m a
spawn p q = Scope (fmap (fmap return) (Spawn p (q >> kill)))
atomic :: Functor m⇒ ConProg m a→ ConProg m a
atomic p = Scope (fmap (fmap return) (Atomic p))

The semantics is based on the Resumption datatype, which is simply
the free monad generated by m as a functor. It comes with two aux-
iliary functions: retraction flattens the computation by multiplying
out all the layers of a Resumption value, while interleaveL allows us
to compose two resumptions in parallel by interleaving the layers:

data Resumption m a = More (m (Resumption m a)) | Done a
deriving Functor

retraction ::Monad m⇒ Resumption m a→ m a
retraction (More m) = m >>= retraction
retraction (Done a) = return a
interleaveL :: Functor m⇒ Resumption m a→ Resumption m b→
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Resumption m a
interleaveL (Done a) r = fmap (λ → a) r
interleaveL r (Done ) = r
interleaveL (More m) (More m′) =

More (fmap (λr → More (fmap (λr ′ → interleaveL r r ′) m′)) m)

The carrier of the semantics is given by Resumption composed
with itself an appropriate number of times. The algebra collects
the m-actions in a resumption. The function interleaveL is used to
interpret Spawn operations, while retraction guarantees that atomic
operations are performed without any interleaving.

data CarrierCon m a n =
CC { runCC :: Resumption m (CarrierCon′ m a n)}

data CarrierCon′ m a :: Nat → ∗ where
CZCC :: a→ CarrierCon′ m a Zero
CSCC :: Resumption m (CarrierCon′ m a n) →

CarrierCon′ m a (Succ n)

rJoin :: Functor m⇒ Resumption m (CarrierCon′ m a (Succ n))
→ Resumption m (CarrierCon′ m a n)

rJoin (Done (CSCC r)) = r
rJoin (More m) = More (fmap rJoin m)

genCC ::Monad m⇒ a→ CarrierCon m a Zero
genCC a = CC (Done (CZCC a))

algCC ::Monad m⇒ Alg (Act m) Con (CarrierCon m a)
algCC = A { . . } where

a (Act m) = CC (More (fmap runCC m))
a (Kill) = CC (Done (error "main process killed"))

d :: ∀m n a.Monad m⇒ Con (CarrierCon m a (Succ n)) →
CarrierCon m a n

d (Atomic (CC r)) =
CC (More (fmap (λ(CSCC s) → s) (retraction r)))

d (Spawn (CC r) (CC r ′)) = CC (rJoin (interleaveL r r ′))
p :: ∀m n a.CarrierCon m a n→ CarrierCon m a (Succ n)
p (CC r) = CC (Done (CSCC r))

We can test the syntax and semantics. We use the IO monad for m:

runCon ::Monad m⇒ ConProg m a→ m a
runCon p = retraction
(fmap (λ(CZCC a) → a) (runCC (run genCC algCC p)))

say :: String → ConProg IO ()
say = lift ◦ putStr

conTest1 :: ConProg IO ()
conTest1 = do

spawn (say "hello " >> say "world ")

(say "goodbye " >> say "cruel " >> say "world ")

The computation runCon conTest1 prints out hello goodbye world
cruel world. We can also nest scoped operations:

conTest2 :: ConProg IO ()
conTest2 = do

spawn (atomic (spawn (mapM say ["a", "b", "c"])
(mapM say ["A", "B", "C"])))

(atomic (spawn (mapM say ["1", "2", "3"])
(mapM say ["-", "-", "-"])))

The computation runCon conTest2 prints out aAbBcC1-2-3-.

8 Discussion
More discussion on practical motivation for scoped operations can
be found inWu et al. [29]. One can also compare with explicit scopes
for binding constructs, as in Hendriks and van Oostrom’s [15] λ-
calculus or Gabbay et al.’s [12] explicit name management in the
nominal setting.

Our monad E is a generalisation of Ghani et al.’s monad of ex-
plicit substitutions [13] defined using higher-order syntax, that
is, the initial algebra semantics in C C . Higher-order syntax is a
powerful tool, useful also to formalise variable binding, or to model
nested datatypes in functional programming [16]. Our generalisa-
tion is very slight, as the only addition is the endofunctor Γ, but
our subsequent results shed some new light on Ghani et al.’s orig-
inal monad EΣ, Id. For example, Ghani et al. define a ‘flattening’
morphism, which evaluates explicit substitutions to actual substi-
tutions, called resolveA : EΣ, IdA → Σ∗A. Thanks to the second
presentation of E as ⇃M↾, which arises as the monad induced by
scoped algebras, this morphism can be obtained in a more princi-
pled fashion, as arising from the scoped algebra ⟨Σ∗A, cons, id, id⟩,
where (Σ∗A)i = Σ∗A.

Moreover, Ghani et al. [13] comment on the apparent lack of
modularity in the higher-order syntax for explicit substitutions, at
least in terms of coproducts in the category of monads. In particular,
the explicit substitution monad EΣ, Id is in general not a coproduct
of Σ∗ and EK0, Id. However, thanks to our presentation of E as ⇃M↾,
we can see some modularity, but only modulo sandwiching in the
↾ ⊣ ⇃ adjunction. In detail, notice that Σ∗ = ⇃(Σ)∗↾ and EK0, Id =

⇃(◁+ ▷)∗↾, while EΣ, Id = ⇃(Σ+ ◁+ ▷)∗↾, and (Σ+ ◁+ ▷)∗ is obviously
the coproduct of (Σ)∗ and (◁ + ▷)∗.

Note, however, that if we wanted two separate sets of brackets,
or, more generally, two sets of scoped operations, each with its own
kind of closing brackets, it would not be enough to define ◀ = ◁
and ▶ = ▷, and the monad ⇃Σ + Γ◁ + ▷ + Γ′◀ +▶↾, as it would be
possible to close Γ◁ with ▶, so the brackets would not match. To
consider such structures, we can augment the level information
from N to a list of some data, for example, to capture what kind
of scope there is at each level. This could be useful for modularity,
when we have n different effects in play. In such a case, we could
use objects indexed by lists of labels coming from the set {1, . . . ,n},
denoting the effect to which a particular scope belongs. One could
also try to replace ▷ ⊣ ◁ with other adjunctions. We leave filling in
the details as future work.

One can think of other variations on the problem and the solu-
tion discussed in this paper. For example, we can generalise the
signatures Σ and Γ to N-indexed functors, which expresses that
different operations are available at different levels. For instance,
we can allow throwing exceptions only inside a catch, or we can
allow throwing to a particular catch above, not necessarily the
immediately surrounding one. This is related to the more general
form of indexed monads [19].

An alternative monad that one could use to formalise syntax
with scoped operations is to allow variables in scopes. This can
be obtained with the monad given by the following endofunctor,
defined as a carrier of an initial algebra over C C :

T = µH . Id + ΣH + ΓH (Id + H )

9
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Eilenberg-Moore algebras ofT need to respect structural properties
in the scope, but it is not clear whether they have a nicer, ‘algebraic’
presentation along the lines of the monadM . Moreover, variables
in scopes do not seem to add anything substantial to the examples
that we have considered.

As future work, one can extend the presented material in both
theoretical and practical aspects. As for the former, it would be
interesting to fill in some details that we gloss over in this paper,
such as conditions for existence of the initial algebras (for exam-
ple, Ghani et al. focus on finitary endofunctors on locally finitely
presentable categories) or strength (that is why we restrict the par-
ticular examples to Set, in which every endofunctor is canonically
strong). Another issue is to establish a relationship between syntax
with scopes and frameworks like the second-order algebraic the-
ories introduced by Fiore and Mahmoud [9]. As for the practical
aspects, it is an interesting task to fully work out an implementation
with more advanced features, such as fusion [28], either in Haskell
or a language with native support for handlers, like Eff [4].

Moreover, we notice that our definition of operation does not
capture all of the different kinds of syntax used in practice. In
particular, one sometimes wants an operation to be extranatural.
Examples include Benton and Kennedy’s [5] ‘exceptional syntax’,
or concurrency in which different threads return values of differ-
ent types (compare Wu et al. [29]). From the syntactic side, such
operations are easily definable using the initial-algebra semantics
in C C , while working out a systematic ‘handler’ part is a matter
of future work.
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