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Abstract: Habitual coffee and caffeine consumption has been reported to be associated with numerous
health outcomes. This perspective focuses on Mendelian Randomization (MR) approaches for
determining whether such associations are causal. Genetic instruments for coffee and caffeine
consumption are described, along with key concepts of MR and particular challenges when applying
this approach to studies of coffee and caffeine. To date, at least fifteen MR studies have investigated
the causal role of coffee or caffeine use on risk of type 2 diabetes, cardiovascular disease, Alzheimer’s
disease, Parkinson’s disease, gout, osteoarthritis, cancers, sleep disturbances and other substance
use. Most studies provide no consistent support for a causal role of coffee or caffeine on these health
outcomes. Common study limitations include low statistical power, potential pleiotropy, and risk of
collider bias. As a result, in many cases a causal role cannot confidently be ruled out. Conceptual
challenges also arise from the different aspects of coffee and caffeine use captured by current genetic
instruments. Nevertheless, with continued genome-wide searches for coffee and caffeine related loci
along with advanced statistical methods and MR designs, MR promises to be a valuable approach to
understanding the causal impact that coffee and caffeine have in human health.

Keywords: Mendelian Randomization; coffee; caffeine; behavior; causality; genetic epidemiology;
epidemiological methods

1. Introduction

Coffee is one of the most widely consumed beverages in the world. Consumption patterns vary by
country with larger per capita consumptions reported for Nordic countries, such as Finland (12.2 kg),
Sweden (10.1 kg) and Norway (8.7 kg) compared to other countries such Brazil (5.9 kg), Netherlands
(5.3 kg), USA (4.5 kg), Australia (4.0 kg), Russia (1.7 kg), China (0.8 kg) and Turkey (0.7 kg) [1].
For most populations, regular coffee is the primary dietary source of caffeine; a psychostimulant also
present in tea, cola, and cocoa products. Absorption and exposure to caffeine from these different
sources is similar although a slight delay in absorption has been reported for cola and chocolate [2–4].
Roasted coffee also contains unique polyphenols (i.e., chlorogenic acid) and melanoidins that are
major contributors to antioxidants in diet [5,6]. Boiled or unfiltered coffee contains diterpenoids,
including cafestol and kahweol [7]. Trigonelline, magnesium, potassium, niacin, lignans, as well as
heterocyclic amines and acrylamide have also been detected in the beverage [8–12]. With widespread
popularity and availability of coffee, there is increasing public and scientific interest in the potential
health consequences of its regular consumption. Traditional epidemiology has been fundamental to
our increased knowledge on habitual coffee intake and health; but while a highly efficient and relevant
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approach, it has several limitations that warrant consideration when interpreting the results [13].
Among these is establishing causal associations. The current perspective focuses on Mendelian
Randomization (MR) approaches for determining a causal role of habitual coffee and caffeine intake
on health. Because coffee and dietary caffeine intake are highly correlated we focus on both exposures.
We first provide a brief review of coffee, caffeine and health. We follow with key concepts of the
MR approach and particular challenges when applying it to studies of coffee and caffeine. Recent
MR studies of coffee, caffeine and health are discussed, and we conclude with future directions for
the field.

2. Coffee, Dietary Caffeine and Health

A recent umbrella review considered data from 201 meta-analysis of epidemiological studies of 67
unique health outcomes, and concluded that coffee likely has a beneficial role in reducing risk of type 2
diabetes (T2D), cardiovascular diseases (CVD), several cancers and Parkinson’s disease (PD), but that
high caffeine intake is likely harmful on pregnancy outcomes, such as low birth weight and pregnancy
loss [14]. Overall, coffee consumption seems generally safe within usual levels of intake (i.e., at 3 to
4 cups a day) and more likely to benefit health than harm [14]. Rigorous reviews of caffeine toxicity
conclude that consumption of up to 400 mg caffeine/day (equivalent to ~4 cups of coffee) in healthy
adults, or 2.5 mg/kg/day for children and adolescents is not associated with overt adverse effects [15]
and thus generally support the overall findings on habitual coffee intake and health [14]. Meanwhile,
the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) lists caffeine intoxication and
withdrawal as disorders, and have added ‘caffeine use disorder’ to ‘Conditions for Further Study’ [16].
Much of our knowledge pertaining to habitual coffee and caffeine intake on risk of chronic disease has
been limited to observational research [14,15]. Inferring causality from observational data is difficult,
due to potential residual confounding and reverse causality [17]. For example, in some populations
coffee consumption is highly correlated with disease risk factors, such as smoking. Participants might
acknowledge their true coffee behavior, but underreport their smoking behavior. As a consequence the
coffee intake variable will continue to convey information about smoking even after adjustment for
measures of smoking [18]. Coffee drinkers may also have reduced their coffee intake in light of disease
symptoms or diagnosis, which might result in an apparent, but non-causal protective association
between coffee and the disease [19]. Observational studies also provide no insight to mechanisms
linking coffee to health. Coffee contains caffeine, but also hundreds of other chemicals that might
benefit or harm health via different biological pathways [9]. Randomized trials of coffee consumption
and disease outcomes would require long-term adherence to high or no coffee consumption, which is
challenging given strong coffee consumption habits [20].

3. Mendelian Randomization (MR)

MR is a method of using the association of variation in genes with biomarkers or modifiable
exposures to examine the causal effect of these biomarkers and exposures on disease outcomes in
observational studies. The underlying principle of MR is that if a genetic variant alters the level
of an exposure of interest, then this genetic variant should also be associated with disease risk and
to the extent predicted by the effect of the genetic variant on the exposure [21,22]. According to
Mendel’s Law of Inheritance, alleles segregate randomly from parents to offspring. Thus, offspring
genotypes are unlikely to be associated with confounders in the population. Moreover, germ-line
genotypes are fixed at conception and so precede the observed variables, avoiding issues of reverse
causation [23]. MR studies are often described as natural RCTs, but there are important differences [24].
For example, RCTs are usually of short duration while an individual’s genetics generally reflect
life-long exposures [21,24,25].

MR relies on a number of assumptions, in particular that the genetic variants(s): (1) Is associated
with the modifiable exposure of interest, (2) is not associated with confounders of the exposure to
outcome association and (3) only influences the outcome through the exposure of interest [17]. The first



Nutrients 2018, 10, 1343 3 of 19

assumption is the only one that can be formally tested, but MR methods and study designs have
advanced much over the last few years and now include methods that are robust to potential violations
of assumptions (2) and (3). It is increasingly widely used as a causal inference method in epidemiology.
One-sample (genetics, exposure and outcome measured in the same sample) and two-sample (exposure
and outcome measured in different samples) are the most common MR study designs. The latter
is advantageous in situations where it is difficult to measure exposure and outcome in the same
sample and can also be performed on publicly available genome-wide association study (GWAS) data
(summary-level data). When possible, an instrument (genetic marker of exposure) that combines the
effects of many SNPs is used to boost power while also addressing MR assumption violations (see
below). The basic method for summary-level data, inverse-variance weighted (IVW), uses a fixed
effects meta-analysis approach to combine the Wald ratio estimates of the causal effect (SNP-outcome
effect divided by the SNP-exposure effect [26]) obtained from different SNPs, but assumes all SNPs are
valid instruments or are invalid in such a way that the overall bias is zero [27,28]. The IVW is generally
equivalent to the two-stage least squares estimate commonly used with individual level data.

4. Genetic Determinants of Coffee and Caffeine Consumption

Opportunities for MR studies of coffee and health have been made possible by the success of
GWAS, which have identified multiple genetic variants associated with self-reported habitual coffee
and caffeine consumption (Table 1) [29–33]. Loci near ADORA2A, BDNF and SLC6A4 likely act directly
on coffee drinking behavior by modulating the acute psychostimulant and rewarding properties of
caffeine; driving factors for coffee drinking and caffeine use [34]. However, loci near AHR, CYP1A2,
POR, and ABCG2 generally present with the largest effect sizes and likely impact drinking behavior
indirectly by altering the metabolism of caffeine and thus the physiological levels of this compound
available for its psychostimulant effects. Only one locus is implicated in the sensory properties of
coffee (OR8U8). Others have no obvious role in coffee or caffeine consumption, but have previously
been associated with other traits in GWAS notably obesity, glucose and lipids [35–38]. GWAS and
smaller follow-up studies have linked these loci to consumption of regular coffee, decaffeinated coffee,
tea, total caffeine and water [31,39,40]. A subsequent GWAS of circulating caffeine metabolite levels
further informed the roles of these loci in coffee and caffeine consumption behavior, but also identified
variants near CYP2A6 associated with paraxanthine-to-caffeine ratio (index for caffeine metabolism),
that were nominally associated with drinking behavior [41]. Importantly, genetic variants leading
to increased coffee/caffeine consumption associate with lower circulating caffeine levels and higher
paraxanthine-to-caffeine ratio suggesting a fast caffeine metabolism phenotype. Thus, many of the loci
affecting coffee and caffeine drinking behavior do so by modulating the physiological levels of caffeine.

5. Key Challenges to MR Studies of Coffee and Caffeine

Despite progress in the identification of robust genetic variants for coffee and caffeine
consumption, efforts to apply these variants to MR studies of coffee and caffeine have been met with
challenges, such as trait heterogeneity, pleiotropy and collider bias as discussed below. Limitations
in the conduct and interpretation of MR studies more generally, along with potential solutions, have
been reviewed in detail elsewhere [23,25,42], and include weak instrument bias, lack of reliable
genetic instruments, population stratification, low statistical power (and therefore wide confidence
intervals around causal estimates), linkage disequilibrium (LD) and the Winner’s Curse phenomenon
(i.e., the tendency for effect sizes in initial studies to be inflated).
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Table 1. Genetic determinants of coffee and caffeine consumption [29–33].

Locus (Index SNP,
Coffee/Caffeine Increasing

Allele)
Closest Gene(s) Encoded Protein(s): Function [UniProtKb] Assoc. with Caffeine

Metabolites *
Assoc. with Other

Traits †

Hypothesized Link to
Caffeine or Coffee

Consumption

1q25.2
(rs574367, T) SEC16B

SEC16 Homolog B, Endoplasmic Reticulum Export Factor:
Required for secretory cargo traffic from the endoplasmic

reticulum to the Golgi apparatus and for normal
transitional endoplasmic reticulum organization.

p > 0.05 Y None

2p25.3
(rs10865548, G) TMEM18

Transmembrane Protein 18: Transcription repressor.
Sequence-specific ssDNA and dsDNA binding protein,

with preference for GCT end CTG repeats. Cell migration
modulator, which enhances the glioma-specific migration

ability of neural stem cells and neural precursor cells.

p > 0.05 Y None

2p23.3
(rs1260326,C) GCKR

Glucokinase regulatory protein (GKRP): Inhibits
glucokinase by forming an inactive complex with this

enzyme.

↓↓
p < 1 × 10−5 Y

Response to
caffeine/coffee:

May function in the
glucose-sensing process of

the brain that may
influence central

pathways responding to
caffeine/coffee.

Metabolism of caffeine:
Inferred by association

with caffeine metabolites

4q22
(rs1481012, A) ABCG2

ATP-binding cassette sub-family G member 2:
High-capacity urate exporter. Plays a role in porphyrin

homeostasis and cellular export of hemin and heme. May
play an important role in the exclusion of xenobiotics from
the brain. Implicated in the efflux of numerous drugs and

xenobiotics.

↑
p < 0.05 Y

Metabolism of caffeine:
Caffeine/metabolite

efflux transporter.

7p21
(rs4410790 C, rs6968554, G) AHR

Aryl hydrocarbon receptor: Ligand-activated
transcriptional activator. Activates the expression of

multiple phase I and II xenobiotic metabolizing enzymes.
Involved in cell-cycle regulation and likely plays a role in

the development/maturation of many tissues.

↓↓
p < 5 × 10−8 N

Metabolism of caffeine:
Regulates CYP1A2

expression.

7q11.23
(rs7800944, C) MLXIPL Carbohydrate-responsive element-binding protein:

Transcriptional repressor. Y

Response to
caffeine/coffee:
May regulate

transcription of genes
(e.g., GCKR) implicated in
the response to caffeine.
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Table 1. Cont.

Locus (Index SNP,
Coffee/Caffeine Increasing

Allele)
Closest Gene(s) Encoded Protein(s): Function [UniProtKb] Assoc. with Caffeine

Metabolites *
Assoc. with Other

Traits †

Hypothesized Link to
Caffeine or Coffee

Consumption

7q11.23
(rs17685, A) POR

NADPH-cytochrome P450 reductase: Required for electron
transfer from NADP to cytochrome P450 in microsomes

and can also facilitate electron transfer to heme oxygenase
and cytochrome B5.

↓
p < 0.05 N

Metabolism of caffeine:
Required for CYP1A2

catalytic activity.

11p13
(rs6265, C) BDNF

Brain-derived neurotrophin factor: During development,
promotes survival and differentiation of selected neuronal

populations of the PNS and CNS. Major regulator of
synaptic transmission and plasticity at adult synapses in

many regions of the CNS.

p > 0.05 Y

Response to caffeine:
Modulates neurotransmitters

potentially mediating the
rewarding response to

caffeine.

11q12.1
(rs597045, A) OR8U8 Olfactory Receptor Family 8 Subfamily U Member 8:

Odorant receptor p > 0.05 N Smell/taste perception of
coffee

14q12
(rs1956218, G) AKAP6

A-Kinase Anchoring Protein 6: Binds to type II regulatory
subunits of protein kinase A and anchors/targets them to
the nuclear membrane or sarcoplasmic reticulum. May act

as an adapter for assembling multiprotein complexes.

p > 0.05 N None

15q24
(rs2470893 T, rs2472297, T) CYP1A1, CYP1A2

Cytochrome P450 1A1/2: Cytochromes P450 are a group of
enzymes involved in NADPH-dependent electron transport
pathways. They oxidize a variety of compounds, including

steroids, fatty acids, and xenobiotics.

↓↓
p < 5 × 10−8 N

Metabolism of caffeine:
CYP1A2 metabolizes >95% of

caffeine.

17q11.2
(rs9902453, G)

EFCAB5
SLC6A4

EF-hand calcium-binding domain-containing protein 5:
Unknown

Sodium-dependent serotonin transporter: In CNS,
regulates serotonergic signaling via transport of serotonin
molecules from the synaptic cleft back into the presynaptic

terminal for reuse.

p > 0.05 N

Response to caffeine/coffee:
Serotonin may mediate the

rewarding response to
caffeine.

18q21.32
(rs66723169, A) MC4R

Melanocortin 4 Receptor: Receptor specific to the
heptapeptide core common to adrenocorticotropic hormone
and alpha-, beta-, and gamma-MSH. Plays a central role in

energy homeostasis and somatic growth.

p > 0.05 Y None

22q11.23
(rs2330783, G) SPECC1L-ADORA2A

Adenosine A2a Receptor: Receptor for adenosine. The
activity of this receptor is mediated by G proteins, which

activate adenylyl cyclase.

↑
p < 0.05 N

Response to caffeine/coffee:
Caffeine blocks this receptor,
which mediates some of the
psychostimulant effects of

caffeine.

* SNP is associated with (i) higher blood levels of caffeine (↑); (ii) lower blood levels of caffeine (↓); or (iii) lower blood levels of caffeine and higher paraxanthine-to-caffeine ratio (↓↓).
† GWAS (genome-wide association study) catalogue traits unrelated to caffeine or coffee. Y, Yes; N, No.



Nutrients 2018, 10, 1343 6 of 19

5.1. Trait Heterogeneity

The most comprehensive (and therefore powerful) genetic instrument employed in an MR study
of coffee will reflect multiple aspects of coffee drinking behavior (Table 2), such as caffeine metabolism,
reward-response and potentially taste. Such heterogeneity does not preclude causal inference, but it
does limit the ability to infer causality for particular dimensions of coffee (e.g., caffeine vs non-caffeine)
and makes interpretation of MR analyses more difficult [23,25]. An instrumental variable (IV) that
narrows in on a particular aspect of coffee drinking might also face issues of interpretation. For example,
genetically-inferred ‘fast’ and ‘slow’ caffeine metabolizers may consume different amounts of the same
type of coffee, but their circulating caffeine levels may not be different. However, circulating levels of
non-caffeine constituents of coffee will differ. Alternatively, given the same amount and type of coffee
consumed, slow caffeine metabolizers will, on average, have higher circulating caffeine levels than
fast caffeine metabolizers. Circulating levels of non-caffeine constituents will generally be the same.
Because most of the SNPs associate with caffeine intake, and not exclusively coffee intake, the genetic
instrument for coffee might also reflect exposure to other dietary sources of caffeine, which might
confound or mask any causal relationship between coffee and outcome [43]. Although MR studies are
thought to be relatively protected against exposure measurement error, this is less likely to be the case
for an MR study of coffee or caffeine [20]. For example, the genetic predisposition to drink coffee, due
to an increased caffeine metabolism might also impact preference for regular strong coffee over other
coffee types. Taken together, it is important to specify the hypothesis being tested a priori, select the
optimal IV and sample for analysis, and consider alternate explanations for positive or null results.
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Table 2. Mendelian Randomization (MR) studies of coffee and caffeine consumption.

Study Outcome Instrumental
Variable (IV) Design & Approach Results Interpretation Limitations

Reported

Nordestgaard et al.
2015 [44]

Obesity,
metabolic syndrome,

T2D and related
measures

(BMI, WC, height,
weight, SBP, DBP,

TGs, TC, HDL,
glucose)

5-SNPs
AHR, CYP1A2

Score and single SNPs

One-sample
Individual-level data

2SLS
n ≤ 93,179

Copenhagen General
Population Study (CGPS)
and the Copenhagen City

Heart Study (CCHS).
Summary-level data

Wald ratio, IVW
T2D only

DIAGRAM (n ≤ 78,021)

Observational:
Coffee significantly reduced risk of obesity,

metabolic syndrome and T2D
Coffee significantly increased BMI, WC, weight,

height, SBP, DBP, TGs, and TC and decreased HDL
SNP-outcome: NS

Similar results when individuals were stratified
into coffee drinkers and coffee abstainers however,
among those without coffee intake, blood pressure

was lower with higher coffee-intake allele score

No evidence
supporting a causal

relationship between
coffee and outcomes

Underpowered IV
Pleiotropy

Collider Bias

Nordestgaard &
Nordestgaard, 2016

[43]

CVD (IHD, IS, IVD)
All-cause and CVD

mortality

2-SNPs
AHR, CYP1A2

Score and single SNPs

One-sample
Individual-level data

2SLS
n ≤ 112,509

CGPS, CCHS and
Copenhagen

Ischaemic Heart Disease
Study (CIHDS)
3822 IHD cases

1708 IS cases
4971 IVD cases

971 CVD deaths
5422 total deaths

Summary-level data
Wald ratio, IVW

IHD only
Cardiogram (n = 80,517) and

C4D (n = 30,433)

Observational:
U-shaped association between coffee intake and
IHD, IS, IVD and all-cause mortality. Lowest risk

with medium coffee intake compared with no
coffee intake.

SNP-outcome: NS
Similar results when individuals were stratified

into coffee abstainers, coffee drinkers, coffee
drinkers excluding tea and cola drinkers.

No evidence
supporting a causal

relationship between
coffee and outcomes

Underpowered IV
Pleiotropy

Collider Bias
(stratified analysis)

Confounding by
other caffeine

containing-beverages
Cannot rule out

non-linear effects of
coffee on outcomes

Kwok et al., 2016
[45]

T2D, IHD, depression,
Alzheimer’s disease,

lipids, glycemic traits,
adiposity or
adiponectin

9-SNPs
AHR, CYP1A2(2),

GCKR, MLXIPL, POR,
EFCAB5, BDNF,

ABCG2
5 SNPs

AHR, CYP1A2(2),
POR, EFCAB5

3 SNPs
AHR, CYP1A2(2)

Two-sample
Summary-level data

Multiple published GWAS
WME

9 SNPs: ↑T2D, ↓TGs, ↑BMI, ↑WHR, ↑IR
5 SNPs: NS
3 SNPs: NS

No evidence
supporting a causal

relationship between
coffee and outcomes

Confounding
(Population

stratification)
Pleiotropy

Cannot rule out
non-linear effects of
coffee on outcomes
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Table 2. Cont.

Study Outcome Instrumental
Variable (IV) Design & Approach Results Interpretation Limitations

Reported

Treur et al., 2016
[46]

Smoking behavior
Coffee intake
Caffeine use

1-SNP for smoking
heaviness (CHRNA3)
8-SNP score for coffee

intake
AHR, CYP1A2, GCKR,

MLXIPL, POR,
EFCAB5, BDNF,

ABCG2

Individual-level data
Bivariate genetic modelling

(SEM)
n = 10,368

current smoking (y/n)
caffeine use (high/low)
coffee use (high/low)

Bidirectional MR
Regression analyses

n = 12,319
Self-reported caffeine use

(mg/day), coffee use
(cups/day), cigs/day,

smoking initiation and
persistence

Summary-level data
LD score regression

CCGC
Tobacco, Alcohol and

Genetics Consortium (TAG):
cigs/day, smoking initiation
and persistence n ≤ 38,181

Bivariate genetic modelling
Current smoking-coffee intake: G r = 0.47, E r = 0.30
Current smoking-caffeine use: G r = 0.44, E r = 0.00

MR: NS
LD score regression

Smoking heaviness- coffee intake: r = 0.44
Smoking initiation-coffee intake: r = 0.28

Smoking persistence-coffee intake: r = 0.25

Genetic factors
explain most of the
association between

smoking and caffeine
consumption.

Quitting smoking
may be more difficult

for heavy caffeine
consumers, given

their genetic
susceptibility.

Underpowered
Pleiotropy

Taylor et al., 2017
[47]

Prostate cancer (PC)
risk and progression

2-SNPs
AHR, CYP1A2

Individual-level data
Two-sample MR

Regression analyses +
meta-analysis

Practical consortium
(n = 46,687)

4 studies
GS-coffee

GS-tea
GS-(tea + coffee)

23 studies
GS-PC

GS-PC stage
GS-PC grade
GS-mortality

Significant GS-coffee,
GS-tea and GS-(tea + coffee)

GS-PC grade (p = 0.02)

No clear evidence
supporting a causal

relationship between
coffee and outcomes

Between-study
heterogeneity in case

definition
Imprecise IV

Pleiotropy
Underpowered
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Table 2. Cont.

Study Outcome Instrumental
Variable (IV) Design & Approach Results Interpretation Limitations

Reported

Ware et al., 2017 [48] Smoking heaviness,
cigs/day

8-SNP GS
AHR, CYP1A2, GCKR,

MLXIPL, POR,
EFCAB5, BDNF,

ABCG2
6-SNP GS

AHR, CYP1A2, GCKR,
MLXIPL, POR,

EFCAB5
2-SNP GS

AHR, CYP1A2

2-sample MR
Summary-level data

IVW, WME
CCGC
TAG

GWAS Cotinine levels (n =
4548)

[in vitro experiments]
Individual-level data
(replication, n = 8072

smokers who drink coffee)
IVW, WME

Each cup of coffee/day lead to a decrease in 1.5
(8 SNPs), 1.7 (6 SNPs) or 2.0 (2 SNPs) cigs/day.

Coffee did not influence cotinine levels.
Coffee did not influence cigs/day in replication

sample.

Coffee intake is
unlikely to have a

major causal impact
on cigarette smoking

Pleiotropy
Underpowered

replication
Underpowered IV

Bjorngaard et al.,
2017 [49]

Coffee intake
(cups/day, sensitivity

analysis: Any vs.
none)

Tea intake (cups/day,
sensitivity analysis:

Any vs. none)
Smoking status
(never, former,

current)
Smoking heaviness

(cigs/day)

1-SNP (CHRNA3) for
smoking heaviness

2-SNPs
(AHR, CYP1A2) for

coffee intake GS

Individual-level data
Bidirectional MR

Regression analyses +
meta-analysis

UK biobank (n ≤ 114,029)
HUNT (n ≤ 56,664)
CGPS (n ≤ 78,650)

coffee or tea drinkers only

Observational
Former & current smoking associated with

higher coffee consumption (not tea) vs. never
smokers.

Among smokers: Each cig/day increased coffee
and tea intake; stronger for coffee

MR
SMK-SNP associated with coffee intake in

current or ever smokers only
Coffee-SNP not associated with smoking

behavior

Higher cigarette
consumption causally

increases coffee
intake.

Underpowered to
rule out causal coffee

→ smoking
association.
UK Biobank

non-representative
sample

Collider bias: (i) if
selection into the

sample is related to
both coffee and
smoking (ii) via

smoking stratification
Phenotype

measurement error

Larsson et al., 2017
[50]

Alzheimer’s Disease
(AD)

5-SNP GS
AHR, CYP1A2,
MLXIPL, POR,

EFCAB5
(coffee and 23 other

exposures tested)

Summary-level data
2-sample MR

IVW, WME, MR Egger
CCGC

International Genomics of
Alzheimer’s Project (n =

17,009 cases, 37,154 controls)

Suggestive association between coffee GS and
increased risk of AD (p = 0.01)

Suggestive causal
relationship between
coffee and AD risk,

but in opposite
direction to that

expected based on
observational studies.

None.

Verweij et al., 2018
[51]

Causal associations
between nicotine,

alcohol, caffeine, and
cannabis use

Polygenic scores (p <
5 × 10−8 or p < 1 ×

10−5) for each
exposure

Summary-level data
two-sample bidirectional MR

IVW, Wald ratio
Multiple published GWAS

Smoking cigs/day—caffeine use (p = 0.01)
Alcohol use: Smoking initiation (p = 0.03)

Little evidence for
causal relationships

between nicotine,
alcohol, caffeine, and
cannabis use, but may

suggest a common
liability model

(shared genetics)

Imprecise IV
GWAS sample

overlap (bias to null)
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Table 2. Cont.

Study Outcome Instrumental
Variable (IV) Design & Approach Results Interpretation Limitations

Reported

Ong et al., 2017 [52] Epithelial ovarian
cancer

4-SNP GS (coffee IV)
ABCG2, AHR,
CYP1A2, POR

2-SNP GS (caffeine IV)
AHR, CYP1A2

Summary-level data
Two-sample MR

Wald-type ratio estimator
CCGC

Ovarian Cancer Association
Consortium (n = 44,062,

20,683 cases)

NS

No evidence
supporting a causal

relationship between
coffee/caffeine and

outcome

MR Assumption 3 not
confirmed

Not generalizable to
non-European
populations.

Underpowered or
imprecise IV

Cannot rule out
non-linear effects of
coffee/caffeine on

cancer

Larsson et al., 2018
[53] Gout

5-SNPs
AHR, CYP1A2,
MLXIPL, POR,

EFCAB5

Summary-level data
2-sample MR

IVW, WME, MR Egger
CCGS

Serum Uric acid GWAS (n =
110,347)

Gout GWAS (2115 cases and
67,259 controls).

CYP1A2 and MLXIPL SNPs inversely associated
with uric acid

Combined MR: significant inverse relationship
(p = 7.9 × 10−6)

All but AHR SNP associated with lower gout
risk.

Combined MR: significant inverse relationship
(p = 0.005)

Supports causal
inverse association

between coffee intake
and risk of gout.

None

Treur et al., 2018
[54]

Sleep behaviors
(sleep duration,
chronotype and

insomnia complaints)

IV threshold p < 5 ×
10−8

4 SNPs (POR, AHR,
CYP1A2, MXLIPL)

p < 5 × 10−5

4 SNPs plus 23 SNPs

Summary-level data
Two-sample bidirectional MR

IVW, LD score regression
CCGC

Caffeine metabolite GWAS
Sleep GWAS

MR: NS
LD score regression: NS

No evidence for
causal relationship
between habitual
coffee intake and
sleep behaviors.

Underpowerd LD
score regression using

caffeine metabolite
GWAS

Phenotype
measurement error

Noyce et al., 2018
[55]

Parkinson’s Disease
(PD)

Morning person
primary exposure (15

SNPs)
coffee secondary

exposure (4-SNPs,
AHR, BDNF, POR,

CYP1A2)

Summary-level data
Two-sample MR

IVW
CCGC

Morning person GWAS (n =
89,283)

PD GWAS (13,708 cases,
95,282 controls)

Morning person MR: p = 0.01
Coffee MR: NS

Along with published
RCT results, findings
suggest that caffeine
may neither prevent
PD occurring nor be

of benefit in those
with the condition.

Use of summary-level
data does not allow

adjustment for
potential confounding

factors.
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Table 2. Cont.

Study Outcome Instrumental
Variable (IV) Design & Approach Results Interpretation Limitations

Reported

Zhou et al. 2018 [56]

Cognitive function
composite global

cognition and
memory scores

2-SNPs
AHR, CYP1A2

Other SNPs
(secondary analysis)

Individual-level data
n = 415,530 (300,760 coffee

drinkers) from 10
meta-analyzed European

ancestry cohorts.
Genetic analysis performed

under different levels of
habitual coffee intake (1–4

and ≥4 cups/day. Negative
control: Non-coffee drinkers.

Observational:
No overall association between coffee intake

and global cognition and memory.
SNP-outcome: NS

Study provides no
evidence to support
beneficial or adverse
long-term effects of

coffee intake on
global cognition or

memory.

Pleiotropy.
Caution when

interpreting coffee IV

Lee, 2018 [57] Osteoarthritis
4 SNPs,

POR, CYP1A2,
NRCAM, NCALD

Summary-level data
Two-sample MR

IVW, WME, MR-Egger
regression

CCGC + Amin et al. 2012 (n
= 18,176)

Osteoarthritis GWAS (7410
cases, 11,009 controls)

IVW: p = 0.03
WME: p = 0.05

MR Egger: NS (however, no pleiotropy was
evident)

Results suggest that
coffee consumption is

causally associated
with an increased risk

of osteoarthritis.

Underpowered or
imprecise IV

Results limited to
populations of

European ancestry
and limited to

osteoarthritis in the
knee and hip

AD—Alzheimer’s disease; BMI—body mass index; CCGC—Coffee and Caffeine Genetics Consortium; DBP—diastolic blood pressure; DIAGRAM—Diabetes Genetics Replication and
Meta-analysis; GS—genetic (SNP) score; HDL—high-density lipoprotein; IHD—ischaemic heard disease, IS—ischaemic stroke, IVD—ischaemic vascular disease, IVW—inverse-variance
weighted meta-analysis, NS—non-significant; PC—prostate cancer; PD—Parkinson’s Disease; SBP—systolic blood pressure; T2D—type 2 diabetes; TC—total cholesterol; TGs—triglycerides;
WC—waist circumference; WME—weighted median estimate.
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5.2. Pleiotropy

Pleiotropy can violate MR assumption 3, which requires that the genetic variant only influences
the outcome through the exposure of interest. Vertical pleiotropy does not violate MR assumption 3
and occurs when the genetic variant is associated with a factor on the pathway between the exposure
and outcome, but only because of its effect on the exposure [58]. Horizontal (or biological) pleiotropy
occurs when a genetic variant is associated with multiple exposures or traits and is therefore a
violation of MR assumption 3 [17,58]. Seven of the fourteen loci associated with coffee or caffeine
consumption are also associated with other traits based on GWAS [35] (Table 1). Whether this results
from horizontal pleiotropy or a true causal relationship between coffee and these other traits is unclear.
Nevertheless, since it is not possible to prove assumption 3 holds for all SNPs in an MR study its
becoming common practice to implement extensions of the basic MR methodology that detect the
presence of pleiotropy and account for it in causal estimates of the exposure [59]. Random effects
IVW or weighted generalized linear regressions are simple options [22,60,61], but common methods
that explicitly account for pleiotropy include MR-Egger regression [62], and the weighted-median
estimate [63]. Newer methods include MR-PRESSO [64] and generalized summary MR (GSMR) [65].
Each approach relies on different (and largely uncorrelated) assumptions, and therefore the use of
multiple approaches allows triangulation; if all provide consistent causal estimates we can be more
confident that a true causal effect exists.

5.3. Collider Bias

When individual-level data are available, a common strategy is to restrict SNP-outcome analysis
to coffee drinkers arguing that the SNPs are associated with coffee drinking (heaviness) and thus
causal relationships should only be observed among coffee drinkers (a form of gene-environment
interaction) [43,44,48,49,56,59,66]. SNP-outcome associations among non-drinkers (‘negative control
sample’) would suggest a violation in at least one of the assumptions [59,66]. However, this strategy
introduces potential for collider bias given that several loci associated with coffee intake also distinguish
between non-drinker and heavy coffee drinkers [31]. Collider bias occurs when the exposure
and outcome of interest independently influence a third risk factor, and this third risk factor is
conditioned upon, either through statistical adjustment or stratification [67–69]. This bias will also
apply to the genetic correlates of the exposure and outcome. Indeed, MR studies of coffee intake
among the Copenhagen population provided evidence for collider bias [43,44]. For example, among
coffee-abstainers, the genetic IV for coffee intake was inversely associated with age. Since age was a
risk factor for the outcome and was strongly associated with coffee intake, but among coffee consumers
only, the IV-age association in the ‘negative control sample’ likely arises from collider bias [43].

6. MR Studies of Coffee, Caffeine and Health

Table 2 summarizes all MR studies of coffee or caffeine and health outcomes published to-date.
Studies are in descending order by date of publication (column 1). For each study we extracted the
outcome of interest (column 2), the genetic variants used as the IV (column 3), the basic design and
approach (column 4), main results (column 5), interpretation or overarching conclusion of the study
(column 6) and limitations as acknowledged by study authors (column 7). With one exception [57],
all study IVs included at least SNPs near CYP1A2 and AHR—the strongest and most robust variants
linked to coffee drinking behavior and caffeine metabolite levels (Table 1). Primary analysis was
conducted using predominately regression analyses or IVW meta-analysis for multi-SNP analysis.
These were generally followed by weighted median estimates and MR-Egger regressions to address
potential assumption violations. In most studies, the exposure of interest was simply defined as
coffee consumption or caffeine use. Data from the GWAS of coffee consumption among 91,462 coffee
drinkers in the Coffee and Caffeine Genetics Consortium (CCGC) [31] were used in all summary-level
data analysis.
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Epidemiological studies report a consistent inverse linear association between coffee consumption
and T2D [14], which extends to decaffeinated coffee. This is typically interpreted as evidence for
non-caffeine constituents of coffee underlying the coffee-T2D relationship [14]. Two studies, using
individual-level and summary-level data for up to ~170,000 participants (26,000 T2D cases) provided
no evidence in support of a causal association between coffee intake and T2D risk [44,45], which also
extended to measures of adiposity, blood pressure, lipid and glucose metabolism [44,45]. Nordestgaard
and colleagues [44] additionally examined a BMI IV (SNPs in/near FTO, MC4R and TMEM18) to
examine potential reverse causation from BMI to coffee intake, and as a positive control for risk of T2D.
The coffee-intake IV was not linked to BMI, but the BMI-IV was positively associated with coffee intake.
Interestingly, SNPs included in the BMI-IV were recently shown to associate with coffee consumption
in GWAS (Table 1) [33] and so possibly relate to reward mechanisms (the causal pathway) relevant to
coffee drinking behavior and obesity and not adiposity per se [33].

Epidemiological studies also suggest coffee intake may reduce risk of CVD, CVD-mortality
and all-cause mortality, but with greatest risk reduction with 3 to 5 cups/day (i.e., a non-linear
association) [14]. Nordestgaard and Nordestgaard [43] examined all three of these outcomes in 112,509
Danes and observed a similar pattern of benefits associated with coffee consumption over a 6 year
follow-up, but no evidence for causality. In the subgroup of coffee drinkers they noted strong positive
and plausible LDL-SNP and HRT-SNP associations, but could not rule-out that such associations could
have resulted from collider bias [43].

Caffeine, nicotine, alcohol, and cannabis use are highly correlated behaviors [70]. Potential
mechanisms include shared genetic and/or shared environmental factors (i.e., common liability)
or a causal influence of one on the other [71]. The co-occurrence of coffee/caffeine use with other
substance use behaviors has been investigated in four MR studies [46,48,49,51]. Three of these studies
employed bidirectional MR [46,49,51], in which IVs for each substance use were used to evaluate
causal effects and their direction [23,72]. The first study focused on the association between smoking
and caffeine using three approaches: Bivariate genetic modelling in a twin sample, LD score regression
with summary level-data and bidirectional MR analysis using individual-levels data [46]. The results
suggested shared genetic factors for caffeine/coffee intake and smoking behavior, rather than a causal
influence of one behavior on the other. Ware and colleagues [48] specifically focused on the causal role
of coffee consumption on smoking heaviness. Two-sample MR analyses indicated that heavier coffee
consumption might lead to reduced heaviness of smoking. However, their in vitro experiments, and
attempt to replicate in the UK Biobank sample of smokers who drank coffee, did not support these
initial causal findings, and overall were not consistent with the direction of association reported in
observational analysis. Bjorngaard and colleagues [49] also examined coffee and tea drinkers from
three population studies using bidirectional MR and provided evidence for a causal relationship of
smoking heaviness on coffee and tea intake, but not vice versa. Finally, Verweij and colleagues [51]
examined causal relationships among caffeine, smoking, as well as alcohol, and cannabis use with a
variation of bidirectional MR that used ‘polygenic scores’. The latter relaxes the significance threshold
for GWAS to produce a stronger instrument, but also runs the risk of vertical pleiotropy [59]. Their
findings did not support the hypothesis that causal relationships explain the co-occurrence of use of
different substances, but are consistent with a common liability model [51].

Alzheimer’s Disease (AD) was investigated by Kwok and colleagues [45], and Larsson and
colleagues [50], using the same summary-level data, but employed different multi-SNP IVs. Larsson
and colleagues [50] used an IV with SNPs for AHR, CYP1A2, MLXIPL, POR and EFCAB and reported
a suggestive causal relationship between coffee and AD risk, but in the opposite direction to that
expected based on observational data. Kwok and colleagues [45], whom did not include the MLXIPL
SNP in their IV, reported no evidence for a causal relationship. A causal relationship between coffee
and cognitive function was also not supported by a separate MR [56]. The latter accounted for the
potential non-linear association between coffee and cognitive function by conducting analysis by
different levels of coffee intake. An association among non-coffee consumers served as a negative
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control sample. While collider bias was not acknowledged as a limitation, they noted caution when
interpreting their results as the instruments indexing greater caffeine consumption may reflect a
faster rate of caffeine clearance, and hence a lower (rather than higher) circulating level of bioactive
caffeine [56].

Although data are limited, coffee intake has been linked to lower risk of gout [14]. Larsson and
colleagues [53] examined the causal association between coffee and gout, as well as uric acid, a related
biomarker. The five SNP-IV (excluding the ABCG2 SNP, which associates with uric acid) was inversely
related to both gout risk and uric acid levels, supporting a causal relationship between coffee drinking
and gout.

MR studies have failed to support a causal association between coffee/caffeine intake and
epithelial ovarian cancer [52], prostate cancer [47], sleep behaviors [54] and Parkinson’s disease
(PD) [55]. The latter finding is in marked contrast to consistent observational and animal experimental
data suggesting coffee and caffeine are protective for PD, but rather align with RCTs and suggest
“caffeine may neither prevent PD occurring nor be of benefit in those with the condition” [55].
The authors nevertheless noted that potentially causal effects of coffee may not occur exclusively
through caffeine [55], suggesting their IV aimed to capture caffeine exposure rather than coffee
drinking per se. The most recent coffee MR was applied to osteoarthritis [57] and supported a causal
positive relationship between coffee and this outcome. However, the selection of SNPs for the study
was unclear and no human observational study has examined coffee and osteoarthritis, so that the
findings are largely hypothesis-generating.

Taken together, at least fifteen studies to date have investigated the causal role of coffee or caffeine
use in T2D, CVD, AD and cognition, PD, gout, osteoarthritis, cancers, sleep and other substance use
behaviors. Single studies investigated and provided support for a causal role of coffee in reducing
risk of gout [14] and increasing risk of osteoarthritis [57]. Four studies examined the co-occurrence of
caffeine use and other substances with conflicting results [46,48,49,51]. For the remaining outcomes,
studies did not provide clear support for a causal role of coffee or caffeine, but often acknowledged
limitations (such as low statistical power, pleiotropy and collider bias), such that a causal role cannot
yet be ruled out.

7. Future Directions

There is continued enthusiasm for understanding the causal role of coffee and caffeine in health.
Thus far, most outcomes of interest have been investigated by single studies and thus the significant
and null findings warrant confirmation in independent studies. Many outcomes, for which coffee and
caffeine have been implicated, have yet to be investigated [14]. Methodological challenges, such as
insufficient power, pleiotropy and collider bias are commonly acknowledged. However, conceptual
challenges arising from the different aspects of coffee/caffeine use captured by genetic instruments
warrant careful consideration going forward. With continued investment in GWAS it may be possible
to parse variants related to non-caffeine aspects of coffee from those related to caffeine providing
opportunities to identify the causal elements of coffee per se, rather than coffee drinking behavior.
The increasing availability of large individual-level data sets and advanced statistical methods means
that more sophisticated MR designs might also be considered. For example, the use of polygenic scores
might be optimized using the MR robust adjusted profile score (MR-RAPS) method, which weights
each variant differently based on effect size and precision of the SNP-exposure association [62]. Given
the co-occurrence of coffee drinking and smoking, a factorial MR may be an attractive approach to
study the combined causal effects (i.e., interaction) of these behaviors on disease [22]. Individuals
can be allocated into either a high or low-SNP score for coffee and then each group further allocated
into either a high or low-SNP score for smoking. The causal estimates for each of the resulting four
groups on disease could then be determined. A two-step MR may also be used to assess whether an
intermediate trait, say a biomarker or metabolite, acts as a causal mediator between coffee drinking and
an outcome [73,74]. An IV for coffee drinking is first used to estimate the causal effect of coffee drinking
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on the potential mediator (step 1). IVs for the potential mediator are then used to assess the causal effect
of the mediator on the outcome (step 2). Evidence of association in both steps implies some degree of
mediation of the association between coffee drinking and the outcome by the intermediate variable.
Finally, multivariable MRs allow multiple exposures to be examined simultaneously, and provide
an effect estimate of one conditional on the other (e.g., effects of coffee consumption conditional
on circulating caffeine levels) [75]. These alternate MR designs will still require careful attention to
challenges and limitations discussed above.

Multiple statistical methods to accommodate different MR violations combined with replication
studies and other mechanistic studies will be necessary to support stronger causal relationship between
coffee or caffeine intake and health [59]. GWAS of more refined coffee drinking behaviors, and
circulating metabolite markers of coffee intake will also be important, but the collection of such data
on a large scale will be needed first. Nevertheless, in light of the rapid pace, in which advancements
are being made in these areas, MR promises to be an increasingly valuable approach to understanding
the causal impact that coffee and caffeine have in human health.

Author Contributions: M.C.C. and M.R.M. conceptualized the paper. M.C.C. wrote the first draft of the paper.
All authors revised and approved the final the manuscript.

Acknowledgments: This work was funded by the National Institute on Aging (K01AG053477 to M.C.C.) and a
Benjamin Meaker Visiting Professorship (to M.C.C.).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. International Coffee Organization. Trade Statistics. Available online: http://www.ico.org/profiles_e.asp
(accessed on 1 August 2018).

2. Marks, V.; Kelly, J. Absorption of caffeine from tea, coffee, and coca cola. Lancet 1973, 301, 827. [CrossRef]
3. Nehlig, A. Interindividual differences in caffeine metabolism and factors driving caffeine consumption.

Pharmacol. Rev. 2018, 70, 384–411. [CrossRef] [PubMed]
4. White, J.R., Jr.; Padowski, J.M.; Zhong, Y.; Chen, G.; Luo, S.; Lazarus, P.; Layton, M.E.; McPherson, S.

Pharmacokinetic analysis and comparison of caffeine administered rapidly or slowly in coffee chilled or hot
versus chilled energy drink in healthy young adults. Clin. Toxicol. 2016, 54, 308–312. [CrossRef] [PubMed]

5. Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000, 130, 2073S–2085S.
[CrossRef] [PubMed]

6. Yanagimoto, K.; Ochi, H.; Lee, K.G.; Shibamoto, T. Antioxidative activities of fractions obtained from brewed
coffee. J. Agric. Food Chem. 2004, 52, 592–596. [CrossRef] [PubMed]

7. Urgert, R. Levels of the cholesterol-elevating diterpenes cafestol and kahweol in various coffee brews. J. Agric.
Food Chem. 1995, 43, 2167–2172. [CrossRef]

8. Milder, I.E.; Arts, I.C.; van de Putte, B.; Venema, D.P.; Hollman, P.C. Lignan contents of dutch plant foods:
A database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br. J. Nutr. 2005, 93,
393–402. [CrossRef] [PubMed]

9. Spiller, M.A. The chemical components of coffee. In Caffeine; Spiller, G.A., Ed.; CRC: Boca Raton, FL, USA,
1998; pp. 97–161.

10. Andrzejewski, D.; Roach, J.A.; Gay, M.L.; Musser, S.M. Analysis of coffee for the presence of acrylamide by
lc-ms/ms. J. Agric. Food Chem. 2004, 52, 1996–2002. [CrossRef] [PubMed]

11. Minamisawa, M.; Yoshida, S.; Takai, N. Determination of biologically active substances in roasted coffees
using a diode-array hplc system. Anal. Sci. 2004, 20, 325–328. [CrossRef] [PubMed]

12. Ludwig, I.A.; Mena, P.; Calani, L.; Cid, C.; Del Rio, D.; Lean, M.E.; Crozier, A. Variations in caffeine and
chlorogenic acid contents of coffees: What are we drinking? Food Funct. 2014, 5, 1718–1726. [CrossRef]
[PubMed]

13. Cornelis, M.C. Toward systems epidemiology of coffee and health. Curr. Opin. Lipidol. 2015, 26, 20–29.
[CrossRef] [PubMed]

14. Poole, R.; Kennedy, O.J.; Roderick, P.; Fallowfield, J.A.; Hayes, P.C.; Parkes, J. Coffee consumption and health:
Umbrella review of meta-analyses of multiple health outcomes. BMJ 2017, 359, j5024. [CrossRef] [PubMed]

http://www.ico.org/profiles_e.asp
http://dx.doi.org/10.1016/S0140-6736(73)90625-9
http://dx.doi.org/10.1124/pr.117.014407
http://www.ncbi.nlm.nih.gov/pubmed/29514871
http://dx.doi.org/10.3109/15563650.2016.1146740
http://www.ncbi.nlm.nih.gov/pubmed/27100333
http://dx.doi.org/10.1093/jn/130.8.2073S
http://www.ncbi.nlm.nih.gov/pubmed/10917926
http://dx.doi.org/10.1021/jf030317t
http://www.ncbi.nlm.nih.gov/pubmed/14759154
http://dx.doi.org/10.1021/jf00056a039
http://dx.doi.org/10.1079/BJN20051371
http://www.ncbi.nlm.nih.gov/pubmed/15877880
http://dx.doi.org/10.1021/jf0349634
http://www.ncbi.nlm.nih.gov/pubmed/15053542
http://dx.doi.org/10.2116/analsci.20.325
http://www.ncbi.nlm.nih.gov/pubmed/15055960
http://dx.doi.org/10.1039/C4FO00290C
http://www.ncbi.nlm.nih.gov/pubmed/25014672
http://dx.doi.org/10.1097/MOL.0000000000000143
http://www.ncbi.nlm.nih.gov/pubmed/25551799
http://dx.doi.org/10.1136/bmj.j5024
http://www.ncbi.nlm.nih.gov/pubmed/29167102


Nutrients 2018, 10, 1343 16 of 19

15. Wikoff, D.; Welsh, B.T.; Henderson, R.; Brorby, G.P.; Britt, J.; Myers, E.; Goldberger, J.; Lieberman, H.R.;
O'Brien, C.; Peck, J. Systematic review of the potential adverse effects of caffeine consumption in healthy
adults, pregnant women, adolescents, and children. Food Chem. Toxicol. 2017, 109, 585–648. [CrossRef]
[PubMed]

16. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American
Psychiatric Publishing: Arlington, VA, USA, 2013.

17. Davey Smith, G.; Hemani, G. Mendelian randomization: Genetic anchors for causal inference in
epidemiological studies. Hum. Mol. Genet. 2014, 23, 89–98. [CrossRef] [PubMed]

18. Leviton, A. Coffee consumption and residual confounding. Epidemiology 1996, 7, 110. [CrossRef] [PubMed]
19. Soroko, S.; Chang, J.; Barrett-Connor, E. Reasons for changing caffeinated coffee consumption: The rancho

bernardo study. J. Am. Coll. Nutr. 1996, 15, 97–101. [CrossRef] [PubMed]
20. van Dam, R. Can ‘omics’ studies provide evidence for causal effects of coffee consumption on risk of type 2

diabetes? J. Int. Med. 2018, 283, 588–590. [CrossRef] [PubMed]
21. Katan, M.B. Apolipoprotein e isoforms, serum cholesterol, and cancer. Lancet 1986, 1, 507–508. [CrossRef]
22. Davey Smith, G.; Ebrahim, S. “Mendelian randomization”: Can genetic epidemiology contribute to

understanding environmental determinants of disease? Int. J. Epidemiol. 2003, 32, 1–22. [CrossRef]
23. Zheng, J.; Baird, D.; Borges, M.-C.; Bowden, J.; Hemani, G.; Haycock, P.; Evans, D.M.; Smith, G.D. Recent

developments in Mendelian randomization studies. Curr. Epidemiol. Rep. 2017, 4, 330–345. [CrossRef]
[PubMed]

24. Swanson, S.A.; Tiemeier, H.; Ikram, M.A.; Hernan, M.A. Nature as a trialist?: Deconstructing the analogy
between Mendelian randomization and randomized trials. Epidemiology 2017, 28, 653–659. [CrossRef]
[PubMed]

25. Holmes, M.V.; Ala-Korpela, M.; Smith, G.D. Mendelian randomization in cardiometabolic disease:
Challenges in evaluating causality. Nat. Rev. Cardiol. 2017, 14, 577. [CrossRef] [PubMed]

26. Wald, A. The fitting of straight lines if both variables are subject to error. Ann. Math. Stat. 1940, 11, 284–300.
[CrossRef]

27. Lawlor, D.A.; Harbord, R.M.; Sterne, J.A.; Timpson, N.; Davey Smith, G. Mendelian randomization: Using
genes as instruments for making causal inferences in epidemiology. Stat. Med. 2008, 27, 1133–1163. [CrossRef]
[PubMed]

28. Burgess, S.; Butterworth, A.; Thompson, S.G. Mendelian randomization analysis with multiple genetic
variants using summarized data. Genet. Epidemiol. 2013, 37, 658–665. [CrossRef] [PubMed]

29. Amin, N.; Byrne, E.; Johnson, J.; Chenevix-Trench, G.; Walter, S.; Nolte, I.M.; kConFab, I.; Vink, J.M.; Rawal, R.;
Mangino, M. Genome-wide association analysis of coffee drinking suggests association with cyp1a1/cyp1a2
and nrcam. Mol. Psychiatry 2012, 17, 1116–1129. [CrossRef] [PubMed]

30. Cornelis, M.C.; Monda, K.L.; Yu, K.; Paynter, N.; Azzato, E.M.; Bennett, S.N.; Berndt, S.I.; Boerwinkle, E.;
Chanock, S.; Chatterjee, N. Genome-wide meta-analysis identifies regions on 7p21 (ahr) and 15q24 (cyp1a2)
as determinants of habitual caffeine consumption. PLoS Genet. 2011, 7, e1002033. [CrossRef] [PubMed]

31. Coffee and Caffeine Genetics Consortium; Cornelis, M.C.; Byrne, E.M.; Esko, T.; Nalls, M.A.; Ganna, A.;
Paynter, N.; Monda, K.L.; Amin, N.; Fischer, K. Genome-wide meta-analysis identifies six novel loci
associated with habitual coffee consumption. Mol. Psychiatry 2015, 20, 647–656. [CrossRef] [PubMed]

32. Sulem, P.; Gudbjartsson, D.F.; Geller, F.; Prokopenko, I.; Feenstra, B.; Aben, K.K.; Franke, B.; den Heijer, M.;
Kovacs, P.; Stumvoll, M. Sequence variants at cyp1a1-cyp1a2 and ahr associate with coffee consumption.
Hum. Mol. Genet. 2011, 20, 2071–2077. [CrossRef] [PubMed]

33. Zhong, V.; Kuang, A.; Danning, R.; Kraft, P.; van Dam, R.; Chasman, D.; Cornelis, M.C. A Genome-Wide
Association Study of Habitual Bitter and Sweet Beverage Consumption. 2018, submitted for publication.

34. Fredholm, B.B.; Battig, K.; Holmen, J.; Nehlig, A.; Zvartau, E.E. Actions of caffeine in the brain with special
reference to factors that contribute to its widespread use. Pharmacol. Rev. 1999, 51, 83–133. [PubMed]

35. Hindorf, L.; MacArthur, J.; Morales, J.; Junkins, H.; Hall, P.; Klemm, A.; Manolio, T. Catalogue of Published
Genome-Wide Association Studies. Available online: https://www.ebi.ac.uk/gwas/ (accessed on 1
August 2018).

36. Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.;
Buchkovich, M.L.; Yang, J. Genetic studies of body mass index yield new insights for obesity biology.
Nature 2015, 518, 197–206. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.fct.2017.04.002
http://www.ncbi.nlm.nih.gov/pubmed/28438661
http://dx.doi.org/10.1093/hmg/ddu328
http://www.ncbi.nlm.nih.gov/pubmed/25064373
http://dx.doi.org/10.1097/00001648-199601000-00022
http://www.ncbi.nlm.nih.gov/pubmed/8664392
http://dx.doi.org/10.1080/07315724.1996.10718571
http://www.ncbi.nlm.nih.gov/pubmed/8632123
http://dx.doi.org/10.1111/joim.12754
http://www.ncbi.nlm.nih.gov/pubmed/29611293
http://dx.doi.org/10.1016/S0140-6736(86)92972-7
http://dx.doi.org/10.1093/ije/dyg070
http://dx.doi.org/10.1007/s40471-017-0128-6
http://www.ncbi.nlm.nih.gov/pubmed/29226067
http://dx.doi.org/10.1097/EDE.0000000000000699
http://www.ncbi.nlm.nih.gov/pubmed/28590373
http://dx.doi.org/10.1038/nrcardio.2017.78
http://www.ncbi.nlm.nih.gov/pubmed/28569269
http://dx.doi.org/10.1214/aoms/1177731868
http://dx.doi.org/10.1002/sim.3034
http://www.ncbi.nlm.nih.gov/pubmed/17886233
http://dx.doi.org/10.1002/gepi.21758
http://www.ncbi.nlm.nih.gov/pubmed/24114802
http://dx.doi.org/10.1038/mp.2011.101
http://www.ncbi.nlm.nih.gov/pubmed/21876539
http://dx.doi.org/10.1371/journal.pgen.1002033
http://www.ncbi.nlm.nih.gov/pubmed/21490707
http://dx.doi.org/10.1038/mp.2014.107
http://www.ncbi.nlm.nih.gov/pubmed/25288136
http://dx.doi.org/10.1093/hmg/ddr086
http://www.ncbi.nlm.nih.gov/pubmed/21357676
http://www.ncbi.nlm.nih.gov/pubmed/10049999
https://www.ebi.ac.uk/gwas/
http://dx.doi.org/10.1038/nature14177
http://www.ncbi.nlm.nih.gov/pubmed/25673413


Nutrients 2018, 10, 1343 17 of 19

37. Teslovich, T.M.; Musunuru, K.; Smith, A.V.; Edmondson, A.C.; Stylianou, I.M.; Koseki, M.; Pirruccello, J.P.;
Ripatti, S.; Chasman, D.I.; Willer, C.J. Biological, clinical and population relevance of 95 loci for blood lipids.
Nature 2010, 466, 707–713. [CrossRef] [PubMed]

38. Manning, A.K.; Hivert, M.F.; Scott, R.A.; Grimsby, J.L.; Bouatia-Naji, N.; Chen, H.; Rybin, D.; Liu, C.T.;
Bielak, L.F.; Prokopenko, I. A genome-wide approach accounting for body mass index identifies genetic
variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 2012, 44, 659–669. [CrossRef]
[PubMed]

39. Taylor, A.E.; Davey Smith, G.; Munafò, M.R. Associations of coffee genetic risk scores with consumption of
coffee, tea and other beverages in the uk biobank. Addiction 2018, 113, 148–157. [CrossRef] [PubMed]

40. McMahon, G.; Taylor, A.E.; Smith, G.D.; Munafo, M.R. Phenotype refinement strengthens the association of
ahr and cyp1a1 genotype with caffeine consumption. PLoS ONE 2014, 9, e103448. [CrossRef] [PubMed]

41. Cornelis, M.C.; Kacprowski, T.; Menni, C.; Gustafsson, S.; Pivin, E.; Adamski, J.; Artati, A.; Eap, C.B.;
Ehret, G.; Friedrich, N. Genome-wide association study of caffeine metabolites provides new insights to
caffeine metabolism and dietary caffeine-consumption behavior. Hum. Mol. Genet. 2016, 25, 5472–5482.
[PubMed]

42. Davies, N.M.; Holmes, M.V.; Smith, G.D. Reading Mendelian randomisation studies: A guide, glossary, and
checklist for clinicians. BMJ 2018, 362, k601. [CrossRef] [PubMed]

43. Nordestgaard, A.T.; Nordestgaard, B.G. Coffee intake, cardiovascular disease and all-cause mortality:
Observational and Mendelian randomization analyses in 95,000–223,000 individuals. Int. J. Epidemiol. 2016,
45, 1938–1952. [CrossRef] [PubMed]

44. Nordestgaard, A.T.; Thomsen, M.; Nordestgaard, B.G. Coffee intake and risk of obesity, metabolic syndrome
and type 2 diabetes: A Mendelian randomization study. Int. J. Epidemiol. 2015, 44, 551–565. [CrossRef]
[PubMed]

45. Kwok, M.K.; Leung, G.M.; Schooling, C.M. Habitual coffee consumption and risk of type 2 diabetes, ischemic
heart disease, depression and Alzheimer’s disease: A Mendelian randomization study. Sci. Rep. 2016,
6, 36500. [CrossRef] [PubMed]

46. Treur, J.L.; Taylor, A.E.; Ware, J.J.; Nivard, M.G.; Neale, M.C.; McMahon, G.; Hottenga, J.J.; Baselmans, B.M.;
Boomsma, D.I.; Munafò, M.R. Smoking and caffeine consumption: A genetic analysis of their association.
Addict. Biol. 2017, 22, 1090–1102. [CrossRef] [PubMed]

47. Taylor, A.E.; Martin, R.M.; Geybels, M.S.; Stanford, J.L.; Shui, I.; Eeles, R.; Easton, D.; Kote-Jarai, Z.; Amin Al
Olama, A.; Benlloch, S. Investigating the possible causal role of coffee consumption with prostate cancer
risk and progression using mendelian randomization analysis. Int. J. Cancer 2017, 140, 322–328. [CrossRef]
[PubMed]

48. Ware, J.J.; Tanner, J.A.; Taylor, A.E.; Bin, Z.; Haycock, P.; Bowden, J.; Rogers, P.J.; Davey Smith, G.;
Tyndale, R.F.; Munafò, M.R. Does coffee consumption impact on heaviness of smoking? Addiction 2017, 112,
1842–1853. [CrossRef] [PubMed]

49. Bjørngaard, J.H.; Nordestgaard, A.T.; Taylor, A.E.; Treur, J.L.; Gabrielsen, M.E.; Munafò, M.R.;
Nordestgaard, B.G.; Åsvold, B.O.; Romundstad, P.; Davey Smith, G. Heavier smoking increases coffee
consumption: Findings from a Mendelian randomization analysis. Int. J. Epidemiol. 2017, 46, 1958–1967.
[CrossRef] [PubMed]

50. Larsson, S.C.; Traylor, M.; Malik, R.; Dichgans, M.; Burgess, S.; Markus, H.S. Modifiable pathways in
alzheimer’s disease: Mendelian randomisation analysis. BMJ 2017, 359, j5375. [CrossRef] [PubMed]

51. Verweij, K.J.; Vinkhuyzen, A.A.; Benyamin, B.; Lynskey, M.T.; Quaye, L.; Agrawal, A.; Gordon, S.D.;
Montgomery, G.W.; Madden, P.A.; Heath, A.C. The genetic aetiology of cannabis use initiation: A
meta-analysis of genome-wide association studies and a snp-based heritability estimation. Addict. Biol. 2013,
18, 846–850. [CrossRef] [PubMed]

52. Ong, J.-S.; Hwang, L.-D.; Cuellar-Partida, G.; Martin, N.G.; Chenevix-Trench, G.; Quinn, M.C.; Cornelis, M.C.;
Gharahkhani, P.; Webb, P.M.; MacGregor, S. Assessment of moderate coffee consumption and risk of epithelial
ovarian cancer: A Mendelian randomization study. Int. J. Epidemiol. 2017, 47, 450–459. [CrossRef] [PubMed]

53. Larsson, S.C.; Carlström, M. Coffee consumption and gout: A Mendelian randomisation study.
Ann. Rheum. Dis. 2018, 77, 1544–1546. [CrossRef] [PubMed]

54. Treur, J.L.; Gibson, M.; Taylor, A.E.; Rogers, P.J.; Munafo, M.R. Investigating genetic correlations and causal
effects between caffeine consumption and sleep behaviours. J. Sleep Res. 2018, 3, e12695. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nature09270
http://www.ncbi.nlm.nih.gov/pubmed/20686565
http://dx.doi.org/10.1038/ng.2274
http://www.ncbi.nlm.nih.gov/pubmed/22581228
http://dx.doi.org/10.1111/add.13975
http://www.ncbi.nlm.nih.gov/pubmed/28793181
http://dx.doi.org/10.1371/journal.pone.0103448
http://www.ncbi.nlm.nih.gov/pubmed/25075865
http://www.ncbi.nlm.nih.gov/pubmed/27702941
http://dx.doi.org/10.1136/bmj.k601
http://www.ncbi.nlm.nih.gov/pubmed/30002074
http://dx.doi.org/10.1093/ije/dyw325
http://www.ncbi.nlm.nih.gov/pubmed/28031317
http://dx.doi.org/10.1093/ije/dyv083
http://www.ncbi.nlm.nih.gov/pubmed/26002927
http://dx.doi.org/10.1038/srep36500
http://www.ncbi.nlm.nih.gov/pubmed/27845333
http://dx.doi.org/10.1111/adb.12391
http://www.ncbi.nlm.nih.gov/pubmed/27027469
http://dx.doi.org/10.1002/ijc.30462
http://www.ncbi.nlm.nih.gov/pubmed/27741566
http://dx.doi.org/10.1111/add.13888
http://www.ncbi.nlm.nih.gov/pubmed/28556459
http://dx.doi.org/10.1093/ije/dyx147
http://www.ncbi.nlm.nih.gov/pubmed/29025033
http://dx.doi.org/10.1136/bmj.j5375
http://www.ncbi.nlm.nih.gov/pubmed/29212772
http://dx.doi.org/10.1111/j.1369-1600.2012.00478.x
http://www.ncbi.nlm.nih.gov/pubmed/22823124
http://dx.doi.org/10.1093/ije/dyx236
http://www.ncbi.nlm.nih.gov/pubmed/29186515
http://dx.doi.org/10.1136/annrheumdis-2018-213055
http://www.ncbi.nlm.nih.gov/pubmed/29490979
http://dx.doi.org/10.1111/jsr.12695
http://www.ncbi.nlm.nih.gov/pubmed/29682839


Nutrients 2018, 10, 1343 18 of 19

55. Noyce, A.J.; Kia, D.; Heilbron, K.; Jepson, J.; Hemani, G.; Hinds, D.; Lawlor, D.A.; Smith, G.D.; Hardy, J.;
Singleton, A. Tendency towards being a “morning person” increases risk of Parkinson’s disease: Evidence
from mendelian randomisation. bioRxiv 2018. [CrossRef]

56. Zhou, A.; Taylor, A.E.; Karhunen, V.; Zhan, Y.; Rovio, S.P.; Lahti, J.; Sjögren, P.; Byberg, L.; Lyall, D.M.;
Auvinen, J. Habitual coffee consumption and cognitive function: A Mendelian randomization meta-analysis
in up to 415,530 participants. Sci. Rep. 2018, 8, 7526. [CrossRef] [PubMed]

57. Lee, Y.H. Investigating the possible causal association of coffee consumption with osteoarthritis risk using a
Mendelian randomization analysis. Clin. Rheumatol. 2018, in press. [CrossRef] [PubMed]

58. Burgess, S.; Thompson, S.G. Multivariable Mendelian randomization: The use of pleiotropic genetic variants
to estimate causal effects. Am. J. Epidemiol. 2015, 181, 251–260. [CrossRef] [PubMed]

59. Hemani, G.; Bowden, J.; Davey Smith, G. Evaluating the potential role of pleiotropy in Mendelian
randomization studies. Hum. Mol. Genet. 2018, 27, R195–R208. [CrossRef] [PubMed]

60. Burgess, S.; Bowden, J.; Fall, T.; Ingelsson, E.; Thompson, S.G. Sensitivity analyses for robust causal inference
from Mendelian randomization analyses with multiple genetic variants. Epidemiology 2017, 28, 30. [CrossRef]
[PubMed]

61. Burgess, S.; Dudbridge, F.; Thompson, S.G. Combining information on multiple instrumental variables in
Mendelian randomization: Comparison of allele score and summarized data methods. Stat. Med. 2016, 35,
1880–1906. [CrossRef] [PubMed]

62. Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect
estimation and bias detection through egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [CrossRef]
[PubMed]

63. Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent estimation in Mendelian randomization
with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 2016, 40, 304–314.
[CrossRef] [PubMed]

64. Verbanck, M.; Chen, C.-Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal
relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018,
50, 693–698. [CrossRef] [PubMed]

65. Zhu, Z.; Zheng, Z.; Zhang, F.; Wu, Y.; Trzaskowski, M.; Maier, R.; Robinson, M.R.; McGrath, J.J.; Visscher, P.M.;
Wray, N.R. Causal associations between risk factors and common diseases inferred from gwas summary
data. Nat. Commun. 2018, 9, 224. [CrossRef] [PubMed]

66. Cho, Y.; Shin, S.-Y.; Won, S.; Relton, C.L.; Smith, G.D.; Shin, M.-J. Alcohol intake and cardiovascular risk
factors: A Mendelian randomisation study. Sci. Rep. 2015, 5, 18422. [CrossRef] [PubMed]

67. Munafò, M.R.; Tilling, K.; Taylor, A.E.; Evans, D.M.; Davey Smith, G. Collider scope: When selection bias
can substantially influence observed associations. Int. J. Epidemiol. 2017, 47, 226–235. [CrossRef] [PubMed]

68. Paternoster, L.; Tilling, K.; Smith, G.D. Genetic epidemiology and Mendelian randomization for informing
disease therapeutics: Conceptual and methodological challenges. PLoS Genet. 2017, 13, e1006944. [CrossRef]
[PubMed]

69. Glymour, M.M.; Tchetgen, E.J.; Robins, J.M. Credible Mendelian randomization studies: Approaches for
evaluating the instrumental variable assumptions. Am. J. Epidemiol. 2012, 175, 332–339. [CrossRef] [PubMed]

70. Kendler, K.S.; Schmitt, E.; Aggen, S.H.; Prescott, C.A. Genetic and environmental influences on alcohol,
caffeine, cannabis, and nicotine use from early adolescence to middle adulthood. Arch. Gen. Psychiatry 2008,
65, 674–682. [CrossRef] [PubMed]

71. Vanyukov, M.M.; Tarter, R.E.; Kirillova, G.P.; Kirisci, L.; Reynolds, M.D.; Kreek, M.J.; Conway, K.P.;
Maher, B.S.; Iacono, W.G.; Bierut, L. Common liability to addiction and “gateway hypothesis”: Theoretical,
empirical and evolutionary perspective. Drug Alcohol Depend. 2012, 123 (Suppl. 1), S3–S17. [CrossRef]

72. Haycock, P.C.; Burgess, S.; Wade, K.H.; Bowden, J.; Relton, C.; Davey Smith, G. Best (but oft-forgotten)
practices: The design, analysis, and interpretation of Mendelian randomization studies. Am. J. Clin. Nutr.
2016, 103, 965–978. [CrossRef] [PubMed]

73. Relton, C.L.; Davey Smith, G. Two-step epigenetic Mendelian randomization: A strategy for establishing the
causal role of epigenetic processes in pathways to disease. Int. J. Epidemiol. 2012, 41, 161–176. [CrossRef]
[PubMed]

http://dx.doi.org/10.1101/288241
http://dx.doi.org/10.1038/s41598-018-25919-2
http://www.ncbi.nlm.nih.gov/pubmed/29760501
http://dx.doi.org/10.1007/s10067-018-4252-6
http://www.ncbi.nlm.nih.gov/pubmed/30076541
http://dx.doi.org/10.1093/aje/kwu283
http://www.ncbi.nlm.nih.gov/pubmed/25632051
http://dx.doi.org/10.1093/hmg/ddy163
http://www.ncbi.nlm.nih.gov/pubmed/29771313
http://dx.doi.org/10.1097/EDE.0000000000000559
http://www.ncbi.nlm.nih.gov/pubmed/27749700
http://dx.doi.org/10.1002/sim.6835
http://www.ncbi.nlm.nih.gov/pubmed/26661904
http://dx.doi.org/10.1093/ije/dyv080
http://www.ncbi.nlm.nih.gov/pubmed/26050253
http://dx.doi.org/10.1002/gepi.21965
http://www.ncbi.nlm.nih.gov/pubmed/27061298
http://dx.doi.org/10.1038/s41588-018-0099-7
http://www.ncbi.nlm.nih.gov/pubmed/29686387
http://dx.doi.org/10.1038/s41467-017-02317-2
http://www.ncbi.nlm.nih.gov/pubmed/29335400
http://dx.doi.org/10.1038/srep18422
http://www.ncbi.nlm.nih.gov/pubmed/26687910
http://dx.doi.org/10.1093/ije/dyx206
http://www.ncbi.nlm.nih.gov/pubmed/29040562
http://dx.doi.org/10.1371/journal.pgen.1006944
http://www.ncbi.nlm.nih.gov/pubmed/28981501
http://dx.doi.org/10.1093/aje/kwr323
http://www.ncbi.nlm.nih.gov/pubmed/22247045
http://dx.doi.org/10.1001/archpsyc.65.6.674
http://www.ncbi.nlm.nih.gov/pubmed/18519825
http://dx.doi.org/10.1016/j.drugalcdep.2011.12.018
http://dx.doi.org/10.3945/ajcn.115.118216
http://www.ncbi.nlm.nih.gov/pubmed/26961927
http://dx.doi.org/10.1093/ije/dyr233
http://www.ncbi.nlm.nih.gov/pubmed/22422451


Nutrients 2018, 10, 1343 19 of 19

74. Burgess, S.; Daniel, R.M.; Butterworth, A.S.; Thompson, S.G.; Consortium, E.-I. Network Mendelian
randomization: Using genetic variants as instrumental variables to investigate mediation in causal pathways.
Int. J. Epidemiol. 2014, 44, 484–495. [CrossRef] [PubMed]

75. Sanderson, E.; Smith, G.D.; Windmeijer, F.; Bowden, J. An examination of multivariable Mendelian
randomization in the single sample and two-sample summary data settings. bioRxiv 2018. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/ije/dyu176
http://www.ncbi.nlm.nih.gov/pubmed/25150977
http://dx.doi.org/10.1101/306209
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Coffee, Dietary Caffeine and Health 
	Mendelian Randomization (MR) 
	Genetic Determinants of Coffee and Caffeine Consumption 
	Key Challenges to MR Studies of Coffee and Caffeine 
	Trait Heterogeneity 
	Pleiotropy 
	Collider Bias 

	MR Studies of Coffee, Caffeine and Health 
	Future Directions 
	References

