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ABSTRACT: 

Newly endocytosed integral cell surface proteins are typically either directed for 

degradation or subject to recycling back to the plasma membrane. The sorting of integral 

cell surface proteins, including signalling receptors, nutrient transporters, ion channels, 

adhesion molecules and polarity markers, within the endo-lysosomal network for 

recycling is increasingly recognised as an essential feature in regulating the complexities 

of cell, tissue and organism-level physiology. Historically, endocytic recycling has been 

regarded as a relatively passive process, where the majority of internalized integral 

proteins are recycled via an unspecific sequence-independent “bulk membrane flow” 

pathway. Recent work has increasingly challenged this view. The discovery of 

sequence-specific sorting motifs and the identification of cargo adaptors and associated 

coat complexes has begun to uncover the highly orchestrated nature of endosomal 

cargo recycling, thereby providing new insight into the function and (patho)physiology of 

this process.  

 

[H1] INTRODUCTION:  

The human genome encodes for between 5,500 and 7,500 integral membrane proteins1. 

These proteins are essential for regulating a wide array of core cell functions that include 

cell signalling, nutrient sensing and transport, cell adhesion, establishment and 
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maintenance of cell polarity and cell migration. The abundance and spatial organization 

of cell surface integral proteins relies on two central pathways: the secretory pathway 

and the endo-lysosomal network (Figure 1). Through the integration of these pathways 

the steady-state plasma membrane integral membrane proteome is established and is 

actively remodelled in response to changing physiological demand. Disruption of this 

balance is increasingly associated with diseases especially those linked with ageing and 

neurodegeneration2. 

The entry into the endo-lysosomal network begins with the endocytosis of cell surface 

integral membrane proteins together with their associated proteins and lipids through 

clathrin-dependent and clathrin-independent mechanisms, as well as through 

phagocytosis and pinocytosis3,4 (integral proteins and their associated proteins and 

lipids are referred to as ‘cargo’). The newly formed and cargo-enriched peripheral 

endocytic carriers undergo homotypic fusion to form the early endosome, which then 

matures becoming a late endosome. The early and late endosomes essentially serve to 

sort cargo between two fate decisions: cargo is either sorted for degradation within the 

lysosome or it is retrieved from entering this fate (of note, some sorting may occur prior 

to reaching the early endosome either during the process of endocytosis or through 

sorting at a pre-early endosome compartment)5-8. If subject to retrieval, cargo is 

packaged into tubulo-vesicular transport carriers for recycling to the plasma membrane 

or the secretory pathway (Figure 1).  

While endocytosis from the cell surface and the machinery controlling the degradative 

pathway are extensively characterized, the mechanistic basis of retrieval and recycling 

processes remains poorly understood. The discovery of endocytic cargo adaptors and 

regulated coat complexes has begun to shed some light onto this important part of the 

ubiquitous endo-lysosomal network. In this Review we will discuss two key questions 

related to cargo retrieval and recycling. First, we will explore the molecular events that 

define the degradative versus retrieval fates decisions. For those cargoes that are 

retrieved, we will discuss how they are packaged into tubulo-vesicular transport carriers 

for subsequent recycling.  

 

[H1] CARGO FATE DECISIONS AT THE ENDOSOME 

Sorting of cargo between the degradative and recycling fates is inherently linked with the 

complex morphology of the early endosome (Figure 1). This organelle comprises a 



central vacuole (approx. 100 – 500 nm in diameter) that is associated with cytosolic 

facing tubular membrane extensions (approx. 20 to 50 nm in diameter) and inwardly 

budding intraluminal vesicles [G] (ILVs) (approx. 40 to 60 nm in diameter)9. Cargoes 

destined for lysosomal degradation are sorted into the ILVs10. Multiple rounds of cargo 

sorting and ILV biogenesis occur as the early endosome matures into a late endosome 

(globular vacuoles 250 – 1000 nm in diameter)9. Late endosomes are typified by the 

appearance of numerous ILVs and are often referred to as multivesicular bodies (MVBs) 

or multivesicular endosomes (MVEs)9,10. For the majority of late endosomes their fate is 

to fuse with the lysosome, generating an endo-lysosome compartment that provides a 

controlled acidic environment for the degradation of the cargo-loaded ILVs11. In many 

cell types, particularly in immune cells, a sub-population of cholesterol-enriched late 

endosomes avoids lysosome fusion and instead fuses with the plasma membrane to 

release the contents of ILVs as extracellular vesicles known as exosomes12. 

In parallel, within the same early and late endosomes, cargo destined for recycling first 

needs to avoid inclusion into ILVs: a process that is termed cargo retrieval13. Once 

retrieved, these cargoes are sorted and enriched into the cytosol-facing tubular 

membrane extensions, which give rise to tubulo-vesicular transport carriers that move 

cargo back to the cell surface14,15. Two kinetic routes classically define endosomal 

recycling: a fast recycling pathway where cargo is targeted directly back to the plasma 

membrane and a slow recycling pathway where the cargo first transits through the 

endocytic recycling compartment before being delivered to the cell surface16,17. There is 

mounting evidence that cargo can be recycled from early and late endosomes and from 

the endocytic recycling compartment by further transiting through the trans-Golgi 

network (TGN)18-22. Why so many recycling routes? In polarised cells the diversity of 

recycling ensures robustness of plasma membrane protein delivery, which is necessary 

to establish and maintain plasma membrane polarity, whereas in other cell types the 

recycling route taken by signalling receptors affects their intracellular residence time and 

thereby can influence their signalling outputs.  

 

[H1] THE DEGRADATIVE FATE DECISION  

Key to initiating the fate decision between degradation and cargo retrieval is the 

presence of cargo and an early endosome specific phospholipid, phosphatidylinositol 3-

monophosphate (PtdIns(3)P)23. Cargo destined for lysosomal degradation, such as the 

activated epidermal growth factor receptor (EGFR), first undergoes ubiquitylation on 



lysine residues present within their intracellular cytosolic domain(s)24. This modification 

serves to direct the internalised cargo for degradation and is generally of the mono-

ubiquitylation type but may also include Lys63-linked poly-ubiquitylation24. The presence 

of the ubiquitin modification is detected by a series of multi-protein complexes belonging 

to endosomal sorting complexes required for transport [G] (ESCRT) family: ESCRT-0, 

ESCRT-I and ESCRT-II refs. 25-27 (Figure 2). ESCRT-0 is a heterodimer of HRS and 

STAM. At steady-state ESCRT-0 resides on the early endosome, which is mediated by 

HRS binding to PtdIns(3)P. HRS and STAM each bind multiple ubiquitin-containing 

cargoes with low micromolar affinity for ubiquitin. Ubiquitylated cargoes that arrive at the 

early endosome are recognised by ESCRT-0 and become clustered as a result of the 

non-stoichiometric binding of ESCRT-0 components to ubiquitin and the ability of 

ESCRT-0 to self-associate into larger complexes25-27. Together this leads to the 

establishment of a degradative subdomain, the formation of which may be further 

stabilised through HRS recruiting clathrin28-31. Components of ESCRT-I (TSG101 and 

UBAP1) and ESCRT-II (VPS36) also bind ubiquitin with low affinity and may help to 

further enrich ubiquitylated cargo at degradative subdomains25-27.  

A distinct late acting ESCRT complex, ESCRT-III, all components of which lack ubiquitin 

binding, is recruited to the degradative subdomain through sensing the density of 

ESCRT-II ref 32. ESCRT-III components, including SNF7, assemble into oligomeric 

fragments thereby corralling and restricting the lateral diffusion of captured cargoes on 

the endosomal membrane32. The ESCRT-III (and ESCRT-0) mediated recruitment of 

deubiquitylating enzymes leads to deubiquitylation of the corralled cargoes and the 

reuse of the ubiquitin moiety. Other ESCRT-III components control and regulate self-

assembly of SNF7 into a flat spiral lattice that surrounds the corralled cargo and 

undergoes transition to a three-dimensional spring. This is considered to be essential in 

generating the required membrane tension for the generation of the inwardly budding 

profile of forming ILVs32. ESCRT-0, ESCRT-I and ESCRT-II dissociate from the 

maturing budding profile prior to scission — which occurs through an incompletely 

understood process that requires an ESCRT-III accessory protein, the AAA ATPase 

VPS4 — to form an isolated, cargo-enriched ILV32. The ESCRT machinery therefore 

constitutes a highly orchestrated system for co-ordinating the selection and enrichment 

of cargoes destined for degradation with the biogenesis of the ILVs to allow their 

controlled delivery to the lysosome (Figure 2).  

Although ubiquitylation is the major tag that destinies cargo for ESCRT-driven 

incorporation into ILVs, ubiquitin-independent routes for targeting cargo to ILVs have 



also been identified. For example, the protease-activated receptor-1 (PAR1) and the 

P2Y1 purinergic receptor rely on cargo binding to the ESCRT accessory protein 

ALIX33,34. Endosomes also display poorly characterised ESCRT-independent 

mechanisms for the biogenesis of ILVs35,36.  

When considering the fate decisions between cargo degradation and cargo retrieval a 

fundamentally important question concerns the frequency of ILV biogenesis and its 

relationship with the maturation state of the early and late endosome. In yeast, in the 

absence of ubiquitylated cargo, ILVs fail to form even in the presence of the complete 

ESCRT machinery37,38. This failure points to an essential role for sensing the presence 

of ubiquitylated cargo in the process of ILV biogenesis. It is tempting to speculate that 

the frequency of ILV biogenesis may be greatest at the newly formed early endosome 

where the density of ubiquitylated cargo is high, in contrast to the late endosome where 

the density of ubiquitylated cargo is low (owing to the fact that most of the ubiquitylated 

cargo has already been sorted into ILVs). As we will discuss below, a consequence of 

removing the early endosome associated machinery that governs the fate decision 

towards retrieval is the missorting of internalised cargo into the lysosomal degradative 

pathway. If such an initial burst of ILV biogenesis were to occur (to date there is no 

direct evidence of this in yeast or mammals), the retrieval of cargo destined for recycling 

at this early stage of the endosomal network may be necessary to prevent cargo 

leakage into the degradative route. For cargoes that arrive later in the endo-lysosomal 

maturation pathway, for example those coming directly from the secretory pathway, 

there may be a reduced need for active cargo retrieval simply because the frequency of 

ILV biogenesis is lower within a more mature endosome.  

 

[H1] AVOIDING THE DEGRADATIVE FATE 

The ESCRT-mediated degradative sorting of endocytosed cargo conforms with the 

central dogma of intracellular membrane trafficking: proteinaceous coat complexes co-

ordinate the recognition of sorting signals with membrane remodelling, leading to the 

biogenesis of cargo-enriched transport carriers. The early models describing endocytic 

cargo retrieval and recycling did not conform to this dogma. Based on the observation 

that the prototypical recycling cargo, the transferrin receptor (TfnR), was recycled in the 

absence of its entire intracellular cytosolic facing ‘tail’ domain39, it was concluded that 

recycling was the default pathway in the absence of any specific sorting signal. The 

majority of cargoes were considered therefore to undergo recycling to the cell surface by 



following the bulk membrane flow, a model that was termed ‘sequence-independent, 

geometric-based sorting’40,41.  

At the heart of geometric-based sorting is evidence that tubular extensions enriched in 

recycling cargo emerge from the vacuolar membrane of the early endosome42. These 

tubules undergo fission to form cargo-enriched tubulo-vesicular transport carriers. Given 

the high membrane-to-volume ratio of tubules compared with the vacuolar portion of the 

endosome, the repeated formation of tubules would generate a bulk membrane flow 

away from the vacuolar portion of the endosome and the associated lysosome 

degradative fate. The tubular geometry also restricts the amount of luminal content - for 

example nutrients that have been absorbed through endocytosis and lysosomal 

hydrolases that have been delivered from the biosynthetic pathway - leaving the 

endosome through tubular recycling carriers. Any integral membrane protein with high 

lateral mobility that is not restricted through capture and corralling into the degradative 

sub-domain, can in principle follow the bulk membrane flow and be retrieved and 

recycled14.  

Although the recycling of some cargoes may well conform to this model, two broad 

observations have established that for numerous cargoes their recycling involves 

sequence-dependent mechanisms. First, a number of cargoes contain linear peptide 

sequences present within their cytosolic tails, so-called sorting motifs [G], that are 

essential for their recycling (Table 1)43. Indeed, a critical reevaluation of TfnR recycling 

established that its intracellular cytosolic domain contains one or more sorting motifs44,45. 

Second, the identification of various cargo adaptors that recognise the sorting motifs, 

and the characterisation of membrane remodelling complexes have provided molecular 

insight into the process of sequence-dependent cargo sorting and the biogenesis of 

cargo-enriched tubulo-vesicular transport carriers46-51 (Supplementary Table S1). This 

step forward is perhaps best illustrated by the appreciation of the role of two ancient and 

highly conserved heterotrimeric protein complexes, retromer and retriever as mediators 

of retrieval and recycling52,53 (Figure 3).  

 

[H1] RECOGNITION OF CARGO FOR RETRIEVAL 

Retromer was identified in yeast through its ability to sort cargo from endosomes to the 

Golgi13,54. In metazoans however, the principle role of retromer is in retrieving cargo from 

the degradative fate prior to transporting the retrieved cargo back to the cell surface, 



although retromer-dependent recycling to trans-Golgi network has also been 

demonstrated49,55-61 (Box 1). For most cargoes that require retromer for their retrieval, 

perturbation of retromer leads to their missorting towards the lysosome for 

degradation52. Why recycling cargo enters the degradative fate remains unclear but it 

may reflect a high rate of ILV biogenesis early in the endo-lysosomal network as 

discussed above. Alternatively, it may be a consequence of aberrant cargo ubiquitylation 

when retrieval is not initiated. Either way, this missorting phenotype is not restricted to 

retromer53. For numerous endocytosed cargoes a common theme therefore, is that in 

the absence of active sequence-dependent retrieval, their default route is lysosomal 

degradation.  

 

[H2] Endosomal recruitment and cargo recognition by retromer. 

Retromer is a stable heterotrimer of VPS35, VPS29 and VPS26 (two paralogs, VPS26A 

and VPS26B, are expressed in humans) (Figure 3a). VPS35 forms an extended α-

helical solenoid that associates with VPS26A or VPS26B and VPS29 at its amino-

terminal and carboxy-terminal ends respectively62,63. Retromer is a complex composed 

of peripheral membrane proteins that, at steady state, is enriched on the cytosolic face 

of the early and late endosome. The association with the late endosome is mediated 

through binding to RAB7-GTP64,65 whereas association with the early endosome is 

governed through interaction with a sorting nexin (SNX) family [G] member SNX3, which 

binds PtdIns(3)P66,67. The interaction of retromer with SNX3 is essential for retromer to 

bind to certain cargoes63. In the case of the divalent cation transporter DMT1-II, which 

requires retromer for its endosomal sorting68 a hydrophobic QPELYLL sorting motif 

present within its cytosolic tail directly binds to an interface region between SNX3 and 

the VPS26 retromer subunit63. Association of cargo with retromer further enhances 

retromer-endosome association67. Because hydrophobic motifs are present in the tails of 

other retromer cargoes (for example, the cation-independent mannose 6-phosphate 

receptor (CI-MPR), sortilin, Wntless and the TfnR51,63,69), SNX3-assisted recognition of 

such hydrophobic motifs may be a common route by which retromer bind its cargo in a 

sequence-dependent manner. 

Further sequence-dependent cargo recognition is mediated indirectly through the 

association of retromer with the cargo adaptor, SNX2748,49,57. SNX27 contains two 

distinct domains that govern sequence-dependent cargo recognition. An amino-terminal 

PDZ (PSD95-Dlg-ZO1) domain binds to cargo proteins containing a carboxy-terminal 



type I PDZ domain-binding sorting motif, whereas a carboxy-terminal FERM (band 4.1-

ezrin-radixin-moesin)-like domain binds to cargoes with ΦxNPxY or ΦxNxxY as a sorting 

motif70-74 (where ‘Φ’ is a hydrophobic residues and ‘x’ is any residue) (Table 1). 

Association of SNX27 with the early endosome is mediated through cargo recognition 

and the binding to PtdIns(3)P72,73. Engagement of SNX27 with retromer occurs through 

a direct association of its PDZ domain with the VPS26 subunit75. This increases the 

affinity of the SNX27 PDZ domain for PDZ-binding motifs by at least an order of 

magnitude and may serve to promote  sequence-dependent cargo recognition75.  

Evidence of the importance of SNX27–retromer in cargo retrieval initially came from 

studying the β2-adrenergic receptor, which contains a PDZ-binding motif recognised by 

SNX2748,49. Under conditions of SNX27 suppression (or retromer suppression) 

internalised β2-adrenergic receptor is missorted for lysosomal degradation and displays 

a reduced rate of transport to the cell surface48,49. Data from subsequent work, including 

a global proteomic analysis57 and a detailed biochemical analysis74, has established 

that, in humans, more than 400 cargo proteins require SNX27–retromer for their retrieval 

and recycling. These cargoes include signalling receptors, regulators of synaptic activity 

and neuronal health, as well as numerous transporters for amino acids, nutrients and 

metal ions48,49,57,70,76,77.  

[H2] Retriever-dependent cargo retrieval. 

New insights into additional retrieval pathways were obtained by studying another 

adaptor for recycling cargoes, SNX17. An unbiased global proteomic analysis has 

identified over 220 integral proteins that require SNX17 for their steady-state cell surface 

expression53. Within this cargo cohort integral membrane proteins required for cell 

adhesion, maintenance of lipid homeostasis, transport of nutrients, and receptor 

signalling are particularly enriched53. Some of the established SNX17 cargoes include P-

selectin, LRP1, Stabilin-1, APP, β1-integrins, all of which undergo lysosome mediated 

degradation in the absence of SNX17 refs.78-83. Similar to SNX27, SNX17 is associated 

with the early endosome through binding to cargo and to PtdIns(3)P72. Cargo selection 

is mediated through the FERM-like domain of SNX17 that binds to ΦxNPxY or ΦxNxxY 

sequence motifs embedded within cargo tails73. SNX17 lacks the PDZ domain found in 

SNX27 and does not associate with cargoes containing the PDZ-binding motif nor does 

it bind retromer53.  

To regulate the retrieval and recycling of one of its cargoes, β1-integrin, SNX17 

associates with retriever: a stable heterotrimeric ‘retromer-like’ complex composed of 



C16orf62 (chromosome 16 open-reading frame 62), DSCR3 (Down’s syndrome critical 

region 3), and the retromer component VPS29 ref 53 (Figure 3b). The carboxy-terminal 

region of C16orf62 is predicted to possess an α-helical HEAT-repeat solenoid similar to 

that observed in VPS35 and DSCR3 has structural homology to the arrestin-like fold of 

VPS26refs. 84,85. C16orf62 and DSCR3 have therefore been renamed VPS35L and 

VPS26C respectively53. SNX17 associates with retriever via a conserved carboxy-

terminal tail sequence that may engage the VPS26C component of retriever - an 

interaction conceptually equivalent to the binding of SNX27 to the VPS26 component of 

retromer75. A detailed structural analysis of retriever is currently lacking, but the 

apparent conservation in the architecture of retromer and retriever suggests a level of 

conservation in their underlying mechanism of action.  

[H2] The CCC complex in sequence-dependent cargo recognition.  

SNX17–retriever-mediated retrieval of β1-integrin requires the CCC complex, a 

heterodimeric assembly of coiled-coil domain-containing protein 22 (CCDC22) and 

CCDC93 to which one or more of the COMM domain-containing (COMMD) proteins 

associate86 (Figure 3b). Retriever and the CCC complex may assemble to form a super-

complex dubbed ‘COMMander’, although a detailed biochemical reconstitution of this 

putative complex has yet to be achieved87,88. Like for retriever, suppression or knockout 

of the CCC complex leads to the missorting of internalised β1-integrin into the lysosome 

for degradation53.  

The COMMD family of proteins, of which there are ten in humans89, are predicted to 

consist of two modular domains connected through a flexible linker: a variable amino-

terminal domain composed of packed α-helices90 and the characteristic carboxy-terminal 

COMM domain. For COMMD1, the COMM domain binds to phosphoinositides91, drives 

COMMD1 homo-dimerisation and hetero-dimerisation with other COMMD proteins, and 

is required for association with CCDC22 and CCDC9386,92. The CCC complexes may 

therefore come in different ‘flavours’ depending upon the composition of COMMD 

protein dimers. A CCC complex containing COMMD9 dimerised with COMMD5 or 

COMMD10 is involved in the endosomal retrieval and recycling of Notch2 ref. 93, whereas 

a CCC complex containing COMMD1 regulates the recycling of the copper transporter 

ATP7A86 and the LDL receptor94. There is evidence that the COMMD1-dependent 

sorting of the LDL receptor is mediated through the COMM domain recognising an NPxY 

sorting motif in the cytosolic tail of the receptor94. This suggests that COMMDs may 

function as cargo adaptors. If so, the CCC complexes may provide further insight into 



the evolutionary conserved mechanisms for sequence-dependent inclusion of cargo into 

the retrieval subdomain. In addition, the COMMD proteins are linked to cellular 

processes that do not immediately fit with a role in endosomal cargo retrieval and 

recycling such as the regulation of NF-κB and hypoxia-induced transcription95. Studying 

the CCC complexes may reveal some unexpected interfaces between endosomal cargo 

sorting and these, and other, cellular and physiological processes. 

[H1] REGULATION OF CARGO FATE DECISIONS 

Besides acting to terminate signalling, the endocytic internalization of a receptor serves 

to fine-tune its spatial and temporal signalling outputs96. For example, there is now direct 

evidence that the canonical β2-adrenergic receptor is present in its active form in the 

early endosome, locally producing cAMP signals, thereby challenging the long held 

dogma that G-protein coupled receptor signalling takes place exclusively at the plasma 

membrane97. As we have discussed, the activated internalised β2-adrenergic receptor is 

delivered to the early endosome where it associates with the SNX27–retromer for 

retrieval and recycling48,49. It is from the SNX27–retromer-rich and actin-rich (see below) 

tubular profiles that endosome associated β2-adrenergic receptor signals 

intracellularly96. Interestingly, cAMP-dependent protein kinase A mediates 

phosphorylation of the cytoplasmic tail of β2-adrenergic receptor, which results in 

switching the recycling route from constitutive bulk flow to the sequence-dependent 

route98. This generates an endosome segregated production of cAMP that is necessary 

to establish the full set of cAMP mediated transcriptional responses99.  

Whereas this cAMP-dependent protein kinase mediated phosphorylation of the β2-

adrenergic receptor occurs outside of the PDZ binding motif required for SNX27 binding, 

phosphorylation of the β2-adrenergic receptor mediated by G protein-coupled receptor 

kinase 5 (GRK5) occurs within the canonical PDZ binding motif at Ser 411ref. 46. This 

phosphorylation disrupts binding to SNX27 and leads to enhanced lysosomal 

turnover46,74. By contrast, phosphorylation of either Thr408 or Ser407 within the PDZ-

binding motif by GRK5 markedly enhance binding of β2-adrenergic receptor to SNX27 

by providing negative charges that engage a conserved arginine residue within the 

binding pocket of the SNX27 PDZ domain74. Also GRK2 is known to phosphorylate both 

Ser411 as well as Ser407 upon β2-adrenergic receptor activation, but it remains to be 

investigated whether this determines the recycling rates of this receptor103. Thus, 

differential phosphorylation of PDZ binding motifs, by distinct kinases, potentially serves 

to “fine tune” the balance between the recycling and degradation of the β2-adrenergic 



receptor. A phosphorylation-dependent increase of SNX27 affinity to the PDZ motif has 

also been observed for NMDA and AMPA type glutamate receptors74, suggesting that 

these and other cargoes could use such a phosphorylation switch to promote SNX27–

retromer-dependent retrieval and recycling.  

A role of phosphorylation in regulating the retrieval and recycling versus ligand-induced 

degradation has also been described for EGFR104. In the absence of EGF, the multi-

domain adaptor protein intersectin-s recycles the inactive EGFR by linking it to the 

RAB13 guanine nucleotide exchange factor DENND2B (DENN/MADD domain 

containing 2B) and a RAB13 dependent recycling route. Upon EGF induced EGFR 

activation this recycling is disrupted by protein kinase D-dependent phosphorylation of 

intersectin-s, which dissociates from DENND2B and switches the EGFR from the 

retrieval and recycling fate to a degradative fate104 (it is presently unclear how this 

recycling pathway relates to retromer and retriever-mediated recycling). Importantly, the 

EGFR can also be activated by transforming growth factor-α (TGF-α). Whereas EGF 

activation induces a fast receptor degradation and a transient mitogen-activated protein 

kinase (MAPK) activation, TGF-α leads to sustained MAPK activation and retrieval and 

recycling of the receptor. Through a sophisticated proteomic screen, phosphorylation of 

endosomal RAB7 looks to prime the EGFR for degradation following EGF stimulation, 

whereas recruitment of Rab coupling protein (RCP) to the EGFR following TGF-α 

stimulation leads to retrieval and recycling105. Thus, differential signalling of the EGFR 

modifies the trafficking machinery, at least in part through phosphorylation of multiple 

targets, to induce distinct receptor fate decisions and distinct cellular responses. Teasing 

apart how these events relate to retromer and retriever-mediated sorting will be an 

important undertaking.  

The retrieval machinery itself is subject to phosphorylation100. As shown in yeast, 

phosphorylation–dephosphorylation reactions act as a gating mechanism for cargo 

recruitment by retromer, whereby phosphorylation of retromer subunit Vps26 determines 

its affinity for cargo, which is negatively regulated by CDC25 protein phosphatase101. 

Similarly, association of the retromer subunit VPS35 with the protein phosphatase 1 

regulator subunit 14C terminates parathyroid hormone (PTH) signalling through the 

PTH1 receptor in mouse osteoblasts102 (possibly by switching the fate from recycling to 

degradation). Defining how signalling modulates these phosphorylation switches and 

gating mechanisms to promote or inhibit cargo retrieval and recycling will be a major 

area of research, which will likely broaden to the analysis of other post-translational 

modifications such as ubiquitylation and sumoylation.  



The studies of β2-adrenergic receptor and the EGFR have provided first insights into 

how phosphorylation can influence fate decisions between retrieval and recycling versus 

degradation and thereby influence receptor deactivation and can modulate signalling 

outputs. This regulatory power of cargo fate decisions could have much wider 

implications. There is now evidence showing that the SNX27–retromer retrieval 

subdomain acts to restrict receptor signalling through parathyroid hormone 

receptor106,107. Furthermore, retromer has been implicated in regulating the endosome 

retention time of internalised type-I interferon α/β receptor, thereby controlling type-I 

interferon induced JAK–STAT signalling and downstream transcription outputs108. 

Overall, while much remains to be learned, the early and late endosome associated 

machineries that determine the degradation versus retrieval and recycling fates should 

be considered as points of regulation, mediated in part by phosphorylation, that serve as 

intracellular platforms that regulate the signalling strength and duration of cell-surface 

receptors.  

 

[H1] TUBULAR TRANSPORT CARRIER FORMATION 

The identification of retromer, retriever, the CCC complex and their associated cargo 

adaptors has provided the foundation to describe the endosomal retrieval and recycling 

of hundreds of functionally diverse cargo proteins. The ancient origin and evolutionary 

conservation of these machineries have renewed interest in endosomal cargo retrieval 

and recycling in the development and physiology of multicellular organisms (Box 2). In 

addition, the study of these machineries is providing exciting new insight into the 

molecular aetiology of human disease (Box 3).  

One of many outstanding basic mechanistic questions concerns how cargo retrieval is 

coupled to the biogenesis of tubulo-vesicular transport carriers. Retromer, retriever, and 

the CCC complex co-localise with the same early and late endosomes, forming retrieval 

sub-domains53. Importantly, these retrieval subdomains are spatially segregated from 

the ESCRT decorated degradative subdomains53,109,110 (Figure 3c and 3d). Fate 

decisions between cargo degradation and cargo retrieval are therefore considered to be 

orchestrated through differential cargo partitioning between ESCRT degradative 

subdomains and the opposing retrieval subdomains.  

 

[H2] The role of actin polymerisation in endosomal retrieval. 



Arrays of functional sub-domains have been identified on the limiting membrane of 

endosomal vacuoles(e.g. 28-31,53,109-112). For the organisation of the retromer-decorated 

retrieval sub-domain an important element is the polymerisation of branched actin 

networks mediated by the actin-related protein-2/3 (ARP2/3) complex on the cytosolic 

face of endosomes113,114. Prominent in regulating endosomal actin polymerisation is the 

Wiskott-Aldrich syndrome and SCAR homologue [G] (WASH) complex115-117, which is a 

pentameric assembly of FAM21 (also known as WASHC2), CCDC53 (WASHC3), SWIP 

(WASHC4), Strumpellin (WASHC5) and WASH (WASHC1) that stimulates the ARP2/3 

complex115-119 (Figure 3). Like other ARP2/3 regulators, the activity of WASH is precisely 

regulated, in this case through poly-ubiquitylation mediated by the MAGEL2-USP7-

TRIM27 (MUST) complex120,121. Loss of WASH in mammalian cells results in pleiotropic 

effects that include collapse of the endo-lysosomal network into the juxta-nuclear region, 

elongation of endosome-associated tubular profiles and defects in the retrieval and 

recycling of numerous cargoes, many of which require retromer, retriever and/or the 

CCC complex122. How defects in endosome morphological and endo-lysosomal network 

organisation translate into effects on cargo sorting remains to be fully understood.  

The WASH complex is an assembly of peripheral membrane proteins. Its association 

with the membrane of endosomes is highly dynamic and may be mediated, in part, by 

association with phospholipids115. When associated with an endosome, the WASH 

complex recruits both retriever and the CCC complex to the retrieval subdomain. 

Accordingly, the retrieval of SNX17–retriever and CCC complex-dependent cargoes 

relies on the WASH complex53,86. A large population of the WASH complex is recruited 

to endosomes through a distinct retromer-dependent mechanism that is mediated by a 

series of L-F-acidic (Leucine and Phenylalanine followed by an acidic amino acid) 

repeats in the carboxy-tail of FAM21 that bind to VPS35119,123. Importantly, FAM21 

binding to VPS35 is non-stoichiometric, with one FAM21 molecule associating with 

multiple copies of retromer123. This mode of WASH-endosome association could provide 

a means of sensing the concentration of retromer and hence the density of cargo, 

thereby allowing the coordination of branched actin polymerisation with the enrichment 

of cargo during the nucleation of the forming retrieval subdomain123. The localised and 

timed formation of branched actin likely serves to restrict the lateral mobility of captured 

cargo and to prevent their leakage into the ILV pathway. In addition, it was shown that 

including an acting binding domain in a β2-adrenergic receptor mutant devoid of its PDZ 

binding motif was sufficient to rescue normal receptor retrieval and recycling47,124. The 

ability of cargo to bind to filamentous endosome-associated actin may therefore 



constitute an additional mechanism for cargo selection into the actin-enriched retrieval 

subdomain, independently of the sorting motifs. 

 

[H2] Tubule formation from the retrieval sub-domain. 

The timed and spatially restricted polymerisation of branched actin may also support 

membrane remodelling to produce an isolated cargo-enriched tubular transport carrier 

(Figure 3d; see also further below). Consistent with this, live cell imaging of the 

internalised β2-adrenergic receptor has revealed that the receptor is recycled via tubular 

profiles that form from the actin-rich retrieval subdomain47-49,51,99.  

The best-studied orchestrators of endosomal tubule formation are, however, the BAR 

(Bin/Amphiphysin/Rvs) domain [G] containing proteins PACSIN1 (a.k.a. syndapin-1) and 

PACSIN2 (a.k.a. syndapin-II)(125-127), ACAP144,128,129 and the SNX-BAR family130-134 (see 

also Supplementary Table S1 for a list of membrane-remodelling protein and complexes 

currently implicated in endosomal recycling). BAR domains are α-helical coiled coils that 

dimerise to form a banana-shaped structure whose concave surface is lined with 

positively charged residues that mediate electrostatic interactions with the negatively 

charged membrane surface135 (Figure 4). Membrane binding by BAR domains is tightly 

controlled126,136. Once associated with the membrane, the rigid nature of the BAR 

domain binding surface senses and/or imposes positive membrane curvature137. BAR 

domain dimers further associate through tip-to-tip and lateral contacts to partially coat 

the membrane with a helical assembly that drives and/or stabilises membrane tubule 

formation (in vitro experiments show that for efficient tubule formation membranes only 

need to be 30-40% coated by the BAR domain thereby leaving room for cargo)137.  

The defining member of the SNX-BAR family is SNX1, which forms a heterodimer with 

another family member SNX5 (or closely related proteins SNX6 and SNX6B)130,132. The 

presence of a PtdIns(3)P-binding PX domain in SNX1 drives recruitment of the 

heterodimer to endosomes harbouring retromer or retriever complexes130,138. From here, 

SNX1-SNX5 drives and/or stabilises the formation of tubular profiles that originate from 

the retrieval subdomain124 - it remains unclear whether SNX-BARs initiate tubule 

formation or whether they merely stabilize membrane curvature and tubulation 

generated by other means, for example actin polymerization. In yeast, Vps5 and Vps17 

(the orthologues of SNX1 and SNX5) form a stable pentameric complex with the 

retromer55. However, in higher metazoans such a complex cannot be biochemically 



isolated (Box 1). Instead, the WASH complex accessory protein, RME-8 (also known as 

DNAJC13), may co-ordinate the function of the WASH complex with the membrane 

remodelling SNX1-SNX5 complex109,139,140. RME-8 also has an additional, perhaps 

related role, in maintaining the segregation of the degradative and retrieval 

subdomains109,141, although precisely how this segregation is achieved remains unclear.  

The simultaneous analysis of two retromer-dependent recycling cargoes, β2-adrenergic 

receptor and Wntless, has established that upon their endocytosis these cargoes enter 

the same retromer decorated early endosome51. Interestingly, they exit this 

compartment through shared tubule-vesicular transport carriers even though their final 

steady-state destinations are distinct: β2-adrenergic receptor is enriched at the cell 

surface, whereas Wntless resides at the trans-Golgi network51. Thus, an additional level 

of sorting, downstream of the degradative versus retrieval fate decision and the exit of 

retrieved cargo from the endosomal vacuole, must operate in order to achieve cargo 

specific distribution. These molecular events remain to be defined.  

Further levels of complexity of how cargoes exit the endosome for recycling arise simply 

from the number of distinct endosome associated tubules and the relative lack of 

information as to the cargos that they recycle142. Dimers of other members of the SNX-

BAR family, including SNX4-SNX4, SNX8-SNX8, SNX18-SNX18, SNX4-SNX7 and 

SNX4-SNX30 also associate with the retromer and retriever labelled endosome where 

they drive the formation of distinct recycling tubules131,134,143-145. Furthermore, the Eps15 

homology domain (EHD) family [G] of proteins (the founding member being the C. 

elegans protein RME-ref. 146) can associate with MICAL-L1 and the F-BAR [G] proteins 

PASCIN1 and PACSIN2 to form endosome tubules, although the function of these 

complexes may be linked more with tubule scission than tubule biogenesis (see 

below)125,146-150. Perturbation of EHD1 can affect retromer function151,152, but equally 

there is evidence that EHD1 and retromer function separately from distinct endosome 

populations153,154. In addition, ACAP1 has been shown to form a tubulating coat complex 

with clathrin155. The BLOC-1–KIF13A–annexin A2 assembly156,157 and a RAB10–EHBP-

1 complex158 are also able to generate endosome-associated tubules. Understanding 

the relative localisations of these complexes and the relative cargo preferences of the 

tubules that they generate (we would argue this needs to be achieved through a global 

scale analysis of cargo sorting) is now a major question, as is their relationship with the 

clathrin-coated vesicular transport carriers that have also been established to regulate 

endosomal cargo recycling (Supplementary Table S1).  



Following nucleation, the recycling tubules mature, which involves elongation, 

stabilisation and ultimately scission and requires a network of accessory proteins that 

include cytoskeletal motors and regulators of actin polymerisation, local modifiers of the 

phospholipid environment and scission machinery (Figure 4, Supplementary Table S1). 

How all of these components are co-ordinated to deliver the mechanical forces and the 

alteration of biophysical properties of the lipid bilayer that are required for tubule scission 

is largely unknown159. Somewhat unexpectedly, the constriction and scission of a 

population of recycling tubules is spatially and temporal controlled through close 

membrane contacts (membrane contact sites) of endosomes with the endoplasmic 

reticulum (ER)160. In this context, a dynamic ER tubule is considered to “attack” the site 

at which a future scission event is likely to occur160. Evidence that ER–endosome 

contacts are formed through association of the SNX-BAR tubulating protein SNX2 with 

the ER resident VAP proteins (VAP-A and VAP-B) and by a CHMP1B–IST1 complex – 

which resides on SNX1 decorated tubules – with the ER resident protein spastin, are 

consistent with a role for the ER in endosomal tubule scission161,162. Perturbing these 

membrane contacts affects the overall efficiency of endosomal tubule scission by 

altering the local endosomal phosphoinositide environment, regulating the actin 

polymerising activity of the WASH complex, and through the activity of spastin in 

severing a subset of microtubules161,162. An additional role for the cytoskeleton in 

endosomal tubule scission comes from the association of endosomal tubules with 

microtubule motors dynein and kinesin, which are required for efficient tubule 

scission131,132,156,157,163,164.  

It would be highly informative to define how these scission sites relate to the endosomal 

localisation of EHD proteins. These are endosome associated dynamin-like ATPases 

that assemble into membrane-bound oligomeric rings that through an ATPases activity 

have the potential to mediate mechano-chemical membrane scission165,166. EHDs 

associate with the F-BAR domain containing PACSINs which themselves bind to the 

ARP2/3 regulator neural Wiskott-Aldrich syndrome protein (N-WASP)167. The curvature 

sensing properties of the F-BAR domain may therefore focus the assembly of EHDs 

oligomeric rings to the neck of forming tubules. Coupling the properties of the EHD 

proteins with forces applied to the membrane from a localised burst of branched actin 

formation through N-WASP activation and the pulling forces generated by association of 

the tubule with microtubule motors could bring about membrane scission. The scission 

may be further influenced by the build-up of tension between the phospholipids and the 



rigid EHD and/or BAR domain scaffold on the rapidly growing membrane tubule, which, 

by perturbing lipid flow, leads eventually to friction-dependent scission168.  

Finally, and to return to the question of sequence-dependent cargo retrieval and 

recycling, recent data suggests that membrane tubulating complexes can directly 

associate with sorting motifs on cargo. For example, ACAP1 recognises the TfnR, β1-

integrin and GLUT444,169,170, and SNX5 binds to the CI-MPR60,61. In each case the 

association is required for cargo recycling. Sequence-dependent endosomal cargo 

retrieval and recycling is, therefore, not restricted to a single layer of adaptor mediated 

cargo recognition, but actually encompasses a multilayered system of recognition. This 

complexity almost certainly reflects the need to retrieve and recycle thousands of 

internalised cargoes. It also provides the necessary plasticity to allow for tuning the fates 

and recycling itineraries of cargoes, especially internalised signalling receptors.  

 

[H1] CONCLUSIONS AND PERSPECTIVES 

The last few years have seen a rapid expansion in our appreciation of the molecular 

events that orchestrate the endocytic retrieval and recycling of internalised cargo 

proteins. In particular, this has refocused attention on the active role that cargoes play in 

sequence-dependent endocytic recycling that contrasts sharply with the historical view 

of cargoes being passively recycled through bulk membrane flow. Identifying additional 

molecular players that define this process in even greater detail is clearly an important 

goal, as is the building of a detailed road map for describing how distinct machineries 

communicate along the entire length of a given endocytic retrieval and recycling 

pathway: from sorting and carrier biogenesis at the endosome to carrier transport and 

fusion at the cell surface (either by direct transport to the cell surface or via indirect 

routes that transit the endocytic recycling compartment and/or the trans-Golgi network). 

The vexing question of exactly how many retrieval and recycling pathways are present 

within a typical cell type as well as more specialised cell types remains open, as does 

the issue of pathway integration and pathway redundancy. Another important question 

to address is the mechanisms of cross-talk between the retrieval and degradative 

pathways and how these can be tuned to determine cargo fate. Downstream responses 

from various signalling receptors have been demonstrated to rely on such decisions, 

whereby coordination between retrieval and recycling and degradation is important to 

regulate the rates of receptor deactivation and the propensity for intracellular signalling 

(from the endosome compartment). Evidence that post-translational modifications of 



cargo sorting motifs as well as the sorting machinery themselves can control cargo fate 

decisions and the itineraries of cargo retrieval and recycling, raises the vital question of 

how the cellular state influences cargo sorting to allow active remodelling of cell function. 

This will be an important consideration moving forward.  

With an increased molecular understanding has come renewed interest in endosomal 

cargo retrieval and recycling during development and in the physiology of multicellular 

organisms, and it is certain that new discoveries are to be made in this arena. For 

human biology, the increased mechanistic understanding has provided exciting new 

insight into the role of endosomal cargo retrieval and recycling in the pathology of 

neurodegenerative diseases and in host-pathogen interactions (Box 3). Achieving a 

thorough appreciation of the cellular consequences of the deregulation of endosomal 

sorting in specific disease contexts will be an essential and rewarding undertaking and is 

very likely to provide new possibilities for rational treatment of various human disorders.  

 

BOX 1: Retromer’s role in retrograde endosome-to-TGN transport. 

Retromer was identified in yeast as a pentameric protein complex comprising a Vps26-

Vps35-Vps29 heterotrimer and a Vps5-Vps17 heterodimer54,55. In metazoans, including 

humans, the equivalent proteins do not assemble into a biochemically stable pentameric 

complex. With the exception of yeast, the term retromer is therefore used to refer to the 

VPS26-VPS35-VPS29 heterotrimeric complex, whereas retromer-associated SNX 

(sorting nexin)-BAR (Bin/Amphiphysin/Rvs) proteins are equivalents of the Vps5-Vps17 

heterodimer.  

In yeast, main role of retromer is to regulate endosome-to-Golgi retrograde transport54,55. 

Initially, it has been considered that mammalian retromer functions in the equivalent 

retrograde transport pathway, as demonstrated by retromer-dependency of retrograde 

transport of cation-independent mannose-6-phosphate receptor (CI-MPR)58,59. Recently, 

independent studies have indicated that the human retromer (the VPS26-VPS35-VPS29 

heterotrimer) is dispensable for the retrograde transport of the CI-MPR60,61, and that 

retromer-associated SNX-BAR proteins, SNX1 or SNX2, in complex with SNX5 or SNX6 

are the dominant cargo selective elements that promote retrograde transport of the CI-

MPR. Importantly, SNX5 and SNX6 directly bind to a hydrophobic W-L-M sorting motif 

present in the cytosolic tail of CI-MPR, previously identified as being required for 

sequence-dependent endosome-to-TGN transport69.  



So, what role does retromer play in the endosomal sorting of the CI-MPR? In cells with 

CRISPR/Cas9 deletion of retromer, the delivery of endocytosed CI-MPR to the TGN is 

faster, consistent with a regulatory role of retromer in tis process61. Retromer together 

with TBC1D5 (GTPase activating protein of RAB7) has been reported to act as a master 

regulator of the localization and activity of RAB7 ref. 171. RAB7 is required for the 

retrograde transport of CI-MPR and likely regulates the entire retrograde pathway, the 

molecular basis of which is presently unclear. Upon loss of retromer or TBC1D5, RAB7 

is hyperactivated and accumulates on endosomes leading to increased trafficking of the 

autophagic transmembrane protein ATG9A to the TGN. The faster TGN delivery of the 

CI-MPR in retromer deficient cells might therefore reflect the deregulated activity of 

RAB7.  

A crystal structure of retromer (specifically the VPS26 and VPS35 components) together 

with sorting nexin-3 (SNX3) and the cytosolic tail domain of the retromer cargo divalent 

metal transporter 1 (DMT1-II) has revealed the presence of a cargo-binding pocket at 

the interface between SNX3 and VPS26ref 63. As this pocket binds to a hydrophobic 

sorting motifs63,68, it is likely that it also engages the hydrophobic W-L-M sorting motif in 

the CI-MPR. Why would retromer engage the CI-MPR, given that it does not directly 

regulate the retrograde transport? One attractive idea builds on the proposed role of 

retromer as a check-point for timing the fusion between the late endosome and the 

lysosome172,173. This fusion is regulated by vesicle-associated membrane protein 7 

(VAMP7), an R-SNARE that is trapped in a fusogenic inactive conformation through the 

binding to ankyrin repeat domain-containing protein 27 (VARP, also known as 

ANKRD27)172. The inhibition of VAMP7 is dependent on the local enrichment of VARP 

on the late endosome. VARP is recruited to the late endosome through a direct binding 

to the VPS29 subunit of retromer172,173. The potential ability of retromer to bind to the CI-

MPR may therefore provide a means to sense the local density of the cargo on the late 

endosome, which through a VARP-VAMP7 relay prevents pre-mature fusion of the late 

endosome with the lysosome. Decrease in retrograde transport density resulting from 

SNX-BAR driven retrograde transport would lead to a reduction in retromer association 

with the endosome, decrease in the local concentration of VARP and the release of the 

VAMP7 fusogenic activity. This would ensure that the late endosome only undergo 

fusion with the lysosome when all of the cargo destined for recycling have been 

retrieved.  

 



BOX 2: Functional role of cargo retrieval and recycling across multicellular 

organisms 

The ancient origin and conservation of the cargo retrieval machinery, including retromer, 

retriever, Wiskott-Aldrich syndrome and SCAR Homologue (WASH) complex and the 

CCC complex and associated cargo adaptors as well as the degradative machinery 

centred on endosomal sorting complexes required for transport (ESCRT) complexes, 

suggest large functional importance of the retrieval versus degradative fate decisions. 

Indeed, genetic analysis is starting to reveal the role of the retrieval and recycling 

pathways in the development and physiology of many organisms. In Drosophila 

melanogaster the retromer component of the retrieval subdomain regulates: Wnt 

morphogenic gradient formation (through the sorting of the Wnt chaperone Wntless; this 

phenotype is also observed in Caenorhabditis elegans and Xenopus laevis)174-180; 

establishment of epithelial cell polarity (sorting of the apical determinant Crumbs and 

engagement with the Scribble polarity module)181,182; epithelial tube formation in trachea 

development (trafficking of serpentine and Crumbs, and signaling through EGF 

receptor)183; photoreceptor stimulation (regulation of light-induced rhodopsin 1 

recycling)184; neuromuscular junction signaling (regulation of TGFβ/BMP signaling)185; 

innate immunity (regulation of the Toll receptor ligand Spätzle)186; and cell fate, 

proliferation, and differentiation (recycling of the Notch receptor and downstream 

signaling)187. In Caenorhabditis elegans the retromer retrieval sub-domain regulates: 

apoptotic cell clearance (recycling of CED-1 cell surface receptor)56; synaptic plasticity 

(recycling of the GLR-1 subunit of the AMPA-type glutamate receptors)188; signaling 

through the TGFβ/BMP superfamily (recycling of the BMP type I receptor)189; the 

development of the amphid sensory organ [G] (regulation of the Patched-related protein 

DAF-6)190; and the function of chemosensory neurons (recycling of the receptor-type 

guanylate cyclase GCY-9 to sensory cilia)191. A Drosophila melanogaster WASH null 

mutant displays a defect in neutralization of the acidified lysosomal possibly through 

perturbed actin-mediated recycling of the v-ATPase, and defects in haemocyte [G] cell 

spreading and cell migration through altered integrin recycling192.  

In vertebrates, snx3 knockdown in zebrafish leads to an anaemic phenotype as a result 

of perturbed recycling of the TfnR and the uptake of circulating Fe3+ ref. 45. In mice the 

deletion of VPS35 ref. 193 or VPS26A (but not VPS26B ref. 194) leads to embryonic 

lethality195, as does the deletion of WASH complex components WASH or 

strumpellin196,197. Analysis of heterozygous or conditional knockouts of these retromer 

components, has revealed the essential role of the retrieval subdomain in the central 



nervous system. More specifically, unperturbed cargo recycling has been shown to 

prevent the formation of neurotoxic amyloids [G] in the hippocampus by controlling 

recycling of β-amyloid precursor protein [G] (APP) and some of its processing 

enzymes193. Cargo recycling pathways also control macroautophagy [G] and 

chaperone-mediated autophagy [G] through recycling of ATG9A and LAMP2A 

respectively198, and support the maintenance of the degradative capacity of the 

lysosome by recycling receptors that deliver newly synthesized hydrolase enzymes (e.g. 

cathepsin D), thereby ensuring robust autophagic clearance (for example of. damaged 

mitochondria). In addition, the retrieval subdomain controls synaptic activity by recycling 

numerous synaptic receptors including AMPA, NMDA and dopamine receptors. 

Consistent with SNX27 functioning as the cargo adaptor for synaptic receptors, deletion 

of SNX27 leads to postnatal developmental defects highlighted by abnormal brain 

morphology and progressive hydrocephaly coupled with cognitive impairment, which 

have been linked to defects in the retrieval and recycling of synaptic receptors199-201. 

SNX27-deficient mice also display defects in bone formation and remodelling through 

perturbed recycling and signaling of parathyroid hormone 1 receptor106. 

 

BOX 3: Human diseases associated with defects in cargo retrieval and recycling  

Genetic analysis has associated familial and sporadic mutations in retrieval and 

recycling machinery with human diseases most notably neurological disorders that 

include Alzhiemer disease, Parkinson disease, and hereditary spastic paraplegia [G] 

(HSP)202,203. In these diseases three very general features of cargo retrieval and 

recycling are currently considered to be important. First, by maintaining and actively 

remodelling the cell surface proteome endosomal retrieval and recycling regulates 

processes essential for neuronal health such as synaptic transmission, nutrient supply, 

and interactions with surrounding neurons and supporting cells and matrix. Second, 

through sorting receptors that are essential for delivering lyososomal hydrolases, 

endosomal retrieval and recycling maintains the capacity of the lysosome to degrade 

protein aggregates and dysfunctional organelles that accumulate in age-related 

pathophysiology. Thirdly, the efficiency of retrieval and recycling defines the endosomal 

residency time of cargo, which when increased, can result in abnormal processing of 

some proteins or aberrant signalling by receptors.  

The retromer-based retrieval subdomain has a clear neuroprotective role in Parkinson 

disease202. Low frequency mutations in VPS35, VPS26A and VPS29 have all been 



noted in patients with Parkinson disease with the clearest example of VPS35(p.D620N) 

mutation which is associated with late on-set disease204,205. This specific mutation subtly 

perturbs the association of retromer with the WASH complex (and its accessory 

proteins)206,207 and leads to various defects203: perturbed sorting of the cation-

independent mannose-6-phosphate receptor (CI-MPR) and the delivery of cathepsin D 

to the lysosome; impaired trafficking of the autophagy-associated protein ATG9A; 

reduced AMPA receptor recycling and synaptic activity; and impaired recycling of the D1 

dopamine receptor. Further association of cargo recycling with Parkinson disease 

include a mutation in the WASH accessory protein DNAJC13(p.N855S)208,209, a 

functional relationship between RAB7L1 and LRRK2 ref. 210, the latter being a multi-

domain GTPase and serine/threonine kinase that is frequently mutated in late onset 

PD211, and through an interaction with the E3 ubiquitin ligase Parkin212 mutations of 

which are the main cause of autosomal recessive early-onset Parkinson disease.  

Mutations in the WASH complex component strumpellin are linked to HSP, as have 

mutations in spastin162. These mutations lead to lysosomal abnormalities through 

defects in CI-MPR recycling that may arise from impaired ER–endosome contacts162. 

Other genes that regulate CI-MPR recycling have also been linked to HSP213.  

A reduced expression of retromer was found in post-mortem brains of patients with 

Alzheimer disease214. A variety of animal models have now firmly established that 

reduced retromer expression predisposes to Alzheimer disease pathology and patient-

based genetic analysis has identified additional risk factors related to retromer, including 

SNX1, SNX3, RAB7A, and the cargo proteins SORL1 and TREM2 ref. 215. SORL1 

interacts with β-amyloid precursor protein (APP) and its aberrant recycling influences 

recycling of APP, whereas TREM2 is localised to the cell surface of microglia [G] and 

binds extracellular β-amyloid, thereby promoting its clearance and preventing 

spreading216.  

Retrieval and recycling are also implicated in other neurological conditions. In Down 

syndrome, SNX27 expression is decreased by an additional copy of miRNA from 

trisomic chromosome 21ref. 200 resulting in perturbed retrieval and recycling of AMPA and 

NMDA receptors217. More extensive loss of SNX27 is associated with infantile myoclonic 

epilepsy218. Perturbed regulation of the WASH complex was linked to intellectual 

disability and autism spectrum disorder121. Mutations in CCDC22 were associated with 

X-linked recessive intellectual disability and hypercholesterolaemic, the latter resulting 

from defective retrieval and recycling of the low-density lipoprotein (LDL) receptor94. 



Consistent with coupling between the CCC and WASH complexes, a mutation in 

strumpellin was also linked to elevated LDL-cholesterol94.  

Given their ancient origin and conservation it is perhaps unsurprising that the core cargo 

retrieval and recycling machinery is targeted by a variety of viral53,219-224 and bacterial 

pathogens225-230, a number of which express proteins that mimic sorting motifs of the 

host. These pathogens subvert the function of cargo retrieval machineries to promote 

their intracellular survival and replication.  
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FIGURE LEGENDS 

FIGURE 1: The endo-lysosomal network. The integration between the endo-

lysosomal network and the biosynthetic pathway helps to establish, maintain and re-

model the cell surface proteome. Following their endocytosis, internalised integral 

membrane proteins enter the early endosome from where most sorting is initiated. 

Selected cargo can be recycled back to the cell surface by means of tubulo-vesicular 

transport carriers either directly, termed ‘fast recycling’ or by transit through the 



endocytic recycling compartment, termed ‘slow recycling’. Recycling back to the cell 

surface can occur by passage through the trans-Golgi network and entry into the 

secretory pathway (termed ‘retrograde transport’). Other cargoes are targeted for 

degradation within the lysosome. This is principally achieved through cargo sorting into 

intraluminal vesicles (ILVs). Iterative rounds of cargo sorting and ILV biogenesis coupled 

with maturation of the early endosome, result in the formation of the late endosome (also 

known as the multivesicular endosome or multivesicular body). The late endosome is 

able to fuse with the lysosome to form an endo-lysosome within which ILVs and their 

accompanying cargo are degraded.  

Relatively little is known of the mechanistic integration between the secretory pathway 

and the endo-lysosomal network. Recently, the endosome associated transcriptional 

regulator RNF11 has been observed to translocate from endosomes to the nucleus in 

response to EGF receptor signalling and receptor degradation231. In the nucleus RNF11 

up-regulates the endoplasmic reticulum export machinery so that newly synthesized 

EGF receptor can be transported through the Golgi apparatus to the cell surface. The 

integration between degradation and synthesis maintains the physiological levels of EGF 

receptor at the plasma membrane. 

 

FIGURE 2: ESCRT-mediated degradative cargo sorting. a) Internalised ubiquitylated 

(Ub) cargoes are first recognised by ESCRT-0 components HRS and STAM that are 

associated with the cytosolic face of the early endosome through the Fab1, YOTB, 

Vac1, EEA1 (FYVE) domain of HRS binding to PtdIns(3)P. ESCRT-0 provides five 

ubiquitin binding motifs - VHS domains, a conventional ubiquitin-interaction motif (UIM) 

and a double-sided ubiquitin-interaction motif (DUIM). The ESCRT-I complex 

components TSG101 and UBAP1 also associate with ubiquitylated cargoes via an 

ubiquitin E2 variant (UEV) and solenoid of overlapping ubiquitin-associated (SOUBA) 

domains respectively. For the ESCRT-II complex, VPS36 contains a GRAM-like 

ubiquitin binding in EAP45 (GLUE) domain that binds to ubiquitylated cargoes. While the 

precise sequence of events within these ‘early ESCRT’ complexes is presently unclear, 

they serve to capture and enrich ubiquitylated cargoes into a degradative sub-domain 

that may be further stabilised through association of ESCRT-0 with clathrin. The late 

ESCRT complex, ESCRT-III links the upstream acting ESCRT complexes with the 

downstream process of intraluminal vesicle (ILV) biogenesis by forming a filament that 

mediates membrane remodelling.  ESCRT-III also recruits the endosomal 



deubiquitylating enzymes (DUBs), USP8 and AMSH in order to recycle ubiquitin). See 

REF. 10 for more in depth discussion. Figure modified from232. b) ESCRT-III spiral 

filament surrounds the cargo and its assembly brings about dissociation of the early 

ESCRT complexes. Growing of the ESCRT-III filament buckles from a flat structure into 

a three-dimensional spring thereby deforming the membrane in to the budding ILV. 

Recruitment of VPS4 ATPase is responsible for the disassembly of the ESCRT-III 

filaments and ultimately scission, both poorly characterised events, to form the isolated 

cargo-enriched ILV. See REF. 26 and 32 for more detailed discussion. 

 

FIGURE 3: Retrieval mechanisms. a) Retromer associates with the actin polymerising 

Wiskott-Aldrich syndrome and SCAR Homologue (WASH) complex through multiple L-F-

acidic repeats (L-F-[D/E](3-10)-L-F)123, interactions that are subtly perturbed in the 

Parkinson disease-linked VPS35(p.D620N) mutation206,207. Retromer binds to cargo 

proteins through the interaction of VPS26 subunit with sorting nexin-27 (SNX27)75,235 or 

through an interface formed after the association with SNX363. b) Current view of the 

retriever-based retrieval complex53. The conserved carboxy-terminus of SNX17 is 

necessary and sufficient for association to retriever possibly via interaction with Down 

syndrome critical region protein 3 (DSCR3)53. Retriever binds to the CCC complex86, 

possibly through C16orf6286, forming a putative COMMander complex87,88. Coiled-coil 

domain-containing protein 93 (CCDC93) binding to the 356-600 region of the FAM21 tail 

couples the WASH and CCC complexes86. c) A speculative model of the initial fate 

decision between degradation and retrieval. Both degradative (endosomal sorting 

complexes required for transport (ESCRT) complexes) and recycling (retromer and 

retriever) machineries are recruited to endosomal membranes by recognition of 

PtdIns(3)P and interaction with their cargo (through ubiquitin for ESCRTs and through 

sorting motifs for retromer/retriever). ESCRT-0, ESCRT-I and ESCRT-II recruit ESCRT-

III leading to the formation of cargo-enriched ILVs (see Fig. 2). Retromer recruits the 

WASH complex, with the resulting polymerisation of filamentous, branched actin. 

Recruitment of the COMMander complex as well as independent endosomal association 

of the WASH complex (possibly via lipid binding) further support sequence-dependent 

cargo recognition into the retrieval subdomain. The model suggests that the retrieval 

subdomain enriches and restricts the mobility of captured cargo thereby preventing their 

inclusion into intraluminal vesicles (ILVs). d) We speculate that as the retrieval 

subdomain matures, the clustering of cargo and the WASH-mediated polymerisation of 

actin may induce initial positive membrane curvature, thereby providing a cue, together 



with the presence of PtdIns(3)P, for the recruitment of membrane tubulating complexes, 

such as SNX-BAR (Bin/Amphiphysin/Rvs) proteins, which induce the biogenesis of 

tubules into which the recycling cargo is packaged for export (see also Fig. 4). Globally, 

cargo recycling is likely best described through a combination of multiple sequence-

dependent and sequence-independent pathways (constitutive bulk membrane flow).  

 

FIGURE 4: BAR domain-containing proteins in endosome tubule formation. a) A 

general scheme to illustrate the molecular details of BAR (Bin/Amphiphysin/Rvs) 

domain-containing proteins (using sorting nexin (SNX)-BARs as a model). BAR domain-

containing proteins associate with membranes through recognition of electrostatic 

charge, the sensing of membrane curvature, insertion of amphipathic helices and the 

binding to specific phospholipid species. Assembly of BAR domain dimers into helical 

assemblies leads to the induction and/or stabilisation of membrane tubules. b) After 

induction of tubulation, tubules elongate and eventually undergo scission. The overall 

mechanistic details of this complex process remain to be defined but appear to require 

the coordination of several molecular components. Actin polymerisation mediated by 

Wiskott-Aldrich syndrome and SCAR Homologue (WASH) complex and neural Wiskott-

Aldrich syndrome protein (N-WASP) provides pushing forces whereas coupling to 

microtubule motors (here dynein–dynactin complex) generates pulling forces. Eps15 

homology domain (EHD) proteins in complex with F-BAR proteins such as – protein 

kinase C and casein kinase substrate in neurons protein (PACSIN) are recruited to the 

neck of the extending cargo-enriched tubule owing to the increased curvature of the 

membranes, driving friction-mediated or mechano-chemical driven membrane scission. 

The process of scission may be further assisted through formation of an ER–endosome 

contact at the site of final scission (see text for more detail). See also Supplementary 

Table S1 for a list of membrane-remodelling proteins and complexes currently implicated 

in endosomal recycling.  

 

TABLE 1: Linear peptide sorting motifs required for sequence-dependent 

recycling of endocytosed cargo proteins.  

Cargo 

adaptor 

(recognition 

domain) 

Sorting signala Example cargos (and their 

sorting motifs – bold residues 

define the sorting signal) b 

References 

SNX17 ΦxNPx[F/Y] P-selectin (FTNAAF)  80, 82, 83, 



 ΦxNxx[F/Y] LRP( IGNPTY) β1-Integrin (VVNPKY) 

233 

 

SNX27 (PDZ 

domain) 

 

 

 

 

 

 

 

 

 

 

 

SNX27 

(FERM-like 

domain) 

[E/D]-5x-4[E/D]-3[S/T]-2x-

1Φ0 

[ED/pSpT]-6[E/D]-5x-

4[E/D]-3[S/T]-2x-1Φ0 

[ED/pSpT]-5x-4[E/D]-3[S/T]-

2x-1Φ0 

[ED/pSpT]-6[ED/pSpT]-5x-

4[pS/pT]-3[S/T]-2x-1Φ0 

[ED/pSpT]-6x-5x-4[pS/pT]-

3[S/T]-2x-1Φ0 

[E/D]-3[S/T]-2x-1Φ0 

[pS/pT]-3[S/T]-2x-1Φ0 

 ΦxNPxpY ΦxNxxpY 

GLUT1 (L-6GADSQV0) β2-adrenergic receptor (S-

6TNDSLL0) 

5-HT4(a) receptor (E-6SLESCF0) 

GIRK (E-5SESKV0) 

Kir3.3 (E-3SKV0) 
 

 

 

 

 

 

 

VLGR1 (LKNPFpY) 

RET (IENKLpY) 

48, 57, 70, 

71, 73, 74, 
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SNX3–
VPS26–
VPS35–
VPS29  

 

 

 

VPS26–
VPS35–
VPS29  

Aromatic, hydrophobic 

motif - Φx[L/M/V] 

 

 

 

 

 

FANSHY (binding to 

VPS26) 

DMT1-II (ELYLLNTM) 

Sortilin (GRFLVHRY) 

CI-MPR (TEWLMEEI) 

 

 

 

 

SorLA (FANSHY) 

63, 68, 69, 

235  

COMMD1 NPxY  LDLR (FDNPVY) 94 

PACS-1 

PACS-2 

Acidic cluster motif Furin (EECPpSDpSEED) 

CI-MPR (HDDpSDEDLLHI) 

Polycystin2 (DDpSEEDDDEDS) 

236, 237, 

238 

AP-1 YxxΦ 

[D/E]xxxL[L/I] 

Coxsackie virus and adenovirus 

receptor (YNQV) 

MHC-1-associated invariant chain 

p33 (DQRDLI) 

 

AP-3 [D/E]xxxL[L/I] OCA2(ENTPLL) 239 

EpsinR Hydrophobic + 

electrostatic 

VTI1b (Habc domain)  240 

GGA1 DIpSLL BACE1 - (DIpSLL) 241 

GGA3 DxxL[L/V] TrkA receptor (DKMLV) 

TrkB receptor (DKILV) 

TrkC receptor (DKMLV) 

242 

ACAP1 Positively charged residues 

together with associated 

hydrophobic motif 

β1-integrin (REFAKF) 

GLUT4 (KR, assisted by PLSLL 

motif)  

TfR (RF and LF)  

44, 155, 170 

SNX5, SNX6, 

SNX32 

Hydrophobic motif CI-MPR (TEWLMEEI) 60, 61 

 

a) General sorting motifs, where Φ = hydrophobic residue; pS, pT, and pY = 

phosphoserine, phosphothreonine and phosphotyrosine respectively; x = any amino 

acid. For sorting signals recognised by the SNX27 cargo adaptor, ‘0’ represents the 



carboxy-terminal hydrophobic residues and ‘-1’, ‘-2’, etc denote the subsequent residues 

from the carboxy-terminus. b) representative cargoes 

5-HT4(a) receptor, 5-hydroxytryptamine receptor 4; ACAP1, Arf-GAP with coiled-coil, 

ANK repeat and PH domain-containing protein 1; BACE1, β-secretase 1; CI-MPR, 

Cation-independent mannose-6-phosphate receptor; DMT1-II, divalent metal transporter 

1; GIRK, G-protein coupled inwardly rectifying potassium channel; GLUT1, glucose 

transporter 1; GLUT4, glucose transporter 4; Kir3.3, G-protein coupled inwardly 

rectifying potassium channel 3; LDLR, low density lipoprotein receptor; LRP1, LDL 

receptor related protein 1; OCA2, melanosomal transmembrane protein; RET, ret proto-

oncogene tyrosine-protein kinase receptor; SorLA, sortilin related receptor 1; TfnR, 

transferrin receptor; TrkA, neurotrophic tyrosine kinase receptor type 1; TrkB, 

neurotrophic tyrosine kinase receptor type 2; TrkC, neurotrophic tyrosine kinase receptor 

type 3; VLGR1, adhesion G protein-coupled receptor V1; VTI1B, vesicle transport 

through interaction with t-SNARE 1B.  

 

 

Glossary: 

Intraluminal Vesicles (ILV) – small, cargo enriched vesicles within the lumen of a 

maturing late endosome 

Endosomal Sorting Complexes Required for Transport (ESCRT) - protein complexes 

that mediate the sorting of ubiquitylated cargo into intraluminal vesicles for degradation 

in lysosomes 

Sorting motifs – usually unstructured linear peptide sequences present in the 

cytoplasmic tail of cargo proteins that by engaging coat complexes control the sorting of 

said cargo through intracellular membrane trafficking 

Sorting Nexin (SNX) family – large and diverse family of endosome-localized, peripheral 

membrane proteins defined by the presence of a PX domain 

Wiskott-Aldrich syndrome and SCAR Homologue (WASH) complex – pentameric multi-

protein complex that generates branched actin networks on the endosomal membrane. 



BAR (Bin/Amphiphysin/Rvs) domain – a frequently occurring protein domain with α-

helical coiled-coils. The domains can dimerise to form a banana-shaped structure. 

Oligomerization of BAR domains can deform cellular membranes 

Eps15 homology domain (EHD) family – A family of four proteins (EHD1-4) that possess 

structural similarities to dynamin and function in intracellular trafficking 

F-BAR domain (FCH-Homology Bar domain) – a BAR domain found in proteins that 

couple membrane remodelling with actin dynamics 

Amphid sensory organ – the principal olfactory organ of nematodes 

Haemocyte – a cell of the haemolymph in invertebrates.  

Amyloids – Protein aggregates that can form firbrils, often associated with 

neurodegenerative diseases such as Alzheimer disease 

β-amyloid precursor protein (APP) – An integral membrane protein highly expressed in 

neuronal synapses. Proteolytic cleavage of APP generates the toxic β-amyloid 

polypeptide that contributes to Alzheimer disease 

Macroautophagy – A degradative pathway in which a nutrient starved cell sequesters 

cytoplasmic content into double membraned vesicles for lysosomal degradation.  

Chaperone-mediated autophagy – Specialized form of autophagy in which chaperone 

proteins directly shuttle cytosolic proteins into the lysosomal lumen through LAMP2a 

mediated channels  

Spastic hereditary paraplegia – A group of inheritable diseases characterized by 

progressive gait disorders due to dysfunction of motor neurons in the spinal cord  

Microglia - macrophage-related immune cells of the central nervous system 
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TABLE	  1:	  Sorting	  motifs	  required	  for	  recycling	  of	  endocytosed	  cargo	  proteins	  	  

Cargo	  adaptor	  

(recognition	  domain)	  

Sorting	  signal	   Example	  cargos	   Reference	  

SNX17	  

	  

ΦxNPx[F/Y]	  

ΦxNxx[F/Y]	  

P-‐selectin	  -‐	  FTNAAF	  

LRP	  –	  IGNPTY	  

β1-‐Integrin	  	  -‐	  VVNPKY	  

Knauth	  et	  al.,	  2005	  

van	  Kerkhof	  et	  al.,	  2005	  

Steinberg	  et	  al.,	  2012	  

Bottcher	  et	  al.,	  2012	  

SNX27	  (PDZ	  domain)	  

	  

	  

	  

	  

	  

	  

	  

SNX27	  (FERM-like	  

domain)	  

[E/D]-‐5x-‐4[E/D]-‐3[S/T]-‐2x-‐1Φ0	  

[ED/pSpT]-‐6[E/D]-‐5x-‐4[E/D]-‐3[S/T]-‐2x-‐1Φ0	  

[ED/pSpT]-‐5x-‐4[E/D]-‐3[S/T]-‐2x-‐1Φ0	  

[ED/pSpT]-‐6[ED/pSpT]-‐5x-‐4[pS/pT]-‐3[S/T]-‐2x-‐1Φ0	  

[ED/pSpT]-‐6x-‐5x-‐4[pS/pT]-‐3[S/T]-‐2x-‐1Φ0	  

[E/D]-‐3[S/T]-‐2x-‐1Φ0	  

[pS/pT]-‐3[S/T]-‐2x-‐1Φ0	  

	  

ΦxNPxpY	  

ΦxNxxpY	  

GLUT1	  –	  L-‐6GADSQV0	  

β2-‐adrenergic	  receptor	  –	  S-‐6TNDSLL0	  

5-‐HT4(a)	  receptor	  –	  E-‐6SLESCF0	  

GIRK	  –	  E-‐5SESKV0	  

Kir3.3	  -‐	  E-‐3SKV0	  

	  

	  

	  

VLGR1	  -‐	  LKNPFpY	  

RET	  -‐	  IENKLpY	  

Clairfeuille	  et	  al.,	  2016	  

Steinberg	  et	  al.,	  2013	  

Lauffer	  et	  al.,	  2010	  

Joubert	  et	  al.,	  2004	  

Balana	  et	  al.,	  2011	  

Lunn	  et	  al.,	  2007	  

	  

	  

Ghia	  et	  al.,	  2013	  

SNX3-VPS26:VPS35:VPS29	  

	  

	  

	  

VPS26:VPS35:VPS29	  

Aromatic,	  hydrophobic	  motif	  -‐	  Φx[L/M/V]	  

	  

	  

	  

FANSHY	  (binding	  to	  VPS26)	  

DMT1-‐II	  –	  ELYLLNTM	  

Sortilin	  –	  GRFLVHRY	  

CI-‐MPR	  -‐	  TEWLMEEI	  

	  

SorLA	  -‐	  FANSHY	  

Tabuchi	  et	  al.,	  2010	  

Lucas	  et	  al.,	  2016	  

Seaman,	  2007	  

	  

Fjorback	  et	  al.,	  2012	  	  

COMMD1	   NPxY	  (direct?)	   LDLR	  -‐	  FDNPVY	   Bartuzi	  et	  al.,	  2016	  

PACS-1	  

PACS-2	  

Acidic	  cluster	  motif	   Furin	  –	  EECPpSDpSEED	  

CI-‐MPR	  –	  HDDpSDEDLLHI	  

Polycystin2	  -‐	  DDpSEEDDDEDS	  

Jones	  et	  al.,	  1995	  

Wan	  et	  al.,	  1998	  

Kottgen	  et	  al.,	  2005	  

AP-1	   YxxΦ	  

[D/E]xxxL[L/I]	  

Coxsackie	  virus	  and	  adenovirus	  receptor	  –	  YNQV	  

MHC-‐1-‐associated	  invariant	  chain	  p33	  –	  DQRDLI	  

	  

AP-3	   [D/E]xxxL[L/I]	   OCA2-‐	  ENTPLL	   Sitaram	  et	  al.,	  2012	  

EpsinR	   Hydrophobic	  +	  electrostatic	   Vti1b	  –	  Habc	  domain	   Miller	  et	  al.,	  2007	  

GGA1	   DIpSLL	   BACE1	  -‐	  DIpSLL	   Toh	  et	  al.,	  2018	  

GGA3	   DxxL[L/V]	   TrkA	  receptor	  –	  DKMLV	  

TrkB	  receptor	  –	  DKILV	  

TrkC	  receptor	  -‐	  DKMLV	  

Li	  et	  al.,	  2015	  

ACAP1	   Positively	  charged	  residues	  +	  associated	  

hydrophobic	  motif	  

β1-‐Integrin	  –	  REFAKF	  

GLUT4	  –	  KR	  (assisted	  by	  PLSLL	  motif)	  	  

TfR	  –	  RF	  and	  LF	  	  

Bai	  et	  al.,	  2012	  

Li	  et	  al.,	  2007	  

Dai	  et	  al.,	  2004	  

SNX5,	  SNX6,	  SNX32	   Hydrophobic	  motif	   CI-‐MPR	  -‐	  TEWLMEEI	   Simonetti	  et	  al.,	  2017	  

Kvainickas	  et	  al.,	  2017	  



TABLE	  2:	  Membrane	  remodeling	  complexes	  implicated	  in	  endosomal	  cargo	  recycling	  

Membrane	  remodeling	  

protein	  /	  complex	  

Tubulovesicular	  

transport	  carrier	  

biogenesis	  

Accessory	  proteins	  /	  lipids	   Reference	  

SNX-BARs	  

SNX1:SNX1	  

SNX1/SNX2:SNX5/SNX6/SNX32	  

	  

SNX4:SNX4	  

SNX4:SNX7	  

SNX4:SNX30	  

	  

SNX8:SNX8	  

	  

SNX18:SNX18	  

N-‐BAR	  domain	   	  

Dynein	  /	  Dynactin	  –	  microtubule	  motor	  

DNAJC13	  –	  co-‐ordination	  with	  WASH	  complex	  	  

	  

Dynein	  /	  Dynactin	  –	  microtubule	  motor	  

	  

	  

	  

	  

Dynamin-‐2	  -‐	  transport	  carrier	  fission	  

N-‐WASP	  –	  actin	  nucleation	  and	  polymerisation	  

	  

Carlton	  et	  al.,	  2004	  

Traer	  et	  al.,	  2007	  

Haberg	  et	  al.,	  2008	  

Wassmer	  et	  al.,	  2009	  

van	  Weering	  et	  al.,	  2012	  

Soreng	  et	  al.,	  2018	  

	  

	  

Haberg	  et	  al.,	  2008	  

Soreng	  et	  al.,	  2018	  

EHDs	  

EHD1,	  EHD4	  (vesiculation)	  

EHD3	  (stabilisation),	  

EH	  domain	   PACSIN1	  /	  2	  –	  F-‐BAR	  domain	  mediated	  tubulation	  

Amphiphysin	  2	  –	  BAR	  domain	  mediated	  tubulation	  

Rabenosyn-‐5	  –	  early	  endosome	  Rab5	  effector	  

Rabankyrin-‐5	  -‐	  early	  endosome	  Rab5	  effector	  

Rab11-‐FIP2	  -‐	  recycling	  endosome	  Rab11	  effector	  

Pant	  et	  al.,	  2009	  

PACSINs	  

PACSIN1,	  PACSIN2	  

F-‐BAR	  domain	   EHD	  proteins	  –	  stabilization	  /	  vesiculation	  of	  tubules	  

MICAL-‐L1	  –	  actin	  organisation	  

Phosphatidic	  acid	  –	  membrane	  recruitment	  

Rab35	  /	  Rab8a/	  Arf6	  GTPases	  –	  membrane	  recruitment	  

N-‐WASP	  –	  actin	  nucleation	  and	  polymerisation	  

Dynamin	  –	  transport	  carrier	  fission	  

Sharma	  et	  al.,	  2009	  

Rahajeng	  et	  al.,	  2012	  

Bahl	  et	  al.,	  2016	  

ACAP1	   BAR–PH	  domain	  +	  

association	  with	  

clathrin	  and	  clathrin	  

cage	  assembly	  

Rab10:GTP	  –	  recruits	  ACAP1	  to	  endosome	  

Arf6:GTP	  –	  activates	  PI(4)P5-‐kinase	  I	  

PI(4)P5-‐kinase	  I	  –	  drives	  formation	  of	  PI(4,5)P2	  

Pang	  et	  al.,	  2014	  

Li	  et	  a.,	  2007	  

Shinozaki-‐Narikawa	  et	  al.,	  

2006	  

AP-1/clathrin	   Clathrin	  cage	  

assembly	  

	   Robinson	  	  &	  Bonifacino,	  2001	  

Kural	  et	  al.,	  2012	  

AP-3/clathrin	   Clathrin	  cage	  

assembly	  

	   Robinson	  	  &	  Bonifacino,	  2001	  

Kural	  et	  al.,	  2012	  

GGA3/clathrin	   Clathrin	  cage	  

assembly	  

Arf6:GTP	   Puertollano	  &	  Bonifacino,	  2004	  

Zhao	  &	  Keen,	  2008	  



Parachoniak	  et	  al.,	  2011	  

BLOC-1	   Curvilinear	  chain	   KIF13A	  –	  microtubule	  motor	  

AnxA2:Arp2/3	  –	  branched	  actin	  polymerisation	  

Delevoye	  et	  al.,	  2016	  

Delevoye	  et	  al.,	  2014	  

EHBP-1	   	   Rab10	  /	  actin	  /PtdIns(4,5)P2	   Wang	  et	  al.,	  2016	  

	  


