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I Can See Your Aim: Estimating User Attention From Gaze For
Handheld Robot Collaboration

Janis Stolzenwald and Walterio W. Mayol-Cuevas

Abstract— This paper explores the estimation of user
attention in the setting of a cooperative handheld robot
— a robot designed to behave as a handheld tool but
that has levels of task knowledge. We use a tool-mounted
gaze tracking system, which after modelling via a pilot
study, we use as a proxy for estimating the attention of the
user. This information is then used for cooperation with
users in a task of selecting and engaging with objects on
a dynamic screen. Via a video game setup, we test various
degrees of robot autonomy from fully autonomous, where
the robot knows what it has to do and acts, to no autonomy
where the user is in full control of the task. Our results
measure performance and subjective metrics and show how
the attention model benefits the interaction and preference
of users.

I. INTRODUCTION

Handheld robots are a new category of coopera-
tive robots which are endowed with the look and
behaviour of a handheld tool, include extra mechanical
competences and process task information for better
augmentation.

Early results in this area demonstrate how a robot’s
task knowledge can be used for augmentation even
without explicit feedback to the user via motion ges-
turing [1] and with combinations of visual feedback
[2]. While informing the user of the robot’s intention
significantly improved task performance, a remaining
challenge was identified: the conflict between user in-
tention and the robot’s plans. This led to frustration in
users and a negative impact on cooperative work mea-
sures. The studies particularly yield that this problem
is rooted in unidirectional intention communication i.e.
the robot displays its aim without observing the user.
Furthermore, when the robot operates under idealised
full autonomy, its planning and performance tend to
have high efficiency and its actions dominate those
of the user. This has conflicted with users’ perception
of cooperative task solving e.g. sometimes there was
a confusion about what the robot will do next. Our
motivation stems from aiming to address the above
issues and here we start by looking at incorporating
models of user attention so that we can both: i) provide
the robot with user’s information and a proxy for
her/his intention and ii) allow us to evaluate instances
of conflicts between user and robot plans.

Remote gaze tracking is a natural choice for this due
to the extensive body of work linking gaze and action
prediction. Land et al. found how eye gaze is closely
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Fig. 1: Testing setup for the interactive game. The user has
to stop the targets (red) using the robot to increase the game
score while distractors (green) can pass.

related to a person’s focus of attention as it precedes
the location of actions during every-day tasks [3].

For our study we use the open robotic platform plat-
form1 reported in [4], and modify it with the incorpora-
tion of a remote gaze tracker as described further down.
The gaze information is first modeled and then used to
evaluate its utility in a gamified cooperative task. This
paper is formed by two principal parts, one that looks
at the gaze tracker modeling and characterization and
then the description and evaluation of the cooperative
task under different modes of autonomy. We conclude
our paper with a discussion and summary.

II. BACKGROUND AND RELATED WORK

Within this section, we review recent work about
handheld robots and related fields such as wearables
and intelligent tools. We also discuss means of attention
estimation from past work which inspired our solution
for the handheld robot.

We pose the following research questions:
Q1 How can user attention be used to enhance coop-

eration with handheld robots?
Q2 How does the incorporation of attention affect task

performance and the user’s perceived task load?

A. Handheld Robots
The notion of non-medical, generic handheld robotics

was proposed recently in [1]. In that instance, a
lightweight device with a cable driven trunk-shaped

13D CAD models available from handheldrobotics.org
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Fig. 2: Handheld robot with extended user perception capa-
bilities through a newly integrated eye tracking system.

actuated arm that can move with 4 DoF while being
tactically moved by a human was introduced. The tool
itself is aware of the task and its progress. Therefore,
it can augment the user during task execution. Fur-
thermore, it can provide task related guidance using
its 4-DoF end effector to point towards the goal. The
robot was evaluated through experimental feasibility
studies. The results show that an increase in the level of
autonomy improves critical aspects of efficiency such as
time-to-complete and perceived workload. At the same
time, increased autonomy led to frustration in some
participants which was expressed via statements like:
The tool won’t go where I want it to.

In subsequent work, the lack of user guidance was
addressed and different types of visual feedback e.g.
through rudimentary robot gesturing, 2D-displays and
stereoscopic VR-headsets were explored [2], [4]. The
effect of the different feedback methods on the task
performance was investigated through a comparative
user study where participants were asked to complete
a 5 DoF reaching task. The results yield that visual
feedback improves task performance. Furthermore, it
was found that participants could perform the task
more accurately and perceived less workload when the
robot was used compared to a manual completion of
the same job.

B. Related Work

A concept that is closely related to the one of the
handheld robot is the elbow mounted robotic forearm
introduced by Vatsal and Hoffman [5]. The system
shares the cooperative character with handheld robots
but is distinguished by a much higher physical prox-
imity which makes it more spatially dependant on the
user. The results indicate that such a device could be
purposed for industrial applications such as construc-
tion. At the same time, the authors suggest that a fluent
cooperation with the robot would require a partially
autonomous behaviour for the robot with an integrated
user intention model.

Another close relative to handheld robots is a group
of intelligent handheld tools, mainly purposed for
industrial applications which augment users through
visual guidance or mechanically correct their actions.

The research by Echtler et al. is about an intelligent
welding gun that guides its user through the task,
using augmented reality graphics on an LCD screen
[6]. Another example of a task aware tool is introduced
by Rivers et al. [7]. Their milling tool for 2D fabrication
provides an on-display trajectory guidance and corrects
the micro scale of the path while the rough positioning
is done manually by the user.

We note that on the above work there is little to
no evidence of aiming to understand intention or user
attention to enhance the cooperation between robot and
user.

C. Behaviour Cues for Attention Estimation
Answering the question of how to best estimate a

user’s focus of attention in handheld robot task set-ups
is the central aim of our research project. The literature
of using eye and/or head gaze for attention estimation
is vast and spans many years. Recently, standard meth-
ods to detect gaze directions commonly involve eye
trackers [8] or determining head orientation [9], [10].
The information about both head orientation and eye
gaze has been linked to a person’s focus of attention in
the past [11], [12].

Land et al. found that there is a link between object
interaction and preceding eye gaze during manual task
execution [3], [13]. This is supported by Hayhoe et
al. who studied hand-eye coordination and found that
there is a small share of saccades on objects which
were used shortly after these look ahead fixations [14].
This observation was later linked to just-in-time task
planning by Mannie et al. who suggest that visual
attention is turned towards a subsequent goal right be-
fore interaction rather than relying on spatial memory
only [15].

III. EYE TRACKING FOR A HANDHELD ROBOT

The aim of the integration of an eye tracking system
is to gain attention-relevant gaze information of the
user while the handheld robot is operated. In this
section, we describe how a 3D gaze ray is constructed
by merging 2D in-plane gaze information detected by
a remote eye gaze tracker with support from motion
capturing.

We use a Tobii Eye Tracker2 which delivers gaze
information such as the user’s current eye position
and the 2D intersection between eye gaze and screen
surface in screen centre coordinates.

For the following, let Fw,Fb,Fc be the frames of the
world, the tracker’s base and the centre of a screen
plane, respectively. Furthermore, let ixeyes, ixgaze and
ixscreen be vectors describing the eye’s position, the gaze
direction and the gaze intersection with a screen plane
in the according frames (i = w, b, c). Consequently, i H j
represents the homogeneous transformation between

2https://help.tobii.com/hc/en-us/articles/213414285-
Specifications-for-the-Tobii-Eye-Tracker-4C
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Fig. 3: This figure illustrates the calibration setup which is
used to determine the (white tipped) transformation b Hc
which is required for the construction of the user’s gaze g.

two frames Fi,Fj [16]. The relationship between the
frames can be seen in figure 3.

Both the eye tracker’s base and the calibration screen
are coupled to the motion tracking system, hence w Hb
is known at any time, wHc is solely known during
the offset calibration process while b Hc is initially
unknown. As the tracking device delivers the eye-
positions and gaze intersection with an associated
screen, we can obtain the local gaze cg with respect
to Fc as follows [17]:

cg(λ) = cxeyes + λcxgaze (1)

where cxeyes is the mean of the two eye positions and
cxgaze is the gaze direction which can be derived by

xgaze =
xscreen − xeyes

|xscreen − xeyes|
(2)

Furthermore, while the eye tracker is attached to the
calibration screen, we store the transformation b Hc be-
tween tracker base and screen which is know through
the equation:

bHc = (wHc)
−1 wHb (3)

Now, we want to use the eye tracker without it being
attached to the screen which means we lose informa-
tion about w Hc. However, it can be derived from com-
bining the tracker’s base with the stored transformation

wHc =
w Hb

b Hc (4)

and finally, the gaze in world coordinates can be cal-
culated in real time

wg = w Hc
cg (5)

The eye tracker is mounted on to the handheld
robot as it can be seen in figure 4. The position and
orientation of the eye tracker can be adjusted so that
the system can be adapted to varying user heights. In
its generic configuration, the tracker is aligned such
that it has the best accuracy within the robot’s local
workspace. Figure 2 shows a picture of the complete
system.

A remote gaze tracker is preferred as it goes in line
with the notion of a self-contained handheld tool. That
way, users are not imposed to wear anything to use the

Track Box

Eye Tracker

Tracker Mounting

Handheld Robot

Fig. 4: Illustration of the handheld robot with the mounted
eye tracker. The mount supports 2-DoF adjustment so that
the user’s head remains in the (red) trackable volume.

tool which gets us closer to the handheld robot’s aim
of pick up and use.

IV. EYE TRACKING ACCURACY STUDY

The purpose of the accuracy study is to identify the
limits of the introduced remote eye tracking system.
Within the context of the handheld robot application,
we are particularly interested in the constraints of the
trackable area relative to the robot’s workspace; that is
how far the user can look away from the robot’s tip for
an accurate gaze capturing. Furthermore, we assess the
accuracy of the measured gaze.

A. Data Collection
The general approach is to keep track of eye gaze

data throughout a task where a participant would look
and point (the robot tip) at a randomised sequence of
targets which are broadly scattered over a workspace.
In order to generate a broad variety of target sequences,
three typical workspace setups were selected: The floor,
a table surface and a vertical screen.

For each target of the sequence, a participant is asked
to look at a target without moving the robot and then
touch the target with the robots end effector while
looking at the target. This would then be the starting
posture for the next target iteration. For each iteration,
we keep track of the following data:
gpri / gpos the true eye gaze ray to a prior/posterior target

∆φgaze the angular gaze shift (difference) between pos-
terior and prior true gaze

g the measured eye gaze
ε the angular error of the measured eye gaze

Tracked True, if an eye gaze could be captured for a given
target

The relationship between those measurements can be
seen in figure 5. gpri and gpos are obtained from the
eye position which is known from a motion tracked
helmet and the associated target of which the position
is known too. The angular gaze shift ∆φgaze is defined
as [17]:

cos∆φgaze =
gpri · gpos

|gpri| · |gpos|
(6)

For each targeting iteration, these measurements are
taken for the case where the robot is pointed towards



the prior target as well as when the robot tip touches
the posterior target.
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Fig. 5: Illustration of a measurement iteration where a par-
ticipant is proceeding from looking at a prior target tpri to
looking at the posterior target tpos before moving the robot
towards it. Dashed lines represent calculated true eye gaze
rays whereas the solid line is the measured eye gazes.
B. Experiment Execution

We recruited 11 participants for the 1st pilot gaze
estimation experiment, mainly students from different
fields (4 females, Mage = 25, SD = 4.8). Participation is
on a voluntary basis as there is no financial compen-
sation for their time. Each participant is asked to run
through the aiming task for each target set-up of which
the order is randomised. As part of their introduction,
participants are given some practice time to familiarise
themselves with the robot.

For each of the three set-ups, we take the 2 data
measurements for each target pair. Taking into account
the measurement of the initial pose, we get 63 mea-
surements per participant, so our final set contains 693
data points.

C. Eye Gaze Modelling Results
In order to determine the accuracy performance of

the eye tracking system, we split the data into the
subsets Sl (N = 330), where the participant is looking at
the next target and Sp (N = 363), where the target was
aimed with the eye gaze and the robot’s tip at the same
time. These are further split to distinguish between the
cases where the eye gaze was recognised (Tracked =
true) or not which is denoted with an additional 1/0-
index (1 = true). That way, we get the subsets Sl,1,
Sl,0, Sp,1 and Sp,0 with sizes N = 174, 156, 331 and 32,
respectively.

Sl is used to investigate the effect of ∆φgaze on ε,
while Sp is used to investigate the accuracy for the
case where the user’s gaze is close to the tip. For the
analysis, data points with a difference to the mean
higher than two standard deviations are removed so
that 2.55% is discarded.

For Sp,1, we find a mean angular error of ε0 =
1.99, CI[1.83, 2.16]. The set Sl,1 is analysed using a linear
regression model. We calculate the values c1 = 1.243
and c2 = 0.032 for the model of the shape

ε(∆φgaze) = c1 + c2∆φgaze (7)

where the slope c2 is significant (p = .012, , R2 = 0.032).
A diagram of the model can be seen in figure 6.
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Fig. 6: Diagram of the linear regression model (blue) of the
eye gaze error ε over the gaze shift ∆φgaze (red samples).

In order to estimate the limit of the gaze shift angle
∆φgaze for which gaze tracking delivers reliable results,
we use Sl , the whole subset of samples where the par-
ticipant was not looking at the tip. A logistic regression
[18] is performed using the model

P(X) =
exp(β0 + β1X)

1 + exp(β0 + β1X)
(8)

where the independent variable is ∆φgaze and P(X) is
the probability of the eye gaze being tracked (Tracked
= true). In order to choose the optimal threshold
value as a decision point for the model, we run a 5-fold
cross-validation over the range P(X) ∈ [.25, .75]. As a
result, we gain the decision point at P(X) = 0.65 for
which the model fits 85.6% of the data and we get the
coefficients β0 = 5.407 and β1 = −0.177 (p < 2e− 16
each) using the complete data set. By inverting the
function at the decision point, we find that P(X) > .65
for ∆φgaze ∈ [0, 27] (cf. figure 7).
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Fig. 7: Diagram of the logit model (blue) to estimate the
probability P(Y = 1|X) of successful eye tracking for a given
gaze shift ∆φgaze. The (red) samples are the binary Tracked
labels where true = 1 and false = 0.

Feeding the ∆φgaze range back into the linear model
(equation 7), we find ε27 = ε(∆φgaze = 27) = 2.107 as
an error prediction for the trackable range.

D. Gaze tracking discussion

In addressing the question about the constraints of
a workspace for eye tracking, it was found that it is
limited by a maximum angle of 27 deg away from
the robot’s end effector. Within this constraint, we
anticipate a probability of successful eye tracking above
0.65 which informs subsequent studies in terms of the
limitations of experimental designs. As the angular
limit goes to any direction, the workspace has the shape
of a cone with a tip angle of 2× 27 deg = 54 deg.



Concerning the angular accuracy of the eye tracking
device in handheld robot applications, we identified a
link to ∆φgaze. However, the linear regression yields a
small slope coefficient indicating a small effect of the
gaze direction on the error. The error for a range below
27 deg is smaller than the maximum of the CI of the
error of the Sp set. Therefore, an average error of up to
ε = 2.16 deg is anticipated.

V. THE ATTENTION MODEL

On the studies described in the rest of this paper,
we apply our results from the eye tracking study for
incorporating user attention estimation.

The attention model for the handheld robot is based
on two factors: gaze awareness and task knowledge.
These factors are inspired by the work by Land at
al. who suggest that eye gaze is closely related to the
location of a person’s action [3]. Therefore, we propose
the following assumptions:
A1 The part of a workspace which is watched by the

user is within the user’s focus of attention.
A2 A watched object is more likely to be in the user’s

focus of attention when it is task-relevant than
when it is irrelevant to the task.

Based on these assumptions, we create a behaviour
matrix with the gaze awareness and the task knowl-
edge as the two axes which determine the behaviour.
As the attention awareness is the product of both gaze
awareness and task knowledge, it increases over the
diagonal axis of the matrix as illustrated in figure 8.

Gaze 
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Manual Autonomous

Cooperative

Follow eye gaze

Remain 
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and gaze information

No
Attention
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High Attention
Awareness

Fig. 8: This behaviour diagram illustrates how the four
behaviour modes of the robot are linked to the attention
model which is based on the level of gaze awareness and
task knowledge.

The details about each behaviour mode are described
in the following:
B1 Manual Mode: The robot remains motionless since

neither the gaze nor the task knowledge influence
the behaviour.

B2 Slave Mode: In this mode, the robot ignores the
status of an object or whether it is related to
the task at all. Instead, the behaviour is purely
determined by the estimation of the user’s area of
attention. This goes in line with assumption A1 so
that the robot follows the user’s eye gaze in the
workspace.

B3 Autonomous Mode: The robot ignores any user
actions and follows its own plan to complete the
task. Choosing the sequence of task objects and
finishing the job is fully automated.

B4 Cooperative Mode: The focus of attention is mod-
elled as the intersection between the gazed at area
and the location of a task-relevant object which
goes in line with A2. The robot follows the eye
gaze and helps to aim when a task object is fo-
cused. While the robot finishes the job, the user
can shift the visual focus to a subsequent object.
The robot catches up with the eye gaze once the
task with the prior object is completed.

VI. METHODOLOGY OF ATTENTION STUDY

Having developed a set of behaviours which include
our novel attention modelling, we assess the different
modes through a gamified user study.

The motivation for the game is driven by the demand
for a task that would be easy enough for novice users to
solve and which would be solvable using the handheld
robot. At the same time, the robot would depend on
being tactically reached by a user i.e. it could not solve
the task by itself.

A. Validation Task

The game principle is inspired by Space Invaders3

and displayed on a 2D LCD screen (105 cm diagonal).
Targets travel with a constant speed from the upper
edge of the screen to the bottom line. The aim of the
game is to stop as many targets as possible before they
reach the bottom. The robot’s tip emits a virtual laser
that can be used to stop a target. The laser needs to
be activated via a trigger on the robot’s handle and
the tip needs to be close to the target (< 100 mm).
It takes some lasering time to stop a target but less
time for quicker targets, since otherwise, it would be
impossible to complete it before it reaches the bottom
line. The outcomes of the accuracy experiments are
used to dimension both screen size and target diameter.

The design of the game is grey scale coloured to
avoid a disadvantage for colour blind people. The
background of the game is a cartoon landscape and
alongside the targets, there are similar objects dropping
which cannot be stopped but are used as distractor
stimuli. While 50% of the targets are spawned ran-
domly, the rest are part of a challenging scenario, for
example, a triangle/line formation or an arrangement,
where some slower targets are being taken over by
quicker ones. This forces the player into situations
where target priorities are equal or where plans have
to be adapted to an unexpected event. An example of
the gameplay can be seen in figure 1.

3Available for example at http://www.pacxon4u.com/space-invaders/
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Fig. 9: Performance (higher is better) measured in completed targets over total targets for each mode and speed range.

Coop. Auton. Manual
Auton. 1 - -
Manual 0.82 0.33 -
Slave 1.40E-07 2.70E-08 3.90E-05

(a) Speed Range 1

Coop. Auton. Manual
Auton. 0.058 - -
Manual 0.038 5.60E-06 -
Slave 2.40E-15 < 2E-16 6.80E-11

(b) Speed Range 2

Coop. Auton. Manual
Auton. 1 - -
Manual 0.00043 2.40E-05 -
Slave 3.10E-15 <2E-16 2.30E-08

(c) Speed Range 3

TABLE 1: Bonferroni corrected p-values of pairwise t-test results for the 3 different speed ranges. Significant (p < 0.05) values
are displayed in bold.

The robot, the screen and the eye tracker are tracked
using an OptiTrack4 motion capturing system. There-
fore, the intersection between the robot’s tip and the
screen, the user’s eye gaze and the position of the
targets is known in 3D space at all times. Note that the
robot’s task knowledge includes the state completion
for each target; that way it is able to lock its orientation
towards it and overwrite the laser trigger while it
is being stopped in the cooperative and autonomous
mode. However, while the robot decides the sequence
in the autonomous mode, it is dependent on user
attention in the cooperative mode (cf. B1-B4).

B. Attention Experiment

For this new experiment for the attention study,
we recruited 15 participants (6 females, Mage = 25.5,
SD = 5.6). Many are students from technical courses,
however, there is no expertise required to solve the
task. There is no financial compensation for their time,
however, many volunteers are thankful for trying the
robot and the game and they are offered some re-
freshments. Each participant ran 3 game trials in each
behaviour mode for a duration of 80 s each. They were
exposed to targets with varying speeds and stopping
times and the order of the behaviour modes was ran-
domised to cancel out training effects. Before starting
the experiment session, the participants were given
an explanation and demonstration for each mode plus
some practice time to get familiar with them.

During trials, we keep track of the count of targets
that are completed as well as the total number of targets
that are presented. For the event of a target being
stopped by the user or reaching the bottom line (e.g.
the user failed to stop it), a data point is created which
contains the target’s speed and the current behaviour

4http://optitrack.com

mode of the robot. Over the 160 trials, we collect 17k
target samples in total.

The game runs with an update rate of 60 Hz and
when one of the gaze-based modes is used (B2 - B4),
we register whether the tracker recognises the eye gaze
for later analysis.

After each trial, the participants are asked to fill out
a questionnaire to assess the current trial and mode.
The main parts of the questionnaire are the NASA TLX
criteria [19] which are used to measure the subject’s
task load. Furthermore, we asked participants to what
extent they agree with the statements: The robot helped
me with the task and The robot obstructed me during the
task on a 5-point Likert scale (Strongly agree, Agree,
Neither agree nor disagree, Disagree, Strongly disagree).
Also, they were given the chance to provide feedback
comments for the current trial.

VII. RESULTS

The target data set is used to assess subject perfor-
mance for each behaviour mode. Here, performance is
defined as the proportion of completed targets over
the total targets presented. Furthermore, the set is split
into three speed ranges R1,2,3: [70, 200), [200, 330) and
[330, 490] (in mm/s) for a separate analysis. 2.1% of
the data points are outside of these ranges and are thus
discarded.

A. Mode Performance
The effect of the speed range and the behaviour

mode on the performance is determined using a two-
way factorial repeated measures ANOVA. As the re-
sults yield a significant effect for each factor (p <
0.001), they are further explored using post-hoc pair-
wise t-tests where Bonferroni correction is used. The
mode-dependent differences in performance for each
speed range can be seen in figure 9 and the associated
t-test results are displayed in table 1.



For every speed range, the slave mode is outper-
formed by the other modes and the performance yields
a significant difference to each. The cooperative mode
and the autonomous mode outperform the manual
mode for each speed range, however, significance can
only be determined for the two higher speed ranges R2
and R3 but not for R1. In no case could a significant
difference between the performance of the cooperative
mode and the autonomous mode be found.

We do not find any correlation between performance
and age, gender, hours per week that video games are
played or whether vision aids such as glasses or contact
lenses were used.

Considering the set of game update frames where
the eye tracker did not recognise the eye gaze, we note
that those add up to a share of 49.9%. However, they
are evenly distributed over the trial time so that in only
5.1% of the time, these frames locally add up to over
150 ms.

B. Task Load Index
For the analysis of the modes’ effect on the perceived

task load i.e. the combined NASA TLX results, we
applied an ANOVA for the combined dataset and
determine significance (p < 0.001). We proceed with a
post-hoc pairwise t-test between the modes where the
p-values (displayed in table 2) are Bonferroni corrected.
The mode-dependent differences of TLX results can
be seen in the diagram in figure 10. The results for
the slave mode yield a significant difference to the
cooperative mode and to the autonomous mode only.
Furthermore, the cooperative mode outperforms the
manual mode with significance.
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Fig. 10: Perceived task load for each behaviour mode mea-
sured by the combined NASA TLX (lower is better).

Coop. Auton. Manual
Auton. 1 - -
Manual 0.038 0.102 -
Slave 1.30E-05 6.00E-05 0.202

TABLE 2: Bonferroni corrected p-values of pairwise t-test
results for the mode depended mean differences of TLX
outcomes. Significant (p < 0.05) values are displayed in bold.

C. Helpfulness and Obstruction
The 5-point Likert scales (from strongly disagree to

strongly agree) for the statements about the robot’s help-
fulness and obstruction are scaled to numeric values
on the interval [−1, 1]. As can be seen in figure 11a, the
robot is rated most helpful in the cooperative (0.64) and

autonomous (0,59) mode followed by the slave mode
(0.21) while the manual mode tends towards unhelpful
(-0.28).
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Fig. 11: Participant’s rating of the robot being helpful (left) or
obstructive (right) where 1 is strongly agree and -1 is strongly
disagree. Whiskers indicate standard errors.

D. Qualitative Feedback
As commenting on the trial behaviour was optional,

the number varies for the different modes. We received
many comments on the cooperative and autonomous
mode and a few for the slave mode while the manual
mode remained mostly uncommented on.

The comments on the cooperative mode are mostly
positive and often refer to collaboration experience e.g.
I feel comfortable with the robot’s assistance or It feels like
a team and The robot helped me with accuracy once I chose
a target. Also, participants often pointed out that they
felt in control e.g. I like the shared control or I feel more
in control with it.

For the autonomous mode, comments are positive
when referring to accuracy e.g. The robot is better than
me and negative (mostly for fast targets) in terms of the
robot’s predictability e.g. I was irritated when the robot
changed plans and Why are you going there?

Within the slave mode, participants were complain-
ing when eye tracking was faulty e.g. There was some
offset, the robot did not follow accurately and I saw a target
but [the robot] did not follow.

The few comments on the manual mode were ad-
dressing physical workload (It was exhausting).

VIII. DISCUSSION

In addressing research question Q1, two gaze-based
attention models where introduced where one addi-
tionally takes into account the robot’s task knowledge.
These modes were tested against the robot in a fully
autonomous mode and for the scenario where the same
job was done manually.

Regarding Q2, the modes were analysed with respect
to performance and task load. We found that using the
primitive approach, where the robot is following the
eye gaze, performance decreases while the workload
is increased in comparison to the manual case. One
explanation might be the lack of accuracy for eye
tracking and that peripheral view could not be taken
into account. Moreover, it was observed that the robot’s
motion towards the focus of gaze influenced the gaze
behaviour which in turn caused more tip motion. This



sometimes led to off-set errors and jittering during the
use of the slave mode which was also reported in the
feedback.

In contrast, we found that the attention-based co-
operative behaviour of the robot exceeds the manual
analogue in terms of performance and decreases work-
load which makes it appear similar to the autonomous
mode. This statement, however, is constrained to the
requirement of a certain level of temporal demand
for the effect to become apparent. The specific speed
constraints for each mode are subject to further inves-
tigation.

When the cooperative mode is compared to fully
autonomous, the statistics do not yield a difference in
terms of task performance. However, we note that the
autonomous mode is modelled with full omniscience
which might not be possible outside the lab envi-
ronment. For example, the robot might know which
objects are task-relevant, while only the user knows the
right sequence of task steps. Furthermore, qualitative
feedback indicates that the robot is more predictable in
the cooperative mode, making it more preferable.

IX. CONCLUSION

This paper presents a system for estimating user
attention for handheld collaboration. Gaze information
and task knowledge are used as the two factors of the
attention model. First, we developed a gaze model that
estimates a 3D gaze ray from 2D gaze information and
motion tracking. The gaze model was used to inform
a subsequent attention study in which attention in-
corporated gaze based behaviours with varying levels
of robot’s task knowledge. The performance and task
load in these modes were compared against a fully
autonomous mode and a manual mode.

Results indicate that cooperative behaviour is more
effective than completing the task manually for the
cases where there is a high demand for speed. We
also found that task load is reduced when cooperative
behaviour is based on both task knowledge and eye
gaze i.e. with incorporated attention.

Moreover, the information of user attention is an
essential step towards the prediction of intention. We
suggest that our findings are used to inform future
studies where the focus of attention can be used as part
of a more sophisticated intention model. We suggest
that a handheld robot, enhanced with such a model,
could be used in applications supporting users with
varied skill in e.g. manufacturing as in the fields of
assembly or welding where the attention model could
help the robot choosing subtasks with respect to user
preferences.
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