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Abstract— We report successful results from using deep 
learning neural networks (DLNNs) to learn, purely by 
observation, the behavior of profitable traders in an electronic 
market closely modelled on the limit-order-book (LOB) market 
mechanisms that are commonly found in the real-world global 
financial markets for equities (stocks & shares), currencies, 
bonds, commodities, and derivatives. Successful real human 
traders, and advanced automated algorithmic trading systems, 
learn from experience and adapt over time as market conditions 
change; our DLNN learns to copy this adaptive trading behavior. 
A novel aspect of our work is that we do not involve the 
conventional approach of attempting to predict time-series of 
prices of tradeable securities. Instead, we collect large volumes of 
training data by observing only the quotes issued by a successful 
sales-trader in the market, details of the orders that trader is 
executing, and the data available on the LOB (as would usually 
be provided by a centralized exchange) over the period that the 
trader is active. In this paper we demonstrate that suitably 
configured DLNNs can learn to replicate the trading behavior of 
a successful adaptive automated trader, an algorithmic system 
previously demonstrated to outperform human traders. We also 
demonstrate that DLNNs can learn to perform better (i.e., more 
profitably) than the trader that provided the training data. We 
believe that this is the first ever demonstration that DLNNs can 
successfully replicate a human-like, or super-human, adaptive 
trader operating in a realistic emulation of a real-world financial 
market. Our results can be considered as proof-of-concept that a 
DLNN could, in principle, observe the actions of a human trader 
in a real financial market and over time learn to trade equally as 
well as that human trader, and possibly better.  

Keywords— Financial Engineering, Financial Markets, 
Automated Trading, Intelligent Agents, Deep Learning. 

I. INTRODUCTION  
The work described in this paper is a first step toward 

answering the following question: is it possible to use 
contemporary machine-learning techniques, such as deep 
learning neural networks (DLNNs), to automatically learn to 
replicate the trading behaviour of a human trader in a 
financial market, purely by observing the actions of that trader 
in the market? Human traders are valued for their ability to 
adapt, to learn from their experiences in the market, and so at 
the core of our question is whether DLNNs can learn to 
emulate a trader as he or she (or it) adapts to changing market 
conditions. We report here our preliminary results which 
indicate that the core question can be answered positively; and 

we interpret that as an indication that, by suitably extending the 
methods used here, it may in time be possible to sit a DLNN 
“black box” alongside a skilled human trader working in an 
investment bank or fund-management company; for the DLNN 
box to learn to copy the trader’s actions purely by observing 
the actions of the trader; and then for the human trader to be 
replaced by the black box. If one human trader can be replaced 
then in principle all can be, and this thereby offers the potential 
for a considerable reduction in trading personnel.  

In the past decade there has been a steep rise in the 
deployment of automated trading systems in major financial 
markets such as those for equities, currencies, bonds, 
commodities, and derivatives. Traditionally, for well over a 
hundred years, the work now done by automated trading 
system was instead the responsibility of human traders working 
initially face-to-face on the open-outcry trading floors of 
centralised exchanges; then via telephone communication; and 
more recently via messaging over computer networks. Human 
traders were typically very well paid for their work, which 
might charitably be interpreted as a sign that they were being 
appropriately rewarded for the intelligence required of them to 
be successful traders, rather than that they were simply lucky to 
have found themselves a job where pay levels were irrationally 
generous in comparison to the degree of intelligence required 
to successfully do that job. Thus, replacing human traders with 
automated systems is an interesting problem for the application 
of computational intelligence in financial engineering (CIFEr). 
A specific human job, known as a sales trader, involved 
working orders on behalf of a client: the sales trader does not 
hold inventory on her own account, but instead she attempts to 
execute buy or sell orders as specified by clients. A good sales 
trader tries to get the best price for the client, in return for a 
commission or fee. For example, if a client-order instructs the 
sales trader to buy Apple stock (ticker symbol AAPL) at a 
price of no more than $160, then if the sales trader can 
complete the order when AAPL is at $155, that’s better than 
buying when AAPL is at $159. Similarly, if a client instructs 
the trader to sell IBM stock for no less than $150, it’s better to 
execute that trade at a price of $160 than at $155. In both 
buying and selling, the difference between the price specified 
by the client (which we refer to here as the limit price) and the 
price at which the transaction is executed (the transaction 
price) can be thought of as “profit”, either retained entirely by 
the sales trader, or shared in some ratio with the client. The 
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trading floors of investment banks used to be the home of well-
paid sales traders busily working away, either executing client 
orders or waiting for the next order to come in. And, in the past 
15 years, almost all human sales traders working in spot 
markets (i.e., working orders for  transactions that execute 
immediately) have been replaced by machines, by automated 
algorithmic trading systems, referred to in the industry as 
robot traders or simply as algos.  

A key paper in the rise of algorithmic trading was written 
by a group of researchers at IBM’s TJ Watson Research Lab, 
and presented at the 2001 International Joint Conference on 
Artificial Intelligence (IJCAI) [13]. This paper presented the 
first ever demonstration that automated trading systems could 
consistently outperform human traders. The IBM team ran a 
series of controlled laboratory experiments in which human 
traders interacted with one another in a simulated market that 
captured key aspects of real-world financial markets, with the 
interactions being mediated via a network of computer 
terminals – all interactions could be recorded with fine-
resolution timestamps, which greatly eased subsequent analysis 
of the dynamics of the market experiments. This style of 
experiment was one that had been pioneered by the economist 
Vernon Smith (see e.g. [30]), who was later awarded the 2002 
Nobel Prize in Economics for his leadership in establishing this 
approach, now widely practiced, and known as Experimental 
Economics (see also e.g.: [21, 22]). The key innovation in the 
IBM IJCAI paper was this: whereas Smith and other 
experimental economists had for many years been using 
networks of computer terminals to study the market-trading 
behaviour of human subjects; and while there was also a 
growing body of work in agent-based computational 
economics (see e.g.: [28] [34]) that explored the dynamics of 
markets populated entirely by robot traders; the IBM paper was 
the first to study under rigorous laboratory conditions the 
dynamics of interactions between human traders and robot 
traders. Specifically, the IBM team explored the interactions 
between human traders and two adaptive algorithmic trading 
systems (i.e., systems that could learn from their experience 
trading in the markets): one was a modified version of an 
adaptive probabilistic trading strategy originated by Gjerstad & 
Dickhaut [19], which IBM christened the Modified Gjerstad-
Dickhaut (MGD) strategy; the other was the Zero Intelligence 
Plus (ZIP) adaptive trading strategy, which uses the same 
underlying machine learning mechanism as back-propagation 
neural networks (and hence also as that in many DLNNs); the 
complete source-code for ZIP had been published by Hewlett-
Packard Laboratories four years earlier [7], and results from 
automated optimization of ZIP traders were presented at the 
1998 IEEE CIFEr conference [8]. IBM’s results showed that 
both MGD and ZIP could consistently out-perform human 
traders, in what was essentially a sales-trader role: i.e., MGD 
and ZIP robots could trade more profitably than human sales 
traders in financial markets. IBM’s result generated world-
wide media coverage.  

It is beyond the scope of this paper to offer a summary of 
the history of events from publication of the IBM IJCAI paper 
to the current near-total adoption of automated execution 
systems in all of the world’s major financial markets, and the 
consequent severe reduction in the number of human traders at 

the point of execution in those markets. For an historical 
overview of the rise of automated trading in financial markets, 
published by the UK Government’s Office for Science, see 
[10]; and for commentaries on the negative aspects of markets 
with high degrees of adaptive automation see [1, 2, 9, 25, 27].  

In the 17 years since the IBM paper was published, a 
number of other authors have replicated and extended their 
results: see e.g. [4, 5, 14-16]. To be realistic approximations of 
real-world financial markets, such experimental studies almost 
always employ a model of a limit-order book (LOB), a data 
structure very commonly shown on real trader’s screens and 
commonly referred to as simply the book. Described in more 
detail below in Section II.B, the LOB presents key real-time 
information that typically all sales traders in a market rely on.   

While algorithmic trading systems have replaced many 
human traders, especially sales traders in spot markets, there 
are still many humans employed to work in more complex and 
demanding trading roles. And that brings us back to the 
question posed at the start of this paper: the work described 
here is a first step at assessing whether, instead of hand-
designing adaptive algorithmic trading strategies such as MGD 
and ZIP that outperform human traders, is it instead possible to 
use contemporary machine-learning techniques such as 
DLNNs to automatically learn to replicate the trading 
behaviour of an adaptive trader, purely by observing the 
actions of that trader in the market. Both human traders and 
algos such as MGD or ZIP are adaptive; in this paper we 
concentrate solely on exploring the ability of DLNNs to learn 
to capture the trading behaviour of adaptive algos. The 
alternative, running experiments with human subjects, incurs 
considerable costs in time and money, and very many 
experiments would be required to generate enough data to 
satisfy the requirements of DLNNs. So, as an initial proof of 
concept, we explore in this paper only the ability of DLNNs to 
learn to replicate the behaviour of an adaptive algorithmic 
trading system: specifically ZIP, which is known to outperform 
humans. We demonstrate here that DLNNs can indeed learn to 
replicate the live-trading behaviour of ZIP, and to our surprise 
we also learnt that in fact a DLNN trained only on data from 
ZIP behaviour can learn to perform consistently better than 
ZIP. Because ZIP has independently and repeatedly been 
demonstrated to out-perform human traders, if a DLNN system 
can outperform ZIP traders that that gives rise to the possibility 
that a DLNN system observing a human trader in a real 
financial market may be capable not only of learning to match 
that human trader’s abilities, but also to exceed them.  

The rest of this paper is structured as follows. In Section II 
we describe our methods and the key components of our proof 
of concept: our experiment platform is a system called BSE, an 
open-sourced minimal simulation of a LOB-based financial 
market; we populate BSE markets with a number of algo 
traders and run a large number of market experiments to 
generate trading data; that training data is then fed into the 
public-domain DLNN TensorFlow DLNN software library 
[33], via the Keras high-level toolkit [23] that provides 
abstractions and interfaces to ease use of TensorFlow for 
common application styles. Section III then presents results 
from our experiments, which demonstrate that DLNNs can 
indeed learn, purely by observation, to replicate the adaptive 
trading behaviour of a ZIP algo, and that the DLNN trader can 



be more profitable than the ZIP trader from which the DLNN’s 
training data was generated: i.e., the DLNN “student” comes to 
outperform its ZIP “teacher”. Section IV discusses further 
work prompted by the results described here, and our 
conclusions are offered in Section V. 

II. METHODS, COMPONENT TOOLS, AND RELATED WORK 
For readers unfamiliar with DLNNs and the LOB real-time 

data-structure, brief introductions are given in Sections II.A 
and II.B respectively. Next, in Section II.C we present an 
outline of our method for training DLNNs to copy a sales 
trader’s observable activity, a method that applies regardless 
of whether the trader being copied is a human or a robot/algo. 
As the time and money costs of attempting to do this with a 
real human trader in a real financial market would be 
nontrivial, and because this is an initial proof-of-concept 
study, we report here on the successful use a DLNN learning 
to copy the behaviour of an adaptive sales trader robot, 
specifically a ZIP trader, operating in a simulated LOB-based 
market that closely models key aspects of the LOB-based real-
world financial markets. The LOB-market simulator is called 
BSE, described in Section II.D, and its use in the context of 
our experiments is explained in Section II.E. Finally Section 
II.F discusses the small number of publications by other 
authors that are relevant to the work reported here. 

A. Background: Deep Learning Neural Networks (DLNNs) 
It is beyond the scope of this paper to explain in detail the 

operation of deep learning neural networks (DLNNs), a 
relatively novel style of machine learning algorithm that has 
proven to be highly successful in recent years. For the 
purposes of this article the reader does not require a detailed 
knowledge of how DLNNs work, other than the elementary 
information that they are based on parallel distributed 
processing architectures, each DLNN being a network of 
interconnected nodes separated into a number of layers, with a 
specific number of nodes in each layer, and with weighted 
connections between nodes. Each node in a DLNN 
implements a simple computation, typically producing an 
output value that is the result of a nonlinear function computed 
on the sum of weighted input values to that node. In DLNNs 
the values of input variables are first fed, modulated by the 
weight on each connection, into an initial input layer of nodes; 
the outputs of the input-layer nodes are fed as inputs into the 
next layer of nodes, referred to as the first hidden layer. The 
outputs from a layer of hidden nodes are then fed as inputs 
into the nodes in the next layer, which may be another hidden 
layer, or it may be a final layer of one or more output nodes, 
known as the output layer. Thus a DLNN may be so shallow 
as to only have three layers (the input layer, one hidden layer, 
and then the output layer), or it may be deeper if it has more 
than one hidden layer. In the DLNNs considered here, all of 
the weighted connections run from nodes in one layer to the 
next layer down in the direction of the output layer. That is, 
there are no feedback connections from nodes in one layer to 
nodes in earlier layers, and there are also no connections 
between the nodes in any one layer, i.e. we are working only 
with “feedforward” DLNNs.  

DLNNs are most often used for so-called supervised 
learning, where a set of training data is repeatedly presented 
to the DLNN, and a learning algorithm adjusts the weights on 
the inter-node connections after each presentation of an item 
of data from the training set. Data items in the training set will 
typically consist of a pair of vectors: one vector of input 
values and one “target” vector of desired output values that the 
network should produce when the associated input vector of  
values is fed to the DLNN’s input nodes. Over time, the 
learning algorithm acts to reduce the error between the target 
output and the actual output of the network for each input 
vector in the training set. After the errors have been reduced or 
minimised by the learning algorithm, the extent to which the 
DLNN has usefully learned to generalise the mapping from 
input vectors to output vectors is then evaluated by exposing it 
to a set of test data, typically drawn from the same distribution 
as the training data. If the DLNN has learned an appropriate 
mapping, the error on the test-set should not be significantly 
higher than the error achieved on the training set at the end of 
the learning process. Typically, whether a DLNN learns a 
useful representation of the mapping from input vectors to 
output vectors is dependent on a number of factors, hyper-
parameters of the learning system. Particularly important 
hyperparameters are those that determine the network 
architecture, i.e. the number of layers and the number of units 
in each layer: setting appropriate values for these numbers is 
often more of an art than a science, involving a process of trial 
and error, and educated guesses: a topic we return to in 
Section IV. For further details of DLNNs, see e.g. [24, 20, 6, 
18, 26]. 

B. Background: The Limit Order Book (LOB). 
In almost all of the world’s major financial markets,  buyers 

and sellers interact via a mechanism known technically as the 
Continuous Double Auction (CDA). In the CDA, any buyer 
can announce or quote a bid at any time, and any seller can 
quote an offer at any time. While this is happening, any seller 
can accept any buyer's bid at any time; and any buyer can 
accept any seller's offer at any time. It’s a continuous 
asynchronous process, and it needs no centralized auctioneer, 
but it does need some way of recording the bids and offers that 
have been made and not yet transacted: this record is the limit 
order book (LOB).  In financial-market terminology, a limit 
order is one that will only be executed when a counterparty is 
found who is happily to transact at that order’s pre-specified 
limit price: this distinguishes it from other types of order that 
execute immediately, for example an at-market order which 
clears by taking whatever price the market will bear at the 
moment the order is submitted.  

The LOB is a data-structure published, with real-time 
updating, as the primary summary of the current state of the 
market supply and demand for a particular tradeable item (e.g. 
a specific stock, a specific currency pair, a specific fixed-
income bond, etc). Almost every electronic financial market 
exchange publishes a continuously-updated LOB for each 
security traded on that exchange. In markets such as foreign 
exchange (FX) there are no formally instituted centralised 
exchanges, but aggregation services publish real-time FX price 
streams that can readily be displayed in a GUI as a close 
analog of a LOB.   



The CDA has been the subject of much study in economics 
and finance (see, e.g. [17]). It interests economists because, 
even with a very small number of traders, the transaction 
prices (i.e. the agreed deal-prices) rapidly approach the 
theoretical market equilibrium price. The equilibrium price is 
the price that best matches the quantity demanded to the 
quantity supplied by the market, and in that sense it is the most 
efficient price for the market. The CDA is also of pragmatic 
interest because of the trillions of dollars that flow through 
national and international CDA-based markets around the 
world each day. Although there are still some exchanges where 
human traders physically meet in a central trading pit and shout 
out verbal bids and offers, in very many major markets the 
traders engage with one another remotely, via a screen-based 
electronic market, interacting by placing quotes for specific 
quantities at specific prices on the LOB.  

The LOB displays data that summarizes all the outstanding 
bids and offers, i.e. the “live” orders that have not yet cancelled 
by the traders that originated them. In market terminology, 
offers are also known as asks, and the LOB has two sides: the 
bid side and the ask side. The bid side shows the prices of 
outstanding bid limit orders, and the quantity available at each 
of those prices, in descending order of price, so that the best 
(highest) bid is at the top of the book. The ask side shows the 
prices of outstanding asks, and the associated quantities, in 
ascending price order, so that the best (lowest) ask is at the top. 

In financial-market terminology, the spread is the 
difference between the best ask and best bid. If a trader wants 
to sell at the current best bid price, that’s referred to as hitting 
the bid; if a trader wants to buy at the current best ask-price, 
that’s referred to as lifting the ask. Both hits and lifts can be 
signaled by the trader issuing a quote that crosses the spread, 
i.e. issuing a bid priced at more than the current best ask, or 
issuing an ask priced at less than the current best bid: the 
transaction then goes through at whatever the best price was on 
the LOB as the crossing quote was issued; the price on the 
crossing quote is irrelevant, so long as it crosses the spread.  

So, for example, if there are two traders each seeking to 
buy 30 shares in company XYZ for no more than $1.50 per 
share, and one trader hoping to buy 10 for a price of $1.52; and 
at the same time if there was one trader offering 20 shares at 
$1.55 and another trader offering 50 shares at $1.62, the LOB 
for XYZ would appear as illustrated in Fig.1, and traders 
would speak of XYZ being priced at “152-55” with the spread 
being $0.03, and the midprice being the arithmetic mean of the 
best bid price and best offer price.  

The information shown on a LOB is sometimes referred to 
as “Level 2” or “market depth” data. In contrast, “Level 1” 
market data just shows the price and size (quantity) for the best 
bid and ask, along with the price and size of the last recorded 
transaction for the instrument being traded. Some people like 
to try their hand at “day trading” on their home PCs and they 
often operate with even more restricted data, such as the time-
series of whatever price the instrument was last traded at, or the 
mid-price, the point between the current best bid and the best 
ask. Typically the richer the and more voluminous the financial 
market data, the more expensive it is to purchase from a 
commercial provider. Full Level 2 data is routinely used by 
professional traders in investment banks and hedge funds, but 

researchers in those institutions are famously much better 
resourced than meagerly-funded university academics. Buying 
licenses for historical records of Level 2 data in the large 
quantities needed for DLNN training is unfeasibly expensive at 
this early exploratory proof-of-concept stage of our research: a 
cheaper alternative to buying Level 2 historical data is needed, 
which is why we used instead the LOB-market simulator, BSE, 
described in Section II.D below. 

 

 
Fig.1: How a Limit Order Book (LOB) for a fictional tradeable security with 
ticker-symbol XYZ might appear on a trader’s screen. The bid-side of the book 
appears on the left, with highest prices at the top; the ask-side appears on the 
right, with lowest prices on the top. The best bid is $1.52, with 10 units of XYZ 
demanded at that price; the best ask price is $1.55, with 20 units offered at that 
price. Both sides of the book have a depth of 70, the bid-ask spread is £0.03, 
and the market midprice is $1.535. See text for further explanation 

C. Method: Training a DLNN by Observing a Sales Trader 
If we were working on attempting to have a DLNN learn to 

replicate the adaptive trading behavior of a real human sales-
trader in a real-world LOB-based financial market, on the 
assumption that the trader is using a trading terminal rather 
than trading via voice phone-calls, it would be trivially easy to 
record the orders that the trader is being asked to execute, as 
they come in from the clients, and to also record the limit-order 
quotes (bids or asks) that the trader is issuing to the market via 
her trading terminal. Even if she is making voice calls, speech 
recognition software could be used to capture the stream of 
quotes and responses in the telephone call. Assuming that an 
accurate timestamp is associated with each quote issued by the 
trader; and that a timestamp is also associated with each order 
as it comes in from a client; and furthermore assuming that 
each time the LOB changes, that change is also logged on a 
timestamped data record, then it is straightforward to build a 
“consolidated tape”, i.e. a single time-series of events 
accurately recording the sequence of events involving arrival 
of orders to the trader, the issuing of quotes by that trader, and 
the changes in the LOB over some trading period. This tape of 
data could be divided into a set of training data and a set of test 
data. The test data would be used while the DLNN is learning, 
adjusting its weights to reduce errors; and the test set would 
then be used to evaluate the usefulness of the trained DLNN 
after the learning process terminates. 

Although the work reported here does not involve taking 
data from a real human trader in a real-world financial market, 
because of the potentially prohibitive costs of doings so as 
discussed earlier in this paper, exactly the same method as 
sketched above can be applied in our proof of concept, 
attempting to have a DLNN learn to replicate the adaptive 
trading behaviour of a ZIP sales-trader in a suitably realistic 
simulation of a LOB-based financial market. To most clearly 
explain how we did this, Section II.D first introduces BSE, the 
LOB-market simulation that we used as the platform for our 
experiments, and then Section II.E provides further details on 
how we used BSE, along with the public-domain machine-



learning DLNN software toolkits TensorFlow and Keras, to set 
up our machine learning experiments; and Section II.F then 
closes with a discussion of related work.  

D. Apparatus: the BSE minimal simulation of a LOB-market 
What is needed, ideally, is a real-world financial exchange 

to treat as an experiment test-bed, but that is clearly not a 
feasible prospect. However a viable alternative is to use a 
simulation of a LOB-based market, that adequately captures 
the relevant details for the purposes of this research: BSE (the 
Bristol Stock Exchange) is an open-source simulator that meets 
those needs. BSE is described in some detail in [11, 12]. In 
summary, its key features are: 
• While real financial exchanges will typically 

simultaneously maintain LOBs for tens, hundreds, or 
thousands of types of tradeable item (i.e., different stocks, 
different currency-pairs, or different commodities), BSE 
has just one LOB, for recording limit orders in a single 
anonymous/abstract type of tradeable item. 

• BSE allows for the experimenter to control the 
specification of any of a wide range of dynamics of 
supply and demand in the BSE market.  

• BSE includes a number of pre-coded robot trading 
algorithms drawn from the literature on automated trading 
over the past 30 years, including ZIP. This allows the user 
to explore the dynamics of LOB-based CDA markets 
without having to write their own robot-trading algos.  

• BSE’s pre-coded robot trading algorithms can easily be 
copied and amended/edited/replaced, giving users of BSE 
the opportunity to explore developing their own robot 
trader algorithms and to evaluate them against various 
combinations of the stock of existing algos in BSE.  

BSE is deliberately written as a simple, intelligible, single-
threaded minimal simulation, in the widely used programming 
language Python (Version 2.6). The code has been available as 
open-source on the GitHub repository since October 2012 and 
has been downloaded many times, with a number of 
individuals having spawned forks and uploaded extensions of 
the system, including the addition of Vytelingum’s Adaptive 
Aggressive (AA) robot trader strategy [37], which was 
demonstrated in a 2011 IJCAI paper [14] to be the most 
dominant adaptive robot-trader strategy when pitted against 
human traders. For further details of BSE, see [11, 12]. 
It is important to remember that BSE as configured here is a 
minimal simulation of a financial exchange running a LOB in 
only a single tradable security. It abstracts away or simply 
ignores very many complexities that can be found in a real 
financial exchange. In particular, we used BSE configured in 
such a way that a trader can at any time issue a new order, 
which replaces any previous order that the trader had on the 
LOB: that is, any one trader can have at most one order on a 
LOB at any one time; also we used BSE set up so that all 
orders were for a quantity of one. This is consistent with long-
established norms and practices in experimental agent-based 
economics. Furthermore, as currently configured, BSE 
assumes zero latency in communications between the traders 

and the exchange, and also (very conveniently) assumes that 
after any one trader issues an order that alters the LOB, the 
updated LOB is distributed to all traders (and, potentially, also 
results in a transaction) before any other trader can issue 
another order. Real financial exchanges are significantly more 
complex than this, particularly with regard to latencies. 

E. Using BSE as a Source of Sales-Trader Training Data 
The method described in broad terms in Section II.C was 

implemented as follows. BSE was used to create markets 
populated entirely by robot traders, and various schedules of 
supply and demand were set up to stochastically generate, from  
nonstationary (i.e. time-dependent) distributions, client-orders 
to sell or buy units of the one arbitrary tradeable security in 
BSE. The schedules could be set up to give “bull” markets with 
steadily rising prices, “bear” markets with steadily declining 
prices, stagnant markets where prices take a drunkards walk 
along a flat line, and markets with various forms of oscillation 
or multi-phasic variation between periods of bull runs, bear 
runs, and sideways movement. A fresh randomly-generated 
client-order was fed to each trader as it completed its last 
assignment from a client. The open-source version of BSE [11] 
was edited (in straightforward ways) so that a “consolidated 
tape” (as introduced above in Section II.C) recording 
timestamped LOB data, client-order limit-price, and quote 
activity was produced for each trader in the market. After a 
number of market sessions, each of which involved several 
thousand orders, a successful ZIP trader would be identified 
and data from its consolidated tape was then divided into a 
training set and a test set, which were then used for training 
and evaluation of the DLNN trader.  

As explained fully in [3], the responses of two types of 
DLNN were explored: Multi-Layer Perceptron [24, 6, 26]; and 
Long-Short-Term Memory [20, 6, 26]. We refer to these two 
types as MLP-DLNN and LSTM-DLNN respectively. These 
had previously been explored in earlier work at Bristol [35], 
discussed in Section II.F below, and network architectures that 
had shown promise in [35] formed the starting point for the 
work reported here. Root mean square (RMS) error was 
recorded for the training set and the test set, and those DLNNs 
for which both errors were sufficiently low after training were 
considered successful. Both the MLP and the LSTM DLNN 
were created via the open-source toolkit Keras [18] running on 
top of the open source machine learning software system 
Tensorflow [33, 23]. Sample configuration files for Keras, used 
in generating the results reported here, are presented in [3].  

Successful DLNNs were then added into the BSE market, 
alongside the other robot traders, and participated in the market 
activities for sufficiently long to generate reliable results from 
“live trading”, the ultimate test of whether the DLNN trader 
has truly learned to replicate (or improve upon) the 
performance of the original adaptive trading algorithm that 
generated the training and test data. Two forms of live-trading 
were explored: heterogenous where a single trained DLNN 
trader was added back into the market from which that trader’s 
training data had been generated; and homogeneous where a 
market was populated entirely by clones of the trained DLNN 
trader: such homogenous markets have routinely been studied 
in earlier work (e.g. [7, 8, 37]). 



F. Related Work 
Although there is a long-established and very large 

literature on time-series forecasting in general, and the 
prediction of financial time series in particular, it is important 
to appreciate that none of that work is relevant here because we 
are not using machine learning to predict future transaction 
prices in a market. Instead, we are using machine learning to 
replicate the sequence of actions generated by a trader in 
response to the dynamically changing LOB; and what actions 
are appropriate are context dependent, being determined by 
that trader’s current limit-price (as specified in the client-order 
that the trader is currently working). Whether the quote issued 
by the DLNN trader is accepted by another trader or ignored 
will determine whether that particular quote has any effect on 
the time series of transaction prices in the market or not, but 
trades that are ignored (and hence have no direct effect on the 
transaction-price time series) can nevertheless play a 
significant role in price-discovery, i.e. in altering the array of 
bids and offers on the LOB until a trade does occur. 

To the best of our knowledge, there are only three directly 
relevant pieces of prior work, all of which are so recent that 
they are currently unpublished or in press, and none of which 
present results directly comparable to ours.  
The first is a 2017 Master’s Thesis [35], supervised by one of 
us (Cliff), which made some promising preliminary progress in 
using DLNNs to replicate the behaviour of ZIP traders in BSE, 
but did not make the crucial step of subsequently “live trading” 
the trained DLNN, as described previously in Section II.E.  
The second is a journal paper [36], accepted for publication in 
the IEEE Transactions on Industrial Informatics but currently 
still in press, presumably to appear later in 2018. In this paper 
LSTM is used to replicate the elementary behaviour, in the 
form of generating simple buy/hold/sell trading signals, 
resulting from three very simple non-adaptive trading strategies 
that work purely on a simple transaction-price time-series and 
hence do not use Level 2 LOB data. The three strategies are: 
Random Choice (which pays no attention to the financial time 
series); Crossover (which generates trading signals if/when a 
short-term moving average of the time-series crosses over a 
longer-term moving average); and MACD (which stands for 
moving-average convergence/divergence, an extension of the 
Crossover strategy that includes an oscillating momentum 
term). The authors of [36] report success with their methods, 
which is evidence that DLNN can learn simple non-adaptive 
trading strategies. However our work significantly extends 
their result, because we use LOB data and require the DLNN to 
learn the trading behaviour of an adaptive robot, one that learns 
from its experience in the market rather than blindly following 
the same simple strategy regardless of market events.  
The third publication [29] is currently available only as a 
preprint on the popular ArXiv website, and is presumably 
currently undergoing peer-review. In this paper, the authors 
report on using DLNNs trained on truly vast quantities of real-
world high-frequency financial-market quotes and transactions. 
The results in [29] demonstrate that using price and order-flow 
history can improve forecasting performance and reveal 
evidence of path-dependencies in the price dynamics of real-
world financial markets. Unlike our work, there is no attempt 
in [29] to explicitly learn to replicate the behavior of a specific 

adaptive trader (human or robot), but rather to gain insights 
into reliably observable statistical regularities within the 
billions of items of quote and transaction data.  

And so, to the best of our knowledge, the results presented 
here are the first demonstration of using DLNNs to 
successfully replicate an adaptive trader, with capabilities that 
have previously been demonstrated to be comparable to a 
human trader, in a realistic (LOB-based) financial market.  

III. RESULTS AND ANALYSIS 
Fig.2 shows illustrative successful results from a (MLP-

DLNN trained on data from a ZIP trader working buy-orders 
for customers in a market where the transactions prices are 
trending down: the figure-caption explains the details of the 
graph. As is clear from the figure, there is a good qualitative 
match between the time-series of quotes from the ZIP trader, 
used in training MLP-DLNN, and the time series of quotes 
issued by the MLP-DLNN when it is presented with input 
vectors from the set of training data: this indicates that the 
learning has succeeded in capturing the mapping from input 
vectors to output vectors during training. The good qualitative 
match is maintained when the MLP-DLNN trader is presented 
with previously unseen training data, indicating that the DLNN 
system has learned a usefully nontrivial generalization, and has 
not over-fitted to the test-set. Fig.2 is representative of all the 
successful results generated: for a further 9 example graphs, in 
various types of market (bull, bear, sideways, multiphasic) see 
Fig 3.2 and 3.3 of [3], which also tabulates RMS error values. 

Results from a heterogeneous live-trading test (as described 
above in Section II.E) of a successful MLP-DLNN are shown 
in Fig.3. This shows a good qualitative match between the ZIP 
“teacher” time-series of orders and the corresponding MLP-
DLNN “student” time series, but what really counts in live 
trading is profit accumulated by the trader, i.e. profitability. 

 

Fig.2: Illustrative results, the stream of quote-prices, from a MLP-DLNN 
trained on data from a ZIP robot trader working client buy-orders in a market 
where price is trending downwards, for a stream of c.2,200 quotes. The blue 
line is the time-series of offer prices generated by the ZIP trader operating live 
in BSE and recorded to produce a set of target output vectors used in training 
and testing. The input vectors (LOB data and the client-order limit price) are 
not shown. The green line shows the corresponding outputs from the DLNN 
working on input vectors used in the training set, and the red line shows the 
outputs from the DLNN responding to input vectors used in the test set.  



To quantify the difference in profitability between ZIP 
traders and a trained MLP-DLNN trader, we first conducted 
50 statistically independent runs of homogeneous market 
sessions where all 10 traders in the market were identical ZIP 
traders; and we then replaced one arbitrarily-chosen ZIP trader 
with the trained MLP-DLNN trader and ran another 
heterogenous 50 market sessions. In the heterogenous market 
sessions we recorded the final profit accumulated at the end of 
each session by the single MLP-DLNN trader, giving us 50 
samples from that trader; and from the homogeneous ZIP 
markets we recorded the 50 end-of session profit values 
scored by the ZIP trader that was subsequently replaced by the 
MLP-DLNN trader. This gave us two samples of end-of-
session profit values, each of size n=50. The box-and-whisker 
plot in Fig.4 shows comparison of key summary statistics 
from the two n=50 sample distributions, generated from the 
MLP-DLNN and ZIP traders that generated the time-series 
data in Figure 3. 

A one-tailed (i.e., directional) Wilcoxon-Mann-Whitney U-
test on the data illustrated in Fig.4 indicates that the MLP result 
is significantly better than the ZIP result: p<0.01; that is, the 
MLP-DLNN profits are statistically significantly better (i.e. 
higher) than the profits of the comparable ZIP-trader markets. 
Additional results presented in [3] demonstrate similarly 
significant (and larger-magnitude) performance advantages of 
MLP-DLNN traders over ZIP traders in heterogeneous 
markets, indicating that the results in Fig.4 are not an isolated 
success.  

Because ZIP traders have previously been demonstrated to 
outperform human traders, and because MLP-DLNN traders 
have here been demonstrated to outperform ZIP traders, it 
seems reasonable to syllogistically infer that our results 
presented here demonstrate that MLP-DLNN traders can also 
learn to outperform human traders. That is, we have 
demonstrated here that deep learning can be applied to 
replicate the behaviour of adaptive traders in LOB-based 
auction markets, of the type used throughout the world’s major 
financial markets, working from training data generated by 
observing the actions of algo traders already known to 
consistently outperform human traders. 

For brevity, we have here relied upon a small number of 
illustrative graphs to make the case that MLP-DLNN “student” 
trader can learn to equal or outperform the performance of a 
ZIP “teacher” trader; additional graphs, tables, and statistical 
significance tests are presented in [3]. Nevertheless, as is 
manifestly clear from Fig. 4, MLP-DLNN learns to 
significantly outperform ZIP in the live-trading tests.  

 
 

 

 

Fig.3: Illustrative results from a heterogeneous live-trading test of a 
successfully trained MLP-DLNN; i.e. where one well-trained MLP-DLNN is 
inserted back into the market from which its training and test data were 
generated.  The time-series of transaction prices in the market is shown by the 
green line; the time-series of quote prices from the ZIP “teacher” automated 
trading system is shown in blue, and the time-series of quote prices from the 
“student” MLP-DLNN trader are shown in red.  There is good qualitative 
agreement between the trading activity of the ZIP teacher and the MLP-DLNN 
student. Periods where transaction prices (green) are a long way from quote 
prices (red/blue) indicate this trader attempting to work an order in adverse 
market circumstances.   

 

Fig.4: Summary statistics from 50 homogeneous market sessions with 10 ZIP 
traders (blue, left-hand box-and-whisker plot) and from 50 heterogenous 
market sessions with 9 Zip traders and 1 successful MLP-DLNN trader 
(orange, right-hand plot). The vertical scale is total accumulated profit at the 
end of the market session. The horizontal line within the shaded box is the 
median value in the sample of size n=50; the upper and lower bounds of the 
shaded box are the upper and lower quartiles, respectively. The whiskers end 
at plus and minus two standard deviations. 

 

 

 



IV. FURTHER WORK 
As we take this work further, we are currently 

concentrating on two main avenues of enquiry. One is 
exploring the extent to which those DLNNs that successfully 
learn to outperform the trader used to generate the training data 
can be analysed, to reveal how and why they outperform the 
original trader, i.e. to come up with causal mechanistic 
characterisations and explanations for the improved 
performance. The other is to use automated optimization 
techniques to eliminate the trial-and-error human guesswork in 
arriving at a satisfactory network architecture (number of 
layers, number of nodes in each layer) for the DLNNs. Work is 
underway, with some promising early results, and we expect to 
report positive progress in future papers.  

V. CONCLUSIONS 
In this paper we have demonstrated that a suitably 

configured DLNN can learn to replicate the trading behavior of 
a successful adaptive automated trader, the ZIP algorithmic 
strategy previously demonstrated to outperform human traders. 
We also demonstrate that DLNNs can learn to perform better 
(i.e., more profitably) than the ZIP trader that provided the 
training data. We believe that this is the first ever 
demonstration that DLNNs can successfully replicate a 
demonstrably better-than-human adaptive trader operating in a 
realistic emulation of a real-world financial market. Our results 
can also be considered as proof-of-concept that a DLNN could, 
in principle, observe the actions of a human trader in a real 
financial market and over time learn to trade equally as well as 
that human trader, and possibly better.  
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