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Le Canard de Painlevé∗

K. Uldall Kristiansen† and S. J. Hogan‡

Abstract. We consider the problem of a slender rod slipping along a rough surface. Painlevé [C. R. Séances
Acad. Sci., 121 (1895), pp. 112–115; C. R. Séances Acad. Sci., 141 (1905), pp. 401–405; C. R. Séances
Acad. Sci., 141 (1905), pp. 546–552] showed that the governing rigid body equations for this problem
can exhibit multiple solutions (the indeterminate case) or no solutions at all (the inconsistent case),
provided the coefficient of friction µ exceeds a certain critical value µP . Subsequently Génot and
Brogliato [Eur. J. Mech. A Solids, 18 (1999), pp. 653–677] proved that, from a consistent state, the
rod cannot reach an inconsistent state through slipping. Instead the rod will either stop slipping
and stick or it will lift off from the surface. Between these two cases is a special solution for
µ > µC > µP , where µC is a new critical value of the coefficient of friction. Physically, the special
solution corresponds to the rod slipping until it reaches a singular “0/0” point P . Even though the
rigid body equations cannot describe what happens to the rod beyond the singular point P , it is
possible to extend the special solution into the region of indeterminacy. This extended solution is
very reminiscent of a canard [E. Benôıt et al., Collect. Math., 31-32 (1981), pp. 37–119]. To overcome
the inadequacy of the rigid body equations beyond P , the rigid body assumption is relaxed in the
neighborhood of the point of contact of the rod with the rough surface. Physically this corresponds
to assuming a small compliance there. It is natural to ask what happens to both the point P and
the special solution under this regularization, in the limit of vanishing compliance. In this paper, we
prove the existence of a canard orbit in a reduced four-dimensional slow-fast phase space, connecting a
two-dimensional focus-type slow manifold with the stable manifold of a two-dimensional saddle-type
slow manifold. The proof combines several methods from local dynamical system theory, including
blowup. The analysis is not standard, since we only gain ellipticity rather than hyperbolicity with
our initial blowup.

Key words. Painlevé paradox, impact without collision, compliance, regularization
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1. Introduction. In a series of classical papers, Painlevé [45, 46, 47] showed that the
governing equations for a slender rod slipping along a rough surface (see Figure 1) can ex-
hibit multiple solutions (the indeterminate case) or no solutions at all (the inconsistent case),
provided the coefficient of friction µ exceeds a certain critical value µP . In the interven-
ing years, a large number of authors [2, 4, 6, 50] have considered different aspects of these
Painlevé paradoxes, which have been shown to occur in many important engineering systems
[36, 37, 39, 43, 44, 56, 57, 59].
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860 K. ULDALL KRISTIANSEN AND S. J. HOGAN

The theoretical study of Painlevé paradoxes received a great boost with the work by Génot
and Brogliato [19], who discovered a new critical value of the coefficient of friction µC > µP .
They proved that, from a consistent state, the rod cannot reach an inconsistent state through
slipping. Instead, the rod will either stop slipping and stick or it will lift off from the surface.
For µ > µC , these cases are separated by a special solution where the rod slips until it reaches
a singular point P corresponding to a “0/0”-singularity in the equations of motion. Beyond
P , the rigid body equations are unable to predict what happens. Nevertheless, it is possible
to extend the special solution beyond the singular point P into the region of indeterminacy.
Therefore this extended solution is very reminiscent of a canard [1] that occurs at folded
equilibria in (2+1)-slow-fast systems1 [52, 55] and in the two-fold of piecewise smooth (PWS)
systems [9, 25, 26, 27].

Ever since the time of Painlevé, there have been attempts to resolve the paradoxes by
including more physics into the rigid body formalism. Lecornu [35] proposed that a jump in
vertical velocity would allow for an escape from an inconsistent, horizontal velocity, state. This
jump has been called impact without collision (IWC) [19], tangential impact [22], or dynamic
jamming [44]. During (the necessarily instantaneous) IWC, the governing equations of motion
must be expressed in terms of the normal impulse, rather than time [8, 24]. But this approach
can produce contradictions, such as an apparent energy gain in the presence of friction [3, 51].

Another possible way to resolve the Painlevé paradox is to relax the rigid body assumption
in the neighborhood of the contact point. Physically this corresponds to assuming a small
compliance, usually modeled as a spring, with large stiffness and (possibly) damping. Dupont
and Yamajako [14] appear to be the first to show that the classical Painlevé problem with
compliance could then be written as a slow-fast system. They showed that the fast subsystem
is unstable in the Painlevé paradox. Song et al. [49] extended this work and established
conditions under which the fast solution can be stabilized. Zhao et al. [58] considered the
example in Figure 1 and regularized the equations by assuming a compliance that consisted
of an undamped spring. They gave estimates for the time taken in the resulting stages of
the dynamics. Neimark and Smirnova [40, 41] considered a different type of regularization
in which the normal and tangential reactions take (different) finite times to adjust. Their
results showed a strong dependence on the ratio of these times. More recently, the current
authors presented [21] the first rigorous analysis of compliant IWC in both the inconsistent
and indeterminate cases and gave explicit asymptotic expressions in the limiting cases of small
and large damping. For the indeterminate case, we presented a formula for conditions that
separate compliant IWC and lift-off.

In this paper, we consider the dynamics of the special solution (canard) around P in the
presence of compliance. This will give rise to a (2+2)-slow-fast system with small parameter ε
being the inverse square root of the stiffness associated with the compliance. Slow-fast systems
receive an enormous amount of attention, since they occur naturally in many biological and
engineering systems. As the recent book by Kuehn [31] and other works have made clear, a
major boost to the subject came about following the seminal work of Fenichel [15, 16, 17] and
the development of geometric singular perturbation theory (GSPT) [23]. Fenichel theory and
GSPT work away from critical points, such as folds and singularities (specifically any point

1An (n+m)-slow-fast system [31] is a dynamical system with n slow variables and m fast variables.
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LE CANARD DE PAINLEVÉ 861

where hyperbolicity is lost). At such points, GSPT has to be extended. Such an extension
was made possible by the pioneering work of Dumortier and Roussarie [11, 12, 13]. Their
approach, known as blowup, was further developed by Krupa and Szmolyan [28, 29, 30] to
a form where it became popular and widely applicable to many different and challenging
problems.2

It is also possible to study canards using blowup. Originally discovered by Benôıt et al.
[1], these are solutions to singularly perturbed problems that initially follow a stable manifold,
then pass through a critical point, before following an unstable manifold for a nonvanishing
period of time. Their study was significantly aided by the development of blowup, where the
critical point had, until then, proved a barrier to the use of GSPT. Canards are important
since they are crucial to the so-called canard explosion [5, 30], in which limit cycles are
transformed, under parameter variation, into relaxation oscillations. The change happens
over an exponentially small parameter range.3

We will apply blowup to the compliant (2+2)-slow-fast system and rigorously show the
existence of a canard that connects, in the four-dimensional phase space, a two-dimensional
(2D) attracting Fenichel slow manifold of focus-type with the stable manifold of a 2D saddle-
type slow manifold (Theorem 6). The singular point P of the rigid body system becomes a line
of Bogdanov–Takens (BT) points [48] of the layer problem associated with the regularization
with a nilpotent 2× 2 Jordan block. The mathematical difficulties in proving Theorem 6 are
as follows. In the scaling chart associated with the blowup, we obtain the following equation:

ỹ′′′(θ2) = θ2ỹ
′(θ2) + (1− ξ)ỹ(θ2), θ2 ∈ R,(1)

for ξ ∈ (0, 1). The third order linear ODE (1) appears to have been first considered by
Langer [33, 34], as an example of an ODE in which the characteristic equation can have
three coincident roots. See also [53, 54]. We will therefore refer to this equation as Langer ’s
equation4 henceforth. Langer’s equation also appears in [42], and so the Painlevé paradox
would seem to be its first physically important application.

We will show (Lemma 13 in section 4.4) that Langer’s equation has a distinguished solution

Laξ(θ2) =

∫ ∞
0

e−τ
3/3+θ2ττ−ξdτ,

which spans all solutions that are nonoscillatory for θ2 → −∞. All other solutions, spanned
by special functions Lbξ(θ2), Lcξ(θ2), introduced in Lemma 13, are oscillatory as θ2 → −∞.
Therefore, as a consequence, we only gain ellipticity (rather than hyperbolicity) of the focus-
type slow manifold of the blowup of P (upon desingularization). So we apply normal form
transformations—to eliminate fast oscillations—that will subsequently allow for an additional
application of a (polar) blowup transformation. We gain hyperbolicity by this second trans-
formation and are therefore able to extend Fenichel’s slow manifold as a center-like manifold

2The present authors have successfully applied GSPT [25, 26, 27] to PWS problems [10], where the under-
lying vector fields have jumps or discontinuities that are then regularized.

3Canards are known to occur in PWS systems and their fate under regularization has been studied [9, 25,
26, 27].

4We are aware of a different Langer’s equation in the theory of spinodal decomposition [32]. However this
other equation postdates (1).
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862 K. ULDALL KRISTIANSEN AND S. J. HOGAN

Figure 1. The classical Painlevé problem: g is the acceleration due to gravity; the rod has mass m, length
2l, the moment of inertia of the rod about its center of mass S is given by I, and its center of mass coincides
with its center of gravity. The point S has coordinates (X,Y ) relative to an inertial frame of reference (x, y)
fixed in the rough surface. The rod makes an angle θ with respect to the horizontal, with θ increasing in a
clockwise direction. At A, the rod experiences a contact force (FT , FN ), which opposes the motion.

up close to the point P (see Proposition 23 in Appendix B). But interestingly, this manifold
does not extend all the way to the scaling chart. There is a gap which we can only cover by
estimation of the forward flow. This brings us up close to the distinguished nonoscillatory
solutions in the scaling chart for 0 < ε� 1. We then complete our proof by using properties
of Laξ(θ2) for θ2 →∞.

The paper is organized as follows. In section 2, we introduce the classical Painlevé problem,
outline some of the results due to Génot and Brogliato [19], show that µC = 2√

3
µP for a large

class of rigid bodies, introduce compliance, and, in (30), present our (2+2)-slow-fast system.
In section 3, we summarize our main result, Theorem 6. The rest of the paper is devoted
to the mathematical proof of Theorem 6, using blowup [28, 29, 30]. Section 4 sets up the
initial blowup. The exit chart is considered in section 4.4, the scaling chart in section 4.5,
and the entry chart in section 4.6. Each of sections 4.4 to 4.6 contains a number of technical
propositions whose details are confined to the appendices. We discuss our results and outline
our conclusions in section 5.

2. The classical Painlevé problem. The governing equations5 of the rigid rod AB of
length 2l that slips on a rough horizontal surface, as shown in Figure 1, are given by

mẌ = −FT ,(2)

mŸ = −mg + FN ,

Iθ̈ = −l(cos θFN − sin θFT ).

5Painlevé [45] originally studied a planar box sliding down an inclined plane. Nevertheless, as noted in [6,
p. 539], the problem most closely associated with Painlevé is the one in Figure 1. We will therefore also refer
to this as the classical Painlevé problem.

D
ow

nl
oa

de
d 

10
/2

2/
18

 to
 1

37
.2

22
.1

14
.2

49
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LE CANARD DE PAINLEVÉ 863

From geometry

x = X + l cos θ,(3)

y = Y − l sin θ.

We now define dimensionless variables and parameter α as follows:

l(X̃, Ỹ ) = (X,Y ), l(x̃, ỹ) = (x, y), mg(F̃T , F̃N ) = (FT , FN ), t̃ = ωt, α =
ml2

I
,

where ω2 = g
l . For a uniform rod, I = 1

3ml
2, and so α = 3 in this case.

So for general α, by combining (2) and (3) and writing everything in terms of the dimen-
sionless variables, and then dropping the tildes, we find

ẍ = −θ̇2 cos θ + α sin θ cos θFN − (1 + α sin2 θ)FT ,(4)

ÿ = −1 + θ̇2 sin θ + (1 + α cos2 θ)FN − α sin θ cos θFT ,

θ̈ = −α(cos θFN − sin θFT ).

We assume Coulomb friction between the rod and the surface. So, when ẋ = v 6= 0, we set

(5) FT = µsign(ẋ)FN ,

where µ is the coefficient of friction. We introduce φ = θ̇, w = ẏ, v = ẋ and substitute (5)
into (4) to get

ẋ = v,(6)

v̇ = a(θ, φ) + q±(θ)FN ,

ẏ = w,

ẇ = b(θ, φ) + p±(θ)FN ,

θ̇ = φ,

φ̇ = c±(θ)FN ,

where

a(θ, φ) = −φ2 cos θ,(7)

b(θ, φ) = −1 + φ2 sin θ,

q±(θ) = α sin θ cos θ ∓ µ(1 + α sin2 θ),

p±(θ) = 1 + α cos2 θ ∓ µα sin θ cos θ,

c±(θ) = −α(cos θ ∓ µ sin θ)

for the configuration in Figure 1. The suffix ± corresponds to ẋ = v ≷ 0, respectively.
We will suppose that the rod is initially moving to the right at time t = 0:

ẋ(0) = v(0) = v0 > 0.
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864 K. ULDALL KRISTIANSEN AND S. J. HOGAN

Then if, at some later time t = T , ẋ(T ) = v(T ) = 0 and v̇ for v ≷ 0 both oppose the
discontinuity set v = 0: v̇ < 0 for v = 0+ and v̇ > 0 for v = 0−, the required vector-field is
obtained by Filippov’s method [18]; see [21]. We call this dynamics sticking. Note that by (7)
it follows that q+ < 0 whenever p+ ≈ 0.

We now need to determine FN , using either the constraint-based method, which leads to
a Painlevé paradox, or the compliance-based method, which is used in this paper.

2.1. Constraint-based method. In order to maintain the constraint y = 0, at most one
of FN and y can be positive [21] and so FN and y must satisfy

(8) 0 ≤ FN ⊥ y ≥ 0.

Hence, from (6), if ẇ = 0, then

FN = − b

p+
,(9)

since v > 0. Then we have a reduced, decoupled system in the (θ, φ)-plane:

θ̇ = φ,(10)

φ̇ = −c±(θ)b(θ, φ)

p+(θ)
,

and the variables x and v satisfy

ẋ = v,

v̇ = a(θ, φ)− q±(θ)b(θ, φ))

p+(θ)
,

which can be directly integrated once θ and φ are known.
For the system in Figure 1, Painlevé paradoxes occur when v > 0 and θ ∈ (0, π2 ), provided

p+(θ) < 0 [21]. From (7), it is straightforward to show that p+(θ) < 0 requires

(11) µ > µP (α) ≡ 2

α

√
1 + α.

Then a Painlevé paradox occurs for θ ∈ (θ1, θ2), where

θ1(µ, α) = arctan
1

2

(
µα−

√
µ2α2 − 4(1 + α)

)
,(12)

θ2(µ, α) = arctan
1

2

(
µα+

√
µ2α2 − 4(1 + α)

)
.

For a uniform rod, µP (3) = 4
3 . The dynamics in the (θ, φ)-plane6 are shown in Figure 2

for α = 3 and µ = 1.4. The region θ ∈ (θ1, θ2), where p+(θ) < 0 is colored green and
purple. In the green region, b < 0 and hence FN in (9) is negative. This is the inconsistent

6Génot and Brogliato [19] plot in Figure 2 the unscaled angular velocity ωφ vs. θ, where ω =
√

g
l
, for the

case g = 9.8 ms−2, l = 1 m.
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LE CANARD DE PAINLEVÉ 865

Figure 2. The (θ, φ)-plane for the classical Painlevé problem of Figure 1 for α = 3 and µ = 1.4. The
point P has coordinates (θ1,

√
csc θ1), where θ1 is given in (12). γs is defined in (17). In the purple region,

b > 0, p+ < 0, and the dynamics is indeterminate (nonunique). In the orange region, b > 0, p+ > 0, and the
rod lifts off the rough surface. In the yellow region, b < 0, p+ > 0, and the rod moves (slips) along the surface.
Finally, in the green region, b < 0, p+ < 0, and the dynamics is inconsistent; there exists no positive value of
FN , even though the constraint y = 0 is satisfied, contrary to (8).

(or nonexistent) mode of the Painlevé paradox. In the purple region, b > 0. From (6), b is
the free acceleration of the end of the rod. Lift-off into y > 0 is therefore always possible
within this region. At the same time FN in (9) is positive. Hence, the purple region is the
indeterminate (or nonunique) mode of the Painlevé paradox. The lines p+(θ1,2) = 0 intersect
b(θ, φ) = 0 at four points: φ±1,2 = ±

√
csc θ1,2. The point

(13) P : (θ, φ) = (θ1,
√

csc θ1)

is the most important [19]. Then we have the following.

Proposition 1. Consider

F = {(θ, φ)|b(θ, φ) > 0, p+(θ) < 0} ∩ U ,(14)

T = {(θ, φ)|b(θ, φ) < 0, p+(θ) > 0} ∩ U ,

where U is a small neighborhood of P ∈ {(θ, φ)|b(θ, φ) = 0, p+(θ) = 0}. Then the point P is
a stable node of (10) within U with respect to a new time τ , satisfying

dτ

dt
=

1

p+(θ)
.(15)
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866 K. ULDALL KRISTIANSEN AND S. J. HOGAN

In particular, if

(16) µ > µC(α) =
4

α

√
α+ 1

3
,

then there exists a constant c > 0 sufficiently small and a smooth 1D invariant, strong stable
manifold γs (of (23) below) within T ∪ P ∪ F ,

γs : φ = mss(θ) ≡ (1− ξ)−1sθ +O(θ2), θ ∈ [θ1 − c, θ1 + c],(17)

tangent to

(1− ξ, s)T ,(18)

at P , where

ξ = λ−1
1 λ2 ∈ (0, 1),(19)

s = −λ−1
1 (φ+

1 )2 > 0,(20)

and λ1,2 < 0 are defined in (24) below. Every point in the subset

L = {(θ, φ) ∈ T |φ > mss(θ)}(21)

leaves T , under the forward flow of (10), through the boundary defined by b(θ, φ) = 0 while
every point in the subset

S = {(θ, φ) ∈ T |φ < mss(θ)}(22)

leaves T through P tangent to the vertical boundary p(θ, φ) = 0.

Proof. We include a simple proof of this proposition. In terms of τ we obtain from (10)
and (15)

dθ

dτ
= p+(θ)φ,(23)

dφ

dτ
= −c+(θ)b(θ, φ).

The point P = (θ1, φ
+
1 ) given in (13) is a fixed point of these equations. Linearization about

P gives the Jacobian(
p′+(θ1)φ+

1 0
−c+(θ1)∂θb(θ1, φ

+
1 ) −c+(θ1)∂φb(θ1, φ

+
1 )

)
=

(
p′+(θ1)φ+

1 0
−(φ+

1 )2 −2 tan(θ1)φ+
1

)
,

since c+(θ1) = sec θ1, which has eigenvalues

λ1 = p′+(θ1)φ+
1 , λ2 = −c+(θ1)∂φb(θ1, φ

+
1 ) = −2 tan(θ1)φ+

1(24)

that are both negative in the range of θ1 that contains the Painlevé paradox.
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LE CANARD DE PAINLEVÉ 867

Simple algebraic manipulations show that

ξ = λ−1
1 λ2 < 1

if and only if

arctan

(
2 +

√
3µ2 + 4

3µ

)
< θ1.

By combining this expression with (12) for θ1, a lengthy calculation then shows, for general
α, that λ−1

1 λ2 < 1 if and only if (16) holds. The eigenvectors associated with λ1 and λ2 are

(1− λ−1
1 λ2,−λ−1

1 (φ+
1 )2)T = (1− ξ, s)T and (0, 1)T ,

using (19) and (20), respectively.

Remark 2. The main results in Proposition 1 were given in Génot and Brogliato [19],
except for the inequality (16), which does not seem to have appeared in the literature before.7

When µ = µC(α), it can be shown that tan θ1 =
√

α+1
3 . From (11) and (16), we have

µC =
2√
3
µP ∀α,(25)

independent of α. See also [44, Proposition 4.3].

Remark 3. Since p+ < 0 within F , the new time τ reverses direction there. Therefore
the manifold γs gives a solution of (10) with respect to the original time having a smooth
continuation through the singularity P (as indicated in Figure 2). We shall refer to this as a
strong singular canard.

Remark 4. For µP < µ < µC so that ξ > 1, the direction θ = θ1 is strong while (18) is
weak. However, by evaluating the slope of the curve b(θ, φ) = 0 at the point P and comparing
the result with s/(1− ξ), it is straightforward to show that the weak eigendirection (18) is not
contained within F ∪ P ∪ T . The reduced problem is only defined within F ∪ T and hence
the classical Painlevé problem does therefore not support weak singular canards.

The implications of Proposition 1 are as follows. The dynamics cannot cross p+ = 0
unless also b = 0. Furthermore, initial conditions within L, as defined in (21), lift off at
b(θ, φ) = 0. On the other hand, orbits within S, defined in (22), are tangent to p+(θ, φ) = 0
at P . Therefore the equilibrium value of the normal component of the contact force FN , given
in (9), becomes singular as (θ, φ) approaches P . Indeed, close to P ≡ (θ1, φ

+
1 ) we have

FN ≈
∂θb(θ1, φ

+
1 )(θ − θ1) + ∂φb(θ1, φ

+
1 )(φ− φ+

1 )

∂θp+(θ1)(θ − θ1)
=
∂θb(θ1, φ

+
1 )

∂θp+(θ1)
+
∂φb(θ1, φ

+
1 )

∂θp+(θ1)

(φ− φ+
1 )

(θ − θ1)
→∞,

as (θ, φ) → P = (θ1, φ
+
1 ) through the forward flow of [10]. But since q+ < 0 in (6) near

p+ = 0, there exists a time T where v(T ) = 0. Sufficiently close to P within T , where FN is

7The result µC(3) = 8

3
√
3

does appear in [19].
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868 K. ULDALL KRISTIANSEN AND S. J. HOGAN

large, we will also have that v̇ ≶ 0 for v = 0±, respectively. Hence sticking (v̇ = 0) occurs, as
described by the Filippov vector-field [18].

As mentioned in the introduction, the rigid body equations (2) are unable to address
what happens beyond P . Therefore we will now relax the rigid body assumption by adding
compliance.

2.2. Compliance-based method. Following [14, 38], we assume that there are small ex-
cursions (compliance) into y < 0 in the neighborhood of the point A between the rod and
the surface, when they are in contact (see Figure 1). Then we assume that the nonnegative
normal force FN takes the form

FN (y, w) =
[
ε−1F (ε−1y, w)

]
=

{
0 for y > 0,

max{ε−1F (ε−1y, w), 0} for y ≤ 0
(26)

for ε > 0, where the operation [·] is defined by the last equality and F is assumed to be smooth
with

F (ŷ, w) = −ŷ − δw +O((ŷ + w)2).(27)

The motivation for (26) is as follows. FN = 0 for y > 0 because the rod is not in contact with
the surface. The quantities limy→0−(−∂yFN (y, 0)) = ε−2 and limy→0−(−∂wFN (y, 0)) = ε−1δ
represent a (scaled) spring constant and damping coefficient. This choice of scaling ensures
[14, 38] that the critical damping coefficient is independent of ε. We are interested in the case
when the compliance is very small, so we consider 0 < ε� 1.

The first two equations in (6) play no role in what follows, so we drop them. Then we
combine the remaining four equations in (6) with (26) to give the following set of governing
equations, valid while v > 0, that we will use in what follows:

ẏ = w,(28)

ẇ = b(θ, φ) + p+(θ)[ε−1F (ε−1y, w)],

θ̇ = φ,

φ̇ = c+(θ)[ε−1F (ε−1y, w)].

In our previous paper [21], we studied this singularly perturbed system in the regions cor-
responding to the first (purple) F and fourth (green) “quadrants” of Figure 2 and showed
the appearance of IWC. This provides further evidence that the scaling of the damping in
(27) is the right one: as δ → ∞ IWC vanishes. In this paper, we consider the third (yellow)
“quadrant” T and focus on the fate of P and γs under regularization.

2.3. Slow-fast analysis. To analyze (28) we consider the scaling

y = ε2y2, w = εw2,(29)

also used in [21]. Inserting this into (28), with (27), gives a (2+2)-slow-fast system

ẏ2 = w2,(30)

ẇ2 = b(θ, φ) + p+(θ) [−y2 − δw2 + εN(y2, w2, ε)] ,

θ̇ = εφ,

φ̇ = εc+(θ) [−y2 − δw2 + εN(y2, w2, ε)] ,
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LE CANARD DE PAINLEVÉ 869

upon scaling time by ε, where N(y2, w2, ε) = O((y2 + w2)2 + ε(y2 + w2)3) represents higher
order terms. Setting ε = 0 gives the layer problem

ẏ2 = w2,(31)

ẇ2 = b(θ, φ) + p+(θ) [−y2 − δw2] ,

θ̇ = 0,

φ̇ = 0,

in which both θ, φ are constant. Undoing the scaling of time by ε and then setting ε = 0 gives
the reduced problem:

0 = w2,(32)

0 = b(θ, φ) + p+(θ) [−y2 − δw2] ,

θ̇ = φ,

φ̇ = c+(θ) [−y2 − δw2] .

The reduced problem is only defined on the critical points of the layer problem.
We now discuss some dynamics of both problems, summarized in Proposition 5 below.

Let

g(θ, φ) =
b(θ, φ)

p+(θ)
, (θ, φ) ∈ T ∪ F ,(33)

where F , T are defined in (14). Then we have the following.

Proposition 5. The critical set S of the layer problem (30)ε=0 is given by

S = Sa ∪ Sr ∪ P̂

with

Sa : w2 = 0, y2 = g(θ, φ), (θ, φ) ∈ T ,(34)

Sr : w2 = 0, y2 = g(θ, φ), (θ, φ) ∈ F ,

P̂ : w2 = 0, y2 ∈ R, (θ, φ) = P.

Here Sa is normally hyperbolic and attracting (focus-type), Sr is normally hyperbolic and
repelling (saddle-type), while P̂ is a line of nonhyperbolic BT fixed points. The reduced flow
on Sa,r coincides with (10). In particular, if (16) holds, then γs, given in the (θ, φ)-plane by
(17), is a solution to the reduced problem (32) having a smooth continuation through P .

Proof. The proof is straightforward. Linearization of the layer problem (31) about w2 =
0, y2 = g(θ, φ), (θ, φ) ∈ T ∪ F , from (34), gives(

0 1
−p+(θ) −p+(θ)δ

)
.
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870 K. ULDALL KRISTIANSEN AND S. J. HOGAN

Here we have used that [F ] = F when F > 0 and y2 < 0; see (26). The PWS system (31) is
therefore smooth in a neighborhood of any point on Sa,r. The eigenvalues are

λ± = −1

2
p+(θ)δ ± 1

2

√
−4p+(θ) + δ2p+(θ).

Expansion about θ = θ1, defined in (12), gives

λ± = −1

2
p′+(θ1)δ∆θ(1 +O(∆θ))± 1

2

√
−4p′+(θ)∆θ(1 +O(∆θ)),(35)

where ∆θ = θ − θ1 and then, since p′+(θ1) < 0, the claims concerning Sa,r therefore follow.

Similarly, the linearization about any point in P̂ gives a nilpotent 2× 2 Jordan block.
Inserting w2 = 0, y2 = g(θ, φ) into (32) gives (10). The result therefore follows from

Proposition 1.

The strong singular canard γs connects Sa with Sr through P̂ . It intersects P̂ in

γs ∩ P̂ : y2 =
∂θb(θ1, φ

+
1 ) + ∂φb(θ1, φ

+
1 )(1− ξ)−1s

∂θp+(θ1)
, w2 = 0, θ = θ1, φ = φ+

1 ,

using (17), (33), and (34). Note again (recall Remark 4) that, as opposed to the folded node in
classical (2+1)-slow-fast systems [52, 55], there is no equivalent weak canard in this particular
setting. Here the weak direction, defined by θ = θ1, is an invariant of the reduced problem
(23) but corresponds to y2 = −∞ by (33) and (34).

By Fenichel’s theory [15, 16, 17], compact subsets of Sa,r perturb to invariant slow mani-
folds Sa,ε and Sr,ε, respectively. These objects are nonunique but O(e−c/ε)-close.

3. Main result. Since the rigid body equations (2) are unable to address what happens
beyond P , we introduced compliance in section 2.2, leading to a regularized set of governing
equations (30). We have already seen in Proposition 5 that the point P becomes the line
P̂ of nonhyperbolic BT points under regularization. Now we focus on the fate of the strong
singular canard γs, also described in Proposition 5, under this regularization. For convenience,
we summarize our main result here.

Theorem 6. Suppose µ > µC with µC as in (16) and consider a small neighborhood U ⊂
{(θ, φ) ∈ R2} of the point P = (θ1, φ

+
1 ), where b = p+ = 0. Then for 0 < ε ≤ ε0 sufficiently

small there exists a canard orbit γsε of (30) connecting the attracting Fenichel slow manifold
Sa,ε with the stable manifold of the repelling Fenichel slow manifold Sr,ε. γ

s
ε is o(1)-close to

γs within U and it divides Sa,ε into orbits that lift off from those that eventually stick.

Remark 7. We can estimate the o(1) in Theorem 6 to be O(εη(7−2ξ)/24) for any η ∈ (0, 1),
using Gronwall’s inequality. This is a corollary of Proposition 25 in Appendix B. The estimate
could probably be improved but we did not pursue this.

Remark 8. For the last statement of the theorem, we add the following. Fix C > 0 large
and consider the following box in the (y2, w2, θ, φ)-space:

U = {(y2, w2, θ, φ) ∈ R4|y2 ∈ [−C, 0], w2 ∈ [−$−1, $−1],

(θ, φ) ∈ [θ1 − χ, θ1 + χ]× [φ+
1 − χ, φ

+
1 + χ]},
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with $ > 0 and χ > 0 both sufficiently small. Fenichel’s manifold Sa,ε is a graph over compact
domains C ⊂ T . Within C we can write γsε as

φ = mss,ε(θ) = mss(θ) + o(1);

recall (17). Now, consider initial conditions on the intersection of Sa,ε with the subset of the
{θ = θ1 − χ}-face of the box U , where φ is sufficiently close but greater than mss,ε(θ1 − χ).
Under the forward flow, points within this set will then either leave the box U through its
{θ = θ1 + χ}-face, if φ is O(e−c/ε)-close to mss,ε(θ1 − χ), or leave the box U through the
{y2 = 0}-face with w2 > 0 such that lift-off occurs (like L in Proposition 1). Similarly,
consider initial conditions on the intersection of Sa,ε with the subset of the {θ = θ1 − χ}-face
of the box U , where φ is sufficiently close but less than mss,ε(θ1 − χ). Under the foward flow,
points within this set will then either leave the box U through its {θ = θ1 + χ}-face, if φ is
O(e−c/ε)-close to mss,ε(θ1 − χ), or leave the box U through the {y2 = −C}-face with w2 < 0
such that sticking and IWC occurs (like S in Proposition 1), as described in [21].

These results are corollaries of Theorem 1 and Fenichel’s theory and they generalize Propo-
sition 1 to the compliant version. Note that orbits initially on the Fenichel slow manifold Sa,ε
do not twist upon passage near P̂ . In particular, the projection of orbits on Sa,ε near γsε
onto the (y2, w2)-plane do not oscillate. This is part of our main result. It is clearly different
when we go backward from Sr,ε because Sa is of focus-type. Consider initial conditions on
the intersection of Sr,ε with the subset of the {θ = θ1 + χ}-face of U , where φ is sufficiently
close to φ = mss,ε(θ1 + χ). These points will under the backward flow have projections onto
the (y2, w2)-plane that oscillate around γsε when reaching T .

In the next section, to begin the proof of Theorem 6, in (36) we present a rescaled version
of (30) in order to simplify the subsequent blowup of P̂ in section 4.1. Our approach naturally
leads to three different changes of variable, known as charts, which are analyzed in sections
4.4 to 4.6. The technical details are presented in a series of appendices.

4. Proof of Theorem 6. Starting with (30) we proceed by (a) dropping the subscripts on
(y, w), (b) moving P = (θ1, φ

+
1 ) to the origin (θ, φ) = 0, (c) straightening out the zero level

set of b to φ = 0, (d) eliminating time, and finally (e) applying appropriate scalings. Omitting
the details, we obtain the system

εy′ = (1 + f(θ, φ))w,(36)

εw′ = φ(1 + b̃(θ, φ))− θ(1 + p̃(θ, φ)) [−y − δw + εN(y, w)] ,

θ′ = 1,

φ′ = ξ(1 + c̃(θ, φ)) [−y − δw + εN(y, w)] + s(1 + h(θ))

for (θ, φ) ∈ U , a small neighborhood of (0, 0), where ξ ∈ (0, 1), s > 0 are defined in (19)
and (20), where

f(θ, φ) = O(θ + φ),

h(θ) = O(θ),
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872 K. ULDALL KRISTIANSEN AND S. J. HOGAN

and

b̃(θ, φ) = O(θ + φ),

p̃(θ, φ) = O(θ + φ),

c̃(θ, φ) = O(θ + φ)

are all smooth functions. For simplicity, we suppress any dependency on ε, since this will play
no role in the following. Also, since we will be working near γs on Sa,r the nonsmoothness
of FN will play no role in the following. We will therefore replace [·] in (36) by parentheses;
recall (26).

We will now prove the existence of a strong canard for (36) for 0 < ε � 1, which then
proves Theorem 6. We begin by redefining the sets F and T from (14) as

F = U ∩ {θ > 0, φ > 0},
T = U ∩ {θ < 0, φ < 0},

so that they are now precisely the first and third quadrant, respectively, of the (θ, φ)-plane.
We also redefine g(θ, φ) from (33) as

g(θ, φ) = −φ(1 + b̃(θ, φ))

θ(1 + p̃(θ, φ))
, (θ, φ) ∈ F ∪ T ;(37)

then the critical set S of the layer problem (36)ε=0 is a union of

Sa : w = 0, y = g(θ, φ), (θ, φ) ∈ T ,(38)

Sr : w = 0, y = g(θ, φ), (θ, φ) ∈ F ,

P̂ : y ∈ R, w = θ = φ = 0,

identical to (34). Following arguments identical to those used in Proposition 5, Sa is normally
hyperbolic and attracting (focus-type), Sr is normally hyperbolic and repelling (saddle-type),
and P̂ is a line of nonhyperbolic BT points, as before. Finally, there exists a strong singular
canard γs for the slow flow on Sa ∪ Sr that is tangent to

(1− ξ, s)T ,(39)

at (θ, φ) = 0, in the (θ, φ)-plane. Using (37) it follows that γs on S intersects P̂ in

y = −(1− ξ)−1s, w = θ = φ = 0.(40)

Compact 2D submanifolds (with boundaries) of Sa and Sr perturb by Fenichel’s theory
[15, 16, 17] to attracting and repelling invariant manifolds Sa,ε and Sr,ε, respectively, for ε
sufficiently small.

We now blow up the line P̂ , defined in (38), using the formalism of Krupa and Szmolyan
[28].
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4.1. Blowup of P̂ . To study system (36) near P̂ we consider the extended system
((36), ε′ = 0) written in terms of the fast time scale:

ẏ = (1 + f(θ, φ))w,(41)

w′ = φ(1 + b̃(θ, φ))− θ(1 + p̃(θ, φ)) [−y − δw + εN(y, w)] ,

θ̇ = ε,

φ̇ = ε (ξ(1 + c̃(θ, φ)) [−y − δw + εN(y, w)] + s(1 + h(θ))) ,

ε̇ = 0.

In this way, Sa, Sr, and P̂ become subsets of {ε = 0}. Similarly, the Fenichel 2D slow manifolds
Sa,ε and Sr,ε are now {ε = const.}-sections of 3D center manifolds Ma and Mr of (41). We
will continue to denote these obvious embeddings by the same symbols.

We will work in a small neighborhood of P̂ : y ∈ (−∞, 0], (w, θ, φ, ε) = 0 We then apply
the following blowup of (w, θ, φ, ε) = 0,

Φ : (y, r, (w̄, θ̄, φ̄, ε̄)) ∈ B → (y, w, θ, φ, ε) ∈ R4 × R+, B ≡ R×R+ × S3,

defined by

w = rw̄, θ = r2θ̄, φ = r2φ̄, ε = r3ε̄(42)

with

S3 : w̄2 + θ̄2 + φ̄2 + ε̄2 = 1.

The blowup map Φ does not change y so we retain this symbol. Notice that r = 0 in (42)
corresponds to P̂ and Φ therefore blows up P̂ to a cylinder of 3-spheres (y, (w̄, θ̄, φ̄, ε̄)) ∈
(−∞, 0]× S3.

The mapping Φ gives rise to a vector-field X on B by pull-back of (41). Here X|r=0 = 0.
The exponents (or weights) of r in (42) are, however, chosen so that the desingularized vector-
field

X̂ = r−1X

is well-defined and nontrivial for r = 0. It is X̂ that we shall study in what follows. As usual,
the orbits of X̂ agree with those of X for r > 0 but the fact that X̂ is nontrival for r = 0
allows us to use regular perturbation techniques to describe X for r small.

4.2. Charts. Clearly, we can describe a small neighborhood of (w, θ, φ, ε) = 0 with ε ≥ 0
by studying each value of (r, (w̄, θ̄, φ̄, ε̄)) with r ∼ 0 and with (w̄, θ̄, φ̄, ε̄) ∈ S3∩{ε̄ ≥ 0}. Instead
of working with spherical coordinates, it is more convenient to work with the directional charts

κ1 : θ̄ = −1 : w = r1w1, θ = −r2
1, φ = r2

1φ1, ε = r3
1ε1, (w1, φ1, ε1) ∈ K1,(43)

κ2 : ε̄ = 1 : w = r2w2, θ = r2
2θ2, φ = r2

2φ2, ε = r3
2, (w2, θ2, φ2) ∈ K2,(44)

κ3 : θ̄ = 1 : w = r3w3, θ = r2
3, φ = r2

3φ3, ε = r3
3ε3, (w3, φ3, ε3) ∈ K3,(45)
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that correspond to setting θ̄ = −1, ε̄ = 1, and θ̄ = 1, respectively, in (42). The sets K1, K2,
and K3 are sufficiently large open sets in R3 so that the three charts cover our neighborhood
of (w, θ, φ, ε) = 0 with ε ≥ 0. In the proof of Theorem 6, we will actually fix K1 and K3 to
be such that the boxes

U1 = {(w1, φ1, ε1) ∈ R3|w1 ∈ [−σ, σ], ε1 ∈ [0, ν]φ1 ∈ [−$−1,−$]},(46)

U3 = {(w3, φ3, ε3) ∈ R3|w3 ∈ [−σ, σ], ε3 ∈ [0, ν]φ3 ∈ [$,$−1]}(47)

for σ > 0, ν > 0, and $ > 0 sufficiently small are subsets of K1 and K3, respectively, and
then adjust K2 accordingly. In particular, we will take K2 so large that the box

U2 = {(w2, θ2, φ2) ∈ R3|w2 ∈ [−ν−1/3σ, ν−1/3σ], θ2 ∈ [−ν−2/3, ν−2/3],(48)

φ2 ∈ [−ν−2/3$−1, ν−2/3$−1]}

is a subset of K2.
The chart κ1 is called the entry chart, κ2 is called the scaling chart, and finally κ3 is called

the exit chart. Geometrically (43) can be interpreted as a stereographic-like projection from
the plane {(w1,−1, φ1, ε1)|(w1, φ1, ε1) ∈ K1}, tangent to S3 at θ̄ = −1, to the hemisphere
S3 ∩ {θ̄ < 0}:

w1 = (−θ̄)−1/2w̄, φ1 = (−θ̄)−1φ̄, ε1 = (−θ̄)−3/2ε̄.

Similar interpretations apply to (44) and (45):

w2 = ε̄−1/3w̄, θ2 = ε̄−2/3θ̄, φ2 = ε̄−2/3φ̄,

w3 = θ̄−1/2w̄, φ3 = θ̄−1φ̄, ε3 = θ̄−3/2ε̄

for ε̄ > 0 and θ̄ > 0, respectively. We follow the convention that variables, manifolds, and
other dynamical objects will be given a subscript i in chart κi. Similarly, objects in the blowup
variables (y, r, (w̄, θ̄, φ̄, ε̄)) are given an overline.

4.3. Coordinate changes. When the charts κ1 and κ2 or κ2 and κ3 overlap we can change
coordinates. (κ1 and κ3 cannot overlap.) We will denote the smooth change of coordinates
from κi to κj by κji. Straightforward calculations show that

κ12 : (r2, w2, θ2, φ2) 7→ (r1, w1, φ1, ε1),(49)

r1 = r2(−θ2)1/2,

w1 = (−θ2)−1/2w2,

φ1 = (−θ2)−1φ2,

ε1 = (−θ2)−3/2
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LE CANARD DE PAINLEVÉ 875

for r2 ≥ 0 and all (w2, θ2, φ2) ∈ K2 so that (w1, φ1, ε1) ∈ K1. Furthermore,

κ23 : (r3, w3, φ3, ε3) 7→ (r2, w2, θ2, φ2),

r2 = r3ε
1/3
3 ,

w2 = ε
−1/3
3 w3,

θ2 = ε
−2/3
3 ,

φ2 = ε
−2/3
3 φ3

for r3 ≥ 0 and all (w3, φ3, ε3) ∈ K3 so that (w1, φ1, ε1) ∈ K1. The expressions for κ21 and κ32

follow easily from these results. Notice, in particular, that

κ23(r3, w3, φ3, ν) = (r3ν
1/3, ν−1/3w3, ν

−2/3, ν−2/3φ3)

and hence the {ε3 = ν}-face of the box U3 (47) gets mapped by the diffeomorphism κ23 to a
subset of the {θ2 = ν−2/3}-face of the box U2 (48). Similarly, the {ε1 = ν}-face of U1 (46) gets
mapped by the diffeomorphism κ12 to a subset of the {θ2 = −ν−2/3}-face of U2. We collect
this result in the following lemma.

Lemma 9.

κ23 ({ε3 = ν} ∩ U3) = {θ2 = ν−2/3, φ2 ∈ [ν−2/3$, ν−2/3$−1]} ∩ U2,

κ21 ({ε1 = ν} ∩ U1) = {θ2 = −ν−2/3, φ2 ∈ [−ν−2/3$−1,−ν−2/3$]} ∩ U2.

In chart κ1 we will encounter a line of normally elliptic critical points. A true unfolding of
P̂ as a line of co-dimension two BT-bifurcation points, similar to the approach in [7], would
enable some hyperbolicity in this chart (without the need for additional blowup). However, for
our problem such an unfolding is unphysical. Instead we will apply a sequence of normal form
transformations that accurately eliminates the fast oscillations, and then subsequently apply
an additional blowup that captures the contraction in the entry chart, enabling an accurate
continuation of the slow manifold into the scaling chart κ2 and the {θ2 = −ν−2/3}-face of U2.

Due to the technical difficulties in chart κ1 in this paper we will work our way backward,
starting from the exit chart κ3 in section 4.4, then move onto the scaling chart κ2 in section
4.5, and then finally attack the difficulties in the entry chart κ1 in section 4.6. Lengthy proofs
are consigned to a series of appendices. Then, in section 4.7 we combine these results to prove
Theorem 6.

4.4. Exit chart κ3. Substituting (45) into (36) gives

ẏ = (1 + r2
3f3(r3, φ3))w3,

ẇ3 = φ3(1 + r2
3b3(r3, φ3))− (1 + r2

3p3(r3, φ3)) (−y − δr3w3 + εN(y, r3w3, ε))−
1

2
ε3w3,

ṙ3 =
1

2
r3ε3,

ε̇3 = −3

2
ε23,

φ̇3 = ε3
(
ξ(1 + r2

3g3(r3, φ3)) (−y − δr3w3 + εN(y, r3w3, ε)) + s(1 + r2
3h3(r3, φ3))− φ3

)
,

after division of the right-hand side by r3. We keep the use of ε (= r3
3ε3) for brevity.D
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876 K. ULDALL KRISTIANSEN AND S. J. HOGAN

The subspaces {r3 = 0} and {ε3 = 0} are invariant. Along their intersection {r3 = ε3 = 0}
we find

L3 : y = φ3, w3 = r3 = ε3 = 0,

as a line of critical points. Linearizing about a point in L3 gives the following generalized
eigensolutions (λi, wi):

λ1 = 1, w1 = (1, 1, 0, 0, 0)T , λ2 = −1, w2 = (1,−1, 0, 0, 0)T

and

λ3,4,5 = 0, w3,4,5 = (0, 0, 1, 0, 0)T , (−1, 0, 1, 0, 0)T , (0, 0, 0, 0, 1)T .

Hence we have gained hyperbolicity of Sr at the blowup of P . Now, consider the set

V3 = {(y, r3, (w3, φ3, ε3)) ∈ (−∞, 0]× [0, ν]× U3}

with U3 as in (47). In particular, we shall henceforth fix $ > 0 small enough so that φ3 =
(1− ξ)−1s ∈ [$,$−1]. Then we have the following proposition.

Proposition 10. For ν sufficiently small, there exists a smooth saddle-type center manifold
within V3:

Mr,3 : y = −φ3 + ε23(s− (1− ξ)φ3)(1 + ε3ψ
(y)
1 (φ3, ε3)) + r3ψ

(y)
2 (r3, φ3, ε3),

w3 = ε3(s− (1− ξ)φ3)(1 + ε3ψ
(w)
1 (φ3, ε3)) + r3ψ

(w)
2 (r3, φ3, ε3),

where

ψ
(w)
2 (r3, φ3, ε3), ψ

(y)
2 (r3, φ3, ε3) = O(r3 + ε3).

Also locally, Mr,3 has smooth stable and unstable manifolds:

W s(Mr,3) : y = ms(w3, r3, φ3, ε3) = −φ3 − w3 +O(r3 + ε3),

W u(Mr,3) : y = mu(w3, r3, φ3, ε3) = −φ3 + w3 +O(r3 + ε3)

with ms,u both smooth. The manifold Mr,3 contains Sr,3 ≡ κ3(Sr) within ε3 = 0 as a set of
critical points and

Cr,3 : y = −φ3 + ε23(s− (1− ξ)φ3)(1 + ε3ψ
(y)
1 (φ3, ε3)),

w3 = ε3(s− (1− ξ)φ3)(1 + ε3ψ
(w)
1 (φ3, ε3))

within r3 = 0, as a center saddle-type submanifold. The submanifold Cr,3 contains the invari-
ant line:

l3 : y = − s

1− ξ
, w3 = 0, φ3 =

s

1− ξ
, ε3 ≥ 0, r3 = 0.(50)

D
ow

nl
oa

de
d 

10
/2

2/
18

 to
 1

37
.2

22
.1

14
.2

49
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LE CANARD DE PAINLEVÉ 877

Proof. Follows from center manifold theory and simple calculations.

The manifold Mr,3 is foliated by invariant hyperbolas r3
3ε3 = ε ≥ 0. We let

Mr,3(ε) ≡Mr,3 ∩ {ε = r3
3ε3}

with 0 < ε� 1 fixed. It is an extension of the Fenichel slow manifold Sr,ε up to {ε3 = ν}-face
of V3. Here it is a smooth graph over φ1 and r1 = (εν−1)1/3:

Mr,3(ε) ∩ {ε3 = ν} : y = −φ3 + ν2(s− (1− ξ)φ3)(1 + νψ
(y)
1 (φ3, ν))(51)

+ (εν−1)1/3ψ
(y)
2 ((εν−1)1/3, φ3, ν),

w3 = ν(s− (1− ξ)φ3)(1 + νψ
(w)
1 (φ3, ν))

+ (εν−1)1/3ψ
(w)
2 ((εν−1)1/3, φ3, ν),

where it is O(ε1/3)-close to Cr,3 ∩ {ε3 = ν}. The reduced problem on Mr,3 is

ṙ3 =
1

2
r3,(52)

ε̇3 = −3

2
ε3,

φ̇3 = (s− (1− ξ)φ3)(1 +O(ε23)) + r3O(ε3 + r3),

after division by ε3. This division desingularizes the dynamics within Sr,3 ⊂ {ε3 = 0}. The
point

p3 : r3 = ε3 = 0, φ3 = (1− ξ)−1s > 0

is a hyperbolic equilibrium of the reduced problem (52). It is the intersection of γ̄s with the
blowup cylinder.8 See (39) and (40). The linearization of (52) about p3 gives eigenvalues
1
2 , −(1 − ξ), −3

2 , respectively. The invariant line l3 : r3 = 0, φ3 = (1 − ξ)−1s, ε3 ≥ 0 is
therefore the strong stable manifold within {r3 = 0} of p3 for the reduced problem (52),
coinciding with the strong eigenvector associated with the strong eigenvalue −3

2 < −(1 − ξ),
since ξ ∈ (0, 1) from (19). The unique unstable manifold contained within the (r3, φ3)-plane
corresponds to the singular strong canard κ3(γs) ⊂ {ε3 = 0}. We will continue l3 backward
into chart κ2 in the following section.

4.5. Scaling chart κ2. Substituting (44) into (36) gives

ẏ = w2,(53)

ẇ2 = φ2(1 + r2
2b2(θ2, φ2, r2))− θ2(1 + r2

2p2(θ2, φ2, r2)) (−y − δr2w2 + εN(y, r2w2, ε)) ,

θ̇2 = 1,

φ̇2 = ξ(1 + r2
2g2(θ2, φ2, r2)) (−y − δr2w2 + εN(y, r2w2, ε)) + s(1 + r2

2h2(θ2, r2)),

8γ̄s is simply γs in terms of the blowup variables (y, (w̄, θ̄, φ̄, ε̄)) ∈ R× S3.
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878 K. ULDALL KRISTIANSEN AND S. J. HOGAN

after division of the right-hand side by r2. Also ṙ2 = 0 since r2 = ε1/3. In this chart, we
consider the set

V2 = {(y, r2, (w2, θ2, φ2)) ∈ (−∞, 0]× [0, ν]× U2}

with U2 as in (48). Setting r2 = 0 gives the following linear system:

y′(θ2) = w2,(54)

w′2(θ2) = φ2 + θ2y,

φ′2(θ2) = −ξy + s,

after the elimination of time.

Lemma 11. Recall ξ ∈ (0, 1). The line

l2 : φ2 =
s

1− ξ
θ2, y = − s

1− ξ
, w2 = 0, θ2 ∈ R, r2 = 0(55)

is an invariant of (53)r2=0. It coincides with κ23(l3), where l3 is the invariant line in chart
κ3, given in (50).

Proof. This is a straightforward calculation.

Remark 12. Note that the projection of the line l2 onto the (θ2, φ2) plane coincides with
the span of the eigenvector in (39). In terms of the blowup variables (y, (w̄, θ̄, φ̄, ε̄)) ∈ R× S3

it becomes the great circle

l : y = − s

1− ξ
, r = 0, w̄ = 0, θ̄−1φ̄ =

s

1− ξ
, (θ̄, φ̄, ε̄) ∈ S2.

We now show that (54) can be rewritten as Langer’s [33, 34] equation (1). Let

φ2 =
s

1− ξ
θ2 + φ̃2, y = − s

1− ξ
+ ỹ,(56)

which centers l2 along ỹ = w2 = φ̃2 = 0. Then (54) becomes

ỹ′(θ2) = w2,(57)

w′2(θ2) = φ̃2 + θ2ỹ,

φ̃′2(θ2) = −ξỹ.

We now eliminate w2 and φ̃2 as

w2(θ2) = ỹ′(θ2), φ̃2(θ2) = w′2(θ2)− θ2ỹ(θ2) = ỹ′′(θ2)− θ2ỹ(θ2),(58)

to finally obtain Langer’s equation

ỹ′′′(θ2) = θ2ỹ
′(θ2) + (1− ξ)ỹ(θ2).(59)

The general solution of (59) can be expressed in terms of hyper-geometric functions. But
we do not find this presentation useful. Instead we investigate those asymptotic properties of
the solutions of (59) that are important for our analysis.
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LE CANARD DE PAINLEVÉ 879

Lemma 13. The solution space of (59) is spanned by the following linearly independent
solutions:

Laξ(θ2) =

∫ ∞
0

exp
(
−τ3/3 + θ2τ

)
τ−ξdτ,(60)

Lbξ(θ2) =

∫ ∞
0

cos(τ3/3 + θ2τ + ξπ/2)τ−ξdτ,(61)

Lcξ(θ2) =

∫ ∞
0

cos(τ3/3 + θ2τ − ξπ/2)τ−ξdτ.(62)

Here span {Laξ} contains all nonoscillatory solutions of (59) for θ2 → −∞. The solution Laξ
can be written in the following form for θ2 < 0:

Laξ = (−θ2)−(1−ξ)E2((−θ2)−3)

with E2 real analytic and satisfying

E2(0) = Γ(1− ξ),

where Γ(z) =
∫∞

0 tz−1e−tdt is the Γ-function. The following asymptotics hold:

Laξ(θ2) =
√
πθ

(1−ξ)/2−3/4
2 exp

(
2θ

3/2
2 /3

)
(1 + o(1)),(63)

Lbξ(θ2) =

√
π

2
θ

(1−ξ)/2−3/4
2 exp

(
−2θ

3/2
2 /3

)
(1 + o(1)),(64)

Lcξ(θ2) = sin(ξπ)θ
(1−ξ)/2−3/2
2 Γ(1− ξ)(1 + o(1))(65)

for θ2 →∞, and

Laξ(θ2) = (−θ2)−(1−ξ)Γ(1− ξ)(1 +O(θ−3
2 )),(66)

Lbξ(θ2) =
√

2π(−θ2)(1−ξ)/2−3/4 sin

(
2

3
(−θ2)3/2(1 + o(1)) +

π

4
− ξπ

2

)
(1 + o(1))

+ sin(ξπ)Laξ(θ2),(67)

Lcξ(θ2) =
√

2π(−θ2)(1−ξ)/2−3/4 sin

(
2

3
(−θ2)3/2(1 + o(1)) +

π

4
+
ξπ

2

)
(1 + o(1))(68)

for θ2 → −∞.

Proof. We apply the Laplace transform ỹ(θ) =
∫

Υ
ˆ̃y(z)eθzdz and solve for ˆ̃y(z), z ∈ D ⊂

C, and the unbounded contour Υ ⊂ D. This representation simplifies the asymptotics for
θ → ±∞. Full details are given in Appendix A.

Remark 14. Note that Lb0 = Lc0 = πAi, where Ai is the standard Airy function. Also,
from Lemma 13, the following hold:
• Laξ has (a) algebraic decay and is nonoscillatory for θ2 → −∞ and (b) exponential

growth for θ2 →∞.
• Lbξ has (a) oscillatory behavior for θ2 → −∞ and (b) exponential decay for θ2 →∞.
• Lcξ has (a) oscillatory behavior for θ2 → −∞ and (b) algebraic decay for θ2 →∞.

The oscillatory behavior for Lbξ and Lcξ for θ2 → −∞ decays in amplitude, since
(−θ2)(1−ξ)/2−3/4 → 0 for ξ ∈ (0, 1).
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880 K. ULDALL KRISTIANSEN AND S. J. HOGAN

Given ỹ(θ2), the values of (w2, φ̃2) can be determined from (58). In particular, ỹ =
Laξ(θ2) and ỹ = Lcξ(θ2) give (w2, φ̃2) = (La′ξ(θ2),La′′ξ (θ2) − θ2Laξ(θ2)) and (w2, φ̃2) =
(Lc′ξ(θ2),Lc′′ξ (θ2) − θ2Lcξ(θ2)), respectively. We therefore introduce the following 1D solu-
tion spaces of (57):

Ce,2 ≡ span {(ỹ, w2, φ̃2) = (Laξ(θ2),La′ξ(θ2),La′′ξ (θ2)− θ2Laξ(θ2))},(69)

Cr,2 ≡ span {(ỹ, w2, φ̃2) = (Lcξ(θ2),Lc′ξ(θ2),Lc′′ξ (θ2)− θ2Lcξ(θ2))}.

We can take Cr,2 = κ23(Cr,3) for θ2 � 1 due to the algebraic decay (65) of Lcξ(θ2) for θ2 →∞.
Recall that Cr,3 is nonunique as a saddle-type center manifold. We then have the following.

Proposition 15. The space Ce,2 is transverse to W s(Cr,2) along l2: (ỹ, w2, φ̃2)(θ2) ≡ 0.

Proof. By the exponential growth of Laξ (see (63)) for θ2 →∞ it follows that the tangent
space of Ce,2 is not a subspace of the tangent space of W s(Cr,2) along l2 for θ2 � 1. Hence
the intersection is transverse.

Returning to the variables (y, w2, θ2, φ2), Ce,2 and Cr,2 become 2D invariant manifolds of
(53)r2=0:

Ce,2 =

{
(y, w, θ2, φ2)|θ2 ∈ R, (y, w2, φ2) =

(
− s

1− ξ
+ ỹ, w2,

s

1− ξ
θ2 + φ̃2

)
,

(ỹ, w2, φ̃2) ∈ span {(Laξ(θ2),La′ξ(θ2),La′′ξ (θ2)− θ2Laξ(θ2))}
}
,(70)

Cr,2 =

{
(y, w, θ2, φ2)|θ2 ∈ R, (y, w2, φ2) =

(
− s

1− ξ
+ ỹ, w2,

s

1− ξ
θ2 + φ̃2

)
,

(ỹ, w2, φ̃2) ∈ span {(Lcξ(θ2),Lc′ξ(θ2),La′′ξ (θ2)− θ2Lcξ(θ2))T }
}
,

using the same symbols for the new objects in the new variables.

Lemma 16. Consider θ2 ≤ −ν−2/3. Then for ν sufficiently small, the invariant manifold
Ce,2 of (53)r2=0 can be written as a graph over (θ2, φ2),

y = (−θ2)−1φ2 + (−θ2)−3

(
(−θ2)−1φ2 +

s

1− ξ

)
F2((−θ2)−3),

w2 = (−θ2)−1(1− ξ)
(

(−θ2)−1φ2 +
s

1− ξ

)(
1 + (−θ2)−3G2((−θ2)−3)

)
,

where F2 and G2 are real analytic functions.
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Proof. By (58) we find that the linear space Ce,2 in (69) is spanned by

ỹ = (−θ2)−1+ξE2((−θ2)−3),

w2 = (−θ2)−2+ξ
(
(1− ξ)E2((−θ2)−3) + 3(−θ2)−3E′2((−θ2)−3)

)
≡ (−θ2)−2+ξ(1− ξ)G̃2((−θ2)−3),

φ̃2 = (−θ2)ξ
(
E2((−θ2)−3) + (−θ2)−3

(
(2− ξ)

(
(1− ξ)E2((−θ2)−3) + 3(−θ2)−3E′2((−θ2)−3)

)
+ (−θ2)−3

(
(12− ξ)E′2((−θ2)−3) + 9(−θ2)−3E′′2 ((−θ2)−3)

)))
≡ (−θ2)ξH̃2((−θ2)−3),

where the functions G̃2 and H̃2 defined by these equations are real analytic. Notice that
H̃2(0) = E2(0) = Γ(1− ξ). Therefore for θ2 � 0 we find from the last equation

(−θ2)ξ =
φ̃2

H̃2((−θ2)−3)
.

Then we substitute this expression for (−θ2)ξ into the first two equations to give

ỹ = (−θ2)−1φ̃2H̃2((−θ2)−3)−1E2((−θ2)−3),

w2 = (−θ2)−2φ̃2(1− ξ)H̃2((−θ2)−3)−1G̃2((−θ2)−3).

Then the desired results follow upon returning to the original variables (using (56)) and setting

F2(u) ≡
∫ 1

0

d

dv

(
H̃2(v)−1E2(v)

) ∣∣∣∣
v=su

ds,

G2(u) ≡
∫ 1

0

d

dv

(
H̃2(v)−1G̃2(v)

) ∣∣∣∣
v=su

ds.

We will continue l2 backwards into chart κ1 in the following section.

4.6. Entry chart κ1. Substituting (43) into (36) gives

ẏ = (1 + r2
1f1(r1, φ1))w1,(71)

ẇ1 = φ1(1 + r2
1b1(r1, φ1)) + (1 + r2

1q1(r1, φ1)) (−y − δr1w1 + εN(y, r1w1, ε)) ,

ṙ1 = −1

2
r1ε1,

ε̇1 =
3

2
ε21,

φ̇1 = ε1
(
ξ(1 + r2

1g1(r1, φ1)) (−y − δr1w1 + εN(y, r1w1, ε)) + s(1 + r2
1h1(r1, φ1)) + φ1

)
,

after division of the right-hand side by r1, where (̇) = d
dt1

and ε = r3
1ε1. Then {r1 = 0} and

{ε1 = 0} are invariant subspaces. Within {r1 = ε1 = 0} we obtain

ẏ = w1,(72)

ẇ1 = φ1 − y,
φ̇1 = 0.
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882 K. ULDALL KRISTIANSEN AND S. J. HOGAN

Therefore the space {r1 = ε1 = 0} is foliated by invariant cylinders:

(y − φ1)2 + w2
1 = R2

0, φ1 < 0, R0 ≥ 0.

Each slice φ1 = const. < 0 of such a cylinder is a periodic orbit:

y(t1) = φ1 +R0 cos(t1), w1(t1) = −R0 sin(t1), φ1(t1) = const.

for (72). For R0 = 0 we have

L1 : y = φ1, w1 = 0, ε1 = 0, r1 = 0, φ1 < 0,(73)

as a line of equilibria.
The line L1 is normally elliptic rather than hyperbolic. This is not a surprise. In fact, we

can deduce this directly from the expression (35) for the eigenvalues λ± of the layer problem
(31), as follows. From (35), we have

λ± =
1

2
θδ ±

√
θ =

1

2
θδ ± i

√
−θ,

in terms of our new variables, ignoring for simplicity the higher order terms in θ ∼ 0. Setting
θ = −r2

1, from (43), gives

λ± = −1

2
r2

1δ ± ir1.

The desingularization amplifies this eigenvalue to O(1) through the division of r1 such that

λ1,± = −1

2
r1δ ± i,(74)

which for r1 = 0 collapse to the eigenvalues λ1,± = ±i we obtain by linearizing (72) about L1.
Within {ε1 = 0} we rediscover

Sa,1 = κ1(Sa) : y =
1 + r2

1b1(r1, φ1)

1 + r2
1q1(r1, φ1)

φ1, w1 = 0, ε1 = 0,(75)

as a manifold of equilibria. The linearization of a point in Sa,1 gives (74) (to first order in r1)
as nontrivial eigenvalues. It is attracting for r1 > 0 but for r1 = 0 (where Sa,1 ⊂ {ε1 = 0}
collapses to L1) it is only normally elliptic.

Similarly, by the analysis in chart κ2, we have, within {r1 = 0}, an invariant manifold
Ce,1 = κ1,2(Ce,2) (recall (70)). Let

V1 = {(y, r1, (w1, φ1, ε1)) ∈ (−∞, 0]× [0, ν]× U1}

with U1 as in (46).
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Lemma 17. For ν > 0 sufficiently small, Ce,1 becomes

y = φ1 + ε21

(
φ1 +

s

1− ξ

)
F2(ε21),

w1 = ε1(1− ξ)
(
φ1 +

s

1− ξ

)(
1 + ε21G2(ε21)

)
,

r1 = 0

within V1, where ε1 ∈ [0, ν], φ1 ∈ [−$−1,−$].

Proof. This follows from Lemma 16 and the coordinate changes κ21 = κ−1
12 and κ12; see

(49).

Consider r1 = 0 and the reduced system on Ce,1 within V1. This gives

ε̇1 =
3

2
ε1,(76)

φ̇1 = ((1− ξ)φ1 + s) (1 +O(ε1)),

after division of the right-hand side by ε1. Here l1 : ε1 ≥ 0, φ1 = −(1−ξ)−1s becomes a strong
unstable manifold of the unstable node (ε1, φ1) = (0,−(1− ξ)−1s) within Ce,1 ⊂ {r1 = 0}.

Lemma 18. Let (ỹ0, w̃0) be defined as

y =
1 + r2

1b1(r1, φ1)

1 + r2
1q1(r1, φ1)

φ1 + ε21

(
φ1 +

s

1− ξ

)
F2(ε21) + ỹ0,(77)

w1 = ε1(1− ξ)
(
φ1 +

s

1− ξ

)(
1 + ε21G2(ε21)

)
+ w̃0

for (y, r1, w1, φ1, ε1) ∈ V1. Then Sa,1 ⊂ {ε1 = 0} and Ce,1 ⊂ {r1 = 0} become

Sa,1 : ỹ0 = 0, w̃0 = 0, ε1 = 0,

Ce,1 : ỹ0 = 0, w̃0 = 0, r1 = 0

within Ṽ1: the image of V1 under the diffeomorphism (y, r1, w1, φ1, ε1) 7→ (ỹ0, r1, w̃0, φ1, ε1)
defined by (77).

Proof. Follows from (75) and Lemma 17.

The main result of this section is then as follows.

Proposition 19. Let ν > 0 be sufficiently small. Then for 0 < ε � 1 the forward flow of
Sa,ε intersects the {ε1 = ν}-face of Ṽ1 in a C1-graph over φ1 ∈ [−$−1,−$]:

(ỹ0, w̃0) = mε(φ1), φ1 ∈ [−$−1,−$]

with r1 = (εν−1)1/3 and

mε(φ1) = o(1), ∂φ1mε(φ1) = o(1).
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Proof. Full details of the proof are given in Appendix B. We present an outline here. We
work with the coordinates (ỹ0, w̃0) and amplify the dissipation in (74) by a further (polar)
blowup transformation (of r1 = ε1 = 0) and further desingularization. However, we can-
not apply blowup and desingularization directly due to the fast oscillatory part (recall, e.g.,
(74)r1=0). Therefore we first apply normal form transformations (like higher order averaging)
in section B.1 to factor out this oscillatory part. The result is described in Proposition 21.
Then in section B.2 we apply a van der Pol transformation (like moving into a rotating coordi-
nate frame), given by (94). This gives rise to system (96) for which the transformed normally
elliptic line L1 (73) can be studied using a second blowup and subsequent desingularization;
see (98) and section B.3. Within the chart (99), the desingularization corresponds to division
by r1 of the real part of the eigenvalues of (74) to −1

2δ (to leading order). Hereby we gain
hyperbolicity for r1 = 0 which allow us (with some technical difficulties due to the oscillatory
remainder of the normal form) to extend the slow manifold Sa,ε as a perturbation of Sa up
until

θ = −(εν−1)1/2(78)

for ν sufficiently small; see Proposition 23, proved in Appendix C. We extend this further up
until

θ = −(εν−1)2/3,(79)

where θ2 = −ν−2/3 and therefore ε1 = ν (cf. (49)), by applying the forward flow near a
hyperbolic saddle in a subsequent chart (100) in Section B.5. The result then shows that
Sa,ε is o(1)-close to the invariant manifold Ce,1 = κ12(Ce,2) (69) of nonoscillatory solutions
at the section defined by (79); see Proposition 25, which working backward then implies
Proposition 19.

4.7. Combining the results to prove Theorem 6. The existence of a maximal canard γsε ,
connecting the Fenichel slow manifold Sa,ε with the stable manifold of Mr,3(ε), the extension
of Sr,ε into chart κ3, follows from Propositions 19 and 15. Indeed, Proposition 19 implies, by
Lemma 18, the o(1)-closeness of the forward flow of Sa,ε to Ce,2 along the {θ2 = −ν−2/3}-face
of the box U2 (recall Lemma 9). To finish the proof, we can therefore work in U2 in chart κ2

only and follow Sa,ε from θ2 = −ν−2/3 up to θ2 = ν−2/3 using Ce,2 as a guide. By regular
perturbation theory, Sa,ε is o(1)-close to Ce,2 along the {θ2 = ν−2/3}-face of U2. Here we also
know from Proposition 10, in particular (51), that Mr,2(ε) = κ23(Mr,3(ε)) is O(ε1/3)-close to
Cr,2. Now, combining this with Proposition 15, which states that Ce,2 intersects W s(Cr,2)
transversally along l2, we finally conclude that the forward flow of Sa,ε intersects W s(Mr,2(ε))
transversally at θ2 = ν−2/3 for all 0 < ε� 1. The intersection of these objects defines γsε and
it follows that it is o(1)-close to l2 in chart κ2. Therefore also γsε → γs as ε→ 0.

5. Discussion and conclusions. We have considered the problem of a slender rod slipping
along a rough surface, as shown in Figure 1. In a series of classical papers, Painlevé [45, 46, 47]
showed that the governing rigid body equations for this problem can exhibit multiple solutions
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(the indeterminate case) or no solutions at all (the inconsistent case), provided the coefficient
of friction µ exceeds a certain critical value µP , given by (11). Subsequently Génot and
Brogliato [19] proved that, from a consistent state, the rod cannot reach an inconsistent state
through slipping. Instead the rod will either stop slipping and stick or it will lift off from the
surface. Between these two cases is a special solution for µ > µC > µP , where µC a new critical
value of the coefficient of friction, given by (16). Physically, the special solution corresponds
to the rod slipping until it reaches a singular “0/0” point P , shown in Figure 2. Even though
the rigid body equations cannot describe what happens to the rod beyond the singular point
P , it is possible to extend the special solution into the region of indeterminacy. Hence this
extended solution is very reminiscent of a canard [1]. To overcome the inadequacy of the rigid
body equations beyond P , the rigid body assumption can be relaxed in the neighborhood of
the point of contact of the rod with the rough surface. Physically this corresponds to assuming
a small compliance there. So it is natural to ask what happens to both the point P and the
special solution under this regularization.

In this paper, we have rigorously proved the existence of a strong canard in the regulariza-
tion by compliance of the classical Painlevé problem. The canard is called strong because it
is tangent to a strong eigendirection that appears in the rigid body formulation of Painlevé’s
problem. Our analysis is based on the blowup method, in the formalism developed and pop-
ularized by Krupa and Szmolyan [28, 29, 30]. Initially blowup gains us ellipticity only (rather
than hyperbolicity) in the entry chart κ1, as shown in section 4.6. As a consequence we cannot
extend Fenichel’s slow manifold into the scaling chart, where θ = O(ε2/3), as a perturbation
of the critical one, as is done in (2 + 1)-slow-fast systems, for example. Instead we apply a
sequence of normal form transformations, followed by an additional blowup that captures the
contraction in the entry chart, enabling an accurate continuation of the slow manifold up until
θ = O(ε1/2). Recall the proof of Proposition 19. From there we extend the slow manifold
up until θ = O(ε2/3) in the scaling chart κ2 by careful estimation of the forward flow near a
hyperbolic saddle. Key to the dynamics in the scaling chart κ2 is Langer’s equation (59) and
its asymptotic properties.

This work was stimulated by a seminar given to the Applied Nonlinear Mathematics group
in Bristol by Alan Champneys in December 2015 and attended by SJH, who immediately saw
the potential for the use of blowup in this field. The main work in this paper was carried out
during the spring and autumn of 2016. Subsequently the current authors were made aware of
the paper by Nordmark, Várkonyi, and Champneys [42]. That paper addresses a wider class
of rigid body problems than we do here. Canards are also studied and Langer’s equation also
appears. These authors use formal asymptotic methods and numerical computations, rather
than our GSPT and blowup approach.

One important difference between our two approaches lies in the number of different cases
that are covered. We consider the class of rigid body problem where, for µ > µC , the weak
direction is θ = θ1 and the strong direction lies between the first and third quadrants of Figure
2. When µP < µ < µC , the strong direction is θ = θ1 and the weak direction lies between
the second and fourth quadrants (but does not correspond to a weak canard). Thus our case
corresponds to Case II of Figure 3 in Nordmark, Várkonyi, and Champneys [42].

So the question naturally arises as to whether we could extend our approach to prove
the existence of weak canards in more general settings (Case III of [42]). Weak canards in
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(2 + 1)-slow-fast systems are obtained as the intersection of an extension of Fenichel’s slow
manifold as a perturbation of the critical one into the scaling chart. The weak canards do
not necessarily intersect the original Fenichel slow manifold. But then, as we are unable to
extend the slow manifold into the scaling chart as a perturbation, it is therefore at this stage
questionable, given the contraction toward the weak singular canard, whether one can really
obtain a sensible notion of these canards for the compliant version when 0 < ε � 1. It
seems that the result may depend upon the contraction rate of the slow-flow toward the weak
singular canard.

Appendix A. Proof of Lemma 13: Properties of the solutions of Langer’s equation.
In section 4.5, we considered Langer ’s [33, 34] third order linear ODE:

y′′′(θ) = θy′(θ) + (1− ξ)y(θ)(80)

with ξ ∈ (0, 1), where in this appendix, we drop both the subscripts and tildes in comparison
with (59). The computations and analysis we perform in this section follow similar arguments
used for studying the solutions of the Airy equation

A′′(θ) = θA(θ).(81)

In fact, (80) is related to the Airy equation; see [54]. For ξ = 0 we obtain (80) from (81)A=y

by differentiating with respect to θ. For ξ = 1, we obtain (81) by setting A = y′. For the case
when ξ is a relative integer 1/n, n ∈ N, the solution involves algebraic combinations of Airy
functions Ai and Bi, their integrals, and their derivatives (see [53, 54]). In particular, for ξ = 1

2 ,

it is a straigthforward calculation to show that y = A(2−2/3θ)2 solves (80) when A solves (81).
The solution for ξ = 1

2 is therefore a linear combination of Ai(2−2/3θ)2, Bi(2−2/3θ)2, and

Ai(2−2/3θ)Bi(2−2/3θ).
To proceed for general ξ ∈ (0, 1), we consider the solution ansatz

y(θ) =

∫
Υ
ŷ(z)eθzdz,

following Laplace, where both the complex analytic function ŷ(z), z = u + iv ∈ D ⊂ C, and
the unbounded contour Υ ⊂ D are to be determined. Suppose that ŷ|∂Υ = 0 and that the
integral and its first three derivatives with respect to u converge absolutely. Then insertion
into (80) gives ∫

Υ

(
z3ŷ(z) + zŷ′(z) + ξŷ(z)

)
eθzdz = 0,

upon using integration by parts. Therefore we set

ŷ(z) = e−z
3/3−ξ log z(82)

with z 6= 0 as a solution of

z3ŷ(z) + zŷ′(z) + ξŷ(z) = 0.
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This gives rise to the following solution of (80):

y(θ) =

∫
Υ
e−z

3/3+θze−ξ log zdz(83)

for appropriately chosen contours Υ. Given that ŷ|∂Υ = 0 we restrict attention to those z
that asymptotically satisfy Re (z3) < 0, or equivalently

Argπ(z) ∈ (−π/6, π/6) ∪ (π/2, 5π/6) ∪ (−5π/6,−π/2)(84)

for |z| � 0. Here Argπ ∈ (−π, π) is the principal value argument of z. We will later also need
the separate argument

Arg0(z) ∈ (0, 2π)(85)

of z ∈ C. The “ends” of the contour Υ should asymptotically be confined to the set in (84).
Furthermore, 0 /∈ Υ. But note that, since ξ ∈ (0, 1), the function z−ξ is integrable over
z ∈ (0, a) with a > 0.

To obtain the three different linearly independent solutions Laξ, Lbξ, and Lcξ in Lemma 13
we consider three different paths Υ1, Υ2, and Υ3 together with two different branch cuts for
the complex logarithm appearing in (82).

Appendix A is organized as follows. The three solutions Laξ, Lbξ, and Lcξ are considered
in sections A.1, A.2, and A.3, respectively. Then their asymptotics for θ →∞ are considered
in sections A.4, A.5, and A.6, respectively, and for θ → −∞, in sections A.7, A.8, and A.9,
respectively.

A.1. Solution Laξ. We will obtain the solution Laξ by considering the integral (83) over
the contour Υ1,ν , shown in Figure 3(a) and defined as

Υ1,ν = Υ−1,ν ∪Υ+
1,ν ∪Υ0

1,ν ,

where

Υ−1,ν = {z ∈ C|Im(z) = −ν, Re(z) ≥ 0},
Υ0

1,ν = {z ∈ C||z| = ν, Re(z) < 0},
Υ+

1,ν = {z ∈ C|Im(z) = +ν, Re(z) ≥ 0}

for ν > 0. The path of integration is clockwise. We take a branch cut along arg(z) = 0 and
define the complex logarithm in (82) as

log0(z) ≡ ln |z|+ iArg0(z),(86)

where Arg0 is the argument in (85). To ensure that Laξ is real we multiply (83) by (1 −
e−ξ2πi)−1 and therefore set

Laξ(θ) = (1− e−ξ2πi)−1

∫
Υ1,ν

e−z
3/3+θze−ξ log0(z)dz.
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(a) (b)

Figure 3. (a) Illustration of the contours Υ1,ν and Υ2,ν . To determine the asymptotics of Lbξ we will use
the contours C and C±. (b) Illustration of the contour Υ3,ν . To determine the asymptotics of Lcξ we will use
the contours C and C±.

Since ξ ∈ (0, 1) and the integrand is analytic away from arg(z) = 0, we easily conclude that

Laξ(θ) = (1− e−ξ2πi)−1

(∫ 0

∞
e−τ

3/3+θτe−ξ(ln τ+i2π)dτ +

∫ ∞
0

e−τ
3/3+θτe−ξ ln τdτ

)
=

∫ ∞
0

e−τ
3/3+θττ−ξdτ,(87)

upon sending ν → 0+, in agreement with (60).

A.2. Solution Lbξ. The solution Lbξ is obtained by considering the integral (83) over a
contour Υ2,ν , shown in Figure 3(a) and defined as

Υ2,ν = {z ∈ C|Re(z) = −ν}.

The direction of integration is along positive Im(z). Furthermore, we take a branch cut along
arg(z) = 0 and define the complex logarithm in (82) as in (86). To ensure that Lbξ is real, we
multiply (83) by 1

2ie
iξπ and therefore set

Lbξ(θ) =
1

2i
eiξπ

∫
Υ2,ν

e−z
3/3+θze−ξ log0(z)dz.(88)

Again, since ξ ∈ (0, 1) and the integrand is analytic away from arg(z) = π, we easily conclude
that

Lbξ(θ) =

∫ ∞
0

cos(τ3/3 + θτ + ξπ/2)τ−ξdτ,

upon sending ν → 0+, in agreement with (61).
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Remark 20. Note that the expressions for Lbξ with ξ = 0 and ξ = 1 collapse to

Lbξ(θ) =

∫ ∞
0

cos(τ3/3 + θτ)dτ = πAi (θ)

and

Lbξ(θ) =

∫ ∞
0

cos(τ3/3 + θτ + π/2)τ−1dτ =

∫ ∞
0
− sin(τ3/3 + θτ)τ−1dτ = −π

∫ θ

0
Ai (u)du− π

6
,

respectively. For ξ = 1 we have used that
∫∞

0 sin(τ3/3)τ−1dτ = π
6 .

A.3. Solution Lcξ. For the solution Lcξ we select the contour Υ3,ν , shown in Figure 3(b)
and defined as

Υ3,ν = Υ−3,ν ∪Υ+
3,ν ∪Υ0

3,ν ,

where

Υ−3,ν = {z ∈ C|Re(z) = −ν, Im(z) ≥ ν},
Υ0

3,ν = {z ∈ C|Im(z) = ±ν, Re(z) ∈ (−ν, 0)} ∪ {z ∈ C||z| = ν, Re(z) ≥ 0},
Υ+

3,ν = {z ∈ C|Re(z) = −ν, Im(z) ≤ −ν}

for ν > 0. The integration is anticlockwise. Furthermore, we take a branch cut along arg(z) =
π and define the complex logarithm in (82) as

logπ(z) ≡ ln |z|+ iArgπ(z).

To ensure that Lcξ is real we multiply (83) by 1
2i and therefore set

Lcξ(θ) =
1

2i

∫
Υ3,ν

e−z
3/3+θze−ξ logπ(z)dz,

which as above gives

Lcξ(θ) =

∫ ∞
0

cos(τ3/3 + θτ − ξπ/2)τ−ξdτ,

upon sending ν → 0+, in agreement with (62).
Now we describe the asymptotics of each of the functions Laξ, Lbξ, and Lcξ as θ → ±∞.

A.4. Asymptotics of Laξ for θ →∞. To study the behavior of the function Laξ in the
limit θ →∞, we consider (87) and set τ =

√
θs so that

Laξ(θ) = θ(1−ξ)/2
∫ ∞

0
eθ

3/2(−s3/3+s)s−ξds

= θ(1−ξ)/2e2θ3/2/3

∫ ∞
−1

eθ
3/2(−s2(1+s/3))(1 + s)−ξds

and then using the fact that 1√
πa
e−1/a2s2 is a δ-sequence as a ≡ θ−3/4 → 0 we obtain

Laξ(θ) =
√
πθ(1−ξ)/2−3/4e2θ3/2/3(1 + o(1))

as θ →∞, in agreement with (63).
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890 K. ULDALL KRISTIANSEN AND S. J. HOGAN

A.5. Asymptotics of Lbξ for θ → ∞. To compute the asymptotics of Lbξ in (88) for
θ →∞, we replace z by

√
θz so that

Lbξ(θ) =
1

2i
eiξπθ(1−ξ)/2

∫
Υ2,ν

eθ
3/2F (z)e−ξ log0 zdz,(89)

where

F (z) = −z3/3 + z.

In (89) we have used the fact that the integrand is analytic away from arg (z) = 0 to replace the
path of integration Υ2,ν/

√
θ by Υ2,ν . Then we follow standard arguments used for computing

the asymptotics of the Airy function Ai, deforming Υ2,ν into

C = {z = u+ iv ∈ C|u = q(v2)},(90)

where

q(v2) ≡ −
√
v2/3 + 1.

Along C we have ImF (z) = 0 and

ReF (z) = −2

3

√
v2/3 + 1

(
1 +

4

3
v2

)
= −2

3
− v2(1 +O(v2)).

Using again that 1√
πa
e−1/a2s2 is a δ-sequence as a ≡ θ−3/4 → 0 we obtain

Lbξ(θ) =
1

2i
eiξπθ(1−ξ)/2

∫
C
eθ

3/2F (z)e−ξ log0 zdz =

√
π

2
θ(1−ξ)/2−3/4e−2θ3/2/3(1 + o(1))

for θ →∞, in agreement with (64).

A.6. Asymptotics of Lcξ for θ → ∞. To compute the asymptotics of Lcξ for θ → ∞,
we proceed as for Lbξ. We replace z by

√
θz and then use the analyticity of the integrand

away from arg(z) = π to deform Υ3,ν into a union of C ∩{Im(z) ≷ ±ν} with C as in (90) and

Υ̃0
3,ν = {z ∈ C|Im(z) = ±ν, Re(z) ∈ (−q(ν2), 0)} ∪ {z ∈ C||z| = ν, Re(z) ≥ 0}.

The contribution from C ∩ {Im(z) ≷ ±ν} is exponentially small O(e−2/3θ3/2) as θ → ∞.
Therefore

Lcξ(θ) =
1

2i
θ(1−ξ)/2

∫
Υ̃0

3,ν

eθ
3/2(−z3/3+z)e−ξ logπ(z)dz +O(e−2/3θ3/2)

= sin(ξπ)θ(1−ξ)/2
∫ 1

0
eθ

3/2(τ3/3−τ)τ−ξdτ +O(e−2/3θ3/2),

upon ν → 0+. The function

G(ν) = νξ−1

∫ 1

0
eν
−1(τ3/3−τ)τ−ξdτ =

∫ ν−1

0
e−s+ν

2s3/3s−ξds
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LE CANARD DE PAINLEVÉ 891

is continuous at ν = 0 with value

G(0) =

∫ 1

0
e−ww−ξdw = Υ(1− ξ),

where Υ on the right-hand side is for the Υ-function. Therefore

Lcξ(θ) = sin(ξπ)θ(1−ξ)/2−3/2Υ(1− ξ)(1 + o(1)),

in agreement with (65).

A.7. Asymptotics of Laξ for θ → −∞. First we replace τ by (−θ)1/2τ and obtain

Laξ(θ) = (−θ)(1−ξ)/2
∫ ∞

0
e(−θ)3/2(−τ3−τ)τ−ξdτ.

Then we apply the following substitution

t(τ) = τ3/3 + τ

with inverse

τ = t(1 +m(t2))

with m real analytic. Then

Laξ(θ) = (−θ)(1−ξ)/2
∫ ∞

0
e−(−θ)3/2tt−ξ(1 + n(t2))dt,

where n = (1 +m)−ξ dτdt − 1 is real analytic with n(0) = 0. Finally, setting s = (−θ)3/2t gives

Laξ(θ) = (−θ)−(1−ξ)E2((−θ)−3)

with

E2(w) =

∫ ∞
0

e−ss−ξ(1 + n(ws2))ds,

a real-analytic function, in agreement with (66).

A.8. Asymptotics of Lbξ for θ → −∞. The asymptotics of Lbξ for θ → −∞ is obtained
by replacing z by (−θ)1/2z. This gives

Lbξ(θ) =
1

2i
eiξπ(−θ)(1−ξ)/2

∫
Υ2,ν

e(−θ)3/2G(z)e−ξ log0(z)dz,

where

G(z) = −z3/3− z.
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892 K. ULDALL KRISTIANSEN AND S. J. HOGAN

We then replace the contour Υ2,ν with a union of Υ1,ν and

C+ = {z = u+ iv ∈ C|u = s+(v), v > 0},
C− = {z = u+ iv ∈ C|u = s−(v), v < 0},

where

s±(v) = ±(v ∓ 1)

√
v ± 2

3v
.

The contours C± are also used to study the asymptotics of the Airy function Ai(θ) for θ → −∞.
Along C± we have Im(G) = ∓2

3 and

Re(G) = s±(v)
(
−s±(v)2/3 + v2 − 1

)
= 2(v ∓ 1)2(1 +O(v ∓ 1)).

In particular, Re(G) has a global maximum along C± at v = ±1, respectively. This then leads
to

Lbξ(θ) =
1

2i
eiξπ(−θ)(1−ξ)/2

∫
C+∪C−

e(−θ)3/2G(z)e−ξ log0(z)dz +
1

2i
eiξπ(1− e−ξ2πi)Laξ(θ)

=
√

2π(−θ)(1−ξ)/2−3/4 sin

(
2

3
(−θ)3/2(1 + o(1)) +

π

4
− ξπ

2

)
(1 + o(1))

+ sin(ξπ)Laξ(θ),

in agreement with (67).

A.9. Asymptotics of Lcξ for θ → −∞. In this case we replace z by (−θ)1/2z and deform
Υ3,ν into C+ ∪ C−. The calculations are similar to the asymptotics of Lbξ as θ → −∞. We
obtain

Lcξ(θ) =
√

2π(−θ)(1−ξ)/2−3/4 sin

(
2

3
(−θ)3/2(1 + o(1)) +

π

4
+
ξπ

2

)
(1 + o(1)),

in agreement with (68).

Appendix B. Proof of Proposition 19.
From (71) in section 4.6, we obtain the following equations in terms of the (ỹ0, w̃0)-variables

defined by (77):

˙̃y0 = ε1ξ
(

1 +Q
(0)
1 (ỹ0, w̃0, r1, φ1, ε1)

)
ỹ0 +

(
1 +Q

(0)
2 (r1, φ1, ε1)

)
w̃0 + r1ε1Q

(0)
0 (r1, φ1, ε1),

(91)

˙̃w0 =
(
−1 + P

(0)
2 (r1, φ1, ε1)

)
ỹ0 +

(
−δr1 +

1

2
ε1 +P

(0)
1 (ỹ0, w̃0, r1, φ1, ε1)

)
w̃0 +r1ε1P

(0)
0 (r1, φ1, ε1),

ṙ1 = −1

2
r1ε1,

ε̇1 =
3

2
ε21,

φ̇1 = ε1

(
((1− ξ)φ1 + s)

(
1− ε21

1− ξ
F2(ε21)

)
+ V (0)(ỹ0, w̃0, r1, φ1, ε1)

)
,
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the equations defining new smooth functions Q
(0)
i , P

(0)
i , V (0) satisfying

Q
(0)
1 , Q

(0)
2 , P

(0)
1 , P

(0)
2 = O((ε1 + r1)2 + ε(ỹ0 + w̃0)), V (0) = O(r1(w̃0 + r1 + ε1) + ỹ0).

Recall ε = r3
1ε1. We will now consider this system in detail.

Specifically, since we cannot apply blowup and desingularization directly due to the fast
oscillatory part (recall, e.g., (74)r1=0), we first apply normal form transformations in section
B.1 to factor out this oscillatory part. These normal form transformations are like higher
order averaging. But the normal form approach circumvents the singularity associated with
the zero amplitude that is known to appear when using averaging in this context. Then
in section B.2 we apply a van der Pol transformation (moving into a rotating coordinate
frame), giving rise to (96). In section B.3 the transformed normally elliptic line L1 (73)
can be studied using a second blowup and subsequent desingularization. Within chart (99),
we gain hyperbolicity for r1 = 0 which allows us to extend the slow manifold Sa,ε as a
perturbation of Sa up until θ = −(εν−1)1/2 for ν > 0 sufficiently small but fixed with respect
to ε > 0. We extend this further into θ = −(εν−1)2/3 (where ε1 = ν cf. (49)) by applying the
forward flow in a subsequent chart (100) in section B.5. We find that Sa,ε is o(1)-close to the
manifold Ce,1 = κ12(Ce,2) (69) of nonoscillatory solutions at the section defined by (79); see
Proposition 25, which working backward then implies Proposition 19.

B.1. Normal form transformation. Let

Ṽ1 = {(ỹ, r1, (w̃1, φ1, ε1)) ∈ [−σ, σ]× [0, ν]× Ũ1}

with Ũ1 = [−σ, σ]× [−$−1,−$]× [0, ν].

Proposition 21. Fix any n ∈ N. Then for ν > 0 sufficiently small there exists a smooth
mapping

Φn : Ṽ1 3 (ỹ0, r1, w̃0, φ1, ε1) 7→ (ỹn, r1, w̃n, φ1, ε1),

leaving r1, φ1, ε1 invariant, that transforms (91) into

˙̃yn =
(
T (n)(In, r1, φ1, ε1) +Q

(n)
1 (ỹn, w̃n, r1, φ1, ε1)

)
ỹn

+
(

1 + Ω(n)(In, r1, φ1, ε1) +Q
(n)
2 (ỹn, w̃n, r1, φ1, ε1)

)
w̃n + r1ε1Q

(n)
0 (r1, φ1, ε1),(92)

˙̃wn = −
(

1 + Ω(n)(In, r1, φ1, ε1) + P
(n)
2 (ỹn, w̃n, r1, φ1, ε1)

)
ỹn

+
(
T (n)(In, r1, φ1, ε1) + P

(n)
1 (ỹn, w̃n, r1, φ1, ε1)

)
w̃n + r1ε1P

(n)
0 (r1, φ1, ε1),

ṙ1 = −1

2
r1ε1,

ε̇1 =
3

2
ε21,

φ̇1 = ε1

(
((1− ξ)φ1 + s)

(
1− ε21

1− ξ
F2(ε21)

)
+ V (n)(ỹn, w̃n, r1, φ1, ε1)

)
,
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894 K. ULDALL KRISTIANSEN AND S. J. HOGAN

where

Q
(n)
1 , Q

(n)
1 , P

(n)
1 , P

(n)
2 = O1 + εO2, Q

(n)
0 , P

(n)
0 = O1, V (n) = O3,

where

In = |(ỹn, w̃n)|2 = ỹ2
n + w̃2

n,

and

O1 = O(|(r1, ε1)|n), O2 = O((ỹn + w̃n)|(r1, ỹn, w̃n, ε1)|n−1),

O3 = O(r1(w̃n + r1 + ε1) + ỹn).

Furthermore T (n) and Ω(n) are nth-degree polynomials of In, r1, ε1 with φ1-dependent coeffi-
cients, satisfying

T (n)(In, r1, φ1, ε1) = −1

2
δr1 +

1

2

(
1

2
+ ξ

)
ε1 +O((r1 + ε1)2 + εIn),(93)

Ω(n)(In, r1, φ1, ε1) = O((r1 + ε1)2 + εIn).

Proof. The linearization about

(ỹ0, w̃0, r1, ε1, φ1) = (0, 0, 0, 0,−(1− ξ)−1s)

gives

L =

(
L0 02×3

03×2 03×3

)
, L0 =

(
0 1
−1 0

)
.

By normal form theory (see, e.g., [20, Theorem 1.2 and Lemma 1.7]), the system can be

brought into (92) by successive transformations, the truncated system with Q
(n)
i = P

(n)
i = 0

being equivariant with respect the action of etL. Simple calculations then give (93).

We shall henceforth drop the subscripts on r1, φ1, and ε1.

B.2. Van der Pol transformation. Now we apply the van der Pol transformation(
ỹn
w̃n

)
(t1) = A(ψ(t1))z(t1), ψ̇(t1) = 1,(94)

to (92), where ψ ∈ S1, z ∈ R2, and

A(ψ) =

(
cosψ sinψ
− sinψ cosψ

)
∈ SO(2),(95)
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LE CANARD DE PAINLEVÉ 895

to give the extended system,

ż =

((
T (n)(|z|2, r, φ, ε) Ω(n)(|z|2, r, φ, ε)
−Ω(n)(|z|2, r, φ, ε) T (n)(|z|2, r, φ, ε)

)
+R(n)(z, r, φ, ε, ψ)

)
z

+ εrR(n)(r, φ, ε, ψ),(96)

ṙ = −1

2
rε,

ε̇ =
3

2
ε2,

φ̇ = ε

(
((1− ξ)φ+ s)

(
1− ε2

1− ξ
F (ε2)

)
+ V (n)(A(ψ)z, r, φ, ε)

)
,

ψ̇ = 1,

on (z, r, φ, ε, ψ) ∈ R5 × S1 with

R(n) = O(|(r, ε)|n + r3ε|z||(r, z, ε)|n−1), R(n) = O(|(r, ε)|n), V (n) = O(z + r1(r1 + ε1)).

Recall also (93). We will work with system (96) henceforth. By construction, we have the
following lemma.

Lemma 22. System (96) possesses an S1-symmetry:

Sν : z 7→ A(ν)z, ψ 7→ ψ − ν,(97)

for every ν ∈ S1.

B.3. Subsequent blowup. Setting ε = 0 in (96) gives z = 0 as a set of equilibria, corre-
sponding to Sa,1. Therefore it is also nonnormally hyperbolic at r = 0. Indeed T (n)(0, 0, φ, 0) ≡
0. Therefore we apply the following polar blowup transformation to (96),

r = ρr̄, ε = ρε̄, ρ ≥ 0, (r̄, ε̄) ∈ S1,(98)

and desingularize through division of the right-hand side by ρ. The transformation (98) blows
up r = ε = 0 to a sphere (r̄, ε̄) ∈ S1. We consider two directional charts:

r̄ = 1 : r = ρ1, ε = ρ1ε1, ε1 ∈ I1,(99)

and

ε̄ = 1 : r = ρ2r2, ε = ρ2, r2 ∈ I2.(100)

Here I1 and I2 are sufficiently large open sets that contain [0, ν] and [0, ν−1], respectively. In
this way the two charts (99) and (100) cover (r̄, ε̄) ∈ S1 with ε̄ ≥ 0, r̄ ≥ 0. The coordinate
changes are defined by

ρ1 = ρ2r2, ε1 = r−1
2 .(101)
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896 K. ULDALL KRISTIANSEN AND S. J. HOGAN

Notice that the conservation r3ε = ε in chart κ1 becomes

ρ4
1ε1 = ε,(102)

and

ρ4
2r

3
2 = ε,(103)

in charts (99) and (100), respectively.

B.4. Chart (99). In this chart we obtain the following set of equations from (96):

ż =

((
T

(n)
1 (|z|2, ρ1, φ, ε1) Ω

(n)
1 (|z|2, ρ1, φ, ε1)

−Ω
(n)
1 (|z|2, ρ1, φ, ε1) T

(n)
1 (|z|2, ρ1, φ, ε1)

)
+R

(n)
1 (z, ρ1, φ, ε1, ψ)

)
z

+R(n)
1 (ρ1, φ, ε1, ψ),(104)

ρ̇1 = −1

2
ρ1ε1,

ε̇1 = 2ε21,

φ̇ = ε1

(
((1− ξ)φ+ s)

(
1− ρ2

1ε
2
1

1− ξ
F (ρ1ε

2
1)

)
+ V (n)(A(ψ)z, ρ1, φ, ρ1ε1)

)
,

and

ψ̇ = ρ−1
1 ,(105)

after division of the right-hand side by ρ1. Here

T
(n)
1 = −1

2
δ +O(ρ1 + ε1), Ω

(n)
1 = O(ρ1 + ε1),(106)

and

R
(n)
1 (z, ρ1, φ, ε1, ψ) = O(ρn1 ), R(n)

1 (ρ1, φ, ε1, ψ) = O(ρn+2
1 ε1), V (n) = O(z + ρ2

1).(107)

The system (104) is still Sν-symmetric; recall Lemma 22. We consider the set

W1 : z ∈ [−σ, σ]2, ρ1 ∈ [0, ν], ε1 ∈ [0, ν], φ1 ∈ [−$−1,−$], ψ ∈ S1,

after possibly decreasing σ > 0 slightly.
Notice that ρ1 = 0 is singular in (105), but the right-hand sides of the (z, ε1, φ)-equations

are well-defined there; cf. (104), (106), and (107). In particular, any point (z, ε1, φ1) =
(0, 0, φ1) is an equilibrium of this system and the linearization has eigenvalues 0,−1

2δ, both of
algebraic multiplicity two. Therefore we have gained hyperbolicity, albeit with the ψ-equation
(105) singular at ρ1 = 0. This allows us to obtain the following.
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Proposition 23. Fix k ∈ N and suppose n ≥ 2. Then for ν > 0 sufficiently small the
following holds: There exists an attracting locally invariant manifold Ma,1 of (104) within W1

as the graph

Ma,1 : z = ρn1 ε1A(ψ)Tm1(ρ1, φ, ε1)(108)

with m1(·, ·, ·) Lipshitz continuous and A(ψ) ∈ SO(2) (see (95)). Also the first k partial
derivatives with respect to φ,

∂φim1(ρ1, φ, ε1) with 1 ≤ i ≤ k,

exist and are Lipshitz continuous.

Proof. See Appendix C.

Remark 24. In the proof of Proposition 23 in Appendix C, we actually blow up ρ1 = ε1 =
0, z = 0 further by introducing

z = ρn1 ε1z1.(109)

The dynamics of (z1, ε1, φ) is then well-defined for ρ1 = 0. See (122). Recall that in (104)
the φ-equation actually depends upon ψ for ρ1 = 0. It is therefore tempting to include
z = ρ̄nz̄ in the blowup (98) (and apply a consecutive blowup of ε1 = 0, z1 = 0 in the proof of
Proposition 23 to finally obtain (109) in chart (99)). This approach might allow for improved
estimates of o(1) in Theorem 6, but we did not find an easy way to deal with the subsequent
details in the chart (100).

The invariant manifold

Ma,1(ε) ≡Ma,1 ∩ {ρ4
1ε1 = ε}(110)

can be viewed as an extension of Fenichel’s slow manifold Sa,ε up until θ = −(εν−1)1/2 with
φ ∈ [−$−1(εν−1)1/2,−$(εν−1)1/2] by setting ε1 = ν in (102), together with (99) and (43), for
ν sufficiently small but fixed with respect to ε. Note that there is a uniform contraction along
Ma,1(ε). In terms of (ỹn, w̃n), the invariant manifold Ma,1 becomes a graph over (ρ1, φ1, ε1),

(ỹn, w̃n) = ρn1 ε1m1(ρ1, φ, ε1)

(by (94) using AAT = I), which is independent of ψ as desired.
From (104), the reduced problem on Ma,1 becomes

ρ̇1 = −1

2
ρ1,

ε̇1 = 2ε1,

φ̇ = ((1− ξ)φ+ s)

(
1− ρ2

1ε
2
1

1− ξ
F (ρ1ε

2
1)

)
+ V (n)(ρn1 ε1m1(ρ1, φ, ε1), ρ1, φ, ρ1ε1),
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898 K. ULDALL KRISTIANSEN AND S. J. HOGAN

after division of the right-hand side by ε1. The reduced problem is also independent of ψ as
desired. Notice that

p1 : φ = − s

1− ξ
, ρ1 = 0, ε1 = 0,

is hyperbolic. The invariant line

φ = − s

1− ξ
, ρ1 = 0, ε1 ≥ 0,

within Ma,1 ∩ {ρ2 = 0} corresponds to l2, as given in (55). As in (76), it is a strong unstable
manifold of p1 within ρ2 = 0. The 1D stable manifold, contained within {ε1 = 0}, corresponds
to the singular strong canard in this chart.

Setting ε1 = ν gives ρ1 = (ε/ν)1/4 by the conservation (102). Therefore

Ma,1(ε) ∩ {ε1 = ν} : z = (ε/ν)n/4 νA(ψ)Tm1(ρ1(ε), φ, ν) = A(ψ)TO(εn/4);(111)

cf. (108). Henceforth we suppose that n ≥ 4.

B.5. Chart (100). In this chart we obtain the following equations from (96):

ż =

((
T

(n)
2 (|z|2, r2, φ, ρ2) Ω

(n)
2 (|z|2, r2, φ, ρ2)

−Ω
(n)
2 (|z|2, r2, φ, ρ2) T

(n)
2 (|z|2, r2, φ, ρ2)

)
+R

(n)
2 (z, r2, φ, ρ1, ψ)

)
z

+R(n)
2 (r2, φ, ρ1, ψ),(112)

ṙ2 = −2r2,

φ̇ = ((1− ξ)φ+ s)

(
1− ρ2

2

1− ξ
F (ρ2

2)

)
+ V (n)(A(ψ)z, ρ2r2, φ, ρ2),

ρ̇2 =
3

2
ρ2,

and

ψ̇ = ρ−1
2 ,(113)

after division of the right-hand side by ρ2. Here

T
(n)
2 =

1

2

(
1

2
+ ξ

)
+O(r2 + ρ2), Ω

(n)
2 = O(r2 + ρ2),

and

R
(n)
2 (z, r2, φ, ρ2, ψ) = O(ρn2 ), R(n)

2 (r2, φ, ρ2, ψ) = O(ρn+2
2 r2).(114)

Also

V (n)(A(ψ)z, ρ2r2, φ, ρ2) = O(A(ψ)z + r2(ρ2 + r2)).
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LE CANARD DE PAINLEVÉ 899

As above, we notice that ρ2 = 0 is well-defined for the right-hand side of (112). But now
z = r2 = 0, φ = (1 − ξ)−1s is a hyperbolic equilibrium, the linearization having the real
eigenvalues 1

2

(
1
2 + ξ

)
, −2, (1− ξ).

Let

W2 : z ∈ [−σ, σ]2, ρ2 ∈ [0, ν], r2 ∈ [0, ν], φ1 ∈ [−$−1,−$], ψ ∈ S1.

Proposition 25. Fix any η ∈ (0, 1), n ≥ 4, and let ν be sufficiently small. Then for
0 < ε � 1 the forward flow of Ma,2(ε) intersects the {ρ2 = ν}-face of the box W2 in a
C1-graph:

z = A(ψ)Tm2,ε(φ)

with

m2,ε(φ) = O(εη(7−2ξ)/24) = O(ε5/24), m′2,ε(φ) = O(ε1/12).(115)

Proof. Consider (112) with n ≥ 4. The manifold Ma,1(ε) from chart ρ̄ = 1 enters the
chart ε̄ = 1 (100) at r2 = ν−1, cf. (101), as a graph (111). We then apply a finite time flow
map to go from r2 = ν−1 to the {r2 = ν}-face of the box W2, with ν small, which we then
use as new initial conditions. By (111) we then have z(0) = A(ψ)TO(εn/4); a C1-graph over
(φ, ψ) ∈ [−$−1,−$] × S1. Subsequently we work in W2 only and define an exit time T by
the condition ρ2(T ) = ν. Solving the ρ2-equation we obtain

T = ln(ε−1/6ν7/6),(116)

using ρ2(0) = ε1/4ν−3/4 by (103).
Let

ζ =
1

2

(
1

2
+ ξ

)
.

Then from the z-equation we obtain(
e−ζt|z(t)|

)
≤ |z(0)|+

∫ t

0
c1

(
ν
(
e−ζu|z(u)|

)
+ ε1/3

)
du,

while φ ∈ [−$−1,−$], r2, ρ2 ≤ ν.

|R(n)
2 | ≤ c1ε

1/3

for all ε � 1. This follows from (103) and (114). Then by Gronwall’s inequality for every ν
and ε sufficiently small we have that

|z(T )| ≤ e(ζ+c1ν)T |z(0)|+ c1e
(ζ+c2ν)T ε1/3

≤ c3ε
1/3−(ζ/6+c3ν) ≤ c4ε

5/24,(117)
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900 K. ULDALL KRISTIANSEN AND S. J. HOGAN

using n ≥ 4, where c2, c3, and c4(ξ) are sufficiently large. In the last equality we used the fact
that ζ < 3

4 and taken ν sufficiently small. This proves the first estimate in (115).
For the second estimate, we consider the variational equations obtained by differentiating

the (z, φ)-equations with respect to φ(0) = φ0. This gives(
e−ζt|z̃(t)|

)
≤ |z̃(0)|+

∫ t

0
c5ν

((
e−ζu|z̃(u)|

)
+ ε1/3−(ζ/6+c3ν)e−βu

(
e−(1−ξ)u|φ̃(u)|

))
du,(

e−(1−ξ)t|φ̃(t)|
)
≤ 1 +

∫ t

0
c5ν

((
e−(1−ξ)u|φ̃(u)|

)
+ eβu

(
e−ζu|z̃(u)|

))
du

for c5 sufficiently large, where for simplicity we have set

β = ζ − (1− ξ) =
3

4
(2ξ − 1)

and introduced the following notation:

z̃(t) =
∂z

∂φ0
(t), φ̃(t) =

∂φ

∂φ0
(t).

Notice z̃(0) = O(ε(n−2)/4) and φ̃(0) = 1. Then m′2,ε(φ) in (115) becomes z̃(T )φ̃(T )−1 by the

chain rule. Suppose first that ξ ≤ 1
2 so that β ≤ 0. Then(

e−ζt|z̃(t)|
)
≤ |z̃(0)|+

∫ t

0
c6ν

((
e−ζu|z̃(u)|

)
+ ε(1+ξ)/6−c2ν

(
e−(1−ξ)u|φ̃(u)|

))
du,(118)(

e−(1−ξ)t|φ̃(t)|
)
≤ 1 +

∫ t

0
c6ν

((
e−(1−ξ)u|φ̃(u)|

)
+
(
e−ζu|z̃(u)|

))
du

for t ∈ [0, T ] with c6 sufficiently large, using here that

ε1/3−(ζ/6+c2ν)e−βu ≤ ε1/3−(ζ/6+c2ν)e−βT ≤ c6ε
1/3−(ζ−β)/6−c2ν = c6ε

(1+ξ)/6−c2ν

for every u ∈ [0, T ], and all ε sufficiently small. Therefore by Gronwall’s inequality, the
following estimate holds true for all ν sufficiently small,

|z̃(t)|+ |φ̃(t)| ≤ c7e
((1−ξ)+c7ν)t,(119)

taking c7 sufficiently large and using that (1 − ξ) ≥ ζ given that β ≤ 0 by assumption. But
then by (118) (

e−ζt|z̃(t)|
)
≤ |z̃(0)|+ c8ν

(∫ t

0

(
e−ζu|z̃(u)|

)
du+ ε(1+ξ)/6−c8ν

)
,

using (119) to estimate e−(1−ξ)t|φ̃(t)| ≤ c7e
c7ν . For ν sufficiently small we therefore have by

Gronwall’s inequality that

|z̃(T )| ≤ c9e
(ζ+c9ν)T ε(1+ξ)/6−c9ν ≤ c9ε

1/8 ≤ c9ε
1/12
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LE CANARD DE PAINLEVÉ 901

for all ε sufficiently small. Here we have used (116) and the fact that

(1 + ξ)/6− ζ/6 > 1

8
.

Now, given z̃(t) the equation for φ̃ is a linear, scalar, and nonautonomous ODE. Solving this
linear equation and using the estimate on z̃ it is then straightforward to estimate |φ̃(T )| ≥
C3ε

−(1+ξ)/6+C−1
3 ν ≥ C3 uniformly from below for C3 > 0 and ν > 0 sufficiently small and all

0 < ε� 1. This allows us to estimate m′2,ε(φ) for ξ ≤ 1
2 as follows:

|m′2,ε(φ)| ≤ C−1
3 c9ε

1/8 ≤ C−1
3 c9ε

1/12.

Now suppose that ξ > 1
2 so that β > 0. Then we scale z̃ as

z̃(t) = e−βT ẑ(t),

introducing ẑ(t). This gives(
e−ζt|ẑ(t)|

)
≤ |ẑ(0)|+

∫ t

0
c10ν

((
e−ζu|ẑ(u)|

)
+ ε1/3−(ζ/6+c2ν)eβ(T−u)

(
e−(1−ξ)u|φ̃(u)|

))
du

≤ |ẑ(0)|+
∫ t

0
c11ν

((
e−ζu|ẑ(u)|

)
+ ε1/12−c12ν

(
e−(1−ξ)u|φ̃(u)|

))
du(

e−(1−ξ)t|φ̃(t)|
)
≤ 1 +

∫ t

0
c10ν

((
e−(1−ξ)u|φ̃(u)|

)
+ e−β(T−u)

(
e−ζu|ẑ(u)|

))
du

≤ 1 +

∫ t

0
c10ν

((
e−(1−ξ)u|φ̃(u)|

)
+
(
e−ζu|ẑ(u)|

))
du

for t ∈ [0, T ]. Hence

|ẑ(t)|+ |φ̃(t)| ≤ c13e
(ζ+c14ν)t(120)

for ν sufficiently small. But then(
e−ζt|ẑ(t)|

)
≤ |ẑ(0)|+ c15ν

(∫ t

0

(
e−ζu|ẑ(u)|

)
du+ ε1/3−(ζ/6+c16ν)eβT

)
,

since e−(1−ξ)t|φ̃(t)| ≤ c13e
c14νt by (120). Now we return to z̃ by multiplying through by e−βT .

This gives (
e−ζt|z̃(t)|

)
≤ |z̃(0)|+ c17ν

(∫ t

0

(
e−ζu|z̃(u)|

)
du+ ε1/3−(ζ/6+c18ν)

)
.

Then by Gronwall’s inequality

|z̃(T )| ≤ c19e
ζT+c17νε1/3−(ζ/6+c18ν) ≤ c20ε

1/12,

using (116) and

1/3− ζ/3 > 1

12
.

As above, we can easily estimate |φ̃(T )| ≥ C3 uniformly from below. This completes the
proof of the estimate for m′2,ε(φ) in (115).

Proposition 25 implies Proposition 19 since ε1 = ρ2. This therefore completes the proof.
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Appendix C. Proof of Proposition 23.
Consider (104)–(107) and set z = ρn1 ε1z1 to get

ż1 = −1

2
δz1 + R̃(z1, ρ1, ε1, φ, ψ),(121)

ρ̇1 = −1

2
ρ1ε1,

ε̇1 = 2ε21,

φ̇ = ε1((1− ξ)φ+ s) + Ṽ (A(ψ)z1, ρ1, φ, ε1),

ψ̇ = ρ−1
1 ,

where now, using n ≥ 2,

R̃(z1, ρ1, ε1, ψ) =
1

2
nε21z1 − 2ε1z1 +

((
T

(n)
1 (|z|2, ρ1, φ, ε1) Ω

(n)
1 (|z|2, ρ1, φ, ε1)

−Ω
(n)
1 (|z|2, ρ1, φ, ε1) T

(n)
1 (|z|2, ρ1, φ, ε1)

)

+
1

2
δI +R

(n)
1 (z, ρ1, φ, ε1, ψ)

)
z1 + ρ−n1 ε−1

1 R
(n)
1 (ρ1, φ, ε1, ψ)

= O(z1(ε1 + ρ1) + ρ2
1),

Ṽ (A(ψ)z1, ρ1, φ, ε1) = ε1

(
− ((1− ξ)φ+ s)

ρ2
1ε

2
1

1− ξ
F (ρ1ε

2
1) + V (n)(ρn1 ε1A(ψ)z1, ρ1, φ, ρ1ε1)

)
,

= O(ε1(ε1 + ρ1))

are both smooth functions. In particular, R̃(z1, 0, ε1, ψ) and Ṽ (A(ψ)z1, 0, φ, ε1) are both in-
dependent of ψ.

By modifying the standard proof of the existence of a center manifold using the contraction
mapping theorem, we can now prove the existence of a locally invariant manifold Ma,1. We
provide all of the details below. It will be useful to introduce ω and ω̂ as ω = (ω̂, φ), where
ω̂ = (ρ1, ε1). Furthermore, let Ψ : R → [0, 1] be a C∞ cut-off function satisfying Ψ(−x) =
Ψ(x), Ψ(x) = 1 for all x ∈ [0, 1], and Ψ(x) = 0 for all x ≥ 2. Similarly, we let Φ : R → [0, 1]
be a C∞ function satisfying

Φ|[−$−1,−$] = 1, Φ|(−∞,−2$−1)∪(−$−1/2,∞) = 0.

Let σ > 0. We then consider the following modified system:

ż1 = −1

2
δz1 + R̃(z1, ω, ψ),(122)

ρ̇1 = −1

2
Ψ

(
|ω̂|
σ

)
ρ1ε1,

ε̇1 = 2Ψ

(
|ω̂|
σ

)
ε21,

φ̇ = P̃ (z1, ω, ψ),

ψ̇ = ρ−1
1 ,
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LE CANARD DE PAINLEVÉ 903

where

R̃(z1, ω, ψ) = Ψ

(
|ω̂|
σ

)
Φ (φ)R(z1, ω, ψ),

P̃ (z1, ω, ψ) = Ψ

(
|ω̂|
σ

)
Φ (φ)

(
ε1((1− ξ)φ+ s) + Ṽ (A(ψ)z1, ω)

)
.

Also R̃ and P̃ are Sν-equivariant and Sν-invariant, respectively; recall (97). Let Br(ω̂0) =
{ω̂ ∈ R2||ω̂ − ω̂0| < r} denote the open desk centered at ω̂0 with radius r. Then notice that
(a) (122) coincides with (121) within |ω̂| ≤ σ, φ ∈ [−$−1,−$] (cf. the definition of Ψ and Φ)
and (b) ω̂0 ∈ B2σ(0) implies that ω̂(t) ∈ B2σ(0) for all t. We therefore consider the following
set:

W = {ω = (ω̂, φ) ∈ B2σ(0)× R}.

Lemma 26. There exists a constant C1 > 0 so that the following estimates hold:

|R̃(z′1, ω
′, ψ)− R̃(z1, ω, ψ)| ≤ C1σ

(
|ω′ − w|+ |z′1 − z1|

)
,

|P̃ (z′1, ω
′, ψ)− P̃ (z1, ω, ψ)| ≤ C1

(
|ε′1 − ε1|+ σ

(
|φ′ − φ|+ |ρ′1 − ρ1|+ |z′1 − z1|

))
,

and

|R̃(z1, ω, ψ)| ≤ C1σ
2

for all ω′ = (ρ′1, ε
′
1, φ
′), ω = (ρ1, ε1, φ) ∈ W, |z1|, |z′1| ≤ σ, and ψ ∈ S1.

Proof. The proof is straightforward.

For p0 > 0 and p1 > 0 we then define X (p0, p1) as the set of Lipschitz functions h :
W × S1 → R2 satisfying

h(0, ψ) = 0, |h(ω, ψ)| ≤ p0, |h(ω + υ, ψ)− h(ω, ψ)| ≤ p1|υ| ∀ ω, ω + υ ∈ W.

With the supremum norm
‖h‖ = sup

(ω,ψ)∈W×S1

|h(ω, ψ)|,

X (p0, p1) is complete.
For h ∈ X (p0, p1) and ω0 = (ρ10, ε10, φ10) ∈ W with ρ10 6= 0, we let

(ω(t, ω0, ψ0, h), ψ(t, ω0, ψ0, h))

be the solution of

ρ̇1 = −1

2
Ψ

(
|ω̂|
σ

)
ρ1ε1,

ε̇1 = 2Ψ

(
|ω̂|
σ

)
ε21,

φ̇ = P̃ (h, ω, ψ) = Ψ

(
|ω̂|
σ

)
Φ (φ)

(
ε1((1− ξ)φ+ s) + Ṽ (A(ψ)h(w), ω)

)
,

ψ̇ = ρ−1
1 ,
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904 K. ULDALL KRISTIANSEN AND S. J. HOGAN

satisfying

(ω(0, ω0, ψ0, h), ψ(0, ω0, ψ0, h)) = (ω0, ψ0) .

For ρ10 = 0 we define ω(t, ω0, ψ0, h) similarly. Here it is (cf. (121)) simply independent of
ψ0. Finally, we set ψ(t, ω0, ψ0, h) = ψ0 when ρ10 = 0 for all t. This particular choice is not
important.

Lemma 27. Let ω′ = (ρ′1, ε
′
1, φ
′) = ω(t, ω′0, ψ0, h) and ω = (ρ1, ε1, φ) = ω(t, ω0, ψ0, h) with

h ∈ X (p0, p1) and ω′0 = (ρ′10, ε
′
10, φ

′
0), ω0 = (ρ10, ε10, φ0) ∈ W. Then there exists a constant

C2 > 0 so that the following estimates hold:

|ε′1 − ε1| ≤ e−C2σt|ε′10 − ε10|,
|ρ′1 − ρ1| ≤ C2e

−C2σt
(
|ρ′10 − ρ10|+ |ε′10 − ε10|

)
,

|φ′ − φ| ≤ C2(−t)e−C2σt
(
|ρ′10 − ρ10|+ |ε′10 − ε10|+ |φ′0 − φ0|

)
for t ≤ 0.

Proof. From the ε1-equation we directly obtain

|ε′1(t)− ε1(t)| ≤ |ε′10 − ε10|+
∫ 0

t
c1σ|ε′1(τ)− ε(τ)|dτ

for c1 > 0 sufficiently large, and therefore by Gronwall’s inequality

|ε′1 − ε1| ≤ e−c1σt|ε′10 − ε10|, t ≤ 0.

But then from the ρ1-equation

|ρ′1 − ρ1| ≤ |ρ′10 − ρ10|+ c2σ

∫ 0

t

(
|ε′1(τ)− ε1(τ)|+ |ρ′1(τ)− ρ1(τ)|

)
dτ

≤ |ρ′10 − ρ10|+ c3e
−c1σt|ε′10 − ε10|+ c2σ

∫ 0

t
|ρ′1(τ)− ρ1(τ)|dτ

for c3 > c2 > 0 sufficiently large. Then by Gronwall’s inequality

|ρ′1 − ρ1| ≤ c3e
−c4σt (|ρ′10 − ρ10|+ |ε′10 − ε10|

)
for c4 > 0 sufficiently large. Finally, from the φ-equation,

|φ′(t)− φ(t)| ≤ |φ′0 − φ0|+ c5

∫ 0

t

(
|ε′1(τ)− ε1(τ)|+ σ

(
|φ′(τ)− φ(τ)|

+ |ρ′1(τ)− ρ1(τ)|
))
dτ

≤ |φ′0 − φ0|+ c6(−t)e−c7σt
(
|ε′10 − ε10|+ |ρ′10 − ρ10|

)
+ c5σ

∫ 0

t
|φ′(τ)− φ(τ)|dτ,

using Lemma 26 and that h ∈ X (p0, p1). Therefore

|φ′(t)− φ(t)| ≤ c8(−t)e−c9σt
(
|ε′10 − ε10|+ |ρ′10 − ρ10|+ |φ′0 − φ0|

)
for c8 > 0 and c9 > 0 sufficiently large. This gives the desired result.
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Lemma 28. Let ω′ = (ρ′1, ε
′
1, φ
′) ≡ ω(t, ω0, ψ0, h

′) and ω = (ρ1, ε1, φ) = ω(t, ω0, ψ0, h) with
h′, h ∈ X (p0, p1), and ω0 = (ρ10, ε10, φ0) ∈ W. Then ε′1 = ε1, ρ′1 = ρ1, and there exists a
constant C3 > 0 so that the following estimate holds:

|φ′ − φ| ≤ C3σ(−t)e−C3σt‖h′ − h‖,

for t ≤ 0.

Proof. The ε1- and ρ1-equations are independent of h. Therefore by the φ-equation

|φ′(t)− φ(t)| ≤ c1σ

∫ 0

t

(
|φ′(τ)− φ(τ)|+ ‖h′ − h‖

)
dτ,

using Lemma 26, and then by Gronwall’s inequality

|φ′ − φ| ≤ c1σ(−t)e−c1σt‖h′ − h‖.

Finally, we define T : X (p0, p1)→ X (p0, p1) as

(T h)(ω0, ψ0) =

∫ 0

−∞
e

1
2
δtR̃(h(ω, ψ), ω, ψ)dt,

where for simplicity

ω = ω(t, ω0, ψ0, h), ψ = ψ(t, ω0, ψ0, h).

Proposition 29. For p0 and σ sufficiently small, T is a contraction on X (p0, p1).

Proof. We set

p0 = σ.

Then we show that T : X (p0, p1)→ X (p0, p1) is well-defined. Using Lemma 26, we obtain

|(T h)(ω0, ψ0)| ≤ c1σ
2

for any σ > 0 with c1 > 0 sufficiently large. Thus |(T h)(ω0, ψ0)| ≤ p0 = σ for σ sufficiently
small. Next, we have

|(T h)(ω′0, ψ0)− (T h)(ω0, ψ0)| ≤
∫ 0

−∞
e

1
2
δtC1(1 + p1)σ|ω′(t)− ω(t)|dt,

using Lemma 26. Therefore by Lemma 27

|(T h)(ω′0, ψ0)− (T h)(ω0, ψ0)| ≤ C1(1 + p1)σ

∫ 0

−∞
(−t)e

1
2
δt−C2σtdt|ω′0 − ω0|

≤ c2(1 + p1)σ|ω′0 − ω0|
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with c2 > 0, for all σ sufficiently small. Therefore T is well-defined. Finally,

|(T h′)(ω0, ψ0)− (T h)(ω0, ψ0)| ≤ C1σ

∫ 0

−∞
e

1
2
δt
(
|φ′(t)− φ(t)|+ ‖h′ − h‖

)
dt

≤ c3σ

∫ 0

−∞
(−t)e

1
2
δt−C3σtdt‖h′ − h‖ ≤ c4σ‖h′ − h‖,

by Lemma 28, for c4, c3 > 0 sufficiently large, and all σ sufficiently small. The result then
follows.

The contraction mapping theorem guarantees the existence of a unique fixed point h∗ ∈
X (p0, p1) of T . The graph of h∗ is our center manifold. The function h∗ is Ck-smooth in φ.
The key observation here is that ψ only depends upon ω̂; it is independent of φ. The result
is therefore standard, following almost identical arguments to those used above. We skip the
details. The smoothness in ρ1, ε1 is more delicate, but we do not need it for our purposes.

The following lemma completes the proof of Proposition 23.

Lemma 30. The fixed point h∗(ω, ψ) of T on X (p0, p1) satisfies

h∗(ω, ψ) = A(ψ)Tm1(ω).

Proof. The modified system (122) is Sν-equivariant; recall Lemma 22. This implies, by
the uniqueness of h∗, that

z1 = A(ν)Th∗(ω, ψ − ν) = h∗(ω, ψ)

for all ν ∈ S1. Setting ν = ψ and m1(ω) = h∗(ω, 0) gives the desired result.
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[39] Y. I. Neimark and N. A. Fufayev, The Painlevé paradoxes and the dynamics of a brake shoe, J. Appl.
Math. Mech., 59 (1995), pp. 343–352.

[40] Y. I. Neimark and V. N. Smirnova, Singularly perturbed problems and the Painlevé problem, Differ.
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Syst. Dyn., 35 (2015), pp. 299–319.
[59] Z. Zhao, C. Liu, W. Ma, and B. Chen, Experimental investigation of the Painlevé paradox in a robotic
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