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a similar bridge pier system could be constructed to withstand seismic dynamic loading in
an equally efficient manner. The experimentation is performed on tied (pre-tensioned)
wooden blocks (vertebrae) with and without rubber strips between the vertebrae acting as
the intervertebral discs. Small-scale test specimens are excited sinusoidally using a small-
scale shake table, and the response of the system recorded through triaxial accelerometers
attached to the structure. The nonlinear dynamic response and mechanics of the system

Keywords:
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Vertebral bridge pier are then investigated under sinusoidal dynamic excitation. It is found that the integration
Backbone curve of intervertebral rubber discs into wooden vertebrae reduces the nonlinearity of the sys-
Nonlinear dynamics tem, and increases the flexibility and damping. The experimental results show that the
Frequency response function proposed system can sustain large lateral displacement without any residual deformation

after the excitation.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The modern seismic design practice [1,2] has improved the seismic response of reinforced concrete (RC) structures under
earthquake loading when compared to older structures. Nevertheless, destructive damage has been observed in recent large
earthquakes, and financial loss due to such events can be devastating [3]. This is the consequence of designing structures for
ductility. In other words, structures are designed for a reduced strength to a specific seismic hazard level, and structural
components (beams and columns) are prescriptively detailed in their potential plastic hinge locations for ductility. This
design methodology, regardless of the section of infrastructure to which it is applied, has led to a decrease in the number of
casualties following seismic events but has also led to a marked, post-quake, increase in cost. One of the most popular ex-
amples is the Northridge earthquake where there were 57 casualties, but damages were estimated at $50 billion [4]. Addi-
tionally, after the Kobe earthquake in 1995 over 100 reinforced concrete columns were demolished, even though they did not
collapse, as the residual displacements were so large, that bridges were deemed to be unusable [5]. Despite neither of these
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Nomenclature

A Non-dimensional amplitude of ground acceleration [ ]
a;, b; Fourier coefficients of total acceleration response [m/s?]
d Column width [m]

Fo Initial cable pre-tension force [N]

g Gravitational acceleration constant [m/s?]

h Column height [m]

ke Cable stiffness [N/m]

ks Contact stiffness [N/m?]

m Mass of deck [kg]

M Moment-rotation function [Nm]

qi Backbone curve coefficients [1/s, 1/m/s, 1/m?/s, 1/m>/s]
X Relative displacement of top of tower [m]

Xg Displacement of ground [m]

Xg Amplitude of ground displacement [m]

Xy Amplitude of tower displacement [m]

I’} Ratio of contact to cable stiffnesses [ ]

v Viscous damping ratio [ |

Or Rocking (rigid body) displacement of tower [m]

0r ‘Flexural-like’ displacement of tower [m]

Aot ‘Flexural-like’ plus rigid body displacement of tower [m]
n Angle at which joint at bottom of tower open up [rad]
0 Rotation of bottom of tower [rad]

u Non-dimension moment-rotation function | |

i Friction coefficient for Coulomb damping model [ ]

4 Damping function [1/s]

II Lagrangian [Nm]

) Non-dimension rotation at bottom of tower [ ]

N Fundamental natural system frequency [rad/s]

wr Excitation frequency of ground motion [rad/s]

) Nonlinear resonant frequency [rad/s]

Q Ratio of excitation to natural frequency [ ]

1V Dimensionless simplification variable (function of ¢ and ¢)

cases occurring within the purview of modern seismic design code [1,2], it is the same design approach that has led to a lack of
resilience in the transport sector.

Moreover, there are currently a large number of bridge structures that are located in seismic regions that also suffer from
material ageing and reinforcement corrosion [6]. Corrosion reduces the safety margin of these structures, and their residual
capacity is much smaller than the original design [7—9]. However, the current state-of-practice in design and construction
relies on monolithic construction, which is extremely time consuming and not resilient to environmental stressors such as
chloride-induced corrosion and natural hazards such as earthquake. Therefore, there is an urgent need for replacement of
vulnerable bridges, and the development of novel and smart structural systems for accelerated bridge construction, that is
resilient to environmental stressors and natural hazards.

The motivation for designing a spinal column stems from Accelerated Bridge Construction (ABC). Following this approach,
the columns are assembled from precast concrete segments produced off site in a factory. ABC produces a higher quality of
concrete due to its manufacture in a controlled environment, where standards are more easily managed. Additionally, it
reduces traffic disruption and is less prone to weather delays. Most significantly, the construction time of precast columns is
far shorter than a monolithic column, which subsequently reduces the construction costs for large-scale projects [10].
However, currently the use of segmental post-tensioned concrete bridge columns is not very popular in high seismicity
regions. The main concern is the seismic performance of these structures and the damage incurred [11].

Lin and Mo [12] tested a series of columns where the hinge segment was monolithically cast at the base of the column with
the foundation. They achieved great success with smaller columns as they kept the joint outside of the potential plastic hinge
region of the column. However, in large bridges, the payload capacity of trucks transporting precast column segments and the
crane to be used in assembling these segments are important limiting factors. Therefore, it is difficult to design the joints to be
away from the potential plastic hinge regions, because the height of column segments must be limited to a certain size, due to
their weight. Numerous experimental studies conducted to achieve the energy dissipation necessary across these joints to
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withstand medium to high seismic activity [13—20]. Arai et al. [13] used continuous steel tubes across the joints, but despite
observing small residual displacements, there was also minimal energy dissipation. Hewes and Priestley [14] tested
segmental columns with an unbounded tendon design. Unbounded design results in a crack appearing between the structure
and the foundation as the column effectively rotates as a rigid body. This results in a substantial compressive strain local-
isation at the critical section and subsequently crushing of the concrete in compression [14]. Moreover, unbounded design
also reduces the possibility of yielding of the tendon, but also decreases the lateral strength of a structure. Other researchers
[15,16] have used ductile fibre-reinforced cement-based composites. Some researchers have used the concept of rocking in
timber structures in conjunction with energy dissipation devises [17,18]. In all these cases, although damage was minimised,
the system was intended to be damage-tolerant, rather than damage-free.

More recently, a hybrid sliding-rocking column was developed by Sideris [21]. This system employs sliding joints to
dissipate energy along the length of the column, rather than using energy dissipating links in rocking-only-columns. Duct
adaptors span the joints and control the amplitude of sliding. Although the sliding does reduce damage significantly, some
wearing at the joint was identified, which require repair after the earthquake.

In all the previous literature (mentioned above), researchers have tried to minimise the residual drift of bridge piers after
the earthquake. However, to provide the self-centring mechanism and damping in the structural system, they still allow the
bridge pier to sustain some permanent damage after the earthquake. The research presented in this paper explores the
development of a novel damage-free structural system, which is inspired by mechanics of the human spine. In the human
spine, intervertebral discs of the spine provide flexibility and absorb and transmit loads without damaging the vertebrae
bones. Compression of these discs results in strains between 3% and 10% experienced by the annulus fibrosus, the tough
exterior of the disc [22]. The proposed proof of concept design is a spinal bridge column concept that is made of wooden
blocks (the ‘vertebrae’), and thin layers of rubber between the wooden blocks (the ‘intervertebral discs’). Finally, individual
components are tied together using an unbonded post-tensioning tendon (the ‘longitudinal ligament’), which provides a self-
centring mechanism in the column when subjected to lateral force. The proposed spinal column employs multiple rocking
mechanisms within the bridge column (elastic hinges). As a result, the column will flex and elastically displace laterally
(geometrically nonlinear) without damage, unlike conventional RC columns. The self-centring mechanism in the column re-
centres the bridge to its original position after any large lateral displacement; i.e. displacements are recoverable and resilient.

In this study, two types of self-centring rocking spinal columns are dynamically tested. One with elastomeric interver-
tebral discs (IRD) between the vertebrae joints, and another with no intervertebral discs. The aim of this study is to explore
the performance of this spinal column system, including energy dissipation, residual displacement and structural capacity
under real-time dynamic loading. This is achieved by studying the behaviour of the systems under dynamic load and
extracting the nonlinear resonance curves. A shaking table testing protocol is developed to apply real-time dynamic base
excitation.

1.1. Experimental programme

There are several different experimental techniques that can be used to study the behaviour of structures under dynamic
loading [23]. Shaking table testing provides real-time dynamic base excitation, making it ideal to study seismic loads.
Generally, their use is restricted to reduced-scale models, tough a few tables exist which have the capacity to apply seismic
base motions to full-scale systems [24]. In this paper, we present experimental results obtained from testing a small-scale
spinal rocking column system using an uni-directional shaking table. The shaking table consists of a rigid base mounted
on linear bearings and driven by an electromagnetic actuator. The displacement of the base is controlled via a linear variable
displacement transducer (LVDT) using Simulink and dSpace [25] as a software platform for experimental control. The pro-
posed test specimen is mounted directly onto the shaking table base, as shown in Fig. 1.

A set of 50 mm square wooden blocks are used to model the ‘vertebral body’ in the system, while 5 mm thick rubber layers
are used to model the ‘intervertebral discs’. This thickness of rubber represents a ratio of wooden block thickness to elasto-
meric layer thickness of 10. For a full-scale system, this ratio provides a realistic estimate of the thickness of the elastomeric
pad. A hole was drilled into the centre of each block and each rubber layer to allow for a 1 mm diameter, 19 strands, high-
strength stainless steel cable to run through the structure. The elastic modulus of the wooden blocks and stainless steel
cable are 1.25 x 104 MPa and 1.18 x 10> MPa respectively. Fig. 2 shows the configuration of the structural models tested in this
research. To create the inertia force in the system, a 2.5 kg lump mass is added at the top of test specimen and secured in a
wooden box (Fig. 2). The self-centring mechanism is provided by the cable with a 300N pre-tensioned force.

Based on previous analysis of rocking systems [26], it was expected the system would behave in a nonlinear manner. It
exhibits a nonlinear stiffness softening characteristic with increasing deformation amplitude. In a softening system, the
response frequency, of the free-vibrating system, will decrease with increasing amplitude [27]. In other words, the natural
frequency of the system is response amplitude dependant.

Following steps defined by Kerschen et al. [28], the nonlinear behaviour of the system under study was first detected, then
characterised and finally the nonlinear system’s parameters were estimated and compared with a simplified theoretical
model. In the model under investigation, several sources of nonlinearity can be identified: (i) geometric nonlinearity, asso-
ciated with large displacements; (ii) nonlinearity due to the boundary conditions at the joints; (iii) nonlinear material
behaviour associated with the rubber inserts.
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(a) (b)

Fig. 1. Experimental test setup: (a) Uniaxial shaking table (b) rocking column specimen mounted on to the shaking table.
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Fig. 2. Experimental scaled models of spinal columns and the locations of the accelerometers: (a) vertebral column without rubber layers, and (b) vertebral
columns with rubber layers.

The response of the system is studied in the frequency domain. In structural dynamics, one of the most widely-used
methods of visualising the input-output properties of a system is to construct the Frequency Response Function (FRF).
There are basically four types of excitation that can be used to study FRFs, such as impulse, stepped-sine, chirp, and random
[29]. Stepped-sine produces the more distorted FRFs and this is normally recommended, although it is very time-consuming
compared with the other types. Due to the nonlinear nature of the system two key deliberations should to be considered.
First, the system must be in steady state (that is transient motions have completely attenuated) before recording the response
for a given forcing. Secondly, the frequency steps of the frequency sweep (changing the frequency; i.e. sweep up means
increasing frequency and sweep down means decreasing frequency) must be small and smooth enough to ensure the system
stays close to the nearest stable solution branch. In the analysis of the experimental results, only the steady state periodic
solutions will be presented.

The response of the system is monitored using a total of seven Microelectromechanical System (MEMS) triaxial accel-
erometers arranged as shown in Fig. 2. Acceleration is measured in the plane of motion of the table (X), out of plane (Y) and in
the vertical direction (Z).
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2. Experimental results and discussion
2.1. Frequency Response Function (FRF)

In this section we present results from a medium height spinal column with six vertebrae. Several other configurations,
with a different number of vertebrae, were tested (Fig. 2) revealing similar qualitative FRFs.

The FRFs are developed by relating base displacement input to relative acceleration output. The signal from the accel-
erometers shown in Fig. 2 is filtered, in order to remove noise. Since there is an accelerometer located at the base, the relative
acceleration can be calculated. The presented FRF (for a given amplitude of base displacement) is computed by estimating the
maximum relative acceleration response that is defined here as the mean plus /2 times the standard deviation of the
measured response history of the system. This represents an unbiased estimate of the peak system response.

Fig. 3 displays the maximum relative accelerations measured at the top of the column, versus base excitation frequency.
Fig. 3(a) and (b) shows the response of the system without rubber layers. The dynamic response of the spinal column exhibits
a clear softening nonlinearity, which is in good agreement with results reported in Ref. [24]. Due to the nonlinearity, at a
certain forcing frequency range, two solutions coexist, one in a lower energy branch while the other belongs to a high energy
branch. As it can be seen in Fig. 3(a) and (b), the abovementioned frequency range is quite large (3—6 Hz). This is a very
challenging dilemma from the design point of view, i.e. the co-existence of different amplitude stable solutions for a given
scenario.

After adding the intervertebral rubber discs (IRD) the dynamics of the system changes. First, in the out of plane motion,
there are no longer any multiple solutions observed. Secondly, the inclusion of the IRD considerably reduces the maximum
response in both in-plane and out-of-plane motion, by about 40%. Thirdly, the IRD also shifts the resonance curve of the
system due to the increased flexibility of the joints. Fourthly, in the plane of the response motion (although there is still signs
of co-existing nonlinear softening and stable solutions) the interval of frequency over which this happens is reduced by about
80%. In brief, the addition of the IRD not only minimises the response of the structure but also greatly reduces the challenge of
dealing with a multiple solutions scenario.
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Fig. 3. Frequency response functions for both in plane and out of plane relative acceleration, with and without IRD: (a) FRF in X-direction no IRD, (b) FRF in Y-
direction no IRD, (c) FRF in X-direction with IRD, and (d) FRF in Y- direction with IRD.
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Fig. 4. Frequency content of 6 vertebrae column without IRD at 2 mm amplitude excitation: (a) frequency content of in plane sweep up, (b) frequency content of
in plane sweep down.

2.2. Frequency content analysis

Fig. 4 shows the analysis of the frequency content of the recorded acceleration responses. While linear systems respond
only at the forcing frequency, the response of nonlinear systems can contain many harmonics. The case presented in Fig. 4,
shows the column with six vertebrae, and a sine wave excitation signal. The measured periodic steady-state total acceleration
response of the system is expressed as Fourier series, thus

n
X+Xg = %ao + Z a;j cos(jwt) + b; sin(jwt) (1)
=1

The Fourier coefficients aj and bj were estimated by using a least squares optimization. It was found that three harmonics,
n =3, were sufficient to characterise the response. Fig. 5 shows the frequency content of the rocking column without IRD for
both sweep up and down experiments. This pattern is observed in all other undertaken tests.

3. Theoretical analysis
3.1. Reduced-order equation of motion

As discussed in the observed experimental results, the nonlinear response of the column is mainly due to rocking of the
first vertebrae. Therefore, it is a reasonable assumption to use a simplified equivalent single degree of freedom (SDOF) model
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Fig. 5. Frequency content of 6 vertebrae column with IRD at 2 mm excitation amplitude: (a) frequency content in plane sweep up, (b) frequency content in plane
sweep down.
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Fig. 6. Idealised reduced-order model: (a) Actual system (b) SDOF equivalent system based on only base rotation.

in the theoretical analysis. The proposed modelling assumptions are shown in Fig. 6 and mathematically explained in this
section.
The Lagrangian II (kinetic minus potential energy) for the equivalent SDOF system above is defined as follows

H:%m(X+Xg)2—/M(0)d0 (2)

where m [kg] is the mass of the deck (lumped mass on top pf the column). The assumptions made here are (i) column only
opens at the base joint (ii) large geometrical displacements (second order effect) are neglected (iii) the nonlinearity is due to
the extension of the pre-tensioned cable and change in contact geometry alone (that is expressed in function M(6)).

The equivalent system in Fig. 6(b) is very similar to a tied rocking block described in Ref. [26]. Hence introducing non-
dimensionalisations from Ref. [26].

2F ksd 1
S

System parameter 7 is the angle (in radians) at which the base joint opens, it is defined in terms of the cable tension Fy [N],
the vertebra contact stiffness ks [N/m?] and the vertebra width d [m]. Parameter § is the ratio of the vertebra contract stiffness
to the cable stiffness k. [N/m]. The moment rotation M() [Nm] is defined in terms of non-dimensional moment-rotation
function u(¢, ) [ ] (see Ref. [24])

0. lol <1

w=4(3 12 8 9 6-6/¥ 6/¥ 2477 )
35 B

¥ =(1+8)(o*+Blol) )

Fig. 7 displays the form of the non-dimensional moment-rotation relationship of Egs. (4) and (5). As a validation, the model
is compared with the experimental results from a pushover test of a 9 vertebrae column. Note that the form is very close to the
theoretical predictions. Hence Eq. (2) becomes

1 R I |
I = 5miPe2 (5 + )~ gFodn [ uio.Bdo (6)
And therefore, the equation of motion is defined as follows,
L1 .
mh?n*p + cFodnu(e. f) = —mh*i* ¢ g, (7)

Dividing this equation by the generalised mass polar moment of inertia mh2n?, Eq. (7) becomes
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P+ W3, B) = —ig, (8)

The system frequency parameter wq [rad/s] is the linear natural frequency of the system under small vibration, when the
base joint does not open. wyq is defined as follows,

dF, Bk
2 0o _ S
“0 = Gmhzy ~ 12mh? )

Note that in this theoretical model, the linear natural frequency wg appears mathematically independent of the cable
tension Fy. This is if we assume linear contact mechanics, i.e. the contact stiffness ks is a material/geometric constant. In
practice, however, for low normal contact forces and very stiff materials (e.g. steel) the contact stiffness ks increases as the
area of contact increases until a saturation of contact is observed [30]. Consequently ks may not be exactly constant but a
nonlinear function of normal contact force. Therefore, in practice, wy may appear to have some small dependency on the cable
tension. By time-scaling t = 7/wg, the equation of motion, Eq. (8) becomes

@" +27¢" + u(e,f) = —¢"g, (10)

where primes indicate derivatives with respect to scaled time 7; i.e. ¢’ = do/dr. A damping function 2y¢’ is introduced to
account for energy losses. The experimental base excitation is defined (using displacement control) as follows,

Xg = Xg cos(wrt) (11)

Therefore, the relationship between the dimensional ground (base) displacement amplitude X, and the non-dimensional
amplitude parameter A is given as follows,

:)&972 fo

—¢ g =Acos(Q1), A

Eq. (10) is defined in terms of the minimum set of system parameters, that is v and § plus excitation parameters A and Q.
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3.2. Nonlinear back-bone curves

The backbone curves are the most important characteristics of any nonlinear system [28—31]. Rosenberg [32] extended
modal analysis of linear systems to nonlinear systems, and defined the concept of nonlinear normal mode (NNM). Nonlinear
modes can be synthesised when a harmonic input cancels out the damping forces. As a result, they form the backbone of the
system and they approximate the behaviour of the system at resonance, when a system is a greater risk of failure [28,33].

Equation of motion (Eq. (10)) is obtained from physical reasoning and identifies key non-dimensional parameters of the
system. However the complexity of the moment rotation relationship, Eq. (4) does not allow a relatively straightforward
estimation of the nonlinear back-bone curves of the system. If expressions in Eq. (4) are approximated by a low-order odd
polynomial (series) expansion, then the dimensional form of the equation of motion, Eq. (10), can be estimated as follows,

X+ EX)X + w(X)x = —Xg (13)

W(X) = q1 + QX + q3X[x| + q4x° (14)

An approximation of the experimental FRFs is going to be developed by using the harmonic balance method. Harmonic
balance assumes that the response to a sinusoidal excitation is a sinusoid at the same frequency. The objective of this model is
to use the measured response data to derive the forms of the amplitude dependant natural frequency w(x). For this analysis it
is assumed that the damping function is {(x) = 2ywg.

Let the excitation and response of the system be approximated by the following,

—Xg = A cos(wrt + ¢), x = Xy cos(wrt) (15)

These values are substituted into Eq. (13), and the procedure described in Ref. [29] is followed to estimate the amplitude
dependant natural frequency parameters. The |x| term can be expressed in terms of the signum function, sgn(x) = |x|/x,
whose Fourier series expansion can be calculated using the following

(—1)k-1r2

X cos(kwyt) (16)

sgn(sin(wyt)) :% Z %sin(kart), sgn(cos(wyt)) :;

K& Zeven ke Zoa

Hence, substituting Eqs. (15) and (16) into equation of motion, Eq. (13), and then balancing only those terms at the primary
system resonance results in two equations for the coefficients of sin(w,t) and cos(w;t) thus,

8 3 25 .
—w?Xr +qq + 392X+ Zq3X3 + qu? =Asin ¢ (17)

—27wowrXr = A COS ¢

At resonance, that is assumed to be a point belonging to the backbone curve, the excitation harmonic force — Xg, and the
harmonic response x are in phase, i.e. ¢ = 0, with the damping force in quadrature. Solving for w; and A, the response fre-
quency, wr, is a function of excitation amplitude X;, thus

25

3
S 0aX (18)

8 3
Of = +§QZXr +ZQ3Xr2 +

Eq. (18) is the numerical approximation for the backbone curve of the nonlinear system, where g, factors are fitting co-
efficients. Note that it is most accurate for small X;. This study is focused on harmonic solutions, therefore the modulus of the
displacement response is X; = w? a% + bf were a; and by are the first harmonic (Fourier) components of the recorded

acceleration response, see Eq. (1)
3.3. Experimental backbone curves and nonlinear damping models

Fig. 8 shows the comparison of the numerical backbone curve (Eq. (18)) with the observed experimental results of the 1st
harmonic. Fig. 8(a) and (b) compares the numerical backbone curve using Eq. (18) to the experimental sweeps. Fig. 8(c) and
(d) compares the numerical and experimental sweep together with the numerical backbone curve for 1 mm amplitude sweep
down ground motion excitation.

At resonance, the response of the system and the excitation are in phase, with the damping in quadrature; therefore from
Eq. (17) at ¢ = 0, it follows that,
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Table 1
Fitted coefficient of the numerical model in Eq. (18).
Parameter q1 q2 q3 qa
Without IRD 1.7 x 103 ~2x10° 1.1 x 107 —2.1x 108
With IRD 1x10° -15x10° 1x 107 —2.7 x 108
1 wr Xg A
=28 x 19
Y 2 wo er g w% ( )

where w; is the excitation frequency, wq is the linear (very small amplitude) natural frequency, X; is the amplitude of the
periodic structural response, and X, is the ground motion displacement amplitude (see Table 1).

Table 2 gathers the identified damping parameters. Note that in this case the damping depends on the level of ground
acceleration. This level corresponds to excitation displacement amplitudes X of 1,1.5, 2, and 3 mm at the resonant frequency
of each point of the backbone.

From Table 2, it is evident that adding the IRD increases the damping of the system by about 30%. It is also shown that the
damping values depend on the level of forcing. Larger values of damping correspond to low energy input, which is for smaller
displacements. This is evidence suggestive of dry friction in the system. Therefore, our damping model is further refined by
including nonlinear, Coulomb damping. This is due to the sliding if vertebrae against each other and some sliding of the cable
in the hole between the blocks. This is a very important finding and is a key factor in the development of smart civil engi-
neering structures (e.g. bridge piers) in seismic regions. Hence, we consider a combined viscous and Coulomb damping model
of the following form,
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Table 2
Numerical model identified parameters for the linear damping model.
Ground displacement amplitude Xg 1 mm 1.5 mm 2 mm 3 mm
v without IRD 0.0723 0.0516 0.0361 0.0258
v with IRD 0.1148 0.0696 0.0474 0.0379
Table 3
Experimentally estimated values of nonlinear damping parameters.
Y M
Without IRD 0.0258 0.051
With IRD 0.0379 0.036
E(X)X = 270X + mgsgN(X) (20)

The viscous damping will be dominant when the velocity of the response, x, is high, while the dry friction will be dominant
for slow quasi-static response motion. Applying this, the damping terms are estimated independently in two steps, firstly w;
and secondly v. To estimate the dry friction coefficient u; low frequency and low amplitude testing was performed, such that
|x| <& and the damping term is dominated by friction. The viscous damping coefficient v is estimated from fast response
records (high frequency tests). These two initial estimations are iterated to adjust the numerical model to the experimental
results over all frequency range. The estimated values are shown in Table 3.

For the purposes of experimental comparisons, Eq. (10) is re-expressed in dimensional form, with viscous and Coulomb
damping, as follows,

. . . X ..
X + 2700k + g sgn(X) + wjhnu <h71’ ﬂ) = —Xg (21)

Fig. 9 shows the comparison of the nonlinear resonance curve of Eq. (21) with experimental data of a 6 vertebrae column
without IRD. A qualitatively good match is obtained, suggesting that the low-order model, Eq. (21), is a reasonable
approximation for this system. The mismatch for the high amplitude upper branch of the nonlinear resonance curve is
suggestive of amplitude (displacement) dependant damping. A more sophisticated damping model will be explored in future
publications.

3.4. Nonlinear dynamic moment-rotation behaviour

As explained earlier, the plastic moment and rotation capacity are the most important parameters governing the seismic
performance of bridge piers. Therefore, in this section the nonlinear moment-rotation behaviour of the system is explored.
Rotation of the structure can be approximated by deriving the rotation of the bottom vertebra, § (Fig. 10). Assuming an
equivalent SDOF system (Fig. 6), the rotation of the whole structure can be approximated. The SDOF system assumes the
whole spinal column is rocking about the edge of the bottom vertebra, and the rest of the structure is rigid. Therefore, # can be
found using simple trigonometry as shown in Fig. 10. The 4; is the change in displacement calculated from comparing the
accelerometer data recorded from A5 and A6, and d is the column width.

The moment-rotation hysteretic loops of the 9 vertebrae systems with and without IRD are shown in Fig. 11. As expected,
the moment-rotation curves show a linear region, where the joints do not open, and a nonlinear region, where the joints open
on both sides of the vertebrae [26]. The column without IRD rocks at the first joint and behaves like an inverted pendulum.
However, when IRD is added to the system, the friction between the segments increases. Furthermore, rubber by nature is a
nonlinear viscoelastic material. Therefore, it deforms and changes the rocking mechanism. The system without IRD is
essentially a tied rigid rocking block problem, but the system with IRD is a multiple rigid rocking blocks with nonlinear
interfaces system. As a result, although the system is more flexible, but the response is reduced in the column with IRD due to
adding the material nonlinearity, increased friction and subsequently increased damping. This is in good agreement with
conclusions reported in Ref. [34]. However, overall these curves show a small level of hysteretic energy dissipation.

Fig. 12 shows a comparison of the experimental dynamic moment-rotation graph and the numerically obtained quasi-
static and dynamic moment-rotation graphs using solutions of Eq. (21). Note that the experimental results show some
asymmetrical behaviour which is due to fabrication, assemblage and coupled out-of-plane dynamics. Nevertheless, we
observe a good qualitative match between the low-order SDOF idealisation, Eq. (21), and experimental results.

Self-centring behaviour is observed in the system (experimental and numerical). In conventional seismic design of RC
bridge piers, the pier structure can be subjected to residual tilting after the earthquake, due to large plastic deformation
(plastic rotation at the base to dissipate energy). These features are important findings that are extremely useful for structures
subject to earthquake loading.
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Fig. 9. Comparison of experimental and numerical nonlinear resonance curves for a 6 vertebrae column.

A6

AS

Fig. 10. Rotation of the first vertebrae due to rocking assuming a simplified SDOF model.

It should be noted that in the majority of cases, particularly for the systems with IRD, the total tip displacement of the
structure will be larger than that found in this approximation (rigid body rotation assumption). In this case multiple joints
open, with the largest opening typically still being at the base.

The total tip displacement of the column, calculated using the accelerometer data on top of the column, includes two
components as shown in Fig. 13. In Fig. 13, 4, is the overall total tip displacement of the column, ; is the tip displacement
due to rocking of the base vertebra, and ¢ is the tip displacement due to the flexibility of the column (flexural deformation).

Fig. 14 shows the ratio of tip displacement due to rocking to the total tip displacement. Fig. 14 shows that the tip
displacement of the column due to rocking is much higher for the column without IRD than the column with IRD. As discussed
previously, this is due to the rigidity of the non-IRD column, causing it to rotate at the base, much like a conventional tied rigid
rocking block problem. The addition of IRD in the structure adds more flexibility to all of the joints leading to horizontal
displacements (included in the ;s term). Therefore, although the energy dissipation is small, it occurs through deformation of
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the rubber, added friction, and base rotation. Additionally, the spreading of ‘point contact forces’ (at the block edges) across
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Fig. 11. Moment-rotation behaviour of 9 vertebrae column with and without IRD at displacement amplitude of 1.5 mm.
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Fig. 12. Experimental, numerical quasi-static and dynamic moment-rotation graphs for 6 vertebrae column without IRD.

the contact surface reduces the likelihood of a local bearing point failure of blocks.

With the derived numerical model, we can also estimate, numerically, the level of ground acceleration that will cause the
structure to reach two critical limit states, namely 1% drift as serviceability limit state, and 4% drift for an ultimate failure limit
state (where drift is the ratio of column tip displacement to column height). This is shown in Fig. 15, which is obtained from
the stationary initial conditions x(0) =x = 0. From a point (w,A), the system is driven to a limit state. Below the boundary, the

system has not reached the limit state, after an arbitrary (but reasonably long) time frame of 10s.
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Fig. 13. Diagram showing how the total displacement is found.
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Fig. 14. Contribution of rocking motion in overall tip displacement of the column.

These figures however, do not tell the full story since we have assumed the structure starts from stationary initial con-
ditions. With this assumption, we are favouring the steady state of the lower energy branches.

To find the initial conditions that are attracted to a steady-state solution for a given region of initial values, a grid of starts
(GOS) can be used. This is a numerical technique that divides up the region of potential initial conditions into a grid. Each
point of the grid is used as an initial condition and the steady-state response of the system is computed. Each starting point is
plotted, usually as colour based on which steady-state solution is attracted [33]. Developing this strategy, the basins of
attraction can be visualised. For example, in our particular case, for a ground acceleration of 0.15 g, the response of the system
is shown in Fig. 16(a). In the range 3—5 Hz, two solutions coexist for the column without IRD. However, there is only one stable
solution exists for the column with IRD. Fig. 16(b) shows the basins of attraction for 0.15 g ground excitation at 4 Hz. The red
area corresponds to the basin of attraction of the low energy branch of the column without IRD. For these set of initial
conditions, the response without IRD is smaller than the response with IRD. The grey area corresponds to the basin of
attraction of the high energy solution, in this case the response without the IRD will be larger than the one with IRD.

In summary, the proposed system in this paper, shows a potential for a novel class of smart post-tensioned bridge piers,
that can sustain large lateral displacement and deformation without experiencing any damage after the excitation. The
challenge here is developing novel smart materials to replace the rubber to increase the energy dissipation capacity of the
system. Alternatively, other means of energy dissipation techniques (e.g. semi-active dampers) can be implemented in this
system, and rubber layers to be used to prevent the damage in solid vertebras. Once these problems are solved, the RC
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materials for rigid vertebrae can be replaced with a more sustainable and durable material to reduce CO, emission, and
eliminate corrosion problems, which has a significant impact on seismic fragility of RC structures [35,36]. In other words,
since the vertebrae are essentially rigid blocks and only work in compression, there is no need to use conventional RC ma-
terials in bridge pier systems. This is a very important area for future research so that we can develop the next generation of
accelerated bridge construction. The aim of this paper is to introduce this idea to the earthquake engineering and nonlinear
dynamics research communities so that it can be developed in future research.

4. Conclusions

The nonlinear dynamics and mechanical behaviour of a proof of concept novel class of spinal bridge pier systems is
explored experimentally. Two types of post-tensioned, unbounded spinal columns (a control without IRD, and the proposed
model with IRD) with various heights are tested. The main outcomes of this research can be summarised as follows.

1. It is found that the inclusion of IRD results in a significant reduction in peak acceleration, for the high energy branch, and
resonant frequency within the structures, at all heights due to increased flexibility at the joints.

2. The experimental results show no residual displacement in the spinal column system. This is due to the self-centring
capability of the system, which is an important factor in seismic performance of bridge pier systems.

3. Adding IRD in the column improved the damping of the system by increasing the flexibility of the column and increasing
the friction between the vertebrae.

4, The experimental results of the spinal columns without IRD show that the higher harmonics content in the response is
increased by increasing the height of the column; i.e. a ‘higher modes effect’ is observed. However, adding IDR suppresses
this effect.



M.M. Kashani et al. / Journal of Sound and Vibration 437 (2018) 308—324 323

5. The developed numerical reduced-order models permit the study of fold bifurcations structures that allow for co-existing
high and low amplitude responses. The frequency interval over which these co-existing solutions occur (at a given forcing
amplitude) is important to determine as it can increase design uncertainty as to peak system responses.

6. The proposed system in this paper, shows a potential for a novel class of smart post-tensioned bridge piers, which is able to
withstand large amplitude cyclic dynamic loading without any damage. There is need for further research to improve the
damping model of the system in the future. This is a very important area for future research so that we can develop the
next generation of accelerated bridge construction.
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