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Summary 

Quaternary amino acids, in which the -carbon bearing the amino and carboxyl 

groups also carries two carbon substituents, have an important role as modifiers of 

peptide conformation and bioactivity and as precursors of medicinally important 

compounds.1,2 In contrast to enantioselective alkylation at this −carbon, for which 

there are several methods,3-8 general enantioselective introduction of an aryl 

substituent at the -carbon is synthetically challenging.9 Nonetheless, the product -

aryl amino acids and their derivatives have proved valuable as precursors to bioactive 

molecules.10,11 Here we describe the synthesis of quaternary -aryl amino acids from 

enantiopure amino acid precursors by -arylation without loss of stereochemical 

integrity. Our approach relies on the temporary formation of a second stereogenic 

centre in an N'-arylurea adduct12 of an imidazolidinone derivative6 of the precursor 

amino acid, and uses readily available enantiopure amino acids both as a precursor 

and as a source of asymmetry. It avoids the use of high-value transition metals, and 

allows arylation with electron-rich, electron-poor, and heterocyclic substituents. 

Either enantiomer of the product may be formed from a single amino acid precursor. 

The method is practical and scalable, providing the opportunity to produce -arylated 

quaternary amino acids in multi-gram quantities. 
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Among the most practical and commonly used methods13,14 for the synthesis 

of -alkylated amino acids are those developed by Seebach et al. that employ readily 

available chiral amino acids both as starting material and as source of chirality, using 

the ‘self-regeneration of stereocentres’.6 This strategy relies on diastereoselective 

formation of an imidazolidinone or oxazolidinone to create a new stereogenic centre 

whose configuration survives the formation of a planar amino acid enolate, and 

directs its alkylation to form a quaternary stereocentre with control over absolute 

configuration. 

The mechanistically unusual15 N to C aryl migration that takes place in 

anionic derivatives of ureas was first reported for the construction of stereodefined 

quaternary centres from configurationally stable organolithiums,12 and it has been 

used to provide racemic 5,5-disubstituted hydantoins.16 Stereoselective versions of 

this hydantoin synthesis employing conformational chiral memory17 or a 

stoichiometric auxiliary18 suggested that a practical stereoselective version of this 

intramolecular arylation based on Seebach's imidazolidinone alkylation chemistry 

might offer a strategy for the synthesis of unavailable enantiopure -arylated amino 

acids (Fig. 1). 

We therefore explored N'-aryl ureas as a potential intramolecular source of the 

coupling partner for a corresponding arylation reaction. A versatile synthesis of the N-

carbamoylimidazolidinones 3 was required, and our initial synthetic approach is 

shown in Figure 2a. Treatment of L-AlaNHMe with pivaldehyde and trifluoroacetic 

acid gave good selectivity for the trans diastereoisomer of the imidazolidinone's 

trifluoroacetate salt.19 In situ chloroformylation with triphosgene in base gave high 

yields of the N-chloroformylimidazolidinones 1-Ala as a 4:1 mixture of trans and cis 

diastereoisomers trans-1-Ala and cis-1-Ala. These were readily separated by column 

chromatography and their relative configurations were established by X-ray 

crystallography (Figure 2b) and NOE experiments (see Supplementary Information). 

The minor diastereoisomer cis-1-Ala acylated N-methylaniline (PhNHMe) 

cleanly in refluxing dichloromethane to give the urea cis-3-Ala-a in high yield 

(Figure 2a, and Table 1, entry 1). The major trans diastereoisomer of 1-Ala (which 

characteristically and diagnostically exhibited slow N–CO rotation by NMR: see 

Supplementary Information) was much less reactive.  The urea trans-3-Ala-a was 

formed only when trans-1-Ala was activated with potassium iodide,20 and a reaction 

time of 45 h in refluxing CH2Cl2 was required for acceptable yields (Figure 2a and 

Table 1, entries 2-4).  

We were now in a position to address the question of the key C–C bond 

forming step: would ureas 3-Ala undergo the rearrangement we had discovered with 

other amino acid enolates to provide a means of arylating the amino acid -centre in a 

diastereoselective manner? Cis- and trans-3-Ala-a were each cooled and treated with 

base to form an enolate, which was allowed to warm to room temperature. Initial 

experiments with LDA showed that enolate formation was complete at –78 °C, (Table 

2, entry 1) and that warming to room temperature was sufficient to induce 1,4 

migration of the phenyl ring to the enolate carbon yielding the C-arylated product 

imidazolidinone 4-Ala-a from trans-3 and its enantiomer ent-4-Ala-a from cis-3 

(entries 2, 3). The best yields were obtained on forming the enolate at 0 °C, and even 

with the milder base KHMDS 4-Ala-a was formed in 95% yield from trans-3-Ala as 

a single diastereoisomer on a >1 g scale (Table 2, entry 4). These conditions (shown 

as 'Method A' in Figure 2a) were identified as optimal, and a similar yield of the 

enantiomeric product ent-4-Ala was obtained under these conditions from cis-3-Ala 

(Table 2, entry 5). In neither case was any trace of the other diastereoisomer of 4-Ala 



detectable in the product by 1H NMR, and HPLC on a chiral stationary phase 

indicated that the product was essentially enantiomerically pure (>99:1 er). 

Either enantiomer of the product 4-Ala was formed from the same L-Ala 

starting material, simply by choice of route. However, some work on the synthesis of 

3 was still needed for this to become a general method for arylating amino acids other 

than alanine. Two problems remained: firstly, although cis-3-Phe was successfully 

formed from cis-1 in the presence of KI (Table 1, entry 5), cis-1 was only available in 

low yield as it is formed as the minor diastereoisomer in the preceding 

chloroformylation step. Secondly, the unreactivity of the major diastereoisomer trans-

1 meant that trans-3 could not be formed reliably by this route from amino acids other 

than Ala: attempted acylations using trans-1-Phe were unproductive even using KI as 

an activator (Table 1, entry 6).  

A more robust synthesis of trans-4 was provided by returning to the easily 

formed N-chloroformylimidazolidinones trans-1 as alternative precursors. Although 

acylation of a neutral N-methylaniline with trans-1 had proved insufficiently general 

as a way of making 3 (Table 1, entry 6), reaction of trans-1-Ala, trans-Phe or trans-

Leu with the anions of a range of N-methyl anilines, formed using an excess of 

KHMDS, not only promoted the acylation of the amine to give trans-3 but also led to 

deprotonation and rearrangement of 3 to give 4.  Optimised conditions for this one-

pot procedure (labelled Method B in Figure 2a) involved two separate additions of 

KHMDS. Method B provided an efficient synthesis of an array of products 4-Ala, 4-

Phe and 4-Leu bearing a representative selection of substituted aryl rings in high 

yield and high diastereoselectivity (see Supplementary Information). 

To explore a similarly efficient route to ent-4 from the same L-amino acids, 

we turned to an alternative synthesis of cis-3 with complementary diastereoselectivity. 

Seebach showed that while trans imidazolidinones are formed at lower temperatures 

under acidic conditions, diastereoselectivity towards cis N-acylimidazolidinones can 

be achieved by acylation of the pivaldimine derivatives of amino acids, probably 

because of the cis-selectivity exhibited by cyclisation of the hindered, planar N-

acyliminium intermediate.21 We found that urea cis-3-Ala was indeed formed when 

the imine 2-Ala was acylated with N-methyl-N-phenylcarbamoyl chloride (Figure 2a, 

and Table 1, entries 7, 8). Optimal yields of the pure cis diastereoisomer were 

obtained in refluxing toluene or dichloroethane in the presence of 5 mol% DMAP 

(entries 10, 11), but with stoichiometric Et3N no product was obtained (entry 9). We 

assume that under these conditions of nucleophilic catalysis, cyclisation to the 

imidazolidinone is reversible, with the rather unreactive carbamoyl chloride 

selectively acylating the less hindered cis diastereoisomer. The method was 

successfully used to form cis-N-carbamoylimidazolidinones cis-3-Ala, cis-3-Phe, and 

cis-3-Leu bearing substituted aryl rings by way of their imines 2 (see Supplementary 

Information). These  imidazolidinone substrates were subjected to the conditions 

(Method A) previously optimised for cis- and trans-3-Ala to yield the products ent-4 

enantiomeric with those formed from trans-3. 

The 'S-selective' and 'R-selective' routes highlighted in red in Figure 2a thus 

provide enantiocomplementary routes to the imidazolidinones 4 and ent-4 from the 

representative L-amino acids L-Ala, L-Phe and L-Leu. These structures are simple 

derivatives of quaternary amino acids, and were converted into the target -arylated 

amino acids 5 by hydrolysis under acid conditions. Excellent yields of the enantiopure 

amino acids 5 were obtained by N-methylation of the urea function of 4 followed by 

microwave heating with 6 M HCl (Figure 2a, Method D and Figure 2d). The p-cyano 

function of 4-Ala-b and 4-Leu-b was hydrolysed under these conditions to give the 



carboxylated phenylglycine derivatives 5-Ala-b' and 5-Leu-b'. 5-Ala-b' is the 

mGluR antagonist (S)-M4CPG.10 

Hydrolysis without preliminary N-methylation led to competitive formation of 

the corresponding N-methylhydantoins 6 in moderate yield (Figure 2c) owing to 

cyclisation of the urea onto the newly revealed carboxylic acid. These hydantoins 6 

could be hydrolysed cleanly to 5 in a second step, but are nonetheless themselves 

valuable target structures.2 A more versatile synthesis of 6 was provided by treatment 

of the methyl ester 8-Phe-e-OMe with tert-butyl isocyanate to give 6-Phe-e, the tert-

butyl group being removable to give 6-Phe-e’ under acid conditions (Figure 2e). 

Other products of value for the use of arylated amino acids in synthetic 

procedures such as peptide formation were also formed from 5 or directly from 4 

(Figure 2e). Protection of the amino or carboxyl group under the conditions shown in 

Figure 4 made available the Cbz, Boc or Fmoc protected carbamates 7 and the esters 

8. Despite the steric hindrance of the quaternary amino acid, dipeptide 9 was formed 

cleanly on coupling Cbz-7-Ala-d to L-Phe-OEt under standard conditions. 

 Having shown that the base-promoted rearrangement of 3 provides a viable 

method for the arylation of an initial selection of amino acids, we returned to the 

synthesis of 4 and ent-4 with the aim of extending its scope to other amino acids, and 

exploring the scope of migrating aryl groups tolerated by the method. The optimal 

conditions of the ‘S-selective route’ and the ‘R-selective route’ were applied to a 

range of amino acid derived starting materials, and the successful outcomes of these 

reactions are summarised in Figure 3. 

Halogenated (c-g) rings, even those bearing bromo substituents, rearranged 

without evidence of dehalogenation or benzyne formation. Sterically hindered ortho-

substituted (l) and 1-naphthyl rings (h) also rearranged in good yield. Despite the fact 

that the rearrangement is formally an intramolecular nucleophilic aromatic 

substitution reaction, it shows remarkable tolerance to variations in the aryl migrating 

group, with conjugated (h), electron-deficient (b) and electron rich (i-l) rings all 

taking part in the reaction. All three orientations of a pyridyl ring (m-o) gave 

rearranged products regiospecifically. 

Beyond Ala, Phe and Leu, the functionalised side chains of Met, Tyr and Trp 

were tolerated, with arylation of Tyr being successful even without protection of its 

hydroxyl group. Phenylglycine (Phg) was also arylated, allowing the enantioselective 

synthesis of chiral diaryl glycine derivatives 4-Phg (including the enantioselectively 

deuterated 4-Phg-p). With Phg, it was necessary to use Method B (starting from 

trans-1-Phg) to ensure high enantiomeric ratios, as its acidifying sidechain evidently 

leads to some racemisation in the synthesis of cis-3-Phg via imine 2-Phg. Arylation 

of the highly hindered valine-derived 3-Val failed with KHMDS, but rearrangement 

of 3-Val-a to 4-Val-a proceeded in excellent yield with a more powerful, less bulky 

base, lithium diethylamide. A slight loss in diastereoselectivity was seen in this 

reaction possibly due to the more demanding steric requirements of a transition state 

carrying both t-Bu and i-Pr cis on the imidazolidinone ring. 

The mechanism by which the enolate of 3 forms 4 is intriguing. Formally an 

intramolecular nucleophilic aromatic substitution (SNAr), the reaction bears some 

similarity with the Smiles and Truce-Smiles rearrangements,22,23 but is distinguished 

from almost all known examples of these rearrangements by the lack of requirement 

for an electron-deficient migrating ring. Sensitivity to electronic features may be 

measured by the Hammett reaction constant , and we explored the kinetics of the 

reaction by in situ infra-red (IR) spectroscopy in order to estimate a value of  for the 

rearrangement. 



Preliminary IR studies using cis-3-Ala-a under the optimised conditions for 

the reaction (1.5 equiv. KHMDS in THF at room temperature) revealed no reaction 

intermediates, indicating that rearrangement was faster than enolate formation at room 

temperature. Changing the base to LDA and carrying out the rearrangement at –20 °C 

decreased the rate of both deprotonation and rearrangement, and revealed an 

intermediate on the reaction pathway (Figure 4a, 4b). This intermediate was identified 

as the enolate E (Figure 4a) by noting that it had no C=O stretching absorption 

corresponding to an amide carbonyl group (1710 cm–1 in cis-3-Ala-a) but retains the 

urea (1630 cm–1) and aromatic bands at 1500-1600 cm–1. The rate of decay of this 

intermediate was identical for both cis-3-Ala-a and trans-3-Ala-a, confirming that it 

is a common intermediate from both diastereoisomers, and treating the isolated 

product with LDA gave an IR spectrum identical with that of the species present at 

the end of the reaction, identifying it as the product anion P (Figure 4a). Confirmation 

that the reaction is intramolecular was provided by a cross-over experiment in which 

cis-3-Ala-b was mixed with cis-3-Met-c (both of which rearrange at comparable 

rates) and treated with KHMDS. A mass spectrum of the crude reaction mixture 

showed molecular ions corresponding only to 4-Ala-b and 4-Met-c. 

A Hammett plot was constructed by treating a series of imidazolidinones 3-

Ala bearing a selection of aryl substituents with an excess (5 equiv.) of LDA at –20 

°C, and the formation of product anion P monitored using its characteristic IR bands 

at ca. 1690 and 1630 cm–1. Under these conditions, the formation of the product from 

the enolate followed first-order kinetics, and the linear section of a plot of ln([P]∞-

[P]) vs. t gave a rate constant kobs for each substrate (Fig. 4c). A Hammett plot of log 

kobs vs – is shown in Fig 4d: the plot shows a downwards bend characteristic of a 

change in rate-determining step, with enolate formation being rate-limiting for 

electron-deficient rings (no enolate was detectable by IR during the rearrangement of 

3-Ala-b or 3-Ala-c). For the electron-rich domain of the plot, the value of  is +4.5, 

consistent with substantial build-up of negative charge on the migrating ring during 

the reaction. This  value is nonetheless smaller in magnitude than those of 'classical' 

intermolecular SNAr reactions,24,25 possibly indicating that the reaction proceeds 

without the intermediacy of an anionic ‘Meisenheimer complex’.26-28 Electron-rich 

substitution patterns are unreactive in such intermolecular substitutions, and we 

assume that in our system the conformational restriction imposed by the urea 

linkage29 must enforce attack of the enolate on the ring, irrespective of the ring's 

inability to stabilise a negative charge.30 
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Figure 1: Stereoselective arylation of amino acids. Our strategy for stereoselective 

arylation of amino acids by way of imidazolidinyl ureas. An amino acid A is 

converted diastereoselectively into an imidazolidinone B carrying a pendent urea 

function. Treatment with base forms an enolate C in which the urea’s aromatic 

substituent Ar migrates to the rear face of the imidazolidone, directed by the bulky 

tert-butyl group, as indicated by the red dotted arrows. Hydrolysis of the product D 

reveals the quaternary -aryl amino acid E. 

  



R

N

N

Cl

O

t-Bu

O

Me

trans-1

1. t-BuCHO (1.1 equiv),

CF3CO2H (2.0 equiv),

CH2Cl2, reflux, 18 h

2. Cl3COCO2CCl3
(0.45 equiv),

2,6-lutidine (1.2 equiv),

CH2Cl2, -78 °C - rt, 18 h

H2N

R

NHMe

O

L-AlaNHMe (R = Me)
L-PheNHMe (R = Bn)
L-LeuNHMe (R = i-Bu)

1-Ala 90%, 80:20 dr
1-Phe  68%, 70:30 dr
1-Leu  82%, 70:30 dr

(1.1 equiv)

Et3N (1.5 equiv)

KI (1.1 equiv.),

CH2Cl2

 reflux, 45 h

R

N

N

t-Bu

O

Me

N

O

Me

N

R

NHMe

O

t-Bu

R

N

N

Cl

O

t-Bu

O

Me

cis-1

t-BuCHO

MgSO4,

CH2Cl2,

18 h, rt

2

Method A

trans-3

(b) X-ray crystal structure of trans-1-Ala

(a) Synthetic routes to a-arylated amino acids 5

KHMDS
(1.5 equiv),
THF, 0 °C - rt

(1.1 equiv)

Et3N (1.5 equiv)

KI (0-1.1 equiv.),

CH2Cl2,

reflux, 18-45 h

R

N

N

t-Bu

O

Me

N

O

Me

cis-3

+

R

N

N

t-Bu

O

Me

R

N

N

t-Bu

O

Me

MeHN

O

KHMDS
(1.5 equiv),
THF, 0 °C - rt

R

H2N CO2H

R

H2N CO2H

Ar

Ar

Ar

Ar
1. NaH, MeI, DMF,
0 °C - rt, 18 h
2. HCl (6 M, aq.)/EtOH
(10:1), 160 °C, µw, 3 h

1. NaH, MeI, DMF,
0 °C - rt, 18 h
2. HCl (6 M, aq.)/EtOH
(10:1), 160 °C, µw, 3 h

4

ent-4

Ar

Ar

NHMe

NHMe

(S)-5

(R)-5

N

Me

O

Cl

Ar

toluene,
reflux

Method B

Method A

S-selective route

R-selective
route

KHMDS (3 equiv),
THF, –78 °C - rt

Ar

Ar

(1.2 equiv),NHMe

Ar

(d) Arylated amino acids 5

H2N CO2H

Ph

H2N CO2H

5-Ala-a
77%

H2N CO2H

F

H2N CO2H

HO2C

5-Ala-d
 82%

5-Leu-b'
76%

H2N CO2H

Cl

5-Leu-c
74%

H2N CO2H

Ph

Br

HN

N

O

O

F

HN

N

O

O

5-Phe-e
83%

6-Leu-d
50%

6-Leu-i
60%

H2N CO2Me

Cl

FmocHN CO2H

Cl

HN

Ph

Br

N

O

O R

6-Phe-e (R = t-Bu) 66%

H2N CO2Me

Ph

Br

8-Phe-e-OMe
81%

8-Ala-c-OMe
88%

Fmoc-7-Ala-c
66%

CbzHN CO2H

F

Cbz-7-Ala-d
96%

Cl

BocHN CO2H

F

Boc-7-Ala-d
46%

H2N CO2H

Cl

5-Ala-c
83%

5-Phe-c
77%

CbzHN

F

O

H
N

9
92%

CO2Et

Ph

H2N CO2H

5-Ala-b'
77%

HO2C

(e) Derivatisation of arylated amino acids 5

MeHN

O

5

Method C

(c) Arylated hydantoins 6

Method D

Method D

a

b

b

b

d

d

c

e

6'-Phe-e (R = H) 66%

f

ent-4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Arylation of amino acids by way of imidazolidinone ureas. (a) Synthetic 

pathways from L-amino acids to quaternary -arylated amino acids 5 by way of N-

chloroformylimidazolidinones 1 or imines 2, N’-aryl imidazolinyl ureas 3, and C-aryl 

imidazolidinones 4. The sequence of method B and method D shown by the red arrow 

starting from 1 constitutes an ‘S-selective route’ to 5 from an L-amino acid, while the 

sequence of methods C, A and D shown by the red arrows from 2 constitutes an ‘R-

selective route’ from an L-amino acid. (b) The stereochemistry of trans-1-Ala 

confirmed by X-ray crystallography. (c) Representative -arylated hydantoins formed 

by hydrolysis of ent i-4. (d) Yields of representative -arylated amino acids 5 formed 

by methylation and hydrolysis of 4. (e) Derivatisation of representative quaternary -

arylated amino acids 5 by N-protection, peptide coupling, esterification or hydantoin 

formation. Conditions: a 1. HCl (6 M, aq.), 130 °C (sealed tube), 18 h; b 1. N-Methyl-

N-(trimethylsilyl) trifluoroacetamide, CH2Cl2, reflux, 4 h; 2. CbzOSu or Boc2O or 

FmocOSu, CH2Cl2, rt, 16 h; 3. MeOH, rt, 15 min; c 1. K-Oxyma, EDC.HCl, i-Pr2NEt, 

DMF, 0 °C-rt, 15 min; 2. L-Phe-OEt.HCl, DIPEA, 72 h; d Me3SiCHN2, 

benzene/MeOH (4:1), rt, 18 h; e 1. t-BuNCO, CH2Cl2, reflux, 18 h; 2. t-BuOK, THF, 

rt, 18 h; f HBr, AcOH (1:1), 120 °C, 18 h. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Scope of the imidazolidinone arylation: amino acids and migrating 

groups. (a) Product structures, yields and er from use of the optimised R-selective 

route via L-amino-acid derived imidazolidinones cis-3. 'Ar' indicates either the aryl 

substituent itself or the substituent(s) on a phenyl ring. (b) Product structures, yields 

and er from use of the optimised S-selective route via L-amino-acid derived 

imidazolidinones trans-1. (c) Structures of the aryl substituents introduced by these 

methods. 

Footnotes: aer not determined; bLiNEt2 used instead of KHMDS (which gave no 

product). The product 4-Val-a contained some of the epimeric imidazolidinone as a 

result of incompletely diastereoselective rearrangement. cD-Phenylglycine was used as 

starting material, so product has S absolute configuration. d
D-Phenylglycine was used 

as starting material, so product has R absolute configuration. 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Mechanism of the rearrangement.  (a) Proposed reaction pathway, with 

approximate C=O stretching frequencies; (b) In situ IR trace (first-derivative plot) of 

the reaction of cis-3-Ala-a showing diagnostic changes in carbonyl stretching 

frequencies; (c) plot of absorbance against time for peaks at 1711 cm–1 (red, starting 

material), 1629 cm–1 (blue, enolate E), 1611 cm–1 (green, product anion P); (d) 

Hammett plot of log kobs vs. –, consistent with rate-determining rearrangement for 

electron-rich rings and rate-determining deprotonation for electron-deficient rings. 

The gradient of the electron-rich domain to the left of the plot,  = +4.5 is consistent 

with substantial charge build up on the aryl substituent during the rearrangement. 

 

  



Table 1: Optimising the synthesis of 3 

*Reaction carried out at reflux for 18 h unless otherwise indicated. †1.5 equiv. ‡1.1 

equiv. §45 h. ||Method C. ¶0.05 equiv. 

 

Table 2: Optimising the rearrangement of 3 to 4 

*1.5 equiv. †Yield of ent-cis-3-Ala-a formed by epimerisation. ‡Not determined. 

§Method A. ||Reaction on 1.5 g scale. 

 

  



Data availability statement. Full experimental details and spectroscopic data are 

provided as supplementary information. 

 
Supplementary Information is linked to the online version of the paper at 

www.nature.com/nature. 
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